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ABSTRACT 
Disordered molecular systems such as amorphous catalysts, organic thin films, electrolyte 
solutions, and water are at the cutting edge of computational exploration today. Traditional 
simulations of such systems at length-scales relevant to experiments in practice require a 
compromise between model accuracy and quality of sampling. To remedy the situation, we have 
developed an approach based on generative machine learning called the Morphological 
Autoregressive Protocol (MAP) which provides computational access to mesoscale disordered 
molecular configurations at linear cost at generation for materials in which structural correlations 
decay sufficiently rapidly. The algorithm is implemented using an augmented PixelCNN deep 
learning architecture that we previously demonstrated produces excellent results in 2 dimensions 
(2D) for mono-elemental molecular systems. Here, we extend our implementation to multi-
elemental 3D and demonstrate performance using water as our test system in two scenarios: 1. 
liquid water, and 2. a sample conditioned on the presence of a rare motif. We trained the model 
on small-scale samples of liquid water produced using path-integral molecular dynamics 
simulation including nuclear quantum effects under ambient conditions. MAP-generated water 
configurations are shown to accurately reproduce the properties of the training set and to produce 
stable trajectories when used as initial conditions in classical and quantum dynamical 
simulations. We expect our approach to perform equally well on other disordered molecular 
systems while offering unique advantages in situations when the disorder is quenched rather than 
equilibrated.  
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INTRODUCTION 

There are numerous examples of amorphous or strongly disordered systems that gave rise to 
decades of fruitful research or hold a terrific potential for future applications: amorphous silica 1, 
water2, amorphous catalysts3, amorphous graphene4 to name a few. Computational exploration of 
such systems is hindered by the need to simulate large numbers of particles in difficult-to-sample 
free energy landscapes. The steep rise in simulation cost with system size is typically referred to 
as the ‘exponential wall’ or the ‘curse of dimensionality’ and it is due to the fact that the 
configuration space volume and the necessary sampling increase exponentially with number of 
particles. State of the art simulation methods approach the problem of bridging the nano-to-meso 
gap through the development of enhanced-sampling techniques5–7, coarse-grained potentials8–10 
and machine-learning force fields11,12. They increase to some degree the range of systems that 
may be successfully modeled. Our approach seeks to exist in this space, and it effectively 
circumvents the dimensionality curse for the limited (although quite broad) class of strongly 
disordered systems.  

Inspired by the successes of applying machine learning to sampling challenges, we have recently 
introduced an approach to simulating strongly disordered matter as an autoregressive protocol 
based on deep learning called the Morphological Autoregressive Protocol (MAP) 13,14. It takes 
advantage of the locality of structural correlations in amorphous or strongly disordered materials 
and extrapolates molecular configurations from small-scale samples to arbitrary sizes at linear 
cost, see Figure 1 for a conceptual summary. Previously, we have implemented the MAP for the 
case of 2D mono-elemental materials using a deep generative model called gated PixelCNN15,16 
and applied it to simulations of quantum dot aggregates, and to a recently discovered 
topologically distinct amorphous variant of graphene13,17,18. Here, we extend it to multi-elemental 
3D disordered structures. 
 

The idea behind the MAP is that for materials with finite correlation length, a neural network 
trained on small, order of the structural correlation-length samples (Figure 1(A)), learns the 
conditional probability of presence/identity of atoms at a point in space given the ‘context’ of 
surrounding atoms (Figure 1(B)) and it can be used to extrapolate structures (Figure 1(C)) to any 
desired size at linear cost with respect to the number of the generated grid-points. If needed, the 
samples may reach the mesoscale, and if needed, the resolution may remain atomistic. In 
practice, we estimate the correlation length 𝐿! using a radial distribution function (RDF) 
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where	𝛿 is the Dirac delta function, 𝑟 the radius, 𝑟"# the distance of particle 𝑗 from the reference 
particle 𝑖, and 𝑁 the total number of particles. Once the probability conditional on the context 
with the size of 𝐿! is known, it is then sampled in an autoregressive fashion with newly 
generated points becoming input for further generation.  Using the MAP, the molecular 
structures are generated in a directional manner one grid-point at a time and the required input 
‘molecular context’ is limited to the space directly preceding the generated grid-point. We found 
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that ‘molecular context’ truncated in this fashion is sufficient for successful extrapolation in the 
case of 2D amorphous materials13  and here we show that it is indeed sufficient for the 3D case 
as well. 

 

Figure 1 Workflow diagram for Morphological Autoregressive Protocol (MAP) in 3D. (A) 
Training samples (size on the order of the correlation length 𝐿!). (B) Schematic representation 
the outcome of training the 3D PixelCNN model: a conditional probability of the grid-point 𝑋" 
given the context of size 𝐿!:	𝑃(𝑋"|𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟	𝑐𝑜𝑛𝑡𝑒𝑥𝑡). C. The outcome of the generation 
process: an extrapolated molecular configuration with dimensions that exceed the dimensions of 
the training samples.   
 
Finally, it is important to discuss whether the generated structures are physical. We showed in 
Ref.14  that 1. MAP-generated structures can be thought of as converging Markov chains that are 
guaranteed to realize a unique steady-state distribution (the distribution of the small-scale 
samples used in training) and 2. The extrapolation scheme in the MAP is physically motivated by 
the decaying correlation length in amorphous or strongly-disordered materials and, therefore, the 
training and the generation process can be systematically improved/converged through the tuning 
of the relevant hyperparameters and the design of the training set. The easiest to tune and the 
most effective generation hyperparameters are the sampling temperature and the size of the 
‘burned’ region – the part of the early generated sample that is discarded due to lack of 
equilibration. As far as the design of the training set goes, the training samples need to be 
sufficiently large to allow structural correlations to decay, and the data needs to be appropriately 
augmented (see Methodology section) in order to include symmetries inherent to the system 
during training. Competing approaches that resemble the MAP have recently emerged based on 
generative adversarial networks19–21, but to the best of our knowledge so far the physicality of the 
generated samples has not been systematically explored.  
 
In this paper we present an implementation of the MAP for the simulation of 3D multi-element 
atomistic molecular structures. To demonstrate the performance of multi-elemental MAP in 3D 
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we use liquid water as model system. Water has various anomalous properties that have been of 
great interest for more than five decades22,23. Here we first verify that our model successfully 
generates liquid water in ambient conditions. We then proceed to generate structures that are 
conditioned on the presence of a rare motif found in the training dataset and we demonstrate 
convergence of the properties of new configurations with the number of generative iterations. 
We propose that this novel approach may be useful for studying challenging scenarios like ice 
nucleation etc. Finally, we seed molecular dynamics simulations and confirm that resulting 
trajectories are stable and physically sound. The paper is organized as follows: in Methodology 
section we present the details of the MAP and its multi-elemental implementation in 3D and the 
technical details of the molecular dynamics simulations, Results and Discussion section 
discusses the MAP performance on liquid water dataset and the results of molecular dynamics 
simulations seeded with configurations generated by MAP, Conclusions provide an executive 
summary and outlook. 

METHODOLOGY 

1.The Morphological Autoregression Protocol (MAP). 
In the MAP approach, the space is discretized, and the molecular structure is viewed as a 
sequence {X}. The probability that grid point 𝑖 is occupied by a molecular fragment class 𝜃 
(atomistic or otherwise) is generically given by 
 
Equation 1: 𝑃(𝑋" 	= 	𝜃|{𝑋#'" 	}) 	= 	𝑁[𝑐(,* 	+ 	𝐹*({𝑋#'" 	})] 
 
with {𝜃	 ∈ 	ℤ	+|𝜃	 ≤ 	𝑁! 	} where 𝑁! is the total number of classes,  𝑐(,* 	 is a linear bias, 𝐹*({𝑋}) 
is a function that captures the correlations between 𝑋" and the surrounding structure {𝑋#'" 	} and 
𝑁[𝑦] signifies the soft-max class-wise normalization function that translates 𝒚*," ⩧ 		𝑐( 	+
	𝐹*(L𝑋#'" 	M), into the probabilities for atomic/molecular features expected at grid-point 𝑖 (with 𝛽 
= 1): 
 

Equation 2:  𝑁O𝑦*,"P =
,!"#,%	

∑ ,!"#,%	#
. 

 
 
With index 𝑖 running over multiple dimensions, one can generate 1, 2 or 3 dimensional 
sequences corresponding to 1D, 2D, and 3D materials.  Uniquely, finite morphological 
correlation lengths in disordered materials allow us to truncate the molecular context at some 
finite correlation length 𝐿! (Figure 1(B)) without loss of accuracy, in other words:  
 
 Equation 3:   𝑙𝑖𝑚"→/		𝐹*({𝑋#'" 	}) 	= 	𝐹*({𝑋# ∈ 𝐿!}). 
 
Thereby, the probability for a sequence element to be of class 𝜃 is given by: 
 
Equation 4:  𝑃(𝑋" 	= 	𝜃|{𝑋#'" 	}) 	= 	𝑁[𝑐(,* 	+ 	𝐹*({𝑋# ∈ 𝐿!})]:  
which are normalized, nonzero probabilities for each class, see Equation 2. Sampling this 
conditional probability starting from either empty space or from some initial conditions will 
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generate the sequence {X} element by element with newly generated elements fed back into the 
conditional probability as part of the molecular context {𝑋# ∈ 𝐿!}.   
 
The correlation function 𝐹* in Equation 4 may have different forms depending on the system that 
is being studied. For simple systems such as dilute gases or fluids, one can derive 𝐹* by 
incorporating pairwise correlations of particles, but this is not a trivial task for dense fluids and 
similarly for the amorphous materials where one needs to take into account correlations of two 
pairs, three pairs, one 3-body cluster, one 3-body and one pair, etc., up to large clusters of 
particles. The number of these terms explodes exponentially with correlation length 𝐿! and size 
of the aggregates. Therefore, we resort to fitting 𝐹* as accurately as possible using data. In the 
next section, we describe the PixelCNN architecture which is known for its effectiveness in 
learning complex multi-dimensional datasets. 

2.PixelCNN: 

PixelCNN is a variant of convolutional neural networks which explicitly outputs the conditional 
probability distribution for all the grid-points in 3D or voxels in an image, {X}, given the 
surrounding voxels: 

Equation 7: 𝑃({𝑋}) 	= ∏"
0'.0(.0) 	𝑃(𝑋"|{𝑋#'"}). 

Here the set {X} represents the training data in the sequential form with 𝑛2, 𝑛! and 𝑛3  
corresponding to the number of rows, columns, layers of the 3D input data. To ensure the 
receptive field of the convolutions around each target voxel, here with size of 3x3x3, only 
includes the voxels on which its probability is conditioned (thus, avoiding seeing the future 
voxels/context) a mask is added to each convolution, see Figure 2(A). 

Figure 2 Details of the 3D-MAP-PixelCNN architecture. (A) Masked kernel (3x3x3) centered 
on a target voxel (black), the voxels prior to the target voxel are shown in blue, red and green 
corresponding to the prior voxels being convoluted in depth, vertical, horizontal stacks 
respectively. (B) depicts the architecture of PixelCNN in 3D, with stacks working independently 
to overcome the blind spot problem.  
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However, the use of ‘masked’ convolutions leads to loss of information, this artifact is known as 
blind spot. The elimination of the blind spot is achieved by use of two masks - vertical and 
horizontal15 in 2D. We extend this approach to 3 dimensions by splitting the masked 3x3x3 
convolution into a 1x1x1 (horizontal) and 1x1x3 (vertical) convolution and 1x3x3 (depth) 
convolution. Thus, these convolutions are done in 3 separated stacks demonstrated in Figure 
2(B). Note that the information from depth stack is flowed to vertical and horizontal, and from 
vertical to horizontal in a unidirectional manner by 1x1x1 connections. Depth stack should not 
have access to any information the vertical has, and similarly vertical stack is blind to the 
information accessible to the horizontal stack, otherwise they would access the voxels that they 
should not see. 

We used Rectified Linear Units (ReLU) activations for each layer. As in Ref 15, after the first 
layer we add a residual connection from the ReLU unit in horizontal to the output of the next 
one. Moreover, the final convolution is accompanied by dropout, a well-known regularization 
method25.  In the generation phase, the softmax operation is followed by multinomial sampling 
using the normalized voxels probabilities, to predict the voxel value. This step is the 
implementation of Equation 4 described in the MAP protocol. The predictions for each voxel are 
compared with the associated voxel value in training sample by using a cross-entropy loss 
function per-voxel defined as:  

𝐿45 =	−+𝑡* log𝑃(𝑋" = 𝜃)	
*

 

where 𝑡* is the one-hot encoded truth value of each voxel, and 𝑃(𝑋" = 𝜃) is the prediction made 
by Equation 4. Finally, a backpropagation algorithm is performed by using the computed loss 
function for every batch of training sample to update the parameters of the model. 

3. Molecular dynamics simulations: training set and validation  

The training set was generated using a quantum mechanical path integrals molecular dynamics 
(PIMD) trajectory (i.e., including nuclear quantum effects) sampled at 1.25 ps rate to make a 
total of 1000 decorrelated configurations of 216 water molecules31. For the validation of the 
generated samples, the classical molecular dynamics (MD) and PIMD simulations were 
performed at 300 K MAP generated samples with a total of 343 water molecules. Periodic 
boundary conditions were applied using the minimum image convention. First a NPT 
equilibration was done for 125 ps, followed by a NVT run for 500 ps at 1 bar using an Andersen 
thermostat and an anisotropic Berendsen barostat, respectively26,27. For all calculations the q-
TIP4P/05 water potential of Habershon et al.28 has been used. Short-range interactions were 
truncated at 10 Angstrom and Ewald summation was employed to calculate the long-range 
electrostatic interactions. We used discrete time steps of 0.5 fs for the intermolecular and 0.1 fs 
for the intramolecular forces29. For the PIMD calculations the ring polymer contraction scheme 
with a cut-off value of σ = 5 Angstrom was employed to reduce the electrostatic potential energy 
and force evaluations to a single Ewald sum, speeding up the calculations30. 32 beads were used, 
contracting to a centroid for the computational expensive part of the electrostatic interactions. 
Ensemble averages were calculated over the whole trajectory length of 500 ps.   
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RESULTS AND DISCUSSION 

1. Liquid Water: For training on liquid water structures, 1000 samples were generated by PIMD 
simulations (see Methods for details). We augmented this dataset with samples rotated 90 and 
180 degrees in each direction to achieve a training set containing 7000 samples with volume of 
80x80x80 voxels. Each voxel is equal to 0.25Å3 introducing an average distortion in atom 
positions of 4 % of O-H covalent bond length upon discretization of space. Finally, to reduce the 
memory usage, we subsampled each configuration with 8 equally sized and non-overlapping 
samples, this leads to 56000 40x40x40voxels samples. This data set was split 80:20 into training 
and test data sets. We chose model architecture with 20 layers each having 20 convolutional 
kernels. Stochastic gradient descent (SGD) with momentum of 0.9 was used, and the training 
was done using cross entropy loss function and stopped after 493 epochs with the batch size set  

 

Figure 3 Performance of the MAP on a model system (ambient liquid water). (A) A sample of 
liquid water from the training set. (B) An extrapolated larger MAP-generated sample with sides 
of the simulation box doubled relative to the training set. Comparison of the properties of the 
training set (blue) and the properties of MAP-generated samples (red):  Panels (C), (D) and (E) 
give the radial pair correlations for O-O, H-H, and O-H, and (F), (G) show distributions of H-O-
H bond angles and covalent O-H bond lengths. 

to 1 and the learning rate to 0.01. A dropout with probability of 0.21 was used after the final 
layer which randomly sets to zero one of the elements of the features tensor.  

Figure 3 shows the results of MAP simulations of ambient water and compares characteristics of 
the training samples to those generated by the MAP. For this comparison we have generated one 
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sample with dimensions of 160x160x160 voxels or 4x4x4 nm3, i.e., each side is twice as large as 
the training data samples, for an illustration, see Figure 3(B). The overall comparison 
demonstrates strong performance with excellent agreement between the training and the 
generated samples. We use element-resolved radial distribution function to evaluate agreement: 
see Figure 3(C) for Oxygen-Oxygen RDF, Figure 3(D) for H-H RDF, and Figure 3(E) for O-H 
RDF. The radial distribution function g(r) function was calculated by counting the number of 
particles contained in a volume within the spheres of radii 𝑟 and 𝑟 + 𝑑𝑟 away from a reference 
particle. As the training samples and outputs are in the discretized space, 𝑑𝑟 was chosen to be 
half of voxel side (0.125Å). Note that this discretization gives rise to the noisy RDFs in Figure 3. 
To account for normalization, the counts in previous step were divided by 𝜌	4𝜋𝑟6𝑑𝑟, where 𝜌 is 
the number density. The evidence that the model captures the water bond angle and bond lengths 
very well is presented in Figures 3(F) and (G). Finally, we note that our model is prone to minor 
mistakes leaving oxygens and hydrogens ‘orphan’ in rare cases. The number of these defects was 
in total 88 among 1923 generated water molecules with the majority found at the boundaries. 
This is expected since we fix the number of voxels in the generated sample rather than the 
number of molecules and molecules initiated at the edges do not get completed. These defects 
can be removed with a simple post-processing step.  

2. Configurations conditioned on presence of a rare motif: Here, we explore the potential of 
MAP to generate configurations of liquid water in the presence of a rare motif. To obtain the rare 
motif, we calculated the density of water molecules in a probe volume of 25x25x25 voxels 
within the training set. While the local structures with a density of 0.996 g/cm³ are dominant, 
infrequent low-density structures with a density of 0.614 g/cm³ have been discovered. These 
low-density motifs have a probability of about 4.5 % among the entire existing water molecules 
structures within the probe volume. We chose a specific training sample where the low-density 
motif is found exactly at the center of the simulation box. Our aim is to generate a configuration 
of the same size as this training sample, with the motif placed at the center of the generated 
sample and water is generated around it. We generate such a configuration as follows: (i) 
initialize an empty sample with only the motif configuration present and populate the 
surrounding grid-points with our model, Figure 4(A); (ii) we rotate the generated sample 
counterclockwise along the z (blue axis) and clockwise along the x direction (red axis); (iii) we 
now populate the grid-points that remained empty after step (i), see Figure 4(B). Consequently, 
we have a sample with a desired motif in the center of the box and water molecules around it 
sampled from a distribution that was conditioned on the presence of the motif, Figure 4(C).  
Given that the MAP generation is a Markov chain14, it is anticipated that several iterations of 
MAP generation would be required for convergence to a steady state distribution. To perform 
iterative generation, we repeat the generation protocol (step(ii) to (iii)) but erase those grid points 
that will be generated at the next iteration step and generate them anew. 
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Figure 4 Visual summary of conditional generation using the MAP. (A) Step (i) in conditional 
generation: generated water molecules around a rare motif (blue molecules) seeded in the corner 
of the box. (B) Step (ii) in conditional generation: rotated configuration with empty space to be 
filled in Step (iii). (C) Step (iii) in conditional generation: the rest of the simulation box is filled 
in. As a result, the motif is placed in the center of the box surrounded with water molecules. 

In order to investigate the convergence of the motif-conditioned sample as a function of 
generative iteration we quantify the similarity between the generated samples and the training 
sample from which the motif is drawn. To do so, we use the local bond order parameters 𝑞7 and  
𝑞8 applied to the oxygen atoms. These are based on the Steinhardt bond-order parameters32,33 and 
have been widely employed to understand structural ordering in systems like water and 
amorphous solids34. These order parameters are defined as follows: 

 
 

𝑞3(𝑖) 	= \
4𝜋

2𝑙 + 1	 +
|𝑞39(𝑖)|6
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in which 𝑁0,"=>(𝑖) is the number of neighbors of particle 𝑖, 𝒓𝒊𝒋 is the vector connecting particle 𝑖 
with its neighbors	𝑗 within a cut of distance of 3.5 Å and 𝑌39 are spherical harmonics of order 𝑙 
and 𝑚.   
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Figure 5 Probability density functions for local order parameters 𝑞7 (A) and  𝑞8 (B) in a 
reference sample containing a rare low-density motif and in MAP-generated samples conditioned 
on that motif shown as a progression of generative iterations. Panel (C) demonstrates the KL 
divergence (DKL) between the distributions of 𝑞7 and  𝑞8 from the generated samples and the 
reference. Convergence with increase in number of generative iterations is observed towards a 
steady state as well as (weakly) towards the reference state.  
 
We present the probability density functions for  𝑞7  and  𝑞8 in Figure 5(A) and (B) respectively 
for the different iterations of generated samples containing a rare motif (red, orange, green) 
alongside the reference sample (blue). Figure 5(C) shows the Kullback-Leibler (KL) divergence 
between local order parameters’ distributions in the reference sample 𝑃∗(𝑞3) and in the generated 
samples 𝑃(𝑞3) as a function of number of generative iterations. It is defined as: 𝐷DE(𝑃∗||𝑃) =
∫ 𝑃∗(𝑞3) log 	

F∗(G))
F(G))

𝑑𝑞3 with the index 𝑙 ∈ 4,6. The KL divergence measures the discrepancy 
between two distributions, and we use it to track convergence of the generated samples. It is 
clear from the trend in Figure 5(C) that several iterations are necessary for producing converged 
configurations. In our experience, 𝑞7 tends to converge more readily than 𝑞8 since the latter 
incorporates more intricate angular interactions among adjacent particles, and it is more sensitive 
to positions of the atoms. Note that the order parameters are not expected to match the reference 
exactly (and the KL is not expected to go to zero) as we do not expect the exact same 
configuration to be generated by the model. Nonetheless, it is reassuring to observe a weak trend 
towards the reference in these data. 
 

3. Molecular dynamics simulations 

In order to put the MAP-generated configurations to a practical test we used them to initialize 
several molecular dynamics trajectories and kept track of the physicality of observables. To this 
end, we have generated a sample with dimensions of 2.4x2.4x2.4 nm3 that includes 343 water 
molecules and used it as initial configuration in a set of classical MD and quantum mechanical 
PIMD simulations including nuclear quantum effects. The results are summarized in Figure 6 
and Table 1. 
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Figure 6 Oxygen-oxygen (left), oxygen-hydrogen (middle), and hydrogen-hydrogen (right) 
Radial Distributions Function (RDF) for water at 300 K with NQE (red), classical water at 300 K 
(blue) and experimental water at 300 K (dotted). All calculated RDFs of the simulations are 
computed from 10000 steps from quantum mechanical PIMD including nuclear quantum effects 
(NQE) with 250 ps length and 20000 steps of classical path integrals molecular dynamics 
(PIMD) calculation with a total length of 500 ps. 
 
Overall, the water at ambient temperature shows the typical behavior we would expect, similar to 
experimental and theoretical studies done before35–37. The O-O, O-H and H-H radial distribution 
functions (RDFs) for the classical and the quantum simulations are shown in Figure 6, and they 
show very similar structures. Table 1 summarizes key observables from the two simulations 
which are in agreement with generally accepted values38. This confirms that MAP-generated 
starting structures give rise to healthy dynamical simulations of water. 
 
 

 Density 
[g/cm³] 

Average O-H 
bond length [Å] 

Average bond 
angle [degrees] 

Average dipole 
[Debye] 

Water 300 K MD 1.0003 0.9623 104.825 2.308 

Water 300 K PIMD 0.9958 0.9779 104.710 2.347 

Experimental water 300 
K 

0.997 0.97 105.100 2.9 

 
Table 1: Density and average observables over the NPT followed by NVT runs for classical and 
quantum molecular calculations. Experimental data taken from Ref. 35.  
 
 
CONCLUSIONS 
 
In this paper we have extended to 3D and multi-elemental datasets the morphological 
autoregressive protocol (MAP), a recently constructed computational approach to generating 
strongly disordered morphologies at arbitrary scales based on small-scale training samples. By 
construction, the MAP can be applied to any molecular dataset with sufficiently quickly 
decaying structural correlation function. Here, we have demonstrated stable performance using 
water as a model system and highlighted some of the aspects in which the MAP can benefit 
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computational exploration, for example 1. In the case of water, NQE are naturally included in the 
generated morphologies by virtue of their inclusion in the training data. This may be important 
for low temperature simulations where water is a quantum liquid; 2. MAP-generated initial 
conditions may be used to bypass expensive sampling using (PI)MD simulations by motif-
conditioned generation. The selection of the motif is influenced by the specific problem being 
addressed and the presence of the required motif in the training data. Beyond water, we expect 
this deep learning protocol to be of use in a wide range of simulations of strongly disordered 
materials by providing cost-effective and direct ways of probing the morphological complexity, 
gaining access to important rare configurations, and ultimately bridging the gap between the 
nano- and the meso- scale simulations of molecular systems.  
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