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     Abstract—With the rise in in-memory computing architectures 
to reduce the compute-memory bottleneck, a new bottleneck is 
present between analog and digital conversion. Analog content-
addressable memories (ACAM) are being recently studied for in-
memory computing to efficiently convert between analog and 
digital signals. Magnetic memory elements such as magnetic 
tunnel junctions (MTJs) could be useful for ACAM due to their 
low read/write energy and high endurance, but MTJs are usually 
restricted to digital values. The spin orbit torque-driven domain 
wall-magnetic tunnel junction (DW-MTJ) has been recently 
shown to have multi-bit function. Here, an ACAM circuit is 
studied that uses two domain wall-magnetic tunnel junctions (DW-
MTJs) as the analog storage elements. Prototype DW-MTJ data is 
input into the magnetic ACAM (MACAM) circuit simulation, 
showing ternary CAM function. Device-circuit co-design is carried 
out, showing that 8-10 weight bits are achievable, and that 
designing asymmetrical spacing of the available DW positions in 
the device leads to evenly spaced ACAM search bounds. Analyzing 
available spin orbit torque materials shows platinum provides the 
largest MACAM search bound while still allowing spin orbit 
torque domain wall motion, and that the circuit is optimized with 
minimized MTJ resistance, minimized spin orbit torque material 
resistance, and maximized tunnel magnetoresistance. These 
results show the feasibility of using DW-MTJs for MACAM and 
provide design parameters. 
 
Index Terms—analog circuits, associative memory, content 
addressable memory, magnetic domain walls, magnetic tunnel 
junctions, memory, neural networks, spin electronics, spintronics 

I. INTRODUCTION 
S data size increases and Moore’s law slows down, 
alternative in-memory computing (IMC) architectures 
are being studied and used to efficiently process 
information. Conventional analog IMC often uses 

crossbar array architectures and nonvolatile memory (NVM) 
such as resistive random-access memory (RRAM) and has 
shown many applications in neural network acceleration [1]–
[3], neuromorphic computing [4], statistical learning [5], signal 
processing [6], [7], scientific computing [8], [9], and other 
fields. However, there is a challenge extending these 
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architectures to operations other than matrix dot multiplication. 
Existing IMC architectures rely on extensive analog to digital 
conversion (ADC) and digital to analog conversion (DAC) to 
switch between matrix multiplication and other computations 
such as activation functions [10]. The consequent conversion 
cost greatly dilutes efficiency in both power and speed; e.g., 
data converters can consume around 85% of the total energy in 
a typical RRAM-based neural network accelerator [11]. This 
energy overhead is especially critical for edge computing. 

To address this challenge, analog content-addressable      
memories (ACAM) are being recently studied for IMC [12], 
[13]. ACAM cells are designed to detect whether the value 
corresponding to input search data is located within a range. 
Unlike conventional CAM, the input data of ACAM are 
allowed to be analog values or multi-bit. ACAM can be used to 
fuse computation and data conversion for time- and energy-
efficient conversion between analog and digital signals. For 
example, a recently proposed RRAM-based  ACAM shows 
delays of 350 ps and >1 fJ energy consumption, and a recently 
shown ferroelectric-based ACAM shows up to 3-bit precision 
to perform in-memory nearest neighbor searching to perform 
few-shot learning [14], [15]. The ideal requirements of NVM 
for ACAM include low switching energy, low read energy, high 
endurance, and controllability of setting the memory element to 
a given analog value. Thus, magnetic tunnel junctions (MTJs) 
are a natural choice for ACAM, due to their theoretically 
unlimited endurance, modest switching voltage, and back-end-
of-the-line compatibility for integration into the ACAM cell 
[16]. The domain wall-magnetic tunnel junction (DW-MTJ) 
allows for analog-like programming of tunnel 
magnetoresistance (TMR) through modulation of the position 
of a DW underneath an MTJ, using either spin transfer torque 
(STT) or spin orbit torque (SOT). Recent work has 
demonstrated the use of STT-based MTJs in ternary CAM 
applications, but ternary CAMs are associated with 
considerably greater area consumption costs in order to achieve 
the same density of bits as their contemporary analog and multi-
bit counterparts [15], [17], [18].  STT magnetic random-access 
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memory (STT-MRAM) based on the MTJ has also been shown 
in crossbar arrays to perform analog multiply-and-accumulate 
operations [19]. But, much of the previous works of spintronics 
for CAM has been focused on binary and ternary functionality. 
This is because achieving controllable multiple resistance levels 
in an MTJ is a challenge.  

Here, we propose and verify the performance of a DW-MTJ 
ACAM prototype for high-throughput, high-speed searches. 
The DW-MTJ ACAM cell compares an analog input to a range 
of stored values, which is set using the programmable resistance 
of the DW-MTJ through the modulation of the DW. Circuit 
simulations using prototype results from DW-MTJ device 
cycling data verify that MTJs can be effectively integrated into 
ACAMs as programmable elements. Additionally, projected 
data using optimized magnetic stack parameters demonstrate 
the feasibility of performing analog multi-bit search operation 
for implementation in high-throughput computing. Our 
proposed DW-MTJ ACAM benefits from up to a 44 × decrease 
in energy consumption per search, and 2.86 × faster search 
time, per bit compared to existing MTJ ternary CAM circuits. 
Additionally, the high programmability in linearity through 
different DW-MTJ geometries, combined with low variation 
within each weight, allows our proposed ACAM to circumvent 
time-costly weight programming that is necessary in other 
emergent ACAM designs; thus, potentially reducing write 
times by up to 3 orders of magnitude. These results show the 
potential for DWs and MTJs to be used in these energy-efficient 
circuits. 
 

II. CELL DESIGN AND METHODS 
Fig. 1a shows the DW-MTJ multi-weight NVM used for the 

magnetic ACAM (MACAM) design. A top-pinned MTJ stack 
has its bottom heavy metal and magnetic free layer extended 
into a magnetic wire that hosts a magnetic DW. SOT current 
applied from IN to CLK sets the DW position at one of the 
notches, which in turn sets the resistance between the CLK and 
OUT terminals. We have previously shown DW-MTJ 
prototypes with 3-5 stable resistance levels at room 
temperature; due to the physical setting of the resistance by the 
DW position, highly controllable weights are achievable as long 
as the DW is set to the desired notch [20]. 

Two DW-MTJs are integrated into the 8-transistor MACAM 
cell shown in Fig. 1b [18]. Minimum and maximum voltage 
bounds are set using the search lines (𝑆𝐿!"#$, 	𝑆𝐿%&'), and input 
search voltage is applied through the data line, 𝑉(%. The search 
result is reflected on the match line (𝑀𝐿) behavior. Fig. 1c 
depicts how the DW position in the DW-MTJ determines a 
match. Programmable resistance states demonstrate how 
different voltage states on both MTJs can be used to write 
different voltage bounds. A match can be yielded anywhere 
between the upper and lower bounds. 

To understand the cause, the drain-to-source voltage of the 
input transistor 𝑇)*+ (see Fig. 1b), 𝑉(,, and its drain current, 𝐼(, 
can be described using the form: 

 𝐼( =	
,%!"#!-.$%
(0&"'(10)*+)

, (1) 
where 𝑅'"34 is the resistance of the heavy metal plus free layer 
patterned wire and 𝑅567 is the read-out resistance of the DW-
MTJ. Subsequently, 

 𝑉(, = 𝑆𝐿$"#$ − 𝐼(2𝑅'"34 + 𝑅5674.  (2) 
 
The saturation region of the 𝑇)*+ in which lower bounds will 
remain matched can then be defined as: 

\ 
(a) 

 
(b) 

 
(c) 

 
Fig. 1. (a) Diagram of the three-terminal DW-MTJ. Resistance states are 
programmed using voltage pulses from IN and CLK, and read from IN to OUT. 
Notches are shown that assist repeatable setting of the DW. (b) Circuit 
schematic of proposed MACAM circuit. Minimum and maximum voltage 
bounds are set using 𝑆𝐿  lines, and input search voltage is applied through the 
data line, 𝑉(% . The search result is reflected on the match line (𝑀𝐿) behavior. 
(c) Programmable resistance states demonstrate how different voltage states on 
both MTJs can be used to write different voltage bounds. A match can be 
yielded anywhere between the upper and lower bounds. Different notch 
locations are shown on a 5-weight DW-MTJ synapse. “N4” corresponds to 
antiparallel and “N0” corresponds to parallel resistance relative to the reference 
magnetic layer. 
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 𝑉(% > 6
,%!"#!-.*!,-$
80&"'(10)*+9:.

+ 𝑉6!,)*, (3) 

 
Where 𝑉6!,<( and 𝑉6!,)* (in Figs. 3b, e) are the threshold 
voltages of the pulldown (𝑇<() and input (𝑇)*) transistors, 
respectively. 𝑘= = µ=𝐶&>

?
%

, the large signal MOSFET 
transconductance parameter, where µ= is the mobility of 
electrons on the channel surface, 𝐶&> is the oxide capacitance, 
and ?

%
 is the ratio of channel width to channel length. 

Meanwhile, the linear region where the lower bounds will 
remain matched can be defined using the approximation: 

 𝑉𝐷𝐿 <
𝑉𝑇ℎ,𝑃𝐷
𝑔𝑚

! 1
𝑟𝑜
+ 1

𝑅𝑤𝑖𝑟𝑒+𝑅𝑀𝑇𝐽
". (4) 

 
Here, 𝑔𝑚 is the small signal transconductance and 𝑟𝑜 is the 
output resistance, both of which are intrinsic constants to the n-
type MOSFET, 𝑇)*+. The opposite can be said about the upper 
bound, as the gate voltage of the pulldown transistor is inverted.  
    As the input search voltage decreases to 0, so does the drain 
current, 𝐼(, of the input transistor, as is expected by the 𝑉J,-𝐼( 
relationship of a n-type MOSFET. In the ACAM circuit, 𝑉J,, 
the gate-to-source voltage of the input transistor, is equal to the 
analog search input, 𝑉(%. To maintain the matching condition, 
it is crucial that 𝑉(, remains less than that of 𝑉6$,<( in order to 
maintain the match line voltage. To counteract this, the MTJ 
resistance must increase accordingly to maintain the adequate 
voltage drop across the MTJ to keep 𝑇<( in its OFF state.  
    Cadence Virtuoso and Spectre are used to characterize the 
functionality of the MACAM circuit. The circuit is constructed 
using 40 nm gate processes technology, and the MTJ is modeled 
as two resistances in series,	𝑅'"34 + 𝑅567. To verify 
performance, a two-dimensional parametric sweep of search 
voltages at different 𝑅567 is run. The input search voltage is 
swept from the full range established by the search lines (𝑆𝐿%&' 
and 𝑆𝐿!"#$	set to 0 V and 1 V respectively) at a preprogrammed 
𝑅567. This is repeated at different 𝑅567 to determine the 𝑀𝐿 
behavior as a function of the search inputs, to understand the 
limits of both the DW-MTJ device and CMOS circuitry.  
 

III. TCAM FUNCTIONALITY WITH PROTOTYPE DATA 

    To start, experimental data from DW-MTJ prototypes is 
input into the constructed circuit model, to study their function 
for CAM. Fig. 2a shows the device data with device SEM 
shown in the inset. A 50 ns voltage pulse is applied from IN to 
CLK, followed by measurement of 𝑅567. The voltage pulse 
amplitude is increased from 2 to 4 V in 0.1 V steps, showing 
three distinct resistance values as the DW eventually de-pins 
and moves to another notch. This is repeated for 10 cycles; see 
Ref [20] for details. Nominal TMR of the magnetic stack was 
measured using current in-plane TMR = 170%. The resistance-
area product for parallel MTJ resistance, RA, was measure RA 
= Ω × µ𝑚K, with a heavy metal layer of tantalum. The 
trapezoidal synapse device used an MTJ with top-down area of 
1.575 µ𝑚K. 
    From this data, we extract total resistances of 𝑅567 = 67 Ω, 
75 Ω, and 93 Ω, with cycle-to-cycle resistance variation = 2.5%. 

Inputting these values into the MACAM circuit, ternary CAM 
behavior is seen, shown in Fig 2b, which plots the ML voltage 
vs. search voltage for the different relative MTJ weights. The 
search voltage is the analog search input from 𝑉(%. From these 
curves, the lower bound 𝐵% (V) and upper bound 𝐵L (V) are 
defined as the search voltage values that set 𝑀𝐿 = 0.5. The 
storage range is defined as 𝑆𝑅	 = 	𝐵L − 𝐵%. The resulting 
maximum 𝑆𝑅 = 0.109	V that can be achieved using these 
measured resistance weights is between 𝐵% = 0.854	V and 
𝐵M = 0.963	V, which can be seen as the don’t care or X, state 
that includes all values within this range; alternatively, by 
setting the upper and lower bounds DW-MTJs to the same 
weight, we can also achieve a cell which will always result in a 
mismatch. Because there are 3 resistance weights, it is also 
possible to achieve two smaller resistance states as well, which 
can be used in binary implementation, depicted as the 0 and 1 
states in Fig. 2b. The combination of the X bit with the smaller 
0 and 1 bits can then be used to implement ternary CAM 
functions. Ternary CAM application in memory-augmented 
neural networks have previously been demonstrated for one-
shot learning in Ref. [21]. 

 
(a)  (b) 

 
(c) 

 
Fig. 2.  (a) Data of 𝑅567 vs. applied voltage pulse amplitude of device 
shown in inset, showing 3 distinct weights. Each color is another cycle of the 
same device showing repeatable cycle-to-cycle behavior. (b) Calculated 
ternary CAM performance of device from (a). The dotted line at 0.5 V on the 
ML shows the minimum ML voltage necessary to yield a match. The lower 
and upper bound of each discrete level (0, 1, or X) is marked by the two points 
of intersection with the dotted line. (c) Top-down design of 9 weight DW-MTJ 
wire, with lithographically patterned magnetic wire shown in grey with 9 
notches, and the MTJ for read-out is shown in teal. 
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IV. ACAM FUNCTION AND DESIGN FOR 9-RESISTANCE 
WEIGHT DW-MTJ 

With existing prototypes showing 3-5 resistance levels, it is 
feasible to extend to 8 resistance levels by extending the length 
of the DW track and including 9 notches, depicted in Fig. 2c.  
Assuming 𝑅'"34	 = 40	Ω, and 𝑅567 = 	70	Ω, with TMR = 
170%, more analog and multi-bit capabilities of the cell can be 
demonstrated.  

Under these assumptions, we can simulate the performance 
of 𝐵% and 𝐵L’s circuit components. The specific voltage value 
of the bound associated to the 𝐵% circuit can be programmed 
using the MTJ-transistor voltage divider circuit, which is 
demonstrated in Figs. 3a, b. Furthermore, it can be seen that the 
relationship between the DW-MTJ resistance weights and their 
associated bounds is such that lower resistances are necessary 
to write higher bounds, while larger resistances are required to 
achieve the lower bounds, shown in Figs. 3a, d where the 
parallel resistance is in notch “0” and increases with each notch 
up to notch “8”, which is the anti-parallel state. 𝐵L (see Figs. 
3d, e) experiences a similar matching condition, but conversely 
requires an input voltage smaller than the threshold at 𝑇<(K due 
to the CMOS inverter prior to the pulldown transistor. Fig. 3c 
depicts the match line current (blue) and match line voltage 
(black) during an input voltage sweep from 0 to 1 V, depicting 
a mismatch-match-mismatch event. To assess the 𝑀𝐿 threshold 
voltage to yield a match, a buffer is placed at the end of the 𝑀𝐿, 
and its transfer function is shown in Fig. 3f, revealing a 
minimum 𝑀𝐿 voltage at 0.5 V to be considered a match. 
    When the 𝑀𝐿 is plotted against the search voltage for the 9 
evenly spaced notches in the DW-MTJ, the resulting 

 
Fig. 3. (a), (b) 𝐵! match performance based off different programmed resistance weights. An input signal less than the 𝐵! threshold yields a mismatch by 
forcing the transistor PD1 in (b) to pull down the ML voltage to ground. (c), (d) Conversely, an input signal greater than the 𝐵" threshold in (d) forces the transistor 
PD2 to pull down ML voltage to ground using similarly to (c) but with an inverting CMOS prior to the pull-down transistor PD2. (e) Simulation of voltage and 
current measured through the match line during an input voltage sweep. (f) Transfer characteristics of voltage buffer at the match line output indicating a matching 
threshold at 500 mV. 

 
Fig. 4. (a) Linear notch spacing vs. (b) nonlinear notch spacing effects on 
9-weight multi-bit performance. 
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relationship is 9 unevenly spaced discrete levels, as shown in 
Fig. 4a. While ACAM behavior is still achieved, it is shown that 
linearly spaced notches produce uneven widths of the distinct 
levels in the multi-bit circuit operation. With these matching 
characteristics, it would not be suitable to implement multi-bit 
performance, such as that shown in Ref. [15]. Thus, designing 
the DW-MTJ with unevenly spaced notches, to achieve 
approximately exponentially increasing MTJ resistance vs. 
notch, alleviates this issue. When considering notch spacing, 
the minimum pitch between notches is no less than the width of 
the notch itself to avoid stochastic movement of the DW 
between adjacent notches from factors like variations in 
magnetic wire geometry and thermal effects (i.e., a notch with 
a 100 nm width is restricted to have a minimum spacing of 100 
nm from the next notch). Fig. 4b shows the re-designed 9 
notches, and the resulting ACAM function of ML vs. search 
voltage, which shows evenly spaced discrete levels. These 
results show a useful benefit of DW-MTJs for these circuits 
because device behavior can be tuned to the circuit by adjusting 
device geometry.  

 

V. MACAM USING MTJ WAFER DATA 
    While the previous section focused on the impact of 𝑅567 on 
the ACAM function, the resistance of the heavy metal plus 
magnetic track, 𝑅'"34, will also impact the circuit performance, 
since the read current of the DW-MTJ runs through the DW 
racetrack wire and out the MTJ. For SOT-driven DW motion, 
𝑅'"34 is dominated by the resistivity of the heavy metal 
underneath the DW track. Here, we consider 3 common heavy 
metals used in SOT-MRAM: platinum, 𝛼-tungsten, and 
tantalum; 𝛽-tungsten and other similar large spin Hall angle 
materials were not included due to their known high resistivities 
[22]–[24]. 
 

A. Magnetic Stack Material and Device Characteristics 
    SOT-MRAM thin film stacks were grown with heavy metal 
layer of 7 nm-thick α-tungsten and measured using CIPT, 
showing average TMR = 170%, and average RA product = 35 
Ω × µ𝑚K. Using these measured stack characteristics, we then 
evaluated the impact of heavy metal resistivity on device 
performance. 𝑅'"34 was calculated using the excess length of 
wire outside the area of the MTJ, with 𝑙 × 𝑤 dimensions of 
0.75	µ𝑚	 × 400	𝑛𝑚 on all 3 stacks. The resistivities of the 
heavy metal thin films used were assumed from literature to be 
15 µΩ × 𝑐𝑚 for platinum, 21	µΩ × 𝑐𝑚 for 𝛼-tungsten, and 25 
µΩ × 𝑐𝑚 for tantalum [25]–[27]; thus, resulting in a projected 
wire resistance of 40 Ω, 56 Ω, and 67 Ω, respectively. The top-
down geometry of the MTJ has a 𝑙 × 𝑤 dimensions of 
3	µ𝑚	 × 100	𝑛𝑚, resulting in a parallel resistance of ~117 Ω. 
 

B. Simulated Results 
    Fig. 5 shows the performance of the circuit simulated using 
device parameters extrapolated from each of the 3 stacks. Fig. 
5a shows the maximum storage range of all 3 of these devices 
plotted against each other. The storage range, 𝑆𝑅, is the 
maximum distance that can be achieved between 𝐵L and 𝐵%. 

Achieving larger 𝑆𝑅 allows for greater density of discrete levels 
in analog multi-bit applications. Additionally, maximizing the 
accessible storage range within the minimum and maximum 
possible bounds, established by 𝑆𝐿$"#$ and 𝑆𝐿O&', reduces the 
energy cost of peripheral circuitry used to scale down that of 
the two DW-MTJ-CMOS subcircuits. This is important because 
the limited TMR ratios available in current MTJ devices allows 
programming bounds to only a fraction of the total available 
range. For the three SOT material types, Fig. 6a shows the 
MACAM bound (V) associated with different values of 𝑅567. 
The presence of wire resistance results in unwanted static 
voltage drops within the subcircuits shown in Figs 3b, e. Due to 
the low resistivity of platinum thin films, platinum has the 
highest 𝐵L overall due to having the lowest wire resistance, 
seeing as both 𝐵% and 𝐵L increase with decreasing MTJ 
resistance. Consequently, the maximum 𝑆𝑅 of the ACAM cell 
utilizing the platinum stack is 245 mV, which is 16% greater 
than α-tungsten and 28% greater than tantalum. Another 
demonstration showing the ability to achieve 5 discrete levels 
can be seen in Figs. 5b-d. Within the range of voltages available 
to all three stacks, they are all capable of comfortably fitting 5 
discrete levels; that is, the minimum pitch between notches is 
reliably spaced as described in Section IV. 

 

VI. DW-MTJ MATERIALS PARAMETERS OPTIMIZATION FOR 
ACAM 

   The results so far show that the MACAM circuit can achieve 
both ternary and multi-bit-like functionality, using prototype 
data, measured MTJ stack data with often-used heavy metal 
materials, and feasible extension from the measured 3-5 notches 
to 9 notches. Here, we inspect design considerations of the DW-
MTJ to further optimize the ACAM cell’s performance, to 
predict what the ideal properties of the DW-MTJ should be for 
this application.  

  
Fig. 5. (a) Simulation of three different SOT heavy metals showing total 
range, as well as individual states assuming 5 notches in the (b) platinum stack, 
(c) 𝛼-tungsten stack, and (d) tantalum stack. 
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 A. Stack Characteristics and DW-MTJ Geometry 
Considerations in Design Optimization 

When considering the factors important to optimizing the 
DW-MTJ for greater storage range in the ACAM cell, stack 
characteristics (RA, TMR, and resistivity) and device geometry 
(heavy metal thickness and MTJ top-down area) play large roles 
in minimizing resistance losses and increasing total storage 
range. Figs. 6b, c show the storage range decreases with 
increasing RA and increasing 𝑅'"34 ; Fig 6d shows storage 
range improves with TMR with decreasing benefits for high 
TMRs. The area of the MTJ with respect to stack RA cannot be 
neglected, since proportionally scaling down a device can have 
unintended consequences on the total storage range of said 
device. Fig. 6b shows proportionally scaling down a device 
with feature node size of 50 nm down to 25 nm results in a 
subsequent 4 × increase of parallel resistance, as both the 
length and width of the MTJ are each proportionally scaled 
down by +

K
×. The resistance vs. feature node can be accounted 

for in the circuit design. 
 

B. Design and Simulation of Prototype with Projected Data 
    Thus, we design a theoretical MTJ stack with ideal 
parameters to demonstrate projected prototype performance. 
Platinum is chosen as the heavy metal due to its low resistivity 
while still having a good spin Hall angle for energy efficient 
DW motion [21]. The Pt thin film layer is assumed to be 15 nm 
thick, and the RA is assumed to be 5 Ω × µ𝑚K, on the low end 
of what is feasible with today’s MgO-based MTJs. We first 
consider a reasonable TMR = 200%, which is currently 
achievable. The device is designed to accommodate an MTJ 
with dimensions of 1.5	µ𝑚 × 50	𝑛𝑚 to be able to make use of 
25 nm pitch between notches. With this, the parallel resistance 
of the device is 67 Ω and the anti-parallel resistance is 200 Ω. 
Fig. 7 shows the simulation results, where the ACAM is 

demonstrating 8 and 10 discrete levels by choosing 9 or 11 
notches respectively, or also a minimum resolution of 3-bits. 
The trends observed in Fig. 7  reveal that large TMR and low 
RA work to improve the maximum storage range of the ACAM 
cell: the storage range increases from 245 mV, projected from 
the realistic magnetic stacks in the previous section, up to 300 
mV in the ideal stack. The increase in heavy metal layer 
thickness from 7 nm to 15 nm constitutes a decrease in wire 
resistance from 40 Ω to 19 Ω. This, in combination with the 
30% increase of TMR, extends the projected storage range by 
~18%. Given the nonlinear behavior of wire resistance, shown 
in Figs. 4 & 5, the increased range of programmable resistances, 
and their associated voltage bounds, allow for larger density of 
notch spacing necessary in the lower discrete levels for multi-
bit implementations. Fig. 7 shows 8 and 10 discrete levels, with 
devices designed such that they meet the design considerations 
for minimum notch spacing described in Section IV.  

C. Simulation of Prototype with 1000% TMR Ratio Projected 
Data 
    In Fig. 8, the same parameters are assumed except TMR = 
1000%, not yet commercially achievable today. The increase in 
storage ranges from 200% TMR to 1000% TMR is 300 mV to 
480 mV. If this high on/off ratio could be achieved, the cell 
would be capable of greater multi-bit precision, as much as 16 
discrete levels, or 4-bits, as shown in Fig. 7d.  

VII. ANALYSIS AND DISCUSSION 
    To evaluate the energy consumption of the MACAM, we 
simulate the average DC current through the 𝑀𝐿 and integrated 
it over several inference passes. Using this method, the 
estimated energy consumption during one search period in our 
cell is roughly 0.92 fJ per search operation. It should be noted, 
however, that the energy consumption from periphery circuits 
(match line pre-charging, search line drivers, DAC, etc.) is 
estimated to consume up to an additional 0.52 fJ [18]. To 
estimate the total area consumption of the CMOS components, 
the total sum of all transistors was taken and assumed to be 
~90% of the total area consumption; thus, giving a top-down 
circuit area consumption of  ~36 µ𝑚K using a 40 nm CMOS 
technology node. The largest dimension of MTJ devices used 
in previous simulations does not exceed 5.54 µ𝑚K; thus, DW-
MTJ placement back-end-of-the-line on the CMOS circuit 
would not affect the overall top-down area of the circuit. 

 
Fig. 6. (a) Relation of ML threshold bound vs. 𝑅567 for the three heavy 
metal types. (b) Performance changes from proportional geometric scaling of 
device with 50 nm and 25 nm pitch between notches. (c) Change in maximum 
writable 𝑆𝑅 of platinum-based MACAM device with wire resistance. (d) 
Change in maximum writable storage range with TMR. 
  

 
(a)  (b) 

 
Fig. 7 (a) DW-MTJ utilizing platinum heavy metal layer with ideally 
optimized RA, scaled geometry, 200% TMR, and minimal wire resistance to 
demonstrate multi-bit performance of 9 notches and 8 distinct levels. (b) 
Identical parameters assumed for 11 notches and 10 distinct levels. 
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TABLE I 

COMPARISON OF EMERGENT ACAM ARCHITECTURES* 
 

PARAMETER FEFET 
[28] 

RRAM 
[18][29] 

SRAM 
[18] 

DW-MTJ 
[30] 

AREA 
CONSUMPTION 49 F2 48,828 F2 918,750 

F2 22,875 F2 

TECHNOLOGY 
NODE 45 nm 16 nm 16 nm 40 nm 

NON-
VOLATILITY Yes Yes No Yes 

ON/OFF RATIO 104-106 106 106 1.5-6 

VARIATION High High Low Low 

LINEARITY Low Low High High 
SEARCH 

LATENCY ~10 ns ~50 ps N/A 350 ps 

ENDURANCE 105 1012 >1015 >1015 
ENERGY (PER 

SEARCH) 0.07 fJ 0.52 fJ 0.165 fJ 0.92 fJ 

*Values from individual cell 
 

    Some additional energy costs can be found in the necessary 
circuits to perform read and write operations within the ACAM 
cell. The energy required to update the DW-MTJ by a single 
weight is on average ~0.1 pJ in few-100 nm prototypes [20], 
which can be scaled to ~2 fJ for 15 nm feature sizes [31]. This 
energy can be reduced through scaling and device engineering. 
The match line output also requires a sensing circuit based on a 
transimpedance amplifier (TIA), which has an associated 
energy dissipation of about 2.5 pJ over the course of one search 
operation [32]. This relatively high energy can be effectively 
reduced using large ACAM arrays to amplify integrated 
currents. 
    The modest TMR of MTJs are considerably smaller than that 
of the relatively large on/off conductance ratios of FeFETs and 

RRAM. The operation in the relatively small range of 
conductivities leads to reduced noise robustness and potential 
energy costs to scale voltage inputs to a range that can be 
accommodated by the MACAM. However, FeFETs and 
modern memristor technology continue to suffer from high 
non-linearity as well as inconsistent cycle-to-cycle weight 
variation without the assistance of external circuitry, which in 
the case of FeFETs can results in a verification period that is 
microseconds in length [15]. Additionally, the physical 
robustness of SOT switching MTJs introduces a considerably 
larger endurance than 2-terminal devices, The ability to tune the 
change in resistance through the device geometry also provides 
unique ways to adapt MTJs for the circuit. 
    Furthermore, at the system level, the DW-MTJ-informed 
ACAM demonstrates the ability to perform a “fusion” of 
nonlinear activation and ADC. The search operation of ACAM 
can be used to binarize an analog input signal, while also 
introducing an in-situ nonlinearity characteristic. Thus, this 
eliminates the need for costly A/D converters for non-linear 
activation in analog computing applications. The 
approximation of the ReLU-alpha activation function using this 
concept is verified in our work, Ref. 14. There, the cost of the 
MACAM search operation is 0.92 fJ with an associated 0.52 
fJ/search cost from the peripheral circuitry, as compared to 
ADC configuration of ~10.1 pJ [adc-1] and ~18.6 pJ [adc-2] in 
Ref. [14].  
 

VIII. CONCLUSIONS 
    Our 10-transistor, 2-DW-MTJ circuit utilizes the 
programmable behavior of shape-depended multi-weight DW-
MTJ synapses to perform analog CAM operation. We examined 
the many trade-offs and design considerations in magnetic stack 
characteristics and device geometry in the process of designing 
DW-MTJs to optimize performance in ACAMs. With this, we 
were able to demonstrate 5 discrete multi-bit levels with 
realistic magnetic stack parameters, and up to 16 discrete levels 
using ideal projected stack parameters. The analog 
programmability made available by the introduction of DW-
MTJs eliminates the need to interface with ADCs, which are 
heavily energy intensive. Additionally, the digital output 
enables the ACAM to also act as an alternative to ADCs. The 
programmable weights in ACAM makes for ideal 
implementation in high-throughput computing, such as one-
shot/few-shot learning using decision trees.  
    We did not account for ACAM’s intended use in large arrays 
to be able to handle input word lengths. This type of system-
level application of ACAM is associated with changes to both 
average latency per search per cell, as well as energy 
consumption per cell. These are important considerations to be 
addressed in future work. 
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