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Synchronization between limit cycle oscillators can arise through entrainment to an external drive
or through mutual coupling. The interplay between the two mechanisms has been studied in clas-
sical synchronizing systems, but not in quantum systems. Here, we point out that competition and
cooperation between the two mechanisms can occur due to phase pulling and phase repulsion in
quantum systems. We study their interplay in collectively driven degenerate quantum thermal ma-
chines and show that these mechanisms either cooperate or compete depending on the working mode
of the machine (refrigerator or engine). The entrainment-mutual synchronization interplay persists
with an increase in the number of degenerate levels, while in the thermodynamic limit of degener-
acy, mutual synchronization dominates. Overall, our work investigates the effect of degeneracy and
multilevel scaling of quantum synchronization and shows how different synchronizing mechanisms
can cooperate and compete in quantum systems.

Introduction.– Synchronization is a ubiquitous phe-
nomenon in which stable phase relations emerge between
multiple limit cycle oscillators [1]. There are two main
mechanisms that give rise to synchronization: i. En-
trainment that refers to synchronization of an oscillator
by unidirectional coupling to a periodic external drive
[2], and ii. Mutual synchronization which refers to the
adjustment of rhythms of two or more mutually coupled
oscillators, such as in the widely-known Kuramoto model
[3]. These two mechanisms may coexist in some systems
[4–7] and their interplay has also been experimentally
studied in globally coupled electrochemical oscillators [8].

In the same spirit as classical synchronization, quan-
tum synchronization is often studied through entrain-
ment [9–14] or mutual coupling [15–21] and has been
experimentally observed recently [22–24]. However, un-
like classical synchronization, the coexistence and the in-
terplay between these two mechanisms in the quantum
regime has not been investigated. Understanding this in-
terplay is crucial in the control of various quantum tech-
nologies where both driving and interaction are impor-
tant such as in superradiant lasers [16], coupled time-
crystals [25], and coupled heat engines [26–29].

In this work, we show that the phases of steady-state
coherences follow a phase synchronization model, where
the external entraining drive competes with the mu-
tually coupled phases. This opens up the possibility
of observing well-studied classical phenomena, such as
synchronization-anti-synchronization transition [30] and
chimera [31, 32], in the quantum regime. Our framework
applies to generic quantum systems, with one or more ex-

ternal drives that couple the coherences that themselves
are mutually coupled, either coherently or dissipatively,
leading to an interplay between entrainment and mutual
synchronization.

As a concrete example, we consider a degenerate mul-
tilevel generalization of the Scovil–Schulz-DuBois maser
heat engine [33], where the external collective drive con-
nects transitions between the degenerate manifold and
the first-excited state [34]. The states within the degen-
erate manifold mutually interact to form a stable col-
lective symmetric (in-phase) and anti-symmetric (out-of-
phase) superposition (mutual synchronization). At the
same time, the external drive causes the phases within
the degenerate manifold to be aligned in-phase with the
drive (entrainment). In the engine regime, stimulated
emission consumes the collective symmetric superposi-
tion state thereby enhancing the population of the anti-
symmetric state. Thus, there is competition between en-
trainment (in-phase) and mutual synchronization (out-
of-phase). In the refrigerator regime, the stimulated ab-
sorption enhances the population of the collective sym-
metric superposition state thereby always cooperating
with entrainment. Our work sheds light on the synergis-
tic interplay between entrainment and mutual synchro-
nization in quantum systems.

Quantum synchronization in D-level systems.– Quan-
tum synchronization has been studied in systems with
continuous degrees of freedom such as oscillators [9–
11, 13, 15, 17, 35] and discrete degrees of freedom such
as spin-1 systems [12, 14, 20]. A wide variety of mea-
sures, based on various physical and mathematical mo-
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tivations such as phase-space based measures [9, 12, 20],
correlation measures [36], and information-theoretic mea-
sures [37] has been used to quantify synchronization.

In this work, we use the phase-space based measure
built on the Husimi-Q phase space representation [38, 39]
of the steady-state ρss with respect to SU(D) coherent
state [39, 40] defined as

Q[ρss] =
D!

πD−1
〈αD|ρss|αD〉 , (1)

where |αD〉 =
∑D
n=1 αn |n〉 is the SU(D) coherent state

with coefficients

αn =

{
eiφn cos θn

∏n−1
k=1 sin θk 1 ≤ n < D

eiφD
∏D−1
k=1 sin θk n = D,

(2)

where it is implicitly assumed that the product term is
identity for n = 1 and the reference phase φ1 = 0. The
synchronization measure is given by the difference be-
tween integrating out the angles θk corresponding to the
population degrees of freedom and doing the same for the
uniform measure, given by

S(φ1, · · · , φD−1) =

∫
Q[ρss]dΘ− 1

(2π)D−1

=
1

2D+1πD−2

∑
n 6=m

ρssnme
i(φm−φn), (3)

which lives on a D − 1 dimensional torus (see Append.
A). The distribution S(φ1, · · · , φD−1) is zero everywhere
for a diagonal steady-state which is interpreted as a limit
cycle [37] possessing stable amplitudes (fix diagonal ele-
ments) but free phases. The notion of free-phase in a such
diagonal limit cycle is analogous to a classical stochastic
limit cycle whose phase distribution approaches a uni-
form distribution in the steady-state [1, 13, 14, 41, 42].

We associate the peak of S(φ1, · · · , φD−1) as a phase-
space synchronization measure [12, 20, 42],

Smax = max
φ1,··· ,φD−1

1

2D+1πD−2

∑
n 6=m

ρssnme
i(φm−φn). (4)

The synchronization measure, Smax only depends on
the steady-state coherences. However, we note that a
high value of Smax requires all phase preferences Φij =
arg(ρssij ) to be compatible, i.e., Φij −Φjk = Φik ∀i 6= j 6=
k, a condition that is stronger than the mere presence of
coherences.
Degenerate thermal maser.– Entrainment in quantum
systems is the result of an interplay between coherent
driving and dissipation [10, 12]. The system we consider
is depicted in Fig. and consists of (N + 2) levels whose
bare Hamiltonian is given by,

H0 = ω1 |1〉 〈1|+
N+1∑
j=2

ωj |j〉 〈j| , (5)

|0〉

|1〉

|2〉

...

|N + 1〉

Th

Tc

λ,Ω

∆

ω2

ω1

FIG. 1. Schematic of the degenerate quantum thermal
maser, which is a generalization of the standard Scovil–
Schulz-DuBois three-level thermal maser [33]. Here, N is the
number of states in the degenerate manifold and here we focus
on the case ∆ = 0. The near-degenerate case where ∆ 6= 0 is
discussed in the accompanying manuscript [43]

with ωj+1 > ωj , ω0 = 0. The upper N levels are degen-
erate with ω2 = ω3 = · · · = ωN+1. Although we work in
the limit of exact degeneracy, our main results hold even
in the near-degenerate scenario and will be considered in
detail in an accompanying Ref. [43].

This system is driven by a monochromatic drive V (t)
of frequency Ω given by

V (t) =

N+1∑
j=2

λje
iΩt |1〉 〈j|+ h.c. (6)

This drive can be rewritten as a coupling to a collective-
transition mode |1〉 ↔ |J〉 = (1/λeff )

∑
j λj |j〉 with

λeff =
√∑

j |λj |2 being the effective coupling strength.

Such collective drives are realizable in an ensemble of
atoms driven by light, if the inter-atomic distance is much
smaller than the wavelength of the light, such as in the
case of Dicke superradiance [44].

The system is acted upon by a dissipator

D[ρ] =

2∑
µ=1

[
ΓcµL[cµ]ρ+

N+1∑
j=2

ΓhµL[hjµ]ρ
]
, (7)

which leads to a multilevel generalization of the Scovil–
Schulz-DuBois maser heat engine [33, 34]. The dissipator
L[X]ρ = 2XρX†−{X†X, ρ} is of the Lindblad form such

that the hot (cold) bath with jump operators hj1 = hj†2 =

|0〉 〈j| (c1 = c†2 = |0〉 〈1|) induce transitions between the
ground state and the degenerated manifold (first-excited
state). The associated rates follow local-detailed balance
and are given by Γh1(c1) = γh(c)(1 + nh(c)) and Γh2(c2) =
γh(c)nh(c) with γh(c) being the effective system-bath cou-

pling strength and nh(c) =
[
exp(βh(c)ω2(1))− 1

]−1
be-

ing the Bose-Einstein distribution at inverse temperature
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βh(c). The action of the heat baths leads to a population
inverted steady state between the first-excited state |1〉
and the degenerated manifold {|j〉, ∀j = 2, · · · , N + 1}
if nh > nc. If there is population inversion, the system
behaves as a maser heat engine [45]. However, if nh < nc,
population inversion is lost and the system behaves as a
refrigerator by attenuating the drive [45]. We can rewrite
the Hamiltonian in a frame co-rotating with the drive as
H̃ = (Ω/2)(

∑N+1
j=2 |j〉 〈j| − |1〉 〈1|) giving us the rotating

frame quantum master equation,

dρ̃

dt
= −i[H0 − H̃ + Ṽ , ρ̃] +D[ρ̃], (8)

where Õ ≡ e−iH̃tOeiH̃t (O = ρ, V ) is an operator in the

rotated frame with Ṽ =
∑N+1
j=2 λj |1〉 〈j|+ h.c..

Competition vs cooperation.– Equation (8) can be solved
analytically for the case of homogeneous driving strength
λj = λ (∀j = 2, · · · , N + 1) and resonant driving Ω =
ω2 − ω1. In this case, the steady-state coherences are
given by

ρ̃ss1j = i
λ(nc − nh)γcγh(1 + nh)

F (N,nh, nc, γc, γh, λ)
, (9)

ρ̃ssjl =
λ2γc(nc − nh)

F (N,nh, nc, γh, γc, λ)
, (10)

where j, l = 2, · · · , N + 1, j 6= l and the function
F (N,nh, nc, γc, γh, λ) = AN2 +BN + C with A,B, and
C being positive constants that depend on all remaining
parameters (see Append. B for the explicit expressions
for these constants).

The non-degenerate coherences (ρ̃1j) are directly in-
duced (i.e., ∝ λ) by the drive whereas the degenerate co-
herences (ρ̃jl) are an indirect consequence (∝ λ2) of the
collective nature of the drive. Their differences are clear
as one transforms back to the original frame in which
ρ1j = ρ̃1je

−iΩt and ρjl = ρ̃jl. The phase preferences
induced by ρ1j rotate with the driving frequency while
that of ρjl remain stationary in the original frame. Both
of these coherences affect the phase distributions of the
states within the degenerate manifold. For these reasons,
we infer that there are two synchronization mechanisms
at play in this system, entrainment induced directly by
the drive and mutual coupling that occurs due to the
presence of a degenerate manifold. Entrainment induces
phases relative to driving whose effect is the emergence
of stable non-degenerate coherences ρ̃ss1j . On the other
hand, mutual coupling induces a relative phase between
states in the degenerated manifold independent of the
driving phase, which is reflected by stable degenerate co-
herences ρ̃ssjl .

Recall that we have denoted Φij = arg(ρ̃ssij ) as the
steady-state phase preferences. When there are multi-
ple of such preferences, synchronization requires all the
phase relations to be compatible, i.e. Φij − Φjk = Φik
(i 6= j 6= k). However, we find that in our system such a
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FIG. 2. Interplay between entrainment and mutual coupling
forN = 2. Panels a and b show phase quasi-distribution func-
tion S(ϕ21, ϕ31) [Eq. (3)] where ϕij = φi − φj in the engine
regime (nh/nc = 100). For k = 3, S(ϕ21, ϕ31) shows a local-
ized maximum when the phases are in-phase (ϕ21 − ϕ31 ≈ 0
in the red-region in a, entrainment-dominant). Whereas for
k = 0.75, when S(ϕ21, ϕ31) is maximized the phases do not
localize but their difference is out-of-phase (ϕ21 − ϕ31 ≈ π
in the red-region in b, mutual coupling dominant). Panel c
shows Smax (solid circle) as a function of nh/nc with the
solid line representing the analytic prediction of Eq. (11).
The dashed line is the entrainment contribution to Smax,
i.e., (|ρ12| + |ρ13|)/16π2. The vertical dotted line represents
the boundary between refrigerator (nh/nc < 1) and engine
(nh/nc > 1) regimes. Panel d shows Smax (solid circle) and
(|ρ12| + |ρ13|)/16π2 (dashed line) plotted against inhomoge-
neous driving strength ratio |λ2/λ3| ≤ 1 in the engine (red)
and refrigerator (blue) regimes indicating competition (coop-
eration) between entrainment and mutual coupling is robust
in the engine (refrigerator) regime. The other parameter val-
ues are ω2 = ω3 = 3ω1, Ω = ω2 − ω1, γc = 0.2ω1, γh =
0.05ω1, nc = 0.5, and λ2 = 0.1ω1

condition is only satisfied in the refrigerator regime where
Φ1j = π/2 (∀j) and Φjl = 0 (j 6= l). In the engine regime,
we have Φ1j = −π/2 (∀j) and yet Φjl = π (j 6= l). We
interpret this as a result of an interplay between entrain-
ment and mutual coupling. We find that entrainment
always pulls the degenerate states to be in-phase (Fig.
2a). Mutual coupling prefers out-of-phase configuration
in the engine regime (Fig. 2b), and in-phase configura-
tion in the refrigerator regime. Consequently, we expect
entrainment and mutual coupling to cooperate in the re-
frigerator regime and compete in the engine regime.

The competition and cooperation are obvious when we
calculate the phase space synchronization measure Smax
[see Eq. (4)]. In general, this requires optimization over
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FIG. 3. Panels a-b show Smax = (2π)NSmax (solid cir-

cle) compared with its entrainment contribution 1
4

∑N+1
j=2 |ρ1j |

(empty circle) as a function of N . The error bar is calcu-
lated from 102 random realizations of driving strength ratio
λj/λ2 ≤ 1 for λj ≥ 0 and j = 3, · · · , N + 1 with λ2 held
constant. The solid lines are the curve fits using Smax ∝ Nα

with α = −0.72 (a) and = 0.69 (b). Panels c-d show optimum
phases {ϕoptj1 } for N = 20 in in the engine (c, nh/nc = 10)
and refrigerator (d, nh/nc = 0.4) regimes plotted on a unit
circle. The different opacity represents different realizations
of λj/λ2 (j = 3, · · · , N + 1). All the phases in all realizations
coalesce to a single data point in the refrigerator case. All
other parameters are the same as Fig. 2.

N variables which we calculate analytically for N = 2
(see Append. C)

Smax =
1

16π2
×


|ρ̃ss12|+ |ρ̃ss13|+ |ρ̃ss23| if nh<nc

|ρ̃ss12|+ |ρ̃ss13| − |ρ̃ss23| if nh>nc & k>2(
1 +

k2

2

)
|ρ̃ss23| if nh>nc & k<2,

(11)
where k = γh(1 + nh)/λ = |ρ̃ss12|/|ρ̃ss23| = |ρ̃ss13|/|ρ̃ss23| is the
dissipation-to-driving ratio. The set of optimal phases
(ϕopt21 , ϕ

opt
31 ) ≡ (ϕ21, ϕ31)|S=Smax evaluated in Append. C

are given by,

(ϕopt21 , ϕ
opt
31 ) =


(
−π

2
,−π

2

)
if nh<nc(π

2
,
π

2

)
if nh>nc & k>2

(χ, π − χ) & (π − χ, χ) if nh>nc & k<2,

(12)
where ϕij = φi − φj and χ = arcsin(k/2). Equations
(11)-(12) show the effect of the coherent drive and bath
couplings on the synchronous dynamics of the system.
Cooperation in the refrigerator regime (nc > nh) is re-
flected by the fact that each component of the magni-
tude of coherence adds up in the synchronization mea-
sure Smax, whereas in the engine case there is competi-
tion since the mutual coupling component |ρss23| reduces

the effect of the entrainment contribution |ρss12|+ |ρss13|. In
other words, the phases are either equal in some cases or
they are arranged antipodally in other cases, as shown in
Eq.(12).

In the engine regime, Smax is also divided into regimes
where entrainment is dominant (k > 2) and where the
mutual coupling is dominant (k < 2). For the entrain-
ment dominant regime, the competition is apparent from
the negative contribution of |ρss23| to Smax. Note that
this is different from the previously reported phenomenon
of synchronization blockade [14, 46], in our case, Smax
can not vanish except for λ = 0 or nh = nc where the
steady-state is diagonal (see Append. D). The transition
from entrainment to mutual coupling dominant regime
is shown in Figs. 2a-b where we plot the phase distribu-
tion S(ϕ21, ϕ31) for different k values. In particular, we
see that as we cross k = 2, the relative phases go from
in-phase to out-of-phase. Moreover, the localization pat-
tern changes from a point localization to ring localization
(on a torus), wherein the latter only the relative phase
ϕ23 = ϕ21 − ϕ31 is fixed, indicating that entrainment is
lost.

The competition and cooperation observed is also ro-
bust with respect to all values of individual driving
strength ratio λ2/λ3 as shown in Fig. 2d. Interest-
ingly, Smax is symmetric with respect to a transforma-
tion λj → −λj which transforms ρ̃ssjl → −ρ̃ssjl for all l 6= j.
This can be intuitively explained by Smax only depending
on the norm of coherences. In this case, the phase prefer-
ence of entrainment and mutual coupling is reversed, i.e.
both prefer out-of-phase in the refrigerator regime while
mutual coupling (entrainment) prefers in-phase (out-of-
phase).
Scaling with N .– Calculating Smax boils down to per-
forming N -variable optimization which in general is dif-
ficult for N > 2. However, in the refrigerator regime,
assuming homogeneous driving λj = λ the problem sim-
plifies and one can show that S({ϕ1j}) saturates the l1-
norm bound [37] (see Append. A for a proof). Thus, we
conclude that in the refrigerator regime Smax ∝ Cl1 =∑N+1
i<j |ρ̃ij | for any N .
The fact that Smax is always proportional to the l1-

norm in the refrigerator regime demonstrates that en-
trainment and mutual coupling are always in coopera-
tion for any N in this case. The cooperation can also be
seen numerically from Fig. 3b where we observe scaled
synchronization measure Smax ≡ (2π)NSmax always ex-
ceeds the contribution from entrainment for anyN even if
we relax the assumption of homogeneous driving. More-
over, as N → ∞, the gap between Smax and entrain-
ment contribution grows which means mutual coupling
is the dominant synchronization mechanism in the large
N limit. This is evident since the number of terms con-
tributing to the degenerate coherence (ρ̃jk) scale as N2

while those contributing to non-degenerate coherences
(ρ̃1j) scale linearly with N . Additionally, the normal-
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ization of the density matrix induces an additional N−2

scaling for all coherences [see Eqs. (9)-(10)]. Thus, over-
all we predict that in the refrigerator regime, in the limit
of N → ∞, Smax is mutual coupling dominant (see Ap-
pend. C) and reads,

Smax = lim
N→∞

(2π)NSmax

=
nc>nh

γc(nc − nh)

8nh[γc(1 + nc) + γh(1 + nh)]
. (13)

The asymptotic scaled Smax above only depends on the
bath properties and is independent of the drive strength.
Furthermore, as shown in Fig. 3b Smax follows a sub-
linear power law behavior and all the optimum phases
{ϕj1}|S=Smax coalesce to a single phase 3π/2 (Fig. 3d).

In the engine case, it is difficult to find an analytic
closed-form expression for Smax. However, we numer-
ically observe in Fig. 3a, that the competition between
entrainment and mutual coupling persists for any N since
Smax is smaller than entrainment contribution causing
Smax → 0. This decay is due to phase repulsiveness be-
cause of mutual coupling as shown in 3c. Thus, in the
large N -limit, the qualitative behavior of this model is
analogous to the Kuramoto model with phase-repulsive
coupling, where the mean-field synchronization order pa-
rameter approaches zero [47].
Summary.– We have shown that there exists an interplay
between entrainment and mutual coupling in a collec-
tively driven-dissipative degenerate thermal maser. The
interplay depends on the thermodynamic functionality of
the maser, i.e., they compete in the engine regime and
cooperate in the refrigerator regime. The results rely on
two key ingredients: i. a coherent drive that collectively
couples to the degenerate manifold causing entrainment
and mutual coupling to coexist and ii. a dissipative mech-
anism that causes a population inversion between the
non-degenerated and degenerated manifolds to observe
the competition.

We demonstrate our findings using a minimal model
of a generalized Scovil–Schulz-DuBois maser heat engine
and show that in the thermodynamic limit (N →∞) the
dominance of mutual coupling leads to phase repulsive-
ness causing the engine’ working substance to be asyn-
chronized (Smax = 0). On the other hand, since there is
cooperation in the refrigerator case, the phases coalesce
to 3π/2 giving a finite Smax that is independent of system
properties. In other words, as the system size increases
in order for the working substance to be synchronized the
external drive needs to perform work on the system.

Our work not only contributes to the growing field
of quantum synchronization by adding valuable insights
when distinct synchronizing mechanisms coexist but
helps understand quantum heat engines from a synchro-
nization perspective.
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representation

Q[ρ] =
D!

πD−1
〈αD|ρ|αD〉 , (14)

where |αD〉 =
∑D
n=1 αn |n〉 is the SU(D) coherent state [40] with

αn =

{
eiφn cos θn

∏n−1
k=1 sin θk 1 ≤ n < D

eiφD
∏D−1
k=1 sin θk n = D.

(15)

It has been implicitly assumed that for n = 1 the product term is just an identity. We are only concerned with
the distribution of phases, so we can integrate out the polar angles dΘ =

∏D−1
l=1 cos θl(sin θl)

2D−2l−1dθl from Q[ρ] to
obtain a quasi-probability distribution over a D − 1 torus, i.e.,∫ π/2

0

Q[ρ] dΘ =
D!

πD−1

D−1∑
n,m=1

ρnm

∫ π/2

0

α∗nαm

D−1∏
l=1

cos θl (sin θl)
2D−2l−1 dθl. (16)

The diagonal contribution (n = m) gives,∫ π/2

0

|αn|2
D−1∏
l=1

cos θl(sin θl)
2D−2l−1 dθl =

1

2D−1D!
∀n = 1, · · · , D, (17)

while the off-diagonal (n 6= m) contribution yields,∫ π/2

0

α∗nαm

D−1∏
l=1

cos θn(sin θl)
2D−2l−1 dθl =

π

2D+1D!
ei(φm−φn) ∀n 6= m = 1, . . . , D. (18)

Therefore, combining the diagonal and the off-diagonal contributions we obtain,∫ π/2

0

Q[ρ] dΘ =
1

(2π)D−1
+

1

2D+1πD−2

∑
n 6=m

ρnme
i(φm−φn). (19)
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The first term represents the contribution from a uniform distribution, which can be eliminated by defining the phase
quasi-probability distribution

S(φ1, . . . , φD−1) :=

∫ π/2

0

Q[ρ] dΘ− 1

(2π)D−1
=

1

2D+1πD−2

D∑
n 6=m

ρnme
i(φm−φn). (20)

The synchronization measure Smax in the main text is simply the maximum of Eq. (20), i.e.,

Smax ≡ max
φ1,··· ,φD−1

S(φ1, · · · , φD−1) ≤ 1

2DπD−2
Cl1 , (21)

where Cl1 =
∑
n<m |ρnm| is the l1-norm of coherence [37, 48]. The upper-bound can be obtained by simply noting

that each term in the summation of Eq. (20) is upper-bounded by |ρnm|.

Appendix B: Steady-state of a generalized Scovil–Schulz-DuBois maser

The quantum master equation (8) can be expanded into a series of linear first-order differential equations for each
density matrix element. We divide the elements into three groups: populations (ρii with i = 0, · · · , N + 1), non-
degenerate coherences (ρ1k with k = 2, · · · , N+1), and degenerate coherences (ρlk with k, l = 2, · · · , N+1 and k 6= l).
We begin with the equations for the populations,

dρ̃11

dt
= iλ

N+1∑
j=2

(ρ̃1j − ρ̃j1)− 2γc(1 + nc)ρ̃11 − 2γcnc

N+1∑
j=1

ρ̃jj + 2γcnc, (22)

dρ̃kk
dt

= −iλ(ρ̃1k − ρ̃k1)− 2γh(1 + nh)ρ̃kk − 2γhnh

N+1∑
j=1

ρ̃jj + 2γhnh, (23)

where we have eliminated ρ̃00 using the trace preserving condition ρ̃00 = 1 −∑N+1
j=1 ρ̃jj . The equations for the

non-degenerate and degenerate coherences read,

dρ̃1k

dt
= −(γh(1 + nh) + γc(1 + nc))ρ̃1k + iλ

ρ̃11 −
N+1∑
j=2

ρ̃jk

 , (24)

dρ̃kl
dt

= −2γh(1 + nh)ρ̃kl − iλ(ρ̃1l − ρ̃k1). (25)

Since we are interested in the steady state we set dρ̃ij/dt = 0 and using Eq. (24) evaluate dρ̃1k/dt−dρ̃1l/dt = 0 (k 6= l)
to obtain the relation,

[γh(1 + nh) + γc(1 + nc)] (ρ̃ss1k − ρ̃ss1l ) = iλ

N+1∑
j=2

(ρ̃ssjl − ρ̃ssjk) (k 6= l). (26)

We also compute dρ̃jl/dt− dρ̃jk/dt = 0 with j 6= l 6= k using Eq. (25) to obtain

ρ̃ssjl − ρ̃ssjk =
iλ

2γh(1 + nh)
(ρ̃ss1k − ρ̃ss1l ). (27)

Combining Eqs. (27) and (26) we obtain the steady-state coherences,[
γh(1 + nh) + γc(1 + nc) +

iNλ

2γh(1 + nh)

]
(ρ̃ss1k − ρ̃ss1l ) = 0, (28)

=⇒ ρ̃ss1l = ρ̃ss1k (k 6= l). (29)

We substitute the above result in Eq. (26) to obtain

ρ̃sskl =
λ

γh(1 + nh)
Im(ρ̃ss1k). (30)
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Since ρ̃ss1k = ρ̃ss1l we can infer from the above that ρ̃sskl = ρ̃sslk for k 6= l which means all ρ̃sskl are real. Substituting
Eq. (30) to Eq. (26) we obtain,

−2(γh(1 + nh) + γc(1 + nc))Re(ρ̃ss1k) = 0, (31)

=⇒ Re(ρ̃ss1k) = 0. (32)

This clearly implies that all ρ̃ss1k are imaginary. Next, from Eq. (23) we may calculate dρ̃kk/dt− dρ̃ll/dt (k 6= l) and
making use of Eq. (28) gives,

−2γh(1 + nh)(ρ̃sskk − ρ̃ssll ) = 0, (33)

=⇒ ρ̃sskk = ρ̃ssll (k 6= l) (34)

Utilizing Eqs. (28)-(33) to simplify Eq. (22) results in

iλNρ̃ss1k − γc(1 + 2nc)ρ̃
ss
11 −Nγcncρ̃sskk + γcnc = 0. (35)

Similarly from Eqs. (23) and (24) we obtain,

−iλρ̃ss1k − γh(1 + nh(1 +N))ρ̃sskk − γhnhρ̃ss11 + γhnh = 0, (36)

−
[
γh(1 + nh) + γc(1 + nc) +

λ2(N − 1)

γh(1 + nh)

]
ρ̃ss1k + iλρ̃ss11 − iλρ̃sskk = 0. (37)

Solving Eqs. (35)-(37) simultaneously gives the final solution

ρ̃ss1k =
iλ(nc − nh)(1 + nh)γcγh
F (N,λ, γc, γh, nh, nc)

, (38)

where F (N,λ, γc, γh, nh, nc) = AN2 +BN + C, with

A = λ2nh(γc(1 + nc) + γh(1 + nh)), (39)

B = λ2[γc(1 + 3nc + 2nhnc) + γh(1 + nh)(1 + 2nh)] + nhγhγc(1 + nh)(1 + nc)[γh(1 + nh) + γc(1 + nc)], (40)

C = γhγc(1 + nh)2(1 + 2nc)(γh(1 + nh) + γc(1 + nc)). (41)

After obtaining (38), it is only a matter of substitution to solve for the other steady-state density matrix elements
that read

ρ̃ssjl =
λ2γc(nc − nh)

F (N,λ, γc, γh, nh, nc)
, (42)

ρ̃ss11 =
Nλ2(1 + nh)(nhγh + ncγc) + γcγhnc(1 + nh)2(γc(1 + nc) + γh(1 + nh))

F (N,λ, γc, γh, nh, nc)
, (43)

ρ̃ssjj =
(Nλ2nh + γcγhnh(1 + nh)(1 + nc))(γc(1 + nc) + γh(1 + nh)) + λ2(nc − nh)

F (N,λ, γc, γh, nh, nc)
, (44)

ρ̃ss00 = 1− ρ̃ss11 −
N+1∑
j=2

ρ̃ssjj , (45)

ρ̃ss01 = ρ̃ss0j = 0. (46)

Equations (38)-(42) are the same as (9)-(10) in the main text.

Appendix C: Smax calculation for generalized Scovil–Schulz-DuBois maser

In this section, we analytically calculate Smax using the steady-state solution obtained in Append. B. We first focus
on the refrigerator regime (nc > nh). In this case, we have arg(ρ1j) = π/2 and arg(ρjl) = 0 (j 6= l) and by using the
steady-state solutions [Eqs. (38) and (42)] in the phase quasi-probability distribution, Eq. (20), we obtain,

Smax|nc>nh =
1

2N+2πN
max
{ϕ1j}

[N+1∑
j=2

|ρ̃ss1j | sinϕj1 −
N+1∑
j<l

|ρ̃ssjl | cos(ϕj1 − ϕl1)
]

=
1

2N+2πN

N+1∑
j<l

|ρ̃ssjl |. (47)
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Above ϕij = φi − φj . The second equality is obtained by choosing optimum phases ϕj1 = 3π/2 ∀j = 2, · · · , N + 1
that maximize S. Using the analytic solution obtained from Eqs. (38)-(42), Smax can be explicitly computed as,

Smax|nc>nh =
1

(2π)N
λ2γc(nc − nh)(N2 + (2k − 1)N)

8F (N,λ, γc, γh, nh, nc)
, (48)

where k = γh(1 + nh)/λ = |ρss1j |/|ρssjk| is the dissipation-to-driving ratio. In the limit of macroscopic degeneracy

N →∞, (2π)NSmax approaches a constant value given in Eq. (13) of the main text.
In the engine case (nc < nh), the optimization is trickier. In this regime, we have competition between entrain-

ment and mutual coupling as can be seen from arg(ρ1j) = −π/2 and arg(ρjl) = π [see Eqs. (38) and (42)]. The
synchronization measure Smax can be expressed as,

Smax|nh>nc =
1

2N+2πN
max
{ϕ1j}

[N+1∑
j=2

|ρ̃ss1j | sinϕj1 −
N+1∑
j<l

|ρ̃ssjl | cos(ϕl1 − ϕj1)
]
. (49)

Optimization of Eq. (49) is difficult for an arbitrary N . Let us check the simplest non-trivial case of N = 2. In this
case, Smax can be cast into a simple form

Smax|nh>nc =
1

16π2
|ρ̃ss23| max

ϕ21,ϕ31

(
k sinϕ21 + k sinϕ31 − cos(ϕ31 − ϕ21)

)
. (50)

Thus, calculating Smax is now reduced to optimizing a two-variable function f(x, y) ≡ k sinx + k sin y − cos(x − y).
One can easily verify

max
x,y

f(x, y) =

2k − 1 if k ≥ 2

1 +
k2

2
if 0 ≤ k ≤ 2,

(51)

with optimum points (x, y) = (π/2, π/2) when k ≥ 2 and {(arcsin(k/2), π−arcsin(k/2)), (π−arcsin(k/2), arcsin(k/2))}
when k ≤ 2. By substituting Eq. (51) in Eq. (50), one obtains Eq. (11) of the main text.

Appendix D: Smax = 0 if and only if ρ is diagonal (D = 3)

Next, we will show that in the case of D = 3, Smax = 0 if and only if ρ is diagonal. We consider a three-level system
with {|0〉 , |1〉 , |2〉} representing the eigenvectors. A general expression for S ≡ S(φ0, φ1, φ2) for such a three-level
system reads,

S =
1

8π
[|ρ01| cos(φ1 − φ0 + Φ01) + |ρ02| cos(φ2 − φ0 + Φ02) + |ρ12| cos(φ2 − φ1 + Φ12)], (52)

where Φij = arg(ρij). We first transform the equation by defining ϕij = φi − φj , i.e.,

S =
1

8π
[|ρ01| cos(ϕ10 + Φ01) + |ρ02| cos(ϕ20 + Φ02) + |ρ12| cos(ϕ20 − ϕ10 + Φ12)]. (53)

Given that the reduced density matrix ρ is diagonal, S(ϕ10, ϕ20) is zero everywhere (∵ |ρij | = 0 ∀i, j) and thus it is
trivial that Smax = 0.

However, it is not trivial to show that if Smax = 0 the ρ will be diagonal. We will prove it by contradiction.
Let us assume ρ is not diagonal and Smax = 0. Then, by definition S(ϕ10, ϕ20) is zero or negative everywhere else.
We will show below, considering all possible cases, that we can always find {ϕ10, ϕ20} such that S is positive, ergo
contradiction. Case 1: Only one coherence is non-zero, let’s say ρ01. Then, we can choose ϕ10 = −Φ01 such that
S = |ρ01| > 0.
Case 2: Two coherences are non-zero, let’s say ρ01 and ρ02. We can then choose ϕ10 = −Φ01 and ϕ20 = −Φ02 such
that S = |ρ01|+ |ρ02| > 0
Case 3: All coherences are non-zero. This is a non-trivial case. First, let us choose (ϕ10, ϕ20) = (π/2−Φ01, π/2−Φ02)
such that

S =
1

8π
|ρ12| cos(Φ01 − Φ02 + Φ12) > 0. (54)
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The above is positive if the cosine term is positive. If it is negative, we can just choose (ϕ10, ϕ20) = (−π/2−Φ01, π/2−
Φ02) such that S remains positive, i.e.,

S = − 1

8π
|ρ12| cos(Φ01 − Φ02 + Φ12) > 0. (55)

If the cosine term is zero, we choose (ϕ10, ϕ20) = (−Φ01,−Φ02) to keep S positive,

S =
1

8π
(|ρ01|+ |ρ02|) > 0. (56)

Thus, we conclude that in all cases, we can always find phases configuration such that S is positive, implying that
Smax cannot be zero if ρ is not diagonal.
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