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The dynamical evolution of an open quantum system can be governed by the Lindblad equation
of the density matrix. In this letter, we propose that the density matrix topology can undergo a
transition during the Lindbladian dynamical evolution. Here we characterize the density matrix
topology by the topological invariant of its modular Hamiltonian. We focus on the fermionic Gaus-
sian state, where the modular Hamiltonian is a quadratic operator of a set of fermionic operators.
The topological classification of such Hamiltonians depends on their symmetry classes. Hence, a pri-
mary issue we deal with in this work is to determine the requirement for the Lindbladian operators,
under which the modular Hamiltonian can maintain its symmetry class during the dynamical evo-
lution. When these conditions are satisfied, along with a nontrivial topological classification of the
symmetry class of the modular Hamiltonian, a topological transition can occur as time evolves. We
present two examples of dissipation driven topological transitions where the modular Hamiltonian
lies in the AIII class with U(1) symmetry and in the DIII class without U(1) symmetry, respectively.
As a manifestation of the topological transition, we present the signature of the eigenvalues of the
density matrix at the transition point.

In the past decades, topology has been extensively used
to characterize the ground state wavefunction of a quan-
tum Hamiltonian. In such situations, the topology of
the wavefunction and the topology of the Hamiltonian
are directly related. One of the most well-established
situations is the insulators of free fermions [1–3]. An-
other important lesson we have learned is the close rela-
tionship between the symmetry of a Hamiltonian and its
topological classification [4–6]. In many cases, topologi-
cally nontrivial states exist only when certain symmetries
are enforced. For free fermion insulators and supercon-
ductors, this leads to the celebrated Altland-Zirnbauer
ten-fold way classification [7] of topological states using
time-reversal, particle-hole, and chiral symmetries [4–6].

In recent years, there has been an increasing interest in
studying topological properties for non-equilibrium dy-
namics. In some non-equilibrium situations, the quan-
tum state remains a pure state, but is no longer an eigen-
state of the system. A typical situation is quench dynam-
ics [8–15], where an initial pure state undergoes unitary
dynamical evolution governed by the system’s Hamilto-
nian. It has been shown that a properly defined topology
of the wavefunction dynamics can still reveal the topol-
ogy of the system’s Hamiltonian [8–15]. Nevertheless,
in more generic non-equilibrium situations, the quantum
state is not even a pure state but a mixed state described
by a density matrix. These situations include finite tem-
perature and open systems with dissipation.

An open quantum system is described by a density
matrix ρ̂ whose evolution is governed by the Lindblad
equation [16, 17]. Since the Lindbladian evolution can be
viewed as evolution under non-hermitian Hamiltonian in
doubled Hilbert space, there are works on open system
topology by considering the topology of Lindbladian itself
[18–20]. At sufficiently long time, an open system can
reach a non-equilibrium steady state that does not evolve.
There are also extensive works focusing on the topological

properties of the non-equilibrium steady states [21–29].

On the other hand, the topology of density matrix itself
attracts attention [30–37]. The basic idea is to consider

the modular Hamiltonian K̂ by writing ρ̂ = e−K̂ . The
modular Hamiltonian is always a Hermitian operator,
and the topology of the modular Hamiltonian can char-
acterize the topology of the density matrix [34, 36, 37].
The modular Hamiltonian changes in time when the den-
sity matrix evolves under the Lindbladian dynamics. In
this letter, we address the issue of whether the modular
Hamiltonian can undergo a topological transition as time
evolves in the Lindbladian dynamics of an open system.
This question concerns the entire dissipation-driven dy-
namical process instead of the long-time steady state.
The answer to this question should depend on both the
Lindbladian operator and the choice of the initial state.
This distinguishes our work from the previous studies of
open-system topology [18–29].

Here we consider the Gaussian state of a set of fermion
operators. A gaussian state can be viewed as a non-
equilibrium generalization of free-fermion state, whose
modular Hamiltonian is a quadratic operator of a set of
fermion operators [38, 39]. Hence, we can utilize the ex-
isting knowledge of classifying such quadratic fermionic
Hamiltonian. It is known that the topological classifica-
tion of such quadratic Hamiltonians requires understand-
ing its symmetry class [4–6]. In this work, we consider
a generic non-equilibrium situation where the modular
Hamiltonian of the initial state have no relation with the
system’s Hamiltonian and can lie in a different symmetry
class. Hence, primarily to address the dissipation-driven
topological transition, we first need to consider another
issue: under what conditions the Lindbladian evolution
can preserve the symmetry of a modular Hamiltonian?

Symmetry Preserving Lindbladian. The time evolution
of the density matrix of an open system is governed by
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the Lindblad equation[16, 17]

dρ̂

dt
= −i[Ĥ, ρ̂] +

∑
µ

(2L̂µρ̂L̂
†
µ − {L̂†µL̂µ, ρ̂}). (1)

We consider Gaussian initial state ρ̂(t = 0) of a set

of fermion operators {ĉ†i}. The Hamiltonian Ĥ is a
quadratic operator of these fermion operators, and all
L̂µ are linear in these fermion operators, under which
a Gaussian state can remain a Gaussian one during the
Lindblad time evolution [39–41]. In this work, we deal
with the most generic situations that K̂, Ĥ and L̂µ do
not commute with each other.

We first study the cases that both the modular Hamil-
tonian and the Lindbladian possess a global U(1) sym-
metry. This U(1) symmetry can be either a spin U(1) or
a charge U(1) symmetry. When interpreted as a charge
(spin) U(1) symmetry, the corresponding class describes
insulators (superconductors). For superconductors with
the spin U(1) symmetry, one can always apply a particle-
hole transformation to map the spin U(1) symmetry into
a charge U(1) symmetry. Therefore, we present the fol-
lowing discussions in the context of the charge U(1) sym-
metry.

With the presence of the charge U(1) symmetry, we

can write K̂ =
∑
ij Kij ĉ

†
i ĉj , and Ĥ =

∑
ij hij ĉ

†
i ĉj . Each

dissipation operator should be either pure loss term as
a superposition of annihilation operators, denoted by
L̂lµ =

∑
µ,iD

l
µiĉi, or pure gain term as a superposi-

tion of creation operators L̂gµ =
∑
µ,iD

g
µiĉ
†
i . In other

words, each single dissipation operator cannot contain
both creation and annihilation operators. Kij , hij , D

l
µi

and Dg
µi are matrices or vectors written in the single par-

ticle bases.
Below we should study how the modular Hamiltonian

matrix K evolves in time. Nevertheless, the matrix K
obeys a non-linear equation which complicates the ana-
lyzing process. On the other hand, another important
property of a Gaussian state is that the two-point corre-
lation contains all the information of this state, and all
the higher-order correlations can be expressed in terms of
two-point corrections. Thus, instead of considering the
dynamics of the matrix Kij , we can consider the corre-

lation matrix C, defined as Cij = Tr(ĉ†i ĉj ρ̂). It is im-
portant to note that the correlation matrix C obeys a
linear equation. For cases with the U(1) symmetry, the
correlation matrix and the modular Hamiltonian matrix
are related by [40, 41]

C =
1

eKT + 1
, (2)

where “T” stands for transpose. Following the Lindblad
equation, it can be shown that the correlation matrix
obeys the following linear equation [40–42]

dC

dt
= XC + CX† + 2Mg (3)

where the matrix X is defined as X = iHT − (M l)T −
Mg and H is the physical Hamiltonian matrix. Here
the matrix M l is from the loss terms, defined as M l

ij =∑
µD

l∗
µiD

l
µj , and the matrix Mg is from the gain terms

Mg
ij =

∑
µD

g∗
µiD

g
µj .

Following the ten-fold way classification, we consider
the time-reversal symmetry T , the particle-hole sym-
metry C and the chiral symmetry S of the modular
Hamiltonian matrix K. Here we should clarify that the
time-reversal symmetry should not be understood as a
physical time reversal of the system. Instead, it merely
means an antiunitary transformation that changes K by
U†TKUT = K∗, where UT is the unitary part of T sym-
metry.

First we derive the conditions to preserve T symme-
try. Using Eq. 2, T symmetry leads to CTUT = UT C.
That is to say, initially, CTUT − UT C = 0. If the Lind-
blad evolution can keep the T symmetry of the modular
Hamiltonian, it requires d(CTUT − UT C)/dt = 0. It is
easy to show that

d

dt
(CTUT − UT C) = (X∗UT − UTX)C

+ CT(XTUT − UTX†) + 2(MgUT − UTMg). (4)

Since we consider generic initial states with T symme-
try, the requirement d(CTUT − UT CT)/dt = 0 leads to
X∗UT − UTX = 0, XTUT − UTX† = 0 and MgUT −
UTM

g = 0. These conditions can be further simplified
as

U†THUT = −H∗, U†TM
lUT = (M l)∗, U†T (Mg)∗UT = Mg.

(5)

In other words, if the modular Hamiltonian of the initial
state has T symmetry, and the Hamiltonian and the dis-
sipation operators satisfy Eq. 5, the T symmetry will be
preserved during the entire Lindbladian dynamics. Espe-
cially, we note that the required symmetry property for
the physical Hamiltonian H is different compared with
the symmetry property of the modular Hamiltonian K.

Next, we consider the particle-hole symmetry C. With
this symmetry the modular Hamiltonian matrix trans-
fers as U†CKUC = −K∗ under a unitary matrix UC . This
is equivalent to CTUC + UCC − UC = 0. Hence, in or-
der to preserve the particle-hole symmetry, we require
d(CTUC + UCC − UC)/dt = 0. Similar analysis as above
leads to following conditions

U†CHUC = −H∗, U†CM
lUC = Mg, U†C(M

g)∗UC = (M l)∗.
(6)

We note that preserving the particle-hole symmetry re-
quires simultaneously presence both the loss and the gain
terms.

Finally we consider the chiral symmetry S under which
the modular Hamiltonian matrix transfers as U†SKUS =



3

−K, equivalent to CTUS+USC
T−U = 0. Hence, to pre-

serve the chiral symmetry, we require d(CTUS+USC
T−

US)/dt = 0. Following the same spirit, we arrive at

U†SHUS = H,U†SM
lUS = (Mg)∗, U†S(Mg)∗US = M l.

(7)

Time-reversal and the particle-hole symmetries automat-
ically guarantees the chiral symmetry by taking US =
UCU

∗
T . As a self-consistent check, it is easy to prove that

Eq. 5 and Eq. 6 automatically ensure Eq. 7.
Eq. 5, Eq. 6 and Eq. 7 respectively give the con-

ditions for preserving T , C and S symmetries of the
modular Hamiltonian when the system and initial states
are U(1) symmetric. Next, we move to the situation
without charge or spin U(1) symmetry, such as the
cases with fermion pairing between same spins. In this
case, we use the Nambu spinor by introducing Ψ̂ =
(ĉ1, . . . , ĉN , ĉ

†
1, . . . , ĉ

†
N )T, and we write the physical and

the modular Hamiltonians into the Bogoliubov form as
Ĥ = Ψ̂†HΨ̂ and K̂ = Ψ̂†KΨ̂. Unlike the cases with U(1)
symmetry, the dissipation operators can be a superposi-
tion of both loss and gain as L̂µ = Dl

µiĉi+Dg
µiĉ
†
i . We in-

troduce the correlation matrix as C as Cij = Tr(Ψ̂†i Ψ̂j ρ̂)
that includes anomalous correlations. Now the correla-
tion matrix and the modular Hamiltonian matrix are re-
lated by

C =
1

e2KT + 1
. (8)

Similarly, we can define the matrix M l and Mg as intro-
duced above and two extra matrices M lg

ij =
∑
µD

l∗
µiD

g
µj

and Mgl
ij =

∑
µD

g∗
µiD

l
µj . Following the Lindblad equa-

tion, the correlation matrix C now obeys the linear equa-
tion

dC

dt
= XC + CX† + 2W. (9)

Here the matrix X = 2iHT−MT−W , and the matrices
M and W are respectively written

M =

(
M l M lg

Mgl Mg

)
, W =

(
Mg Mgl

M lg M l

)
. (10)

Since the Bogoliubov Hamiltonian automatically pos-
sesses the particle-hole symmetry, we only need to inves-
tigate the time-reversal symmetry. The derivation of the
symmetry preserving condition is very similar to the case
with U(1) symmetry above. The results are

U†THUT = −H∗, U†TMUT = M∗, U†TW
∗UT = W. (11)

Hence we have succeeded in deriving the conditions for
Lindbladian to preserve T , C and S symmetries with and
without U(1) symmetry.

Examples of Topological Transition. Now we give con-
crete examples of topological transition. It is easy to see

FIG. 1: Topological transition of the density matrix during
the Lindbladian evolution. The vertical axis is the topological
invariant of the modular Hamiltonian and the horizontal axis
is time t in unit of hopping J . (a-b) Example I. The modular
Hamiltonian is a one-dimension SSH model in the AIII class.
J = (J1 + J2)/2. (a) J1 = 0.8J and J2 = 1.2J , γ1 = 0.8J
and γ2 = 0.4J ; (b) J1 = 1.2J and J2 = 0.8J , γ1 = 0.4J and
γ2 = 0.8J . δ = 0.1J for both (a) and (b). (c) Example II.
The modular Hamiltonian belongs to two-dimensional square
lattice pairing model in DIII class. We set µ = 1.0J , ∆0 =
1.0J , w = 0.5J , γ1 = 0.4J and γ2 = 0.6J . The insets show
the ratio λi/λ0 between a few of the largest eigenvalues of the
density matrix, with λ0 the largest eigenvalue.

that when the following three conditions are satisfied, the
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modular Hamiltonian must undergo a topological tran-
sition during the dissipation dynamics. First, the initial
modular Hamiltonian must lie in a symmetry class and
dimension which hosts nontrivial topological classifica-
tion. Secondly, the Lindbladian must satisfy the above-
mentioned conditions to preserve this symmetry class.
Thirdly, the modular Hamiltonians of the initial state
and the long-time steady state are both gapped and have
different topological numbers. Below we will discuss two
examples.

Example I: Our first example is a one-dimensional
model in the AIII class, which is the celebrated Su-
Schrieffer-Heeger (SSH) model [43] with dissipations.
This one-dimensional lattice contains two sites in each
unit cell, denoted by site-A and -B, and the modular
Hamiltonian takes the form of the SSH model as

K̂(t = 0) =
∑
i

J1ĉ
†
i,Aĉi,B + J2ĉ

†
i,B ĉi+1,A + h.c.. (12)

This class possesses the chiral symmetry and the SSH
model has the charge U(1) symmetry. Hence, the phys-
ical Hamiltonian and the dissipation operators have to
satisfy Eq. 7. Here we choose the set of fermion opera-
tor basis as {. . . , ĉi,A, ĉiB , ĉi+1,A, ĉi+1,B , . . . }. Under this
basis, the K matrix and the corresponding US matrix are
written as

K =


J1

J1 J2
J2 J1

J1
. . .

 ;US =


1
−1

1
−1

. . .


It is easy to see that this modular Hamiltonian obeys the
chiral symmetry condition U†SKUS = −K.

We consider a simple physical Hamiltonian Ĥ =
δ
∑
i(ĉ
†
i,Aĉi,A − ĉ†i,B ĉi,B). The H-matrix is a diagonal

matrix denoted by H = diag(δ,−δ, δ,−δ, . . . ) and it sat-

isfies U†SHUS = H. We choose two types of loss opera-

tors L̂li =
√
γ1(ĉi,A + ĉi,B) and L̂li =

√
γ2(ĉi,B + ĉi+1,A),

and two types of gain operators L̂gi =
√
γ1(ĉ†i,A − ĉ

†
i,B),

L̂gi =
√
γ2(ĉ†i,B − ĉ

†
i+1,A). Hence, the two dissipation ma-

trices M l and Mg are respectively given by

M l =


γ1 + γ2 γ1
γ1 γ1 + γ2 γ2

γ2 γ1 + γ2 γ1
. . .

 ;

Mg =


γ1 + γ2 −γ1
−γ1 γ1 + γ2 −γ2

−γ2 γ1 + γ2 −γ1
. . .

 .

It is easy to verify that these two matrices satisfy
U†SM

lUS = (Mg)∗ and U†S(Mg)∗US = M l. Hence, we

show that this physical Hamiltonian and the dissipation
operators can keep the chiral symmetry of the modular
Hamiltonian during the evolution.

Moreover, for the Lindbladian we considered, we find
that, when γ1 > γ2, the modular Hamiltonian of the
steady state is topologically trivial, and when γ2 > γ1,
the modular Hamiltonian of the steady state is topolog-
ically nontrivial. Hence, if we choose the initial modu-
lar Hamiltonian as topologically nontrivial for the former
case and topological trivial for the latter case, a dissipa-
tion dynamics driven topological transition should occur,
as shown in Fig. 1(a) and (b). In these figures, we plot
the topological winding number of the modular Hamilto-
nian as time evolves, where a jump of the winding num-
ber can be found in the intermediate time [44]. We note
that in the case, the topological invariant of the modular
Hamiltonian is directly measurable through the ensemble
geometric phase [34].
Example II: This example considers a two-

dimensional model in the DIII class. Here we consider
spin-1/2 fermions in two-dimensional square lattice, with
i = (ix, iy) labeling each site. The initial modular Hamil-
tonian is chosen as follows:

K̂ =− J
∑
〈ij〉σ

ĉ†iσ ĉjσ − µ
∑
i

ĉ†iσ ĉiσ

+
∑
〈ij〉σ

∆〈ij〉σ ĉiσ ĉjσ + ∆∗〈ij〉σ ĉ
†
jσ ĉ
†
iσ. (13)

Here 〈ij〉 denotes pairs of two nearest neighboring sites.
For σ =↑, we have ∆〈ij〉↑ = ±∆0 if jx = ix±1 and jy = iy
and ∆〈ij〉↑ = ±i∆0 if jy = iy ± 1 and jx = ix. This gives
a px + ipy pairing for spin-↑ between two neighboring
sites. Similarly, we introduce a px − ipy pairing for spin-
↓ between neighboring sites. The topological invariant of
this Hamiltonian is given by the Fu-Kane invariant [45–
49], protected by the time-reversal symmetry T . Here
the topological invariant is a Z2 index, where +1 and
−1 stand for topologically trivial and nontrivial cases,
respectively. Moreover, it is easy to see that this model
has neither the charge U(1) nor the spin U(1) symme-
tries.

Here we consider the physical Hamiltonian and the dis-
sipation operator as follows

Ĥ = w
∑
〈ij〉

(−1)σ ĉ†iσ ĉjσ, (14)

L̂i =
√
γ1ĉiσ + (−1)σ

√
γ2(ĉ†iσ + αij ĉ

†
jσ), (15)

where (−1)σ = 1 for σ =↑ and (−1)σ = −1 for σ =↓. In
the definition of L̂i, αij = 1 if jx = ix+1 and jy = iy, and
αij = (−1)σi if jy = iy + 1 and jx = ix, and αij = 0 oth-
erwise. It can be shown that this choice of the Lindblad
operator satisfies the condition Eq. 11 for preserving
the time-reversal symmetry in this model. The steady
state of this Lindblad operator is topologically trivial.
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Hence, when the modular Hamiltonian of the initial state
is topologically nontrivial, a transition must occur in the
intermediate time, as shown in Fig. 1(c).

In both examples, the modular Hamiltonian has the
chiral symmetry and its spectrum is symmetric between
positive and negative energies. In the inset of Fig. 1,
we plot the eigenvalues of the density matrix in de-
scending order. The largest eigenvalue is denoted by λ0.
These plots show that when the modular Hamiltonian is
gapped, all other eigenvalues are separated from λ0 by
a finite purity gap. Nevertheless, at the transition time,
the modular Hamiltonian becomes gapless, and therefore,
the purity gap vanishes in the thermodynamic limit.

Outlook. In summary, we have revealed a novel phe-
nomenon of dissipation dynamics driven transition of the
density matrix topology, characterized by the topolog-
ical invariant of the modular Hamiltonian. So far, no
general framework has been established to measure the
density matrix topology. However, physical observables
of density matrix topology have been proposed for spe-
cific cases, such as the ensemble geometric phase for AIII
class in one dimension [34]. How to experimentally ob-
serve such transitions in more general situations is still
an open question. To this end, we show signatures in
density matrix eigenvalues at the transition, which can
inspire experimental protocol design. Moreover, our dis-
cussion so far is limited to Gaussian states. It will be
interesting to study more general situations where the
modular Hamiltonian hosts generic symmetry protected
topological phases. We leave these exciting issues for fu-
ture studies.
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[19] L. Sá, P. Ribeiro, and T. Prosen, arxiv:2212.00474
(2022).

[20] K. Kawabata, A. Kulkarni, J. Li, T. Numasawa, and S.
Ryu, arxiv:2212.00605 (2022).

[21] S. Diehl, E. Rico, M. A. Baranov, and P. Zoller, Nat.
Phys. 7, 971 (2011).

[22] C-E. Bardyn, M. A. Baranov, C. V. Kraus, E. Rico, A.
mamolu, P. Zoller, and S. Diehl, New J. Phys. 15, 085001
(2013).

[23] J. C. Budich, P. Zoller, and S. Diehl, Phys. Rev. A 91,
042117 (2015).

[24] F. Lemini, D. Rossini, R. Fazio, S. Diehl, and L. Mazza,
Phys. Rev. B 93, 115113 (2016).

[25] F. Dangel, M. Wagner, H. Cartarius, J. Main, and G.
Wunner, Phys. Rev. A 98, 013628 (2018).

[26] F. Tonielli, J. C. Budich, A. Altland, and S. Diehl, Phys.
Rev. Lett. 124, 240404 (2020).

[27] A. Altland, M. Fleischhauer, and S. Diehl, Phys. Rev. X
11, 021037 (2021).

[28] V. P. Flynn, E. Cobanera, and L. Viola, Phys. Rev. Lett.
127, 245701 (2021).

[29] Z. Liu, E. J. Bergholtz, and J. C. Budich, Phys. Rev.
Research 3, 043119 (2021).

[30] A. Rivas, O. Viyuela, and M. A. Martin-Delgado, Phys.
Rev. B 88, 155141 (2013).

[31] O. Viyuela, A. Rivas, and M. A. Martin-Delgado, Phys.
Rev. Lett. 112, 130401 (2014).

[32] O. Viyuela, A. Rivas, and M. A. Martin-Delgado, Phys.
Rev. Lett. 113, 076408 (2014).

[33] J. C. Budich and S. Diehl, Phys. Rev. B 91, 165140
(2015).

[34] C E. Bardyn, L. Wawer, A. Altland, M. Fleischhauer,
and S. Diehl, Phys. Rev. X 8, 011035 (2018).

[35] D-J. Zhang and J. Gong, Phys. Rev. A 98, 052101 (2018).
[36] R. Unanyan, M. K-Emmanouilidis, and M. Fleischhauer,

mailto:hzhai@tsinghua.edu.cn


6

Phys. Rev. Lett. 125, 215701 (2020).
[37] L. Wawer and M. Fleischhauer, Phys. Rev. B 104, 094104

(2021).
[38] C. Weedbrook, S. Pirandola, R. G.PatrAn, N. J. Cerf, T.

C. Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys.
84, 621 (2012).

[39] S. Bravyi, Quantum Inf. Comp. 5, 216 (2005).
[40] T. Barthel and Y. Zhang, J. Stat. Mech. 113101 (2022).
[41] B. Horstmann, J. I. Cirac, and G. Giedke, Phys. Rev. A

87, 012108 (2013).
[42] F. Song, S. Yao, and Z. Wang, Phys. Rev. Lett. 123,

170401 (2019).
[43] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev.

Lett. 42, 1698 (1979).

[44] The codes for numerical calculation are available at
https://github.com/maol17/Dissipation-Dynamics-
Driven-Transitions-of-the-Density-Matrix-Topology

[45] Liang Fu and C. L. Kane, Phys. Rev. B 74, 195312
(2006).

[46] A. P. Schnyder and S. Ryu, Phys. Rev. B 84, 060504
(2011).

[47] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801
(2005).

[48] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802
(2005).

[49] Z. Wang, X.-L. Qi, and S.-C. Zhang, New J. Phys. 12
065007 (2010).


	 References

