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We present magneto-optical studies of a self-assembled semiconductor quantum dot, concentrating
specifically on the case in which the dot is doubly positively charged, studying this way the confined
hole - hole exchange interaction. A simple harmonic potential model, which we extend to capture
the influence of an externally applied magnetic field in Faraday configuration fully describe the
observed polarization sensitive magneto-photoluminscence spectra. We deduce the effective compo-
sition of the quantum dot from its measured electronic g-factor. Using this value we determine the
dot effective permittivity and quantitatively describe various measured excitonic transitions, their
measured Zeeman splittings and their diamagnetic shifts. In particular, the model quantitatively
accounts for an observed pronounced negative diamagnetic shift, which provides a direct measure
for the hole-hole exchange interaction and its dependence on the externally applied magnetic field
strength.

I. INTRODUCTION

Self-assembled Quantum Dots (QDs) in semiconduc-
tors form a well-known platform for quantum technolo-
gies. They have proven to be the best contemporary
single-photon sources [1–4], while providing an excellent
interface between anchored spin qubits and “flying” pho-
ton qubits. Much progress has been made in controlling
confined-spin qubits in QDs [5–8] and entangling them
with photons Sen[9–14] , enabling deterministic genera-
tion of long strings of entangled photons [15–17]. In
addition, QDs still provide a convenient platform for
studying the many-body states of confined many carri-
ers complexes. Interesting properties of such complexes
include the relative interactions between the consisting
particles, the form of their spatial wavefunctions, and
their response to externally applied fields, to name a few.
In particular, an externally applied magnetic field causes
the associated optical transitions to energetically shift -
an effect known as the diamagnetic shift. Modeling those
shifts in confined systems is still an ongoing effort [18–22].

Here we present a magneto-optical study of semicon-
ductor QDs in which we focus our attention on the optical
properties of a doubly positively charged QD and its fun-
damental excitonic transition denoted by X+2. The QD
confined X+2 exciton contains three heavy holes and an
electron. After radiative recombination of an electron-
hole pair, the QD remains with two heavy-holes. The
pairs of holes may form either three spin triplet states or
one spin singlet state. Our work was spurred by notic-
ing an anomaly in the diamagnetic shifts of the opti-
cal transitions into the singlet state, the X+2

S0
, which we
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found to be negative. In the effort to understand this
phenomenon, we found that the X+2 excitonic transi-
tions form an excellent platform for studying the hole-
hole Coulomb exchange interaction and its dependence
on externally applied magnetic field. We show, using a
simple harmonic model for the QD spatial potential, that
the measured diamagnetic shifts of the X+2 transitions
and the measured electron and hole g-factors can be ob-
tained using one free fitting parameter which describes
the effective composition of the QD.

The paper is organized as follows. First, we present
our measurements of the electron and hole g-factors by
measuring the spectral Zeeman splittings of the bright
and dark neutral excitons. From the values of the mea-
sured g-factors, we extract the composition of the QD
as captured by the parameter x, defining the ratio of In-
dium and Gallium in the QD, InxGa1−xAs. Next, we
present full polarization-sensitive magneto-PL measure-
ments displaying the diamagnetic shifts of various opti-
cal transitions and their optical transition selection rules.
We then concentrate on the anomalous negative shift of
the doubly positively charged exciton, the X+2

S0
, and fit

its optical transition field dependence using no additional
free parameters. Finally, we use a Hartree-Fock approx-
imation to calculate the absolute values of the X+2 dia-
magnetic shifts in terms of the diamagnetic shift of the
bright exciton, X0

BE .

II. EXPERIMENTAL SYSTEM

We studied a single InxGa1−xAs self-assembled QD
embedded in a planar microcavity grown along the [001]
direction [23]. We used an Attocube closed-cycle cryo-
stat to cool the sample down to 4 Kelvin. A built-in vec-
tor magnet enabled us to apply a magnetic field in any
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desired direction. The emitted photoluminescence (PL)
was collected by a ×60 objective. Its polarization was
analyzed by pairs of liquid crystal variable retarders and
polarizing beam splitters, enabling PL polarization pro-
jecting on any direction in the Poincarï¿œ sphere. The
PL was then spectrally analyzed using an 80 cm double
monochromator, providing a spectral resolution of ∼ 20
µeV .

The QD was optically excited using an above band-gap
CW red HeNe or a blue diode laser, emitting at 633 or
445 nm, respectively. The excitation colors induce the
average charge state of the QD. While HeNe illumina-
tion results in positive charging blue excitation leads to
negative charging [24].

We defined the symmetry axis of the QD and the op-
tical beam direction as the z-axis of the experimental
system. The x and y axes were defined along the polar-
ization eigenstates of the QD’s bright exciton, X0

BE . The
X0
BE is an electron-hole pair which can be expressed in

the spin basis {|+z〉 = |⇑↓〉 , |−z〉 = |⇓↑〉} with ⇑\⇓ and
↑\↓ denoting the spin projections of the heavy-hole and
electron onto the z-axis. Since a heavy-hole and an elec-
tron have total angular momenta of 3/2 and 1/2, respec-
tively, the angular momentum projection of a |⇑↓〉 (|⇓↑〉)
pair along this axis is +1 (-1) [25]. Consequently, op-
tical recombination of the |⇑↓〉 and |⇓↑〉 pairs results in
a right-handed (R) and left-handed (L) circularly po-
larized photon emission, respectively. The anisotropic
electron-hole exchange interaction in this QD lifts the
degeneracy of the above basis by δ1 ≈ 30µeV [26] thus
forming new eigenstates,

√
2 |±x〉 = |⇑↓〉 ± |⇓↑〉. Recom-

bination of those excitonic eigenstates results in either
horizontal,

√
2H = R + L, or vertical

√
2V = R − L

rectilinear photon emission, enabling a one-to-one corre-
spondence between the X0

BE ’s two-level system and the
two-dimensional space of light polarization.

The dark exciton (X0
DE) is another electron-hole state,

but with parallel spins
√

2 |ψDE〉1,2 = |⇑↑〉 ± |⇓↓〉 . In
general, this state is optically inactive because the an-
gular momentum is not conserved upon recombination
[8]. However, small optical activity of the X0

DE was mea-
sured [27–29]. Zielinski et al. explained it by small mix-
ing of the X0

DE and X0
BE eigenstates [28], which can be

enhanced by applying an in-plane magnetic field perpen-
dicular to the QD optical axis (Voigt configuration). For
a magnetic field parallel to the symmetry axis (Faraday
configuration) no additional mixing occurs, and the X0

DE
barely emits [30].

III. RESULTS

A. Measuring single-carrier g-factors

The Zeeman interaction between an externally applied
magnetic field and QD confined carriers’ spin removes
the Kramers’ degeneracy between the confined carriers
spin state which is parallel and anti-parallel to the field

direction. The Zeeman interaction linearly depends on
the magnetic field magnitude. This dependence is most
generally expressed in terms of a 3 × 3 g-factor tensor
[31]. For simplicity we assume here that this tensor is
diagonal and have only two different components: along
the symmetry axis (gze and gzh) and perpendicular to it
(g⊥e and g⊥h ) [32].

In the first part of the experiment, we measured the
confined electron and hole g-factors tensor components
along the z-axis. This was done by measuring the Zeeman
splitting of the X0

BE and X0
DE under B-field in the ẑ

direction. Assuming that the absolute magnitude of the
g-factors of those transitions are given by the sum and
difference of the absolute magnitudes of the single-carrier
g-factors

|gzBE(DE)| = |g
z
e | ± |gzh| (1)

[33, 34], we were able to extract gze and gzh from the mea-
sured gzBE and gzDE [30, 32, 35]. Eq. 1 is derived from
the parallel and anti-parallel spin nature of the dark and
bright excitons, using the sign convention given by the
Zeeman Hamiltonian

H = −µBgzeBzSz +
1

3
µBg

z
hBzJz . (2)

Here, µB is the Bohr magneton, Sz and Jz are the angu-
lar momentum z-projections ± 1

2 and ± 3
2 , and Bz is the

magnetic field. We readily measured the Zeeman split-
ting of the X0

BE since its spectral doublet appears bright
in the PL, as shown in figure 1. In contrary, the low op-
tical activity of the X0

DE made its Zeeman splitting mea-
surement more challenging. To overcome this problem,
we added a 1.5T Voigt component to our measurement
(in-plane B-field), enhancing the X0

DE emission to a mea-
surable amount. Although the total B-field direction was
no longer in the ẑ direction, we found that the in-plane
field effect on the measured ẑ direction Zeeman splitting
could be safely neglected. We veified it by measuring the
influence of the in-plane field on the bright exciton split-
ting (X0

BE), and found that it stayed unaffected within
our experimental precision.

One can also notice in Figure 1 that the X0
DE cross-

polarized doublet is not equally intense: at 0 Tesla, its
horizontally (H) polarized component is much stronger
than the vertically (V) polarized one, a phenomenon ob-
served and explained in previous publications [36–38].
Adding magnetic field in Faraday configuration enhances
the weaker component and gradually adds cross-circular
polarization terms to the X0

DE doublet. However, up to
the maximal field strength of 1.5 Tesla, the two X0

DE ’s
components remain unequal. Nonetheless, we extracted
the g-factors of the X0

BE and X0
DE by fitting their mea-

sured Zeeman splittings to the following expression:

∆EBE(DE) =
√
δ21,2 + (µBgBE(DE)B)2 (3)

, where δ1,2 are the fine-structure splittings of the X0
BE

and X0
DE at 0 Tesla, respectively. We summarize the val-



3

N
o

rm
a

liz
ed

 In
te

ns
ity

S
p

lit
 [m

eV
]

𝐵 = 0𝑇

𝐵 = 0.4𝑇

𝐵 = 0.8𝑇

𝐵 = 1.2𝑇

𝑋𝑋

Figure 1. Polarization-sensitive magneto-PL of the bright ex-
citon (X0

BE) and dark exciton (X0
DE), for various magnetic

field strengths in the ẑ direction. A constant, x̂-directional
magnetic field of 1.5T was applied during all the measure-
ments to allow the X0

DE optical transition. Inset: Zeeman
splitting of the X0

BE and X0
DE versus Bz-field . The g-factors

of the two transitions are extracted by fitting the measured
splitting with ∆E =

√
δ2 + (µBgB)2.

Spectral line δ[µeV ] gz-factor α[µeV
T2 ]

X0
BE 31.0 ± 1.8 −0.81 ± 0.01 8.44 ± 0.14

X0
DE 1.4∗ ± 0.1 −0.29 ± 0.02 7.0 ± 1.4

gze −0.55 ± 0.02

gzh −0.26 ± 0.02

∆0 [µeV ] 270 ± 10

Table I. Summary of the measured excitonic fine structure and
Zeeman parameters. δ is the natural splitting at B = 0, and
α is the diamagnetic shift coefficient capturing the quadratic
dependence of the energy in B (αB2). gz(e/h) is the measured
g-factor of the electron and hole in Faraday configuration, re-
spectively. ∗The dark exciton (X0

DE) splitting is too small
to be directly observed in PL measurement, but can be mea-
sured using time-resolved spectroscopy [8]. For reference, we
also added the X0

DE −X0
BE splitting denoted by ∆0.

ues of the measured excitonic and single-carrier g-factors
in table I.

B. Estimating the QD effective composition from
the measured electronic g-factor

The isotropic electronic g-factor in bulk semiconduc-
tors can be analytically calculated by the Roth’s formula

[39]:

ge = 2− 2

3

Ep∆

Eg(Eg + ∆)
(4)

where Eg is the band gap energy between the valence
and conduction bands, ∆ is the split-off gap (between
the valence band and the spin-orbit band) at k = 0, and
Ep is the Kane energy defined as Ep ≡ 2~2

m |〈s| ∂x |x〉|2 ,
where |s〉 and |x〉 are the crystal Bloch functions of the
electron in the conduction band and in one of the three
p−like degenerate valence band, respectively.

QDs are not bulk semiconductors, and applying Roth’s
formula to them requires adjustment [40]. In principle,
the confinement effect of the QD breaks the periodicity of
the electronic wavefunctions, and the derivation of Roth’s
formula collapses. Nevertheless, as long as the confine-
ment energy is much smaller than the parameters ∆, Ep
and Eg, we expect Roth’s formula to be a good approx-
imation. Indeed, a typical separation between confine-
ment energy levels in our QD is of order 10 − 30meV s
[41], much smaller than ∆, Ep and Eg (see table II).

Since our QD comprises two semiconductors, GaAs
and InAs, we averaged the values of ∆ and Ep over the
two bulk materials. We introduced a weight parameter
x to quantify the composition of the QD, InxGa1−xAs,
and define:

∆x = x∆In+(1−x)∆Ga, Exp = xEp(In)+(1−x)Ep(Ga)

For the band gap, Eg, we preferred to use the directly
measured value of the X0

BE emission, as it takes into
account the confinement and lattice mismatch strain ef-
fects, omitted in the simple average [42]. We defined a
corrected band gap Ẽg by adding ∼ 50meV to the X0

BE
emission energy, thus accounting for the binding energy
of the exciton [25]. Combining all three parameters, we
obtained an x-dependent Roth formula

ge(x) = 2− 2

3

Exp∆x

Ẽg(Ẽg + ∆x)
(5)

that we can fit to the electronic g-factor as measured in
the experiment. Fitting ge(x) to the measured value of
−0.55 yields x ≈ 0.75. We summarize the parameter
values of that calculation in table II.

C. Measuring a negative diamagnetic shift for X+2

In Figure 2, we present a full Magneto-PL measure-
ment in Faraday configuration of the various spectral
lines of our QD. We present it for two average charge
states of the QD: negative and positive. The charge state
is apparent in each case by considering the emission ratio
between the positive and negative trions, X+ and X−.
Many identified lines are marked in the PL following pre-
vious studies [24].
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Figure 2. Polarization-sensitive magneto-PL spectra in Faraday configuration for various magnetic field strengths, for negatively
(a) and positively (b) charged QD. The upper panel shows polarization-sensitive magneto-PL spectra (except at B = 0T , where
the rectilinear polarization is shown). The panels below show the degree of circular and rectilinear polarizations (given by the
color bars to the right) as a function of the photon energy and the externally applied magnetic field strength. The identified
spectral lines are marked: X0 - the exciton, XX0 - the biexciton, X+ - (X−-) positively (negatively) charged trion, XX0

T0(T3)

metastable biexcitons with the two holes in T0(T3) spin Triplet configurations. X+
T0(T3)

, and XX+
T0(T3)

are similar positively
charged excitons and biexcitons. The X+2 lines result from the recombination of the doubly positively charged exciton, leaving
behind two holes which can form either a singlet S0 or one of the triplets, T±3 or T0. Note the negative diamagnetic shift of
the X+2

S0
(marked with an oval dash line). The energy scale is relative to the X0

BE spectral line at zero magnetic field.

GaAs InAs In0.75Ga0.25As

Ep[eV ] 28.8 22.2 23.85

Eg(4K)[eV ] 1.519 0.418 1.334*

∆[eV ] 0.341 0.371 0.363

ge Calculated -0.317 -14.65 −0.55

ge Measured -0.484 -14.9 −0.55

Table II. Comparison between measured electronic g-factors
to calculated values using Roth’s formula. The measured val-
ues for bulk GaAs and InAs semiconductors are taken from
Ref. [43]. The parameters Ep and ∆ for In0.75Ga0.25As are
weighted averages of their values in GaAs and InAs. ∗The
corrected band gap Ẽg (see text).

On top of the Zeeman splitting of the spectral lines,
they undergo a quadratic-in-B diamagnetic shift, which
we characterize by the coefficient α in the term αB2

added to the Hamiltonian (Eq. 2). For each spectral line
in Figure 2, the shift is attributed to its spectral “center
of mass” (the spectral center of the doublet), which in
most cases shifts towards higher energy (hence the ter-
minology of “diamagnetic” versus “paramagnetic” shift).
We explain this tendency by considering the areas of the
initial and final states of each optical transition. It is a
well-known result for quantum wells that the diamagnetic
shift of a neutral exciton is proportional to its wavefunc-

tion area [43] in a plane which is normal to the direction
of the magnetic field:

α =
e2

8µ‖c2
〈f |ρ̂2|f〉 =

π

4

e2

µ‖c2

∫
f2 (ρ) ρ3dρ (6)

Here, ρ is the relative in-plane coordinate between the
electron and hole, f (ρ) is the excitonic envelope wave-
function, µ‖ = memh/ (me +mh) is the in-plane reduced
mass of the electron and hole, and e and c are the elec-
tron charge and the speed of light, respectively. The final
state of the QD after the excitonic recombination is just
the vacuum, possessing no magnetic dependence, so the
overall diamagnetic shift is positive. Extending the area
interpretation to other optical transitions, it seems that
in most cases the radiative recombination results in a fi-
nal configuration with a reduced area. As a result, most
lines follow positive diamagnetic shift. Quantitatively,
plugging in Eq. 6 mh = 0.25m0, me = 0.065m0 (the
effective masses of the hole and electron in the quantum
dot [44] with m0 the free electron mass), and the mea-
sured diamagnetic coefficient α = 8.44 ± 0.14µeV/T 2,
one calculates the exciton Bohr radius to be ∼ 3.7nm –
a compatible result with the ∼ 30nm estimated diameter
of our QD.

Figure 3 summarizes the diamagnetic shifts of several
selected lines. One can see that many lines, including
the X0

BE , XX
0 and the trions, X− and X+, exhibit very

similar diamagnetic shifts of ∼ 8µeV/T 2. We explain this
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Figure 3. Measured energy shifts of various optical transitions
as a function of B2. One spectral line is a prominent exception
- the X+2

S0

similarity by arguing that in all those transitions both
the initial and final states contain only charge carriers
occupying the QD ground-level. We observe that when
additional charge carriers occupy higher confined levels,
the diamagnetic shift coefficients change (see for example
X−T±1, X

+
T±3).

Interestingly enough, one prominent line that we at-
tribute to the doubly charged exciton transition X+2

S0
ex-

hibits a distinctive negative shift. In what follows, we
will try to explain this observation in terms of the ex-
change interaction between the two heavy holes of the
X+2 transitions’ final states. Let us start by describing
those transitions in detail.

D. The doubly charged exciton X+2

Figure 4 schematically describes the energy levels
and the optical transitions associated with the doubly
charged exciton, X+2. This exciton comprises one elec-
tron in the ground-level 1e1, and three holes: two of them
forming a singlet in the s-orbital ground-level, 1h2, and
the third one occupies the first excited p-level 2h1. Here,
npm means: n - the energy level order, p - the particle
type (e or h), and m - the number of particles occupying
this level (either 1 or 2). The exchange interaction be-
tween the unpaired electron (in the 1st level) and hole (in
the 2nd level) removes the degeneracy between the four
possible two-carriers’ spin configurations, forming four
distinct eigenstates similar to the case of the neutral ex-
citon (X0). As such, we borrow the exciton “bright” and
“dark” terminology to describe the eigenstates of theX+2

as well. States with anti-parallel e-h spins would be called
“bright-like”, while states with parallel spins - “dark-like”
(see Figure 4). We emphasize that the dark and bright

𝛿

𝛿

𝛿
𝑋" "

𝑋" "±

𝑆

𝑇

𝑇±

V H

H V

R L

𝑋" "

𝑬

𝑋 𝑋
± 𝑋

𝚫𝑬

𝛿

Figure 4. Schematic description of the energy levels and opti-
cal transitions associated with the doubly positively charged
exciton X+2. The configuration of each state is presented
on the left, where thin blue arrows represent electrons with
spin 1

2
, and thick arrows represent heavy-holes with spin 3

2
.

The polarization selection rules are marked by colored down-
ward arrows. H (V ) marks the horizontal (vertical) rectilinear
polarization, while R (L) marks right (left) circular polariza-
tion. A schematic description of the emitted PL is drawn at
the bottom. The X+2

T±3
spectral line is drawn in green with a

pink edge, symbolizing that the H and V polarizations over-
lap such that the emission is unpolarized.

states are both optically active since the optical recombi-
nation occurs between the unpaired s−electron and one
of the s−level singlet holes, rather than the unpaired
p−hole.

The final states of the X+2 recombination contain two
holes - one in the ground level and one in the first ex-
cited level. As identical particles, they form either one
singlet spin state denoted by S1h2h

0 or three triplet states
denoted by

{
T 1h2h
0 , T 1h2h

±3
}
, respectively. The two initial

bright-like exciton states can only recombine to the sin-
glet S1h2h

0 or triplet T 1h2h
0 final states (but not to the

T 1h2h
±3 ), resulting in two pairs of cross-rectilinearly polar-

ized doublets [45]; the dark-like states can only recom-
bine to the T 1h2h

±3 states. Since in the absence of external
magnetic field (B = 0) both the dark-like and the T 1h2h

±3
states are almost degenerate, the recombination results
in a single, unpolarized, strong spectral line. We label the
X+2 optical transitions by their final states, specified by
the subscripts: X+2

T0
, X+2

T±3
and X+2

S0
. The latter transi-

tion, X+2
S0

, is the one exhibiting a negative diamagnetic
shift. We note that in the absence of external field, the
unpolarizedX+2

T±3
spectral line is positioned exactly in be-

tween the two cross linearly polarized components of the
X+2
T0

line. This indicates that δ1e2h0 , denoting the split-
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Spectral line δ1[µeV ] g-factor α[µeV
T2 ] Model

X0
BE 31.0 ± 1.8 −0.81 ± 0.01 8.44 ± 0.14

gz1e + gz1h
X+2
T3

0 −0.97 ± 0.05 6.90 ± 0.25

X+2
T0

56.3 ± 2.3 0.55 ± 0.13 7.6 ± 0.5
gz1e + gz2h

X+2
S0

69.0 ± 6.8 0.65 ± 0.08 −5.8 ± 0.7

X0
DE 0 −0.29 ± 0.02 7.0 ± 1.4 gz1e − gz1h

Table III. Summary of the measured g-factors for the X+2

transitions, compared to those of the bright and dark excitons.
The lines are classified by a simple model which assumes that
the g-factor of a given transition can be decomposed to the
sum of the comprising charge carrier g-factors of the initial
and final states of that transition. gzn(e/h) denotes the g-factor
of the electron (hole) in the n energy level of the QD, where
n = 1 is the ground state.

ting between the dark-like and bright-like X+2 states,
is equal to δ1h2hT , the splitting between the holes’ triplet
states T 1h2h

0 and T 1h2h
±3 . The reason why these two terms,

one due to isotropic e-h exchange and the other due to
h-h anisotropic exchange, are almost equal, remains an
open question.

The measured diamagnetic shifts and g-factors of the
X+2 transitions are summarized in table III. To qualita-
tively explain the measured g-factors, we assume that a
g-factor of a state can be deduced by summing up its indi-
vidual single carrier component’s g-factors, and that the
total g-factor of a transition results from the difference
between its initial and final states. By further assuming
that charge carriers in the well-defined symmetry config-
urations S0 and T0 do not exhibit Zeeman splitting, we
conclude that X+2

T3
’s g-factor behaves as the bright ex-

citation’s (X0
BE) factor, while the g-factors of X+2

T0
and

X+2
S0

depend on the excited hole’s g-factor, gz2h. More
measurements justifying the above classification as a gen-
eral result can be found in the authors’ theses [46, 47].
It is interesting to note that plugging into the gz1e + gz2h
sum the measured gz1e-factor (∼ −0.55), and using for
the sum an averaged value of 0.6±0.1 (see table III), one
finds that gz2h = 1.15±0.10. This value is opposite in sign
compared to the ground state g-factors of the hole and
the electron (−0.26 and −0.55, respectively, according to
Table I).

A detailed polarization-sensitive magneto-PL spectra
of the X+2 spectral lines are presented in figure 5. One
can see that while the triplet lines shift towards higher
energy with increasing B-field, the singlet lines shift to-
wards lower energy. Since the initial states of the X+2

S0

and X+2
T0

transitions are the same (the bright-like exci-
ton states), we conclude that the difference in the sign of
the diamagnetic shift between the two transitions stems

Figure 5. Rectilinear polarization-sensitive PL spectra of the
X+2 spectral lines relative to the neutral exciton state a) at
zero magnetic field, b) as function of the externally applied
field in Faraday configuration, and c) in magnetic field of 5T .
The transitions are marked by their final spin configurations
(S0,T0, T±3). The energy difference between the X+2

T0
and the

X+2
S0

doublets (marked) equals twice the hole-hole exchange
interaction.

from the different influence that the external magnetic
field has on the final states. The h-h singlet final state
rises in energy faster than the initial state such that the
overall spectral shift is negative. On the other hand, the
h-h triplet state rises in energy slower than the initial
state, and thus the total spectral shift is positive.

E. Magnetic field dependence of the exchange
integral

We now use a simple harmonic oscillator model to
quantitatively describe how the hole-hole exchange in-
teraction is affected by the magnetic field. The exchange
integrals between various states confined by a 2D har-
monic potential with circular symmetry were calculated
in Ref [48]. For two identical particles, one in an s-shell
and one in a p-shell the exchange energy is:

Ksp,0 =
1

4

√
π

2

e2

4πε0εr

1

l0
(7)

where e is the electron charge, ε0 is the vacuum per-
mittivity and εr is the relative permittivity of the QD
material. The effective length l0 characterizes the extent
of the harmonic potential and is equal to:

l0 =

√
~

mω0
(8)

wherem is the in-plane effective mass of the charge carri-
ers, in our case holes, and ω0 is the harmonic frequency of
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the confining potential. To include the effect of the mag-

netic field, we replace ω0 with ω ≡
√
ω2
0 +

e2B2
z

4m2 , obtained
by adding a magnetic field hamiltonian to the harmonic
oscillator one and solving for the eigenenergies (harmonic
spectrum + Landau levels spectrum). The expression for
the effective length then becomes:

l =
l0[

1 +

(
eB

2mω0

)2
]1/4 (9)

Inserting Eq. 9 into Eq. 7 yields an expression for the
field dependence of the exchange energy:

Ksp(B) = Ksp,0

[
1 +

(
eB

2mω0

)2
]1/4

(10)

Furthermore, mω0 can be expressed in terms of Ksp,0 by
using Eq. 7 and 8:

mω0 =
512

e4
π~ε20ε2r(Ksp,0)2 (11)

Inserting this expression into Eq. 10, we obtain an ex-
pression for the field dependence of the hole-hole ex-
change energy

Ksp(B) = Ksp,0

[
1 +

(
e5B

1024π~ε20ε2r(Ksp,0)2

)2
]1/4

(12)

When the magnetic energy is much smaller than the zero-
field exchange energy, we can expand this expression to
the first non-vanishing order in B:

Ksp(B) ≈ Ksp,0 + βB2 (13)

where:

β(theory) =
e10

222π2~2ε40ε4r(Ksp,0)3
(14)

To compare this result to the measured diamagnetic
shift coefficients, we further extractKsp,0 and εr from our
measurements: Ksp,0 equals half of the energy separation
between the X+2

S0
and X+2

T0
optical transitions at B = 0

(see Figure 5). From the magneto-PL in Figure 5, we
obtain Ksp,0 = 2.79(1)meV . To estimate εr, we average
its value over the InAs and GaAs constituents of the QD,
εxr = xεxr(In) + (1 − x)εxr(Ga), like we did for the ∆ and
Ep parameters in Section III B. Using x ≈ 0.75, as we
found by fitting Roth formula to the measured g-factor,
we obtain ε0.75r ≈ 14.25. Combining those values, we
conclude βtheory ≈ 6.6µeVT 2 .

In the experiment, β is directly measured as half the
difference between the diamagnetic shifts of the X+2

T0
and

X+2
S0

spectral lines. To see this, note that the initial states
of X+2

T0
and X+2

S0
transitions are the same and thus cancel

Figure 6. The calculated electronic g-factor ge(x) and the
calculated relative diamagnetic shift β(x) between the X+2

singlet and triplet transitions as function of the composition
ratio x. Note that the calculation of the g-factor uses constant
band gap energy as measured in the experiment, and thus at
x = 0, 1 it does not reproduce the values for pure InAs and
GaAs bulk materials.

out upon subtraction. The only contribution, then, is the
final hole-hole state which is either a singlet or a triplet.
We observe:

βmeasured =
αX+2

T0

− αX+2
S0

2

=
7.6µeVT 2 − (−5.8µeVT 2 )

2
= 6.7(4)

µeV

T 2
(15)

The calculated and the measured values of β agree up
to 0.1µeVT 2 , well within our experimental error. We see
this compliance as a strong validation of the hole-hole
exchange interaction model. For further conviction, we
test the sensitivity of our result to the value of x. This
is shown in Figure 6. One can see that the dependencies
g (x) and β (x) are close to linear, and that a deviation
of x by more than 0.02 would cause those parameters to
miss the measured values.

F. Diamagnetic shifts of the singlet and triplet
lines

After explaining the relative diamagnetic shift between
the X+2

S0
and X+2

T0
transitions, we proceed by calculating

the absolute values of those shifts. We find that we can
figure those values using the measured emission energy
of the X+2 spectral lines relative to the neutral exciton
X0, and its diamagnetic shift coefficient. In those calcu-
lations, we use the Hartree-Fock approximation to evalu-
ate the energies of the optical transitions’ initial and final
many-body states. The energy of a many-body state is
calculated, within this approximation, by summing over
its individual-particle confining energies and the interac-
tions between all the particle pairs involved.

Under this approximation, the energy of the ground
state neutral exciton is:

EX0 = Ees + Ehs − Jehss (16)
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where E
e(h)
s = 1

2~ωe(h) is the energy of the electron
(hole) in the s-level and Jehss is the direct Coulomb in-
teraction between the electron and the hole. This ex-
pression describes the exciton center-of-splitting (includ-
ing at B 6= 0) as it does not include the e-h exchange
Coulomb interaction. In the following derivation, we use
Jp1p2n1n2

(Kp1p2
n1n2

) to describe the direct (exchange) Coulomb
interaction between orbitals n1 and n2 of the charge car-
riers p1 and p2, the latter representing either holes (h) or
electrons (e).

The emission energies of the X+2
S0

and X+2
T0

optical
transitions are given by the difference between the en-
ergies of the final and initial states (see figure 4).

Einital
X+2

T0(S0)

= Ees + 2Ehs + Ehp + Jhhss + 2Jhhsp − 2Jehss − Jehsp

Efinal
X+2

T0(S0)

= Ehs + Ehp + Jhhsp ∓Khh
sp (17)

Note that the hole singlet Efinal
X+2

S0

is higher in energy than

the triplet Efinal
X+2

T0

(Khh
sp > 0) due to the different symme-

tries of the associated spatial wavefunctions upon particle
exchange. Thus, for the optical transition we have:

EX+2
T0(S0)

= Efinal
X+2

T0(S0)

− Einital
X+2

T0(S0)

(18)

=Ees + Ehs + Jhhss + Jhhsp − 2Jehss − Jehsp ±Khh
sp

We can cast this in terms of the Hartree-Fock neutral
exciton transition energy, EX0 = Ees + Ehs − Jehss , as:

EX+2
T0(S0)

= EX0 + Jhhss + Jhhsp − Jehss − Jehsp ±Khh
sp (19)

All the elements in this equation can be expressed by the
effective length of the electron (le =

√
~

meωe
) and hole

(lh =
√

~
mhωh

), using Ref [48]. Summing them up gives
the following expression:

EX+2
T0(S0)

= EX0 + (a± 1)Khh
sp (20)

where we defined the constant a as

a ≡ 7− 4

(
2

1 + γ2

)1/2

− (1 + 2γ2)

(
2

1 + γ2

)3/2

(21)

and γ ≡ le
lh

is the ratio between the effective lengths.
As Khh

sp is the exchange energy between two holes, we
have already found in the previous section that it can be
expressed as Khh

sp (B) ≈ Ksp,0 + βB2. Using this, Eq. 20
becomes:

EX+2
T0(S0)

(B) = EX0(B)+(a±1)Ksp,0+β(a±1)B2 (22)

The ratio γ can not be determined directly, as we lack
the knowledge about the ratio between the effective in-
plane masses of the electron and hole, or the ratio be-
tween their related harmonic confinement frequencies ωe

and ωh. However, we can extract γ from a, since it is a
function of directly measured quantities. At zero mag-
netic field:

EX+2
T0

= EX0
+ (a+ 1)Ksp,0 ⇒ a =

EX+2
T0

− EX0

Ksp,0
− 1

EX+2
S0

= EX0 + (a− 1)Ksp,0 ⇒ a =
EX+2

S0

− EX0

Ksp,0
+ 1

(23)

.EX+2
T0

− EX0 and EX+2
S0

− EX0 are the energies of the

X+2 transitions relative to the neutral exciton, which at
zero magnetic field, according to figure 5, equal respec-
tively −0.38(1)meV and −5.95(1)meV . Using these val-
ues and the previously obtained Ksp,0, both expressions
in 23 yield a ≈ −1.13, which in turn implies γ ≈ 0.17.

Finally, we are ready to calculate the absolute diamag-
netic shifts of the hole-hole triplet and singlet lines. Ac-
cording to Eq. 22, the diamagnetic coefficients of the
X+2 transitions are:

αX+2
T0(S0)

= αX0 + β(a± 1) (24)

where αX0 = 8.4(2)µeVT 2 is the diamagnetic shift coef-
ficient of the exciton, and β = 6.7(4)µeVT 2 is the relative
X+2 diamagnetic shift calculated in the previous section.
We find:

αX+2
T0

= αX0 − 0.13β = 7.5(2)
µeV

T 2

αX+2
S0

= αX0 − 2.13β = −5.9(8)
µeV

T 2
(25)

which agree with our measured values 7.6(4)µeVT 2 and
−5.8(7)µeVT 2 , respectively.

IV. SUMMARY

We performed magneto - PL spectroscopy on a well-
characterized InxGa1−xAs/GaAs QD in Faraday config-
uration. From the measurements we extracted the g-
factors and the diamagnetic shifts of many excitonic tran-
sitions. In particular, we observed an anomalous negative
diamagnetic shift of spectral lines resulting from the ra-
diative recombination of a doubly charged exciton (X+2

S0
).

Our results are explained using simple models for the Zee-
man interaction and for the measured diamagnetic shifts.
For both interactions we use one free parameter: x, the
effective relative Indium content of the ternary QD. We
use this parameter to linearly interpolate the QD elec-
tronic g-factor and permittivity, from those of its binary
components GaAs and InAs.

By analysis of the measured g-factors of various opti-
cal transitions we show that while the g-factors of the
electron in the first and second level have the same sign,
the g-factors of the hole in these levels are opposite in
sign.
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We explain the difference between the diamagnetic
shifts of the optical transitions of the doubly positively
charged exciton which result in the remaining holes in a
singlet (X+2

S0
) and that in which they form a triplet (X+2

T0
)

using a simple circular harmonic potential model. The
model describes in analytical form the hole-hole exchange
interaction including the influence of the externally ap-
plied magnetic field. Finally, using the Hartree-Fock ap-
proximation we calculate the absolute diamagnetic shifts
of these spectral lines using the measured diamagnetic

shift of the neutral exciton (X0).
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