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A number of interesting physical phenomena have been discovered in magic-angle twisted bilayer graphene
(MATBG), such as superconductivity, correlated gapped and gapless phases, etc. The gapped phases are be-
lieved to be symmetry-breaking states described by mean-field theories, whereas gapless phases exhibit features
not explained by mean-field theories. This work, using a combination of poor man’s scaling, numerical renor-
malization group, and dynamic mean-field theory, demonstrates that the gapless phases are the heavy Fermi
liquid state, where some symmetries might be broken while the others are preserved. We adopt the recently
proposed topological heavy fermion model for MATBG, where effective local orbitals around AA-stacking re-
gions and Dirac fermions surrounding them play the roles of local moments (LM’s) and itinerant electrons,
respectively. At zero temperature and most non-integer fillings, the ground states are found to be heavy Fermi
liquids and exhibit Kondo resonance peaks. The Kondo temperature TK is found at the order of 1meV. A higher
temperature than TK will drive the system into a metallic LM phase where disordered LM’s, obeying Curie’s
law, and a Fermi liquid formed by itinerant electrons coexist. At integer fillings ±1,±2, TK is suppressed to
zero or a value weaker than the RKKY interaction, leading to Mott insulators or symmetry-breaking states.
Remarkably, this theory offers a unified explanation for several experimental observations, such as zero-energy
peaks and quantum-dot-like behaviors in STM, the so-called Pomeranchuk effect, and the saw-tooth feature of
inverse compressibility, etc. For future experimental verification, we predict that the Fermi surface in the gapless
phase will shrink upon heating - as a characteristic of the heavy Fermi liquid. We also conjecture that the heavy
Fermi liquid is the parent state of the observed unconventional superconductivity because the Kondo screening
reduces the overwhelming Coulomb interaction (U ∼ 60meV) to a rather small residual effective interaction
(U∗ ∼ 1meV) that is comparable to possible weak attractive interactions.

I. INTRODUCTION

After the discovery of superconductivity [1] and corre-
lated insulators [2] in magic-angle twisted bilayer graphene
(MATBG) [3], MATBG has become a platform for studying
new correlation effects in flat-band systems and has received
extensive attention. Remarkably rich physics, including the
interplay between superconductivity [4–11] and strong cor-
relation [4, 6–8, 12–19], interaction driven Chern insulators
[20–26], strange metal behaviors [27–29], and the Pomer-
anchuk effect [30, 31], etc., have been observed in MATBG.
Several theoretical understandings of the correlated gapped
states have also been achieved: The strong correlation arises
from the two topological flat bands [3, 32–37], and each is
four-fold degenerate due to the spin and valley d.o.f. A large
U(4) symmetry group [38–42] emerges in the flat-band limit,
where the bandwidth is counted as negligible. Then the ob-
served correlated gapped states can be understood as flavor
polarized states [38–40, 42–58] that spontaneously break the
U(4) symmetry. The continuous U(4) degeneracy also leads
to Goldstone mode fluctuations [59, 60].

Less theoretical understandings have been achieved for the
gapless states. They exhibit some exotic phenomena beyond
naive mean-field descriptions: (i) zero-energy peaks in spec-
tral density at low temperatures [11, 19, 21, 22], (ii) a cas-
cade of transitions as that of a quantum dot at higher temper-
atures [17, 19], (iii) the so-called Pomeranchuk effect where
local moment (LM) develops upon heating [30, 31], (iv) the
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saw-tooth feature of inverse compressibility [17, 18, 26, 30,
31]. These phenomena are not connected or explained on a
microscopic level in prior theories.

In this work, we perform systematic analytical and numeri-
cal investigations to the recently developed topological heavy
fermion (THF) model [61, 62] for MATBG. The THF model
consists of localized f -electrons at the AA-stacking regions of
MATBG, which form a triangular lattice of LM’s, and plane-
wave-like itinerant Dirac c-electrons, which tend to screen the
LM’s due to the Kondo effect [63–80]. We derive a phase
diagram consisting of symmetry-breaking states at zero tem-
perature, heavy Fermi liquids at zero temperature, and metal-
lic LM states at finite temperature where disordered LM’s and
itinerant electrons coexist. This phase diagram provide nat-
ural explanations for the experiments mentioned in the last
paragraph.

For this work to be self-contained, in Sec. II A we re-
view the THF model and its symmetry shortly. In Sec. II B,
based on a poor man’s scaling analysis and several exper-
imental facts, we argue that the Kondo screening effect is
irrelevant at the charge neutrality point (CNP) of MATBG,
and hence the ground state at CNP is the previously identi-
fied symmetry-breaking correlated insulator [38–40, 42–44].
Then we derive a simpler effective periodic Anderson model
to describe active excitations upon the correlated ground state
at CNP (Sec. II C). In Sec. III, we systematically analyze a
single-impurity version of the periodic Anderson model de-
rived in Sec. III A. We first use poor man’s scaling to obtain
the Kondo temperature (TK) as a function of filling (Sec. III B)
and, then, by applying Wilson’s numerical renormalization
group (NRG) [81–83], obtain a phase diagram characterized
by strong coupling fixed points and various LM fixed points
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(Sec. III C). The strong coupling phase consists of a Kondo
regime and a frozen impurity regime, and the gapless states at
|ν| ≳ 1 are found to be in the Kondo regime. The spin sus-
ceptibility and the entropy obtained in Sec. III E further ex-
plain the so-called Pomeranchuk effect observed in MATBG
[30, 31]. For example, the spin susceptibility obeys Curie’s
law at high temperatures, suggesting the existence of LM,
and approaches a constant at lower temperatures, suggesting
a Fermi liquid phase. However, in sharp contrast to the actual
Pomeranchuk effect in helium, which is a first-order liquid-to-
solid phase transition on heating, our theory predicts that the
transition from the Fermi liquid to the LM state is a continu-
ous crossover.

We perform a combined dynamical mean-field theory
(DMFT) and Hartree-Fock (HF) calculation to the effective
periodic Anderson model in Sec. IV, where the impurity
solver is implemented using NRG. Flavor symmetries among
the remaining active excitations are assumed in the calcula-
tion for simplicity. At non-integer fillings and |ν| = 3, the
DMFT+HF calculation predicts heavy Fermi liquid when the
f orbitals are partially filled (Sec. IV B). At the integer fill-
ings |ν| = 1, 2, the ground state is either a symmetric Mott
insulator or a heavy Fermi liquid with extremely low TK, de-
pending on the parameters of the Hamiltonian. The calcula-
tion also reproduces the zero-energy peak [11, 19, 21, 22]
and the transition cascade [17, 19] seen in the STM spectrum,
and the saw-tooth inverse compressibility [17, 18, 26, 30, 31].
We also compare the DMFT+HF results to the single impurity
results and find that the single impurity model yields reason-
able estimations of TK and the entropy but misses the pos-
sible Mott insulators. In Sec. IV C, we discuss the competi-
tion between the Kondo screening and the RKKY interaction.
We show that the RKKY interaction dominates near fillings
|ν| = 1, 2, leading to symmetry-breaking states at zero tem-
perature. In Sec. IV D, we explicitly calculate the heavy Fermi
liquid bands and Fermi surfaces at T ≪ TK and T > TK. A
smoking gun signature of the heavy Fermi liquid is the expan-
sion of Fermi surface on cooling. This signature can be used
to verify our theory in future experimental studies. Finally, we
briefly summarize this work and discuss its possible relevance
to superconductivity in Sec. V.

II. THE EFFECTIVE MODEL

A. Topological heavy fermion model

One theoretical challenge in studying correlation physics
in MATBG is the lack of a fully symmetric lattice model for
low energy physics, which is forbidden by the band topol-
ogy protected by a C2zT symmetry [32–34] and an emergent
particle-hole symmetry P [37] - even though extended Hub-
bard models [84–88] can be constructed at the sacrifice of ei-
ther symmetry or locality. The band topology was thought
as fragile [32–34] but was later shown to be a stable symme-
try anomaly jointly protected by C2zT and P [37]. The THF
model [61, 62] resolved this problem by ascribing the strong
correlation to effective f -orbitals at the AA-stacking regions,
which form a triangular lattice, and leaving the remaining low
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FIG. 1. The THF model. (a) Top: red spheres represent the effec-
tive f -electrons located at AA-stacking regions of MATBG, and blue
spheres represent the itinerant c-electrons. Bottom: the moiré Bril-
louin zone. (b) Black bands are given by the free part of the THF
model (Ĥ0 in Eq. (1)). Red and blue bands are the decoupled f - and
c-bands, respectively. M is a parameter that determines the band-
width of the flat bands. We focus on the M → 0 limit in this work.
(c) Band structure of the active electron modes upon the symmetry-
breaking parent state for ν > 0, described by Eq. (8). Red and blue
bands are the decoupled f - and c-bands, respectively. (d) The hy-
bridization function ∆(ω) in the single impurity model contributed
by the c-bands in (c).

energy states to continuous c-bands described by a topological
Dirac Hamiltonian (Fig. 1). Its free part is given by

Ĥ0 = −µN̂ +
∑
ηs

∑
aa′

∑
|k|<Λc

H
(c,η)

aa′ (k)c†kaηsckaηs

+
∑
ηsαa

∑
|k|<Λc

(
e−

|k|2λ2

2 H(cf,η)
aα (k)c†kaηsfkαηs + h.c.

)
. (1)

Here µ is the chemical potential, N̂ is the particle-number op-
erator, ckaηs is the fermion operator for the c-electron of the
momentum k, orbital a (= 1, 2, 3, 4), valley η (= ±), and
spin s (=↑, ↓), fkαηs is the corresponding fermion operator
for the f -electron of the orbital α (=1,2). The momentum of
c-bands is in principle limited within the cutoff Λc, but the
theory yields the same low energy physics in the Λc → ∞
limit. Hence, hereafter we will drop the restriction |k| < Λc.
H(c,η)(k) = v⋆(ησx ⊗ σ0kx − σy ⊗ σzky) + 02×2 ⊕ Mσx

is the Dirac Hamiltonian of the c-bands. When M ̸= 0,
c-bands have a quadratic band touching at the zero energy,
whereas when M = 0, c-bands become linear. The two-
by-two block of H(cf,η)

aα (k) for a = 1, 2 is given by γσ0 +

v′⋆(ησxkx + σyky), and the two-by-two block of H(cf,η)
aα (k)

for a = 3, 4 vanishes. The parameter λ in the second line of
Eq. (1) is the spread of the Wannier functions of f -electrons,
and it truncates the hybridization at |k| ≫ λ−1. In this work
we adopt the parameters of Ref. [61]: γ = −24.75meV,
v⋆ = −4.303eV · Å, v′⋆ = 1.623eV · Å, λ = 1.4131/kθ,
kθ = 1.703Å−1 · 2 sin θm

2 with θm = 1.05◦ being the first
magic angle. The resulting band structure with a nonzero M
(3.697meV) is shown in Fig. 1(b). One can see that the topo-
logical flat bands result from the hybridization between c- and
f -bands and have a bandwidth 2|M |.

In each valley η, the Hamiltonian Ĥ0 respects a magnetic
space group P6′2′2 [32] (#177.151 in the BNS setting [89]),
generated by C3z = eiη

2π
3 σz⊕eiη

2π
3 σz⊕σ0, C2x = 13×3⊗σx,
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and C2zT = 13×3 ⊗ σxK (with K being the complex con-
jugation), and translations along a1,2 = 2π

3kθ
(±

√
3, 1). The

first (second) two-by-two (four-by-four) block in the operators
act on the f -electrons (c-electrons). The interaction Hamilto-

nian given in the following paragraph also respects these crys-
talline symmetries.

The interaction Hamiltonian is given by

ĤI =
U1

2

∑
R

δnf
Rδnf

R +
U2

2

∑
⟨RR′⟩

δnf
Rδnf

R′ +
1

2NM

∑
qaa′

V (q)δnc
−qa′δnc

qa +
1

NM

∑
Rqa

Wae
−iq·Rδnf

Rδnc
qa − J

2NM

∑
ηη′αα′

ss′

∑
k,k′

R

[

(ηη′ + (−1)α+α′
)e−i(k−k′)·R(f†

Rα′η′s′fRαηs −
1

2
δηη′δαα′δss′)(c

†
k,α+2ηsck′,α′+2η′s′ −

1

2
δkk′δηη′δαα′δss′)

]
, (2)

where NM is the number of moiré cells, fRαηs is the real
space fermion operator for the f -electrons, R’s form the tri-
angular lattice shown in Fig. 1(a), ⟨RR′⟩ represents nearest
neighbor pairs (ordered), δnf

R =
∑

αηs(f
†
RαηsfRαηs − 1

2 ) is
the total density operator (counted from CNP) of f -electrons
at R, δnc

qa =
∑

ηsk(c
†
k+qaηsckaηs − 1

2δq0) is the density
operator for c-electrons of the orbital a. U1,2, V (q), Wa

are the density-density interaction between ff , cc, cf elec-
trons, respectively, and J is an exchange interaction between
cf electrons. We adopt the parameters U1 = 57.95meV, U2 =
1.16meV, W1 = W2 = 44.03meV, W3 = W4 = 50.20meV,
J = 16.38meV, and V (q) = V0

tanh(ξ|q|/2)
ξ|q|/2 , with ξ = 10nm

and V0 = 48.33meV [61]. As explained in Appendix A 1, the
value of U2 is suppressed from the original value in Ref. [61].

Hereafter, we mainly focus on the flat-band limit where
M = 0, which has been shown as a good approximation using
realistic parameters [41, 43]. In this limit, an exact U(4) sym-
metry of Ĥ0+ ĤI between the spin, valley, and orbital flavors
emerges, as previously recognized in the projected Coulomb
Hamiltonian of the continuous model [38–42]. This U(4)
symmetry is not related to the so-called chiral limit [35, 90],
which leads to a distinct U(4) symmetry [41, 39]. The sixteen
U(4) generators acting on fRαηs, ckaηs (a = 1, 2), and ckaηs
(a = 3, 4) are

Σf
µν = {σ0τ0ςν , σyτxςν , σyτyςν , σ0τzςν} , (3)

Σc12
µν = {σ0τ0ςν , σyτxςν , σyτyςν , σ0τzςν} , (4)

and

Σc34
µν = {σ0τ0ςν ,−σyτxςν ,−σyτyςν , σ0τzςν} , (5)

respectively, where ςν (ν = 0, x, y, z) are Pauli matrices act-
ing in the spin subspace, τµ (µ = 0, x, y, z) are Pauli matrices
acting in the valley subspace, and σ0,x,y,z are Pauli matrices
acting in the orbital subspace. With the help of the U(4) sym-
metry, the J term in Eq. (2) can be written as a ferromagnetic
coupling between the U(4) LM of f -electrons and the U(4)
LM of c-electrons. (Readers may refer to the supplementary
section S2G of Ref. [61] for the discussion of the U(4) sym-
metry, Eqs. (S106)-(S109) for the definition of U(4) genera-
tors, and Eqs. (S202)-(S209) for why the J term is a U(4) fer-
romagnetic coupling.) When M ̸= 0, only the µ = 0, z U(4)

generators commute with the Hamiltonian, lowering the sym-
metry group to U(2)×U(2). The rotation generated by µ = z,
ν = 0 is referred to as the valley-U(1) symmetry.

Consistent with previous results [38–40, 42–44], a Hartree-
Fock treatment of the THF model has predicted the ground
state at CNP with M = 0 as a U(4) LM state lying in a 20-fold
multiplet that corresponds to the [2, 2] representation of U(4)
group [43]. Each degenerate state in the manifold respects a
U(2)×U(2) subgroup [61]. These states can be approximately
written as

|Ψ0⟩ = e−iθµν Σ̂µν
∏
R

f†
R1+↑f

†
R1+↓f

†
R2+↑f

†
R2+↓|FS⟩ , (6)

where the |FS⟩ is the Fermi sea state with the half-filled c-
bands, Σ̂µν’s are the U(4) generator operators defined by the
matrices in Eqs. (3) to (5), and θµν’s are the rotation param-
eters. An implicit summation over repeated µ, ν indices is
assumed. When θµν’s are zero, |Ψ0⟩ is the valley-polarized
state because all the occupied f -electrons are in the η = +

valley, and the U(2)×U(2) subgroup is generated by Σ̂0ν and
Σ̂zν (ν = 0, x, y, z). For nonzero θµν’s, |Ψ0⟩ respects an
equivalent U(2)×U(2) subgroup. In particular, the Kramers
inter-valley coherent states can be obtained by setting θx0 and
θy0 to be nonzero and satisfy θ2x0 + θ2y0 = (π/4)2. When
M ̸= 0, the Kramers inter-valley coherent states are found
to have a lower energy (∼0.1meV) than the valley polarized
states [43, 61].

B. Irrelevance of Kondo screening at CNP

Here we argue that the Kondo screening effect is irrelevant
at CNP; hence, the U(4) LM state in Eq. (6) is valid as an
approximate ground state. We first examine the energy scale
of a fully symmetric Kondo state at CNP. Since the f -sites
are almost decoupled from each other, a reasonable approx-
imation is to view each f -site as a single Anderson impu-
rity coupled to a bath of c-electrons. If we only consider
the on-site U1 interaction and the hybridization between f -
and c-electrons (H(cf,η)(k) in Eq. (1)), then it is almost a
standard Anderson model with eight flavors. The effect of
c-bath is described by the hybridization function ∆(ω), de-
fined as the imaginary part of the (retarded) self-energy of a
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free f -electron (in the absence of U1) coupled to the c-bath,
i.e., Im[Σ0

αηs,α′η′s′(ω)] = −δα,α′δηη′δss′∆(ω). The identity
matrix form of Im[Σαηs,α′η′s′(ω)] is guaranteed by the spin-
SU(2) (δss′ ), the valley-U(1) and the time-reversal (δηη′ ), and
crystalline (δαα′ ) symmetries. In the flat-band limit (M = 0),
the linear dispersion of c-bands (Fig. 1(b)) leads to a linear-
in-energy density of states as well as a linear-in-energy hy-
bridization function, i.e., ∆(ω) ∼ |ω|. As a consequence,
low-lying states of the impurity will see vanishing bath elec-
trons when the energy scale is small enough. Both numerical
[91–93] and analytical [94] RG studies have shown that An-
derson impurity models with such a ∆(ω) ∼ |ω| hybridization
function do not have the strong coupling fixed point that ex-
hibits Kondo screening. Instead, the only stable fixed point is
the LM phase.

With a finite M , the c-bands given by H(c,η)(k) in Eq. (1)
have a quadratic band touching at the zero energy, i.e.,
±(−M/2+

√
M2/4 + v2⋆k

2), leading to a finite ∆(0). Nev-
ertheless, the Kondo energy scale resulting from realistic pa-
rameters is still negligible. In Appendix B 2 we derived an
analytical expression of ∆(ω) for the symmetric state at CNP.
In the low energy regime (|ω| < U1/2), we find ∆(ω) ≈
2∆(0)|ω|/M for |ω| > M and ∆(ω) ≈ ∆(0)(1 + |ω|/M)
for |ω| < M . To estimate the Kondo energy scale, we apply a
poor man’s scaling (detailed in Appendix B 2) that considers
the ω-dependence of ∆(ω). There are two stages in the RG
process: (i) energy scale from U1/2, above which the pertur-
bation theory no more applies, falls down to M , (ii) energy
scale gets renormalized below M . RG in the first stage effec-
tively enhances ∆(0) to g1∆(0) with g1 > 1 a factor deter-
mined by M . Then, RG in the second stage gives the Kondo
energy scale

DK ≈ Me
1− πU1

4Ng1∆(0) (7)

where the factor e1 is contributed by the linear ω-dependence
of ∆(ω) in the second stage, and N = 8 is the number of
flavors. DK strongly depends on the actual bandwidth. For
2M =5, 7.4, 10, 15, 20meV and fixed U1 = 57.95meV,
we obtain DK ≈ 5.1 × 10−6, 3.8 × 10−4, 4.3 × 10−3,
4.9 × 10−2, and 0.17meV, respectively. For U1 =60, 50,
40, 30meV and fixed 2M = 10meV we have DK ≈ 3.5 ×
10−3, 1.0 × 10−2, 2.8 × 10−2, 8.0 × 10−2meV, respectively.
Given that the single-particle bandwidth estimated by the BM
model and the first-principle calculations are about 7.4meV
[61] and 10meV [95, 96], respectively, DK should be at most
at the order of 10−2meV. This energy scale is still much
lower than the energy gain of the symmetry-breaking corre-
lated state [43, 59]. The bandwidth of the Goldstone modes at
CNP from ΓM to MM is about 8meV. (See Fig. 2 of Ref. [59]).
If we understand this spectrum as a tight-binding band of the
Holstein–Primakoff bosons on the f -sites, which form a tri-
angular lattice, then the nearest neighbor hopping is about
8meV/8=1meV. This hopping indicates an RKKY interaction
much larger than the Kondo energy scale. (In twisted bi-
layer graphene at non-magic angles, the bandwidth 2M can
be much larger, and a symmetric Kondo phase could be stabi-
lized at CNP if the f orbitals still remain well localized.)

In addition, as we have neglected all the interactions except
U1 in the estimation, the single-impurity model has a U(8)
symmetry. A U(8) breaking must be caused by other inter-
action terms, e.g., J in Eq. (2), and will lead to a multiplet
splitting. When the energy scale in the RG is smaller than the
multiplet splitting, the degeneracy factor N should be reduced
accordingly, and DK will be further suppressed [97]. There-
fore, we conclude that the ground state of MATBG at CNP is
a symmetry-breaking state.

The symmetry-breaking state at CNP is also supported by
various experiments. In contrast to the Kondo resonance,
STM measurements have shown strong suppression of the
density of states at the zero energy at CNP [11, 12, 14–
17, 19, 21, 22]. Some transport experiments [4, 6, 7, 27]
also exhibit a gap behavior at CNP. Although there are also
transport experiments showing semimetal behavior, the gap-
lessness can be explained if there are fluctuations of the local
moments from site to site, which is possible due to the Gold-
stone mode fluctuations [59, 60] and possible inhomogeneity
of the sample.

C. Effective periodic Anderson model for ν > 0 states

We aim for an effective model describing the active exci-
tations upon the ground state |Ψ0⟩ (Eq. (6)) at CNP. Let us
first assume the valley-polarized state, where θµν’s in Eq. (6)
are all zero such that all the occupied f -electrons are in the
η = + valley. As detailed in the supplementary mate-
rial of Ref. [61] and in Ref. [59], the lowest electron and
hole excitations are in the η = − and η = + valleys, re-
spectively. Thus, for a small electron doping, only excita-
tions in the η = − valley will be involved, and the elec-
trons in the η = + valley can be viewed as a static back-
ground. The effective Hamiltonian can be obtained by replac-
ing operators in the η = + valley by their expectation val-
ues on |Ψ0⟩, which are ⟨f†

Rα+sfR′α′+s′⟩ = δRR′δαα′δss′ ,
⟨c†ka+sck′a′+s′⟩ ≈ 1

2δkk′δaa′δss′ , ⟨c†ka+sfRα+s′⟩ = 0. Sub-
stituting these expectation values into Ĥ0+ ĤI , we obtain the
effective free Hamiltonian

Ĥeff
0 = −µN̂ +

∑
ksaa′

(
H

(c)

aa′(k) +
J

2
δaa′(δa3 + δa4)

)
c†kascka′s

+
U1

2

∑
R

nf
R +

∑
kaαs

(
e−

1
2
λ2k2

H(cf)
aα (k)c†kasfkαs + h.c.

)
, (8)

where nRαs =
∑

αs f
†
RαsfRαs is the density operator of f -

electrons at R. Here we have dropped the valley index η as
they are limited to η = −. The H(c)(k) and H(cf)(k) ma-
trices are given by the H(c,−)(k) and H(cf,−)(k) matrices
defined after Eq. (1). The effective interaction Hamiltonian is

Ĥ
eff
I =

U1

2

∑
R

: n
f
Rn

f
R : +

U2

2

∑
⟨RR′⟩

n
f
Rn

f

R′

+
1

2NM

∑
qaa′

V (q)δn
c
−q,a′δn

c
q,a +

1

NM

∑
Rqa

Wae
−iq·R

n
f
Rδn

c
qa

−
J

NM

∑
Rss′

∑
kk′α

e
−i(k−k′)·R

f
†
Rαs′fRαs(c

†
k,α+2,sck′,α+2,s′ −

1

2
δkk′δss′ ) ,

(9)
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Ĥ0 + ĤI Ĥeff
0 + Ĥeff

I ĤSI (JH = 0) ĤSI (JH > 0)
M = 0 U(4) U(2) U(4) U(2)×U(2)
M ̸= 0 U(2)×U(2) U(2) U(4) U(2)×U(2)

TABLE I. Continuous symmetries of the effective models. Ĥ0 + ĤI

is the original THF model. For ν > 0 (ν < 0), Ĥeff
0 + Ĥeff

I is the
effective periodic Anderson model for the active particle (hole) ex-
citations upon the symmetry-breaking state at CNP. ĤSI is a single-
impurity version of Ĥeff

0 + Ĥeff
I . JH , estimated as 0.3meV, is an

effective Hund’s coupling of f -electrons resulted from the exchange
coupling (J) between c- and f -electrons.

where δnc
qa =

∑
sk(c

†
k+qasckas − 1

2δq0). The U1 term in
Ĥeff

I is normal ordered, and the bilinear term left over in
normal-ordering, i.e., U1

2 nf
R, is now in Ĥeff

0 . The bilinear term
in c operators contributed by the J interaction is also in Ĥeff

0 .
Band structure of Ĥeff

0 is shown in Fig. 1(c).
In the flat-band limit (M = 0), Ĥeff

0 + Ĥeff
I also applies to

arbitrary U(4) partners of the valley-polarized state, including
the so-called Kramers intervalley coherent state. To be spe-
cific, for a generic |Ψ0⟩ given in Eq. (6), we can always define
rotated operators fRαs = UfRα−sU

†, ckas = Ucka−sU
†,

where U = e−iθµνΣ̂µν is the U(4) rotation defining |Ψ0⟩, such
that the effective Hamiltonian on the rotated basis is the same
as Eqs. (8) and (9). The effective Hamiltonian Ĥeff

0 + Ĥeff
I

respects all the crystalline symmetries discussed in Sec. II A.
In the flat-band limit (M = 0), |Ψ0⟩ respects a U(2)×U(2)
subgroup of the U(4) group, e.g., independent spin-charge ro-
tations in the two valleys for the valley polarized |Ψ0⟩. How-
ever, since the effective Hamiltonian only involves half of the
d.o.f., e.g., the active η = − valley for the valley polarized
|Ψ0⟩, only one U(2) factor is meaningful for Ĥeff

0 + Ĥeff
I .

Therefore, hereafter we will say that Ĥeff
0 + Ĥeff

I respects a
U(2) symmetry group.

As discussed at the end of Sec. II A, when M ̸= 0, the U(4)
symmetry is broken, and the ground state is the Kramers inter-
valley coherent state. As a consequence, the effective Hamil-
tonian should have additional terms. However, M will not fur-
ther lower the crystalline and U(2) symmetries of Ĥeff

0 + Ĥeff
I

and hence will only play a minor role in the effective theory.
In Appendix A 2 we treat M perturbatively in terms of M/J ,
which is about 0.2 using the parameters given in Sec. II A. We
find that the leading order correction is simply an energy shift
of the c-electrons. To avoid confusion, in Table I we sum-
marize the continuous symmetries of different Hamiltonians
discussed in this work.

The effective model for ν < 0 states, which only involves
hole excitations, can be obtained by applying the particle-hole
operation Pc [41, 61] to Ĥeff

0 + Ĥeff
I .

III. SOLUTION TO THE SINGLE-IMPURITY MODEL

In this section, we focus on a single-impurity version of
Ĥeff

0 + Ĥeff
I , where only the correlation effects at the R = 0

f -site are considered. Interactions not involving this f -site

will be treated at the mean-field level. The single-impurity
model successfully explains a number of experimental fea-
tures in the metallic phases despite symmetry-breaking gaps
at integer fillings and indicates that the metallic phases are
heavy Fermi liquids. For a complete discussion including the
possible symmetry breaking at integer fillings, we leave it to
the periodic Anderson model investigated in Sec. IV.

A. Single impurity model for ν > 0 states

At a given filling ν, the mean-fields are characterized by
only a few parameters: νf = ⟨nf

R⟩, νc,a = 1
NM

⟨δnc
q=0,a⟩,

where νc,1 = νc,2, νc,3 = νc,4 due to the crystalline symme-
tries. The considered correlated site at R = 0 is described by
the Hamiltonian

Ĥf = ϵfn
f +

U1

2
: nfnf : , (10)

where the lattice index R (= 0) is omitted for simplicity, ϵf =
6νfU2+

∑
a νc,aWa+

1
2U1− 1

2Jνc,3−µ is the mean field level
of the f -site. The U2, Wa, J terms in ϵf are contributed by the
Hartree mean-fields of interactions in Eq. (9). The effective
Hamiltonian of c-electrons is given by

Ĥc =
∑
ksaa′

[
H

(c)
aa′(k) + δaa′ϵc,a

]
c†kascka′s , (11)

where H(c)(k) is the free Dirac Hamiltonian in Eq. (8), and
ϵc,1 = ϵc,2 = νfW1+νcV0−µ, ϵc,3 = ϵc,4 = νf (W3− J

4 )+

νcV0 +
J
2 − µ are the mean-field levels of c-electrons. ϵc,1 is

contributed by Hartree mean-fields of W1 and V interactions
in Eq. (9) and ϵc,3 is contributed by the Hartree mean-fields
of W3, V and J interactions in Eq. (9). The band structure of
Eq. (11) is given by (ϵc,1 + ϵc,3)/2±

√
G2/4 + v2⋆k

2, where
G = ϵc,3 − ϵc,1 is the band gap. c-bands with ϵc,1 = 0,
ϵc,3 = J/2 are shown in Fig. 1(c). Since the interaction V (q)

of c-electrons is completely treated at the mean-field level, Ĥc

is an effective free-fermion system.
The f -site is coupled to c-electrons via the H(cf) term in

Eq. (8) and HJ in Eq. (9). As detailed in Appendix A 3, these
two terms can be treated separately due to C3z symmetry. The
HJ interaction leads to, in addition to the Hartree mean fields
discussed in the last paragraph, an effective Hund’s coupling
of f -electrons

ĤH = JH
∑
α

f†
α↑fα↑f

†
α↓fα↓ , (12)

where JH is about 0.3meV. Since JH is much smaller
than other interactions, we mainly focus on the JH = 0
model in the main text and leave discussions for JH > 0
to Appendix B 3. The H(cf) term leads to a (retarded)
self-energy correction Σ0

αs,α′s′(ω) to the f -electrons, whose
imaginary part defines the hybridization function ∆(ω), i.e.,
Im[Σ0

αs,α′s′(ω)] = −δαα′δss′∆(ω). The identity matrix
structure of the self-energy is guaranteed by SU(2) spin ro-
tation symmetry and crystalline symmetries. In Appendix A 4
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we derived the following analytical expression for ∆(ω)

∆(ω) =
Ω0

4v2⋆
|ω − ϵc,3|

(
γ2 + v′2⋆ k2F

)
e−k2

Fλ2

× [θ(ω − ϵc,3) + θ(ϵc,1 − ω)] , (13)

where kF is determined by v2⋆k
2
F + G2/4 = [ω − (ϵc,1 +

ϵc,3)/2]
2 for either ω > ϵc,3 or ω < ϵc,1. As shown in

Fig. 1(d) (with ϵc,1 = 0, ϵc,3 = J/2), ∆(ω) has an abnor-
mal ω-dependence compared to those in usual metals.

Baths giving rise to the same ∆(ω) are physically equiv-
alent. We introduce the following effective single-impurity
Hamiltonian that yields the same ∆(ω) following [83]

ĤSI =Ĥf +
∑
αs

ˆ D

−D

dϵ · ϵ · d†αs(ϵ)dαs(ϵ)

+
∑
αs

ˆ D

−D

dϵ ·
√

∆(ϵ)

π
(f†

αsdαs(ϵ) + h.c.) , (14)

where Ĥf is given by Eq. (10), and dαs(ϵ), satisfying
{dα′s′(ϵ

′), d†αs(ϵ)} = δα′αδs′sδ(ϵ
′ − ϵ), are the auxiliary bath

fermions introduced to reproduce the hybridization function.
ĤSI is determined by four parameters: ϵf the energy level of
f -electrons, U1 the Coulomb repulsion, ϵc,1 and ϵc,3 the en-
ergy level of a = 1, 2 and a = 3, 4 c-electrons(or ϵc,1 and G
equivalently). As explained at the beginning of this subsec-
tion, the actual values of ϵf , ϵc,a depend on the occupations
νf , νc,a. In this section, we estimate νf , νc,a by a symmet-
ric self-consistent HF calculation of Ĥeff

0 + Ĥeff
I . The ob-

tained ϵf , ϵc,1, and G as functions of ν are shown in Fig. 2(a).
A better treatment of these parameters should be a full self-
consistent DMFT+HF calculation, which will be carried out
in Sec. IV. As explained in the following subsections, the
essential physics of the Kondo phase is already captured by
this single-impurity model with νf , νc,a estimated by the HF
mean-field.

It is worth mentioning that Eq. (14) has an emergent U(4)
symmetry because the four flavors of f -electrons are sym-
metric under permutations. It is not surprising that a single-
impurity model has a higher symmetry than its lattice ver-
sion. JH lowers the symmetry of the single impurity model to
U(2)×U(2), while since it is weak compared to other energy
scales, we will mainly focus on the U(4) symmetric model in
the main text.

B. Poor man’s scaling

Before going to numerical calculations, we first apply a
poor man’s scaling to the single impurity model Eq. (14) to es-
timate the Kondo energy scale. For now, we can regard ϵc,a, ϵf
as independent parameters.

We assume that the ground state of the detached impurity
has nf (=1, 2, 3) occupied f -electrons. One should not con-
fuse nf with νf - the expectation value of f -occupation after
the impurity is coupled to the bath. The f electron level ϵf
must be in the range −nfU1 < ϵf < −(nf − 1)U1. We apply

a Schrieffer-Wolff transformation to Eq. (14) to obtain an ef-
fective Coqblin–Schrieff model where the local Hilbert space
of f -electrons is restricted to nf particles. The transformation
involves virtual particle and hole excitations, the energies of
which are ∆E+ = ϵf+nfU1 and ∆E− = −ϵf−(nf−1)U1,
respectively. Adding the two contributions, we have

Ĥ =
∑
αs

ˆ D

−D

dϵ · ϵ · d†αs(ϵ)dαs(ϵ) +
4g

πU1

∑
αα′ss′

ˆ D

−D

dϵdϵ′
[

×
√

∆(ϵ)∆(ϵ′)(f†
αsfα′s′ − xδαα′δss′)d

†
α′s′(ϵ

′)dαs(ϵ)

]
. (15)

The parameters g, x are given by

g =
U1

4

(
1

∆E+
+

1

∆E−

)
, x =

∆E−

U1
. (16)

g is a dimensionless parameter characterizing the anti-
ferromagnetic coupling strength between the impurity and the
bath. x appears as a “charge background” of the f -electrons.
For ϵf = −(nf − 1

2 )U1, there is g = 1, x = 1
2 . For a generic

ϵf in the range −nfU1 < ϵf < −(nf − 1)U1, there are g ≥ 1
and 0 < x < 1. Flow equations of g, x are derived in Ap-
pendices B 1 and B 3, where the divergence of g indicates the
strong coupling fixed point that exhibits the Kondo screening.
We notice that x always flows to nf/4, i.e., the occupation
fraction of f -electrons.

One should be careful about the cutoff D in Eq. (15). First,
it must be smaller than ∆E+ and ∆E− for the Schrieffer-
Wollf transformation to be valid. Second, for analytical con-
venience, we only keep the positive branch of ∆(ω) (Eq. (13))
at ω > ϵc,3 because when ν > 0 the negative branch is far
away from the Fermi level. Hence, we also require D <
−ϵc,3. We can choose D = min(−ϵc,3,∆E+,∆E−).

The flow equation of g(t) as the cutoff is successively re-
duced to De−t is given by

dg

dt
=

4∆(0)

πU1
N g2 +O(e−t) , (17)

and the initial condition g(0) is given by Eq. (16). Here
N = 4 is the number of flavors. The local Hilbert space for
nf = 1, 2, 3 is four-, six-, and four-fold, respectively. The
O(e−t) terms originate from particle-hole asymmetry and are
irrelevant at small energy scales but they may affect the cou-
pling constant at an early stage of the RG process. As shown
in Fig. 1(d), the positive branch of ∆(ω) can be well approx-
imated by a linear function, i.e., ∆(ω) ≈ ∆(0)(1 − ω/ϵc,3).
Using this linear approximation we obtain the Kondo energy
scale (Appendix B 3)

DK = D exp

(
y − πU1

4N∆(0)g(0)

)
(18)

where y ≈ (∆E+

U1
+ 1

2 − 1
2nf )

D
ϵc,3

is factor contributed by the
irrelevant O(e−t) terms at N = 4. Noticing ϵc,3 < 0, at fixed
∆E+ a smaller nf means smaller y and suppresses the Kondo
energy scale as this means that virtual processes contributing
to the RG equation involve more hole excitations in the bath,
which has a smaller ∆(ω). In Fig. 2(b) we plot the obtained
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DK as a function of the filling ν using the mean-field ϵc,a, ϵf
parameters given in Fig. 2(a). The estimated Kondo energy
scale is at the order of 1meV.

As explained in the end of Sec. III A, if the Hund’s cou-
pling in Eq. (12) is considered, the U(4) symmetry of ĤSI

will be reduced to U(2)×U(2). Then the six-dimensional lo-
cal Hilbert space in the nf = 2 case will split: the four states
with (nf

1↑, n
f
1↓;n

f
2↑, n

f
2↓) =(10;10), (10;01), (01;10), (01;01)

do not feel JH and have the energy 2ϵf + U1, whereas the
two states (11;00), (00;11) have the energy 2ϵf + U1 + JH .
As explained in detail in Appendix B 3, this multiplet splitting
will further suppress the Kondo energy scale if DK given by
Eq. (18) is smaller than JH . However, as shown in Fig. 2(b),
DK given by Eq. (18) for nf = 2 is always larger than JH ,
which is estimated as 0.3meV. Hence the multiplet splitting
plays a minor role. This argument further justifies our ap-
proximation of neglecting JH .

C. NRG phase diagram

We now apply the NRG approach [81–83] to study the
single-impurity model ĤSI. In this approach, the bath is al-
ternatively realized by a Wilson chain

ĤN = Ĥf +
∑
αs

t0(f
†
αsd1αs + h.c.)

+

N∑
n=1

∑
αs

ϵnd
†
nαsdnαs +

N−1∑
n=1

∑
αs

(tnd
†
n+1αsdnαs + h.c.) , (19)

where N is the length of the Wilson chain. The parameters
ϵn and tn are computed from ∆(ω) using a standard iterative
algorithm [83]. When n is sufficiently large, there is always
tn → 1

2 (1 + Λ−1)Λ− 1
2 (n−1) and ϵn ∼ Λ−n. Therefore, the

site index represents a logarithmic energy scale of the single-
impurity problem, and Ĥ∞ faithfully describes the low energy
physics of ĤSI. To approach Ĥ∞, one can define the scaled
Hamiltonian’s as H̃N = (Λ)

1
2N−1ĤN and construct them it-

eratively

H̃N+1 =Λ
1
2 H̃N + Λ

1
2
(N−1)

∑
αs

(
ϵN+1d

†
N+1,αsdN+1,αs

+ tNd†N+1,αsdN,αs + tNd†N,αsdN+1,αs

)
. (20)

The Hilbert space dimension increases exponentially with N .
The NRG algorithm truncates the Hilbert space by keeping a
fixed number (chosen to be ∼1600 in this work) of the lowest-
lying states at each iterative step. In order to keep the symme-
try in the truncated Hilbert space, in practice we keep all the
states up to the lowest gap above the 1600th state. Two suc-
cessive transformations that take H̃N to H̃N+2 can be thought
as a renormalization group operation [81, 82]. The system is
said to achieve a fixed point when H̃N and H̃N+2 have the
same low-lying many-body spectrum. It is worth mentioning
that freezing the inactive electrons and deriving the effective
models (Eqs. (8), (9) and (14)) with two-orbital impurities are
crucial to apply the NRG approach; otherwise, the impurity
would have four orbitals, and the fast increase of the Hilbert
space dimension is beyond the scope of NRG.
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FIG. 2. Phases and fixed points in the single-impurity model. (a)
Mean-field values of ϵc,1, ϵf , G as functions of the total filling ν.
(b) The Kondo energy scale estimated by the poor man’s scaling
(DK ), the NRG spectral density (kBTK), the NRG spin susceptibil-
ity (kBT s

K). (c) The RG flows of the many-body spectra of the scaled
Hamiltonian H̃N (N ∈ odd) at ν = 1.25 with mean-field parame-
ters ϵc,1 = −28.8meV, ϵf/U1 = −0.554, G = 9.92meV. The levels
are labeled by total charge Q and the SU(4) irreducible representa-
tion. The insets are the corresponding spectral densities that exhibit
a Kondo resonance. (d) The RG flows in the LM1 phases, where
ϵf = − 1

2
U1, ϵc,1 = −5meV, and G = 12meV. The quantum num-

bers of the ground states are emphasized by using larger fonts. Only
spectra at N <= 5 are shown because the hopping between N = 5
and N = 6 bath site in the Wilson chain is as small as 1×10−19meV,
which means the bath site at N ≥ 6 are decoupled from the impu-
rity. The insets are the corresponding spectral densities that exhibit
local moment features: Hubbard bands without zero-energy peaks.
(e) The phase diagram in the parameter space of ϵc,1, ϵf for fixed
G = ϵc,3 − ϵc,1 (= 12meV). The white lines are phase boundaries
between local moment (LM) phases and the strong coupling phase.
The dashed black lines are crossover boundaries between the frozen
impurity (FI) and Kondo regimes of the strong coupling phase. The
color maps TK obtained from NRG spectral density. The solid black
line indicates the trajectory of ϵc,1 and ϵf as ν changes from 0 to 4,
where the five arrows from left to right represent ν = 0, 1, 2, 3, 4,
respectively.

In Fig. 2(c)(d) and Fig. 8 in Appendix C we plot the lowest
many-body levels of the scaled Hamiltonian H̃N (N ∈ odd)
with different parameters {ϵf , ϵc,1, ϵc,3}. Due to the U(4)
symmetry of ĤSI, all the many-body levels can be classified
into symmetry sectors labeled by (Q; ρ), where Q is the total
U(1) charge and ρ = [m1,m2 · · · ] is the SU(4) representation
(Young tableau notation). Here we take the convention that
Q = 0 corresponds to a total occupation 2N +2 (2N ) for odd
(even) N . A fixed point is achieved if the spectrum remains
unchanged with N , such as the last ten steps in Fig. 2(c). Low
energy physics such as spin-susceptibility and spectral density
are determined by the many-body levels at the fixed point.
Readers may refer to Wilson’s original papers [81, 82] for a
complete discussion about the fixed points.
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For our model, we find two distinct types of fixed points:
(i) the strong coupling fixed point exhibiting a Fermi liquid
behavior, e.g., Fig. 2(c), Fig. 8(a) and (ii) the LM fixed points
exhibiting nonzero U(4) moments, e.g., Fig. 2(d),Fig. 8(b)(c).
At a strong coupling fixed point, for either even or odd N ,
the ground state is a singlet with Q = 4k, ρ = [0] for some
order one integer k, which in most cases equals 0. The low-
lying many-body spectrum is identical to the one of a free-
fermion chain as if the impurity was nonexistent. The strong
coupling fixed points can be further divided into the frozen
impurity regime and the Kondo regime. In the frozen im-
purity regime, the impurity is effectively empty or full and
does not enter the low energy physics. In the Kondo regime,
the impurity forms an LM but is screened by the bath elec-
trons around it, hence the low energy physics is dominated
by the free-fermion sites that are effectively decoupled from
the screened impurity. For example, in Fig. 2(c), the ground
states at the first few steps are not the singlet state, imply-
ing that the bath electrons have not yet completely screened
the LM. After the seventh step, the ground states become the
singlet state as the LM is screened, and the spectrum even-
tually becomes the same as a free-fermion system when the
fixed point is achieved. To be concrete, we can understand the
lowest four-fold (Q; ρ)=(-1;[111]) level (Eh) and the lowest
four-fold (1;[1]) level (Ee) as the minimal hole and particle
excitations, respectively, and other low energy states as mul-
tiple hole and particle excitations. For example, the four-fold
(-3;[1]) level and the six-fold (-2;[11]) level have the energies
3Eh and 2Eh, respectively, and they can be understood as
non-interacting three-hole and two-hole excitations. The one-
fold (0;[0]) level and the fifteen-fold (0; [211]) level have the
energy Eh+Ee, and they can be understood as non-interacting
particle-hole excitations. Correspondingly, their SU(4) rep-
resentations [0]⊕[211] are also given by the direct product
[111] ⊗ [1] of the representations of the hole and the elec-
tron. In Appendix C we show another spectrum in the Kondo
regime in Fig. 8(a). One can verify that its low-lying states at
the fixed point are also the same as a free-fermion system.

At an LM fixed point, the low-lying many-body spectrum is
identical to a free-fermion chain plus a detached LM. They are
unstable fixed points if the hybridization function is nonzero
at the Fermi level, i.e., ∆(0) > 0 [81, 82]. However, as shown
in Eq. (13) and Fig. 1(d), the single-impurity model ĤSI has
∆(0) = 0 if ϵc,3 > 0 and ϵc,1 < 0. In this case, the Wil-
son chain will be broken into two disconnected chains. For
the parameters used in Fig. 2(d), t5 = 0 and the first five
bath sites cannot fully screen the impurity. Thus, the first
six sites, including the impurity, form an effective LM, and
the remaining bath sites form a free-fermion chain decoupled
from the LM. We only show the spectra up to N = 5 in
Fig. 2(d). Depending on the representation of the ground state,
the LM fixed points can be further classified into LMn, where
n = 1, 2, 3 is the effective impurity occupation. The LMn

ground states have the charge Q = 4k+ n and form the same
SU(4) representations as the ground states of Ĥf (Eq. (10))
with n impurity electrons, which are [1], [1,1], and [1,1,1]
for n =1, 2, and 3, respectively. As the ground states of
H̃5 in Fig. 2(d), Fig. 8(b)(c) form the representations (1;[1]),

(2;[1,1]), (3;[1,1,1]), respectively, they are the LM1,2,3 states.
By analyzing the fixed points, we obtain a zero temperature

phase diagram of ĤSI (Fig. 2(e)) in the parameter space of
ϵc,1, ϵf for a fixed G = ϵc,3 − ϵc,1 (= 12meV). As shown in
Fig. 7(a), (b), phase diagrams with other values of G are quali-
tatively same as the one at G = 12meV. For the completeness
of discussion, here we let ϵf take values in [−3.5U1, 0.5U1]
and ϵc,1 take values in [-60meV,0] such that the mean-field
values of ϵf , ϵc,1 (Fig. 2(a)), which are represented by the
black trajectory in Fig. 2(e), are covered in this phase diagram.
For −G < ϵc,1 < 0, there is ∆(0) = 0 and, according to the
last paragraph, the ground state belongs to the LM phase if the
impurity is nether empty nor full, i.e., −3U1 < ϵf < 0, and
the frozen impurity phase otherwise. Starting from an LMn

phase, lowering ϵc,1 to a value below −G will drive the sys-
tem into a strong coupling phase due to the finite hybridiza-
tion. Phase boundaries between LM phases and the strong
coupling phase are indicated by the white lines. The strong
coupling phase is further divided into a Kondo regime and a
frozen impurity regime. Later we will determine the crossover
boundary between the two regimes, indicated by the dashed
lines in Fig. 2(e), using the spectral density. In the Kondo
regime, the color in the phase diagram maps the Kondo en-
ergy scale determined from the spectral density.

As discussed in Sec. III A, if the Hund’s coupling JH
(≈ 0.3meV) is considered, the U(4) symmetry of ĤSI will
be reduced to U(2)×U(2), where the first (second) U(2) sub-
group is the spin-charge rotation symmetry within the first
(second) orbital. Irreducible representations of U(2)×U(2)
are labeled by two U(1) charges Q1, Q2 and two spin
moments S1, S2. Turning on JH , although the four-fold
LMn=1,3 states are now re-labeled by two spin- 12 doublets,
i.e., (Q1, Q2;S1, S2) = (2k + n, 2k; 1

2 , 0) and (2k, 2k +

n; 0, 1
2 ), they stay degenerate in energy with each other due

to crystalline symmetries. On the contrary, the six-fold LM2

states split into a four-fold multiplet (2k + 1, 2k + 1; 1
2 ,

1
2 ),

which is free from the Hund’s coupling, and a two-fold mul-
tiplet (2k + 2, 2k; 0, 0) ⊕ (2k, 2k + 2; 0, 0), whose energy is
raised by JH . Numerical results with finite JH are given in
Fig. 7(c).

It is also helpful to look at the representations of the LMn

states under the global U(2) symmetry, which acts on the two
orbitals with the same spin-charge rotation. The total charge
and spin of LM1,2,3 are 1, 2, 3 (mod 4) and 1

2 , 1
2 ± 1

2 , 1
2 ,

respectively.

D. Spectral density

We calculate the spectral density of the f -electrons,
Aαs(ω, T ) = − 1

π Im[Gαs(ω, T )], with Gαs(ω, T ) being
the retarded Green’s function of fαs at the temperature T .
Gαs(ω, T ) is given by

Gαs(ω, T ) =
1

ω − ϵf − Σ0(ω)− ΣU
αs(ω, T )

(21)
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where Σ0(ω) = 1
π

´
dϵ ∆(ϵ)

ω+i0+−ϵ is the single-particle self-
energy contributed by the coupling to the bath, and ΣU

αs is the
correlation self-energy. As no symmetry-breaking can hap-
pen in the single-impurity model, A, G, and ΣU should be
independent of αs. In the following, we will omit the αs sub-
script for simplicity. As mentioned in Sec. II A, f -orbitals lo-
cate in the AA-stacking regions, hence A(ω, T ) corresponds
to the STM spectra at the AA-stacking region. We compute
ΣU using the equation of motion [98] within the framework
of the reduced density matrix method [99]. Many-body levels
at different RG steps are patched together using the method
described in Ref. [100].

The fixed point in Fig. 2(c) is in the Kondo regime, hence,
its spectral density exhibits sharp resonance peaks. The fixed
point in Fig. 2(d) is in the LM phase, and its spectral density
is dominated by the upper and lower Hubbard bands. One can
confirm that the fixed points and spectral densities with other
parameters in Fig. 8 in Appendix C obey the same rule.

We compute the spectral densities for all the data points in
the phase diagram in Fig. 2(e). For every parameter set we
identify a spectral peak (at ϵ) and measure its half width at
half maximum (δ). In the strong coupling phase, a state is
identified as in the Kondo regime if 0 ∈ [ϵ − δ, ϵ + δ] and in
the frozen impurity regime otherwise. The crossover bound-
aries between the two regimes are indicated by dashed lines
in Fig. 2(e). In the Kondo regime, the Kondo temperature can
be estimated as kBTK =

√
ϵ2 + δ2 [97]. kBTK is indicated

by the color in Fig. 2(e), and is plotted as a function of ν (us-
ing mean-field parameters) in Fig. 2(b). kBTK matches well
with the Kondo energy scale DK estimated by the poor man’s
scaling.

E. Local moments and the Pomeranchuk effect

At a temperature exceeding the Kondo energy scale, the LM
will become effectively decoupled from the bath and visible
in experimental measurements. This mechanism explains the
so-called Pomeranchuk effect [30, 31] observed in MATBG.
Refs. [30] observed a higher entropy (∼ 1kB per moiré cell
with kB being the Boltzmann’s constant) state at ν ≈ 1 at the
temperature T ≈ 10K. As this entropy can be quenched by an
in-plane magnetic field, it is ascribed to a free local moment.
Ref. [31] observed a similar effect at ν ≈ −1 and showed that
an additional resistivity peak that is absent at T = 0 develops
in the higher entropy state at T ≈ 10K. These observations
can be naturally explained by the transition from the Fermi
liquid phase to the LM phase as the temperature increases.

The LM phase around ν ≈ 1 at higher temperatures already
manifests itself in the RG flow in Fig. 2(c). At the early stage
of the NRG calculation (N < 7), the ground states form the
SU(4) representation [1], which, according to discussions in
Sec. III C, form the LM1 phase. Only after N ≥ 7 does the
Kondo singlet state [0] cross below the LM states to become
the true ground state. Since the NRG iteration can be inter-
preted as continually lowering the effective temperature, the
level crossing during the iteration implies a transition from the
strong coupling Kondo phase to the LM phase as temperature

increases.

To further demonstrate the LM phase, we calculate the lo-
cal spin susceptibilities χloc(T ) using the filling-dependent
ϵc,1, ϵf , G parameters given in Fig. 2(a). χloc(T ) is defined
as dMloc

dBloc
[101, 102] and calculated using linear response the-

ory [102], with Mloc being the spin moment contributed by
the impurity and Bloc a local magnetic field that only acts on
the impurity. As shown in Fig. 3(a), (b), χloc(T ) approaches a
constant as T → 0, and obeys the Curie’s law χloc(T ) ∼ T−1,
which indicates a free LM at high temperatures. One can de-
fine the transition temperature (T s

K) between the two behav-
iors as an alternative estimation of the Kondo temperature.
Specifically, we find that T s

K given by χloc(T
s
K) =

1
5χloc(0),

indicated by the solid black curve in Fig. 3(a), matches very
well with TK given by the spectral density (Fig. 2(b)). Such
determined T s

K corresponds to the Kondo temperature only in
the Kondo regime, where the f -orbital is neither empty nor
full. In the frozen impurity regime at ν close to CNP, such
determined T s

K just reflects the energy level of the empty f -
orbitals and loses the meaning of Kondo temperature. Hence
we use dashed curve in the frozen impurity regime in Fig. 3(a).
Also, one should not confuse this T s

K with the TK estimated
at CNP (Sec. II B). The latter is an irrelevant quantity because
the RKKY interaction will dominate at CNP and leads to a
symmetry-breaking state, based on which the effective mod-
els (Eqs. (8), (9) and (14)) for ν > 0 states are constructed.

We also calculate the impurity entropy Simp(T ) for com-
parison with experiments. Simp(T ) is defined as the differ-
ence of the entropy of H̃N and that of a reference free-fermion
chain defined by the same ϵn, tn parameters as in H̃N without
the impurity. As shown in Fig. 3(c) and (d), Simp(T ) is zero
in the Fermi liquid phase at sufficiently low T and starts to
increase when T reaches the Kondo energy scale. For ν = 1,
Simp(T ) climbs to about ln 4 · kB - entropy of the four-fold
LM1 state - at about kBT ≈ 0.1meV and stays around this
value until kBT reaches 2meV. The entropy continues to in-
crease for larger T as higher exicted states are involved. We
also show the temperature-dependent spectral density around
ν = 1 in Fig. 3(e). Consistent with the entropy and spin sus-
ceptibility results, the resonance peak dies out for T > TK.

In Fig. 3(f), we plot Simp as a function of the filling at a
finite temperature under Bloc = 0 and 12T. (See Fig. 2(e) of
Ref. [30].) The entropy with Bloc = 0 has three peaks and two
dips. Looking at the phase diagram and the ϵc,1, ϵf trajecto-
ries in Fig. 2(e), we find that the three peaks correspond to the
three domes of LM1,2,3, respectively, where the Kondo tem-
perature is relatively lower, and the two dips correspond to the
mixed valence states, where the Kondo temperature is higher
due to valence fluctuation. A finite Bloc will polarize the spin
and hence suppress the entropy. According to the orbital de-
generacy, a strong Bloc can reduce the entropy at ν = 1 to
ln 2 · kB .
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FIG. 3. Spin susceptibility and entropy contributed by the impurity using single impurity hybridization function (a-f) and DMFT hy-
bridization function (g-l). (a)(g) χloc(T )/χloc(0) as a function of filling ν and temperature T . The black curve indicates TK defined by
χloc(TK)/χloc(0) = 1/5. Dashed lines are used in the frozen impurity regime. (b)(h) The local spin susceptibilities χloc(T ) at fillings
ν = 0, 0.5, 1 · · · 3.5. (c)(i) The entropy contributed by the impurity as a function of ν and T . (d)(j) The entropy contributed by the impurity
Simp(T )/(kB ln 2) at fillings ν = 0, 0.5, 1 · · · 3.5. (e)(k) The spectral densities at ν = 1.2 at various temperatures. (f)(l) The entropy con-
tributed by the impurity as a function of ν at B = 0, 12 T and temperature kBT = 0.356 meV.

IV. SOLUTION TO THE PERIODIC ANDERSON MODEL

A. The DMFT+HF approach

To capture the lattice coherence in the effective periodic
Anderson model Ĥeff

0 + Ĥeff
I (Eqs. (8) and (9)), we perform

a dynamic mean-field [103–105] decomposition of the on-site
interaction U1 and a static HF mean-field decomposition of
other interactions. This method assumes that spatial correla-
tions are irrelevant in MATBG, which might be justified by
the quantum-dot behavior observed in STM.

We assume no symmetry-breaking in the DMFT+HF cal-
culation and will discuss the effect of symmetry-breaking in
Sec. IV C. As explained in Sec. III A, the static mean-fields
are then characterized by νf = ⟨nf

R⟩ - the occupation of
f -electrons - and νc,a = ⟨δnc

q=0,a⟩ - the occupations of c-
electrons. There is νc,1 = νc,2, νc,3 = νc,4 as crystalline sym-
metries are assumed. Then Ĥeff

0 + Ĥeff
I can be approximated

by

Ĥeff ≈
∑
ksaa′

(
H

(c)

aa′(k) + δaa′ϵc,a
)
c†kascka′s + ϵf

∑
R

nf
R

+
∑
kaαs

(
e−

1
2
λ2k2

H(cf)
aα (k)c†kasfkαs + h.c.

)
+

U1

2

∑
R

: nf
Rnf

R : .

(22)

As derived in Sec. III A, ϵc,1 = ϵc,2 = V0νc + W1νf − µ,
ϵc,3 = ϵc,4 = V0νc + W3νf + J

2 − 1
4Jνf − µ, ϵf = U1

2 +

6U2νf + 2W1νc,1 + 2W3νc,3 − 1
2Jνc,3 − µ, νc =

∑
a νc,a.

For given νc,a and νf , Eq. (22) defines a standard periodic
Anderson model that can be addressed using DMFT.

We first calculate the (retarded) single-particle Green’s
function by diagonalizing the single-particle part of Eq. (22).
Dynamics on a single f -site is described by the local Green’s
function Gloc

αs (ω). It can be formally written as 1/(ω −
ϵf − Σ0(ω)) with Σ0(ω) being the single-particle self-
energy. Σ0(ω) and the U1 interaction define an Anderson
impurity problem with the hybridization function ∆(ω) =
−Im(Σ0(ω)), which can be solved by the NRG approach. As
discussed in Sec. III D, the NRG calculation yields a corre-
lation self-energy ΣU (ω) and an impurity Green’s function
Gimp(ω) = 1/(ω − ϵf − Σ0(ω) − ΣU (ω)). We then feed
ΣU (ω) into the Dyson’s equation in the lattice model and re-
calculate the Gloc

αs (ω) that defines a new hybridization func-
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FIG. 4. The DMFT results of spectral densities, chemical poten-
tials, correlated band for Mott insulator, and competition between
Kondo effects and RKKY. (a-c) The f -spectral densities at filling
[0,4.5] at kBT = 0.003, 0.243, 2.187meV. (d) The chemical poten-
tial as a function of filling. Inset: ϵc,1, ϵc,3 as a function of fillings.
(e) The correlated band for the Mott insulator at ν = 1.1 ≈ 1 at
kBT = 0.003 meV, which exhibits a gap at the Fermi level and
pronounced Hubbard bands. The black dashed line indicates the
Fermi level. (f) Comparison of TK and |JRKKY|. Near ν = 0 the
state goes into the frozen impurity state, and the half-width of spec-
tral density does not mean Kondo temperature, so a dashed line is
used. (g) The finite temperature phase diagram. The colors indi-
cate the phase, where SSB means spontaneous symmetry-breaking,
HFL means heavy Fermi liquid, and FL+LM means a Fermi liquid
with decoupled local moments. The color transitions smoothly since
there is no spontaneous symmetry-breaking at finite temperature in
two dimensions, and the Kondo-LM transition is not a phase tran-
sition but a smooth crossover. The black dashed line indicates the
crossover from the heavy Fermi liquid phase to the metallic phase
with the local moment, which vanishes gradually when ν approaches
0 and increases above 4, where the ground state goes into the frozen
impurity regime.

tion. The DMFT solution to Eq. (22) for given ϵc,a, ϵf is
obtained by repeating the above iterative process until ΣU (ω)
converges. The occupations νf , νc,a can also be obtained from
the lattice Green’s function and used to update ϵf , ϵc,a. The
full self-consistency is reached when ΣU (ω), νc,a, and νf all
converge.

B. Heavy Fermi liquid and Mott insulator

The converged f -electron spectral densities A(ω, ν) in the
energy-filling (ω-ν) parameter plane at temperatures kBT =
0.003, 0.243, 2.187meV are shown in Fig. 4(a), (b), (c), re-
spectively. At the low temperature kBT = 0.003meV, which
can be considered zero, the state at ν = 0 is in the frozen
impurity regime with an (almost) zero occupation; hence the
spectral weight is mainly distributed at positive energy. As
ν increases, the spectral peak moves to the zero energy and
is eventually pinned at the zero energy to form a Kondo res-
onance. This behavior precisely matches STM experiments
at low temperatures (T < 1K) [11, 19, 21, 22]. The reso-
nance peak is a robust feature for all fillings except when ν is
close to 1 or 2, indicating that the ground states at generic fill-
ings are the heavy Fermi liquid. Using the parameters given
in Sec. II A, the ground state around ν = 1 is a Mott insula-
tor with vanishing zero-energy peak (Fig. 4(a), (e)), and the
ground state around ν = 2 is a heavy Fermi liquid with low
TK (∼ 0.1meV). However, using a lightly smaller U2, e.g.,
0.70meV, the ground states around both ν = 1, 2 are Mott
insulators (see Fig. 6(d)(e) in Appendix A 1). Therefore, we
conclude that ground states around ν = 1, 2 are either Mott
insulators or heavy Fermi liquids with low TK, depending on
the Hamiltonian parameters. The corresponding DMFT band
structures at low temperatures for the Mott insulator, which
exhibit a gap at the Fermi level, and for heavy Fermi liquids
are shown in Fig. 4(e) and Fig. 5(a),(c), respectively. We also
plot kBT s

K, which is obtained from the susceptibility as ex-
plained in Sec. III E, as a function of ν in Fig. 4(f). One can
see that T s

K drops to a vanishing value around ν = 1 and
becomes rather small (∼ 0.1meV) near ν = 2. (The small
deviation of minimal T s

K from ν = 1, 2 is due to numerical
errors in evaluating the occupation.)

The evolution of Hubbard bands can also be observed as ν
changes. At higher temperatures (Fig. 4(b), (c)), the Kondo
resonance peaks are smeared by thermal fluctuations, and the
evolution of Hubbard bands becomes clearer. As ν increases
from 0 to 4, the Hubbard bands periodically pass through the
zero energy, matching the cascade of transitions seen in STM
experiments at higher temperatures [17, 19].

We also calculate the chemical potential as a function
of the filling, as shown in Fig. 4(d). It leads to the saw-
tooth behavior of the inverse compressibility (dµdν ) seen in
Refs. [17, 18, 26, 30, 31]. Starting from an integer filling,
dµ
dν will first decrease slowly and finally drops nearly to zero
before ν approaches the next integer. Then, upon ν crossing
the next integer, the inverse compressibility jumps to a large
value. This behavior appears periodically as ν changes from
0 to 4. The inset of Fig. 4(d) shows the energy of c-electrons
with respect to the chemical potential, i.e., ϵc,1, ϵc,3. It shows
a sudden energy jump of the c-electrons around every inte-
ger filling, which is also referred to as the so-called “Dirac
revival”. Both the saw-tooth shape of inverse compressibility
and the energy jump of c-electrons can be understood through
a quantum dot picture. As the on-site Coulomb interaction al-
ways favors an integer number of f electrons, when doping
upon an integer filling, electrons will first occupy c-orbitals
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before ν reaches the next integer. The inverse compressibility,
proportional to 1/ρc with ρc being the density of states of c-
electrons, is large at the beginning because ρc is small at the
band edge of c. The inverse compressibility decreases with
doping because ρc increases with doping. Upon ν reaching
the next integer, one electron suddenly moves from c-orbitals
and to f -orbitals to save the kinetic energy, leading to the sud-
den jump of ϵc,a towards the chemical potential. This jump
resets ρc to a small value and dµ

dν to a large value.
The resetting of ρc to small values around ν = 1 (2) is also

consistent with the vanishing (small) TK because it will sig-
nificantly suppress the hybridization function. ρc is also reset
near ν = 3 but to a relatively larger value that still gives rise
to a finite TK. The resetting depends on the Hartree energies
of the U,W, V interactions, hence, it is also possible to ob-
tain Mott insulators at ν = 2, 3 if another set of parameters is
used. For example, for fixed νc,a, νf , a smaller U2 will give a
smaller ϵf that is closer to the band edge of c-electrons. Thus,
generally, a smaller U2 leads to a smaller ρc and favors Mott
insulator phases at integer fillings. This is consistent with the
observation of the Mott insulator at ν = 2 with a suppressed
U2 (=0.70meV), as discussed in the first paragraph of this sub-
section and shown in Fig. 6(d)(e) in the Appendix A 1.

Now we compare the DMFT results to the NRG results of
the single-impurity model ĤSI discussed in Sec. III. At a given
filling ν, we obtain the hybridization function ∆(ω) and f -
electron energy level ϵf from the converged DMFT+HF cal-
culation at kBT = 0.003meV. (ϵc,a enter the single impurity
model implicitly via ∆(ω)). This ∆(ω) and ϵf are differ-
ent from the bare hybridization (Eq. (13)) and the HF self-
consistent value ϵf (Fig. 2(a)) used in ĤSI. We then use this
∆(ω) and ϵf as input for NRG calculations at various finite
temperatures, which provide quick estimations for physical
observables. We show the spin-susceptibility, impurity en-
tropy, and spectral density at various temperatures obtained in
such a way in Fig. 3(g)-(l). Comparing Fig. 3(g)-(l) to (a)-(f),
we find that ĤSI already captures features such as Kondo en-
ergy scale and entropy. The main difference is that ĤSI does
not have Mott insulator states as DMFT results do (Fig. 3(g)).
Therefore, we conclude that ĤSI is qualitatively correct in the
metallic phases.

We notice that most previous theories attributed the cascade
of transition in the STM spectrum at higher temperatures and
the saw-tooth feature of the inverse compressibility to sponta-
neous symmetry breaking. We emphasize that according to
the discussion in this subsection, these phenomena already
exist without breaking the symmetries. Yet, we will discuss
possible symmetry breakings in the next subsection.

C. Competition between Kondo screening and RKKY
interaction

All spatial correlations have been omitted in the DMFT+HF
calculation. However, local moments at different sites could
interact with each other through the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction and form a coherent order. Thus,

the competition between the Kondo effect and RKKY inter-
action must be taken into account to derive a complete phase
diagram. We have calculated T s

K using the susceptibility, as
shown in Fig. 4(f).

Here we use an HF mean-field calculation to estimate the
RKKY energy scale, which is described in detail in Ap-
pendix D. We consider a 1 × 2 super-cell that contains two
adjacent LM’s, and set their spin alignment as either ferro-
magnetic or anti-ferromagnetic. We emphasize that, due to
the U(4) symmetry of the THF model, the “spin order” here
does not necessarily correspond to the physical spin order, but
any of its U(4) partners [41]. The RKKY energy JRKKY is
estimated as the energy gain at each nearest bond of paral-
lel spins. We show |JRKKY| in Fig. 4(f), where ferromagnetic
(JRKKY > 0) and anti-ferromagnetic (JRKKY < 0) couplings
are represented by blue and yellow curves, respectively.

When kBTK ≫ |JRKKY|, the Kondo effect must win over
the RKKY interaction, and hence the ground state is a sym-
metric heavy Fermi liquid. On the contrary, when kBTK ≪
|JRKKY|, one may expect a symmetry-breaking ground state.
The Mermin-Wagner theorem states that the correlation length
ξ will diverge (remain finite) as T → 0 if JRKKY is ferromag-
netic (anti-ferromagnetic). Nevertheless, a finite ξ can also
open a charge gap if it is much larger than the moiré length
scale. We sketch a phase diagram in the temperature-filling
(T -ν) parameter space in Fig. 4(g). At T = 0, apart from the
normal Fermi liquid with frozen impurity appearing at ν close
to 0, the symmetry-breaking ground state wins out around
integer fillings ν = 1, 2, and likely, if a smaller U2 were
to be used, as explained in the last subsection, also around
ν = 3, while the heavy Fermi liquid forms at all other non-
integer fillings. Upon heating, the symmetry-breaking states
change to correlated states with finite spin correlation length
ξ, but as long as ξ remains much larger than the moiré length
scale, the charge gap can be preserved. When T is sufficiently
high, LM’s become fully disordered, and the system enters the
metallic LM phase where LM’s and the normal Fermi liquid
formed by c-electrons coexist. On the other hand, the sym-
metric heavy Fermi liquid states at non-integer fillings first
remain robust upon heating and then continuously evolve to
the metallic LM phases when T rises above TK.

Here we only consider the spin (or its U(4) partners) RKKY
interaction to demonstrate possible symmetry-breaking states.
Other types of symmetry-breaking, such as Chern insulator
states at ν = 1, 2, 3 [38–40, 42–44] and stripe states at ν = 3
[38, 106], are also possible. It should also be noticed that
our periodic Anderson model is based on the assumption of
the valley order at CNP, which may become invalid at large
fillings. Thus, a more complete description should involve
valley fluctuations and other types of symmetry-breaking; we
leave this for future studies.

D. Crossover between heavy Fermi liquid and metallic LM
states

To show the crossover between heavy Fermi liquid and
metallic LM states (Fig. 4(g)), we plot the total spectral den-
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FIG. 5. The correlated bands and the energy surfaces. (a-d)The correlated bands of filling 1.5, 2.5 at kBT = 0.003, 2.187meV. Left panel:
The k dependent spectral density A(k, ω) from DMFT along high symmetry path. Inset: zoomed-in diagram for ω ∈ [−3meV, 3meV].
The zero energy is marked by black dashed lines. Right panel: the bands estimated using a Fermi liquid argument with quasi-particle weight
from DMFT results. The color maps the total quasi-particle weight. (e)(f) The k dependent spectral density A(k, ω) from DMFT in BZ for
ν = 1.5, 2.5 and kBT = 0.003, 2.187meV at various fixing frequency. The figures at ω = 0.0 meV show the Fermi surface. The colormap is
the same as (a-d). The numbers between energy surfaces in the low-T plots indicate the number of quasi-particle bands below the associated
energy (counted from CNP).

sity A(k, ω) at kBT =0.003, 2.187meV and ν = 1.5, 2.5 in
the left panels of Fig. 5(a-d). The two temperatures are respec-
tively chosen as much lower and higher than TK, which are
0.994 and 0.857meV for ν = 1.5 and 2.5, respectively. One
can clearly see the heavy f -quasi-particle bands at T ≪ TK

are smeared out by thermal fluctuations at T > TK. The heavy
Fermi liquid bands can be understood from a simple Fermi
liquid argument. At zero temperature, the Landau Fermi liq-
uid theory implies ImΣU (0) = 0; thus, there are well-defined
quasi-particles with long lifetime at low energy. The main
correction is that the f -electron is renormalized to f ≈

√
zf ′,

where f ′ is the quasi-particle fermion operator and the quasi-
particle weight z is given by z = (1 − ∂ωReΣ

U (ω))−1|ω=0.
Then the effective cf hybridization in Eq. (8) in terms of f ′

is suppressed by a factor of z
1
2 . We obtain z ≈ 0.167, 0.271

at ν = 1.5, 2.5, respectively, from the self-energy at kBT =
0.003meV. The estimated heavy Fermi liquid bands obtained
from Eq. (8) with a suppressed H(cf) are shown in the right
panels of Fig. 5(a), (c). The suppression of hybridization re-
sults in large effective masses. For T > TK, the correlated
self-energy ΣU (ω) has a large imaginary part at zero energy,
which means that there is no well-defined f -quasi-particle.
Thus, we have z = 0, and the f -electrons form LM’s decou-
pled from the conduction electrons. The electron band struc-

ture is solely contributed by the c-electrons, as shown in the
right panels of Fig. 5(b), (d). Comparing to the DMFT bands
in the left panel of Fig. 5(a-d), the Fermi liquid argument re-
produces the heavy quasi-particle bands at T ≪ TK and their
disappearance at T > TK.

A characteristic feature of the heavy Fermi liquid is its
temperature-dependent Fermi volume [97]. Namely, in the
Kondo regime, f -electrons hybridize with c electrons, hence
the area of the Fermi surface counts the total filling. Ideally,
at ν = 1.5, the total area of two Fermi surface shells, each
spin degenerate, should be 0.75SBZ. Here SBZ is the area of
BZ. At ν = 2.5, one band is fully occupied (Fig. 5(c)) and
contribute a filling of 2. The other band has three electron
pockets around ΓM , KM and K ′

M , and their total area should
be 0.25SBZ. On the other hand, at T ≫ TK the f -electrons
do not contribute to electron bands, and the Fermi surfaces
should enclose a total area corresponding to the filling 0.5. In
the upper and lower panels of Fig. 5(e), (f), we plot the DMFT
spectral density A(k, ω) at various ω’s around the Fermi level
at T ≪ TK and T > TK, respectively. The plots at ω = 0
sketch the Fermi surfaces, and are consistent with the above
analysis.

The evolution of band structures with temperature be-
comes more evident as we examine the energy dependence
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of A(k, ω). When T ≪ TK, due to the heavy band, A(k, ω)
exhibits notable change with energy. For example, at ν = 1.5,
because the Fermi level is close to the top of the heavy band
(inset of left panel of Fig. 5(a)), a hole-type surface will ap-
pear when the energy slightly increases, as shown in the upper
panel of Fig. 5(e). For another example, at ν = 2.5, as ω de-
creases, the small electron pockets of the upper band around
KM and K ′

M vanish, and then a large hole-type surface in the
lower band appear, as shown in the upper panel of Fig. 5(f).
In contrast, the energy surfaces at T > TK shown in lower
panels of Fig. 5(e), (f) are almost energy-independent. Sim-
ilar energy-dependent behaviors of the energy surfaces occur
at other non-integer fillings as well. The T -dependence of
equal-energy surfaces, including the Fermi surface, is a smok-
ing gun signature of the heavy Fermi liquid phase, and could
be observed in spectral experiments such as the quasi-particle
interference.

V. SUMMARY AND DISCUSSION

Based on a poor man’s scaling analysis, we first argue that
the Kondo screening is irrelevant at CNP and the ground state
at CNP is a symmetry-breaking state. Then, by combining the
poor man’s scaling, the NRG approach, and the DMFT+HF
approach, we have shown that the ground states at ν = 1, 2 are
symmetry-breaking states or Mott insulators and the ground
states at most non-integer fillings are heavy Fermi liquids, as
summarized in Fig. 4(g). Upon heating, both of the symmetry-
breaking states and the heavy Fermi liquids will eventually
evolve into metallic LM states where disordered LM’s and a
Fermi liquid formed by c-electrons coexist. In order to verify
our theory in future experimental studies, we also predict the
temperature-dependence of Fermi volume in the heavy Fermi
liquid states at ν = 1.5 and 2.5.

This picture is able to explain several experiments such as
STM, transport, the inverse compressibility, etc., and brings
new understandings of the underlying physics. For example,
the spectral density and the Pomeranchuk effect were not con-
nected in previous works. Now our theory states that both of
them arise from the Kondo effect. The quantum-dot behavior
(zero-energy peak) in STM and the higher entropy LM (lower
entropy Fermi liquid) state in compressibility experiment arise
from the unscreened LM’s (heavy Fermi liquid) at T > TK

(T < TK). However, in sharp contrast to the previous under-
standing that the observed entropy transition is a first-order
phase transition that analogs the liquid-to-solid transition on
heating in helium (Pomeranchuk effect), our theory predicts
that the transition is instead a continuous crossover.

The heavy Fermi liquid states at ν = 1.5 and 2.5 are po-
tential parent states for the observed superconductivity. In a
naive mean-field picture, the overwhelmingly strong on-site
Coulomb repulsion (U ∼ 60meV) would kill any pairing in-
duced by weak attractive interactions, which are merely at the
order of 1meV [11]. However, when the Kondo screening
takes place, the f -quasi-particles form a heavy Fermi liquid
that is free from the strong Coulomb repulsion. Instead, the
f -quasi-particles can only feel a fluctuation-induced residual

repulsion U∗ ∼ TK [97], which is at the order of 1meV. Then,
weak attractive interactions, e.g., phonon-mediated [107, 108]
and spin-wave-mediated interactions, may win over U∗ and
drive a superconducting phase. Therefore, we believe the
heavy Fermi liquid phase is a new and useful starting point
to study the superconductivity.

Note added. During the preparation of the current work, a
related work [109] appeared. This work studied the symmet-
ric Kondo state using a slave-fermion mean-field in a Kondo
lattice model derived from the THF model. We are also aware
of related works on the Kondo problem in MATBG by A.
M. Tsvelik’s and B. A. Bernevig’s group [110, 111], P. Cole-
man’s group [112], and a generalization of the THF model to
the magic-angle twisted trilayer graphene [113]. Our results
agree with [110] that at CNP the ordered state has lower en-
ergy than the fully symmetric state. At non-integer fillings,
we study the partially symmetric state with the same symme-
try as CNP while [109, 110] consider fully symmetric Kondo
states.
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Appendix A: More details about the effective Hamiltonian

1. choice of U2 in the effective single valley model

We choose a U2 = 1.16meV, which is smaller than the
original value U2 = 2.33meV in [61]. This is a compen-
sation for the approximation we made in deriving the effec-
tive single valley model. As an example, we assume the
valley-polarized state as the ground state at CNP. In our ef-
fective single valley model upon CNP, we have treated the
electrons in the η = + valley as a static background. How-
ever, once doping away from CNP, the electron will enter or
leave η = + valley, while the composition of c, f -electrons
in η = + valley will also change. This gives a correction to
the mean field level ϵc,1, ϵc,3 and ϵf in the single valley ef-
fective model for η = −. The relative shift between c- and
f -electrons will significantly change the hybridization func-
tion at the Fermi level(see Fig. 1(d)), while the variation of
G = ϵc,3 − ϵc,1 plays a minor role (see the comparison of
Fig. 7(a)(b)). Therefore, we neglect the difference between
the correction to ϵc,1, ϵc,3 for simplicity and only adjust U2,
which contributes to Hartree term of f -electrons but not c-
electrons, to mimic the relative shift of c- and f -electrons en-
ergy levels. We require that at ν = 4, where the correction
mentioned above reaches the maximum, the conduction band
bandwidth of the symmetric self-consistent HF result of the
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FIG. 6. The symmetric HF band at ν = 4 and DMFT results with
U2 = 0.70meV (a) The symmetric HF band at ν = 4 for the origi-
nal two-valley model and original parameters. (b) The symmetric HF
band at ν = 4 for the effective single-valley model with a reduced
U2 = 1.16meV. (c) The symmetric HF band at ν = 4 for the ef-
fective single-valley model with original U2 = 2.33meV. The color
represents the composition of the bands, where yellow and blue cor-
respond to f and c orbitals, respectively. (d) The f -spectral density
calculated from DMFT at kBT = 0.003meV with U2 = 0.70meV.
(e) The chemical potential and c-electron mean-field level calculated
from DMFT at kBT = 0.003meV with U2 = 0.70meV.

effective single valley is close to the one for η = − valley in
the two valley model with the original parameters. We plot the
fully symmetric HF self-consistent bands at ν = 4 in Fig. 6
and find that the band in the effective single valley model with
U2 = 1.16meV(Fig. 6(b)) reproduce the one in the origi-
nal two valley model (Fig. 6(a)) better than U2 = 2.33meV
(Fig. 6(c)). From Fig. 1(d), one can see that the hybridization
increases as f electron rises related to c electron level, which
means that reducing U2 leads to a smaller TK and a stronger
quantum-dot-like behavior in general, while the conclusions
in Secs. III and IV are still qualitatively right, as confirmed by
Fig. 6(d)(e) which shows the spectral density, chemical po-
tential and c electron level for U2 = 0.70meV, comparing to
those in Fig. 4 for U2 = 1.16meV.

2. Nonzero M term

A generic trial ground state at CNP is given by (Eq. (6))

|Ψ0⟩ = U
∏
R

f†
R1+↑f

†
R1+↓f

†
R2+↑f

†
R2+↓|FS⟩ , (A1)

where U = exp(−iθµνΣ̂µν) is a U(4) rotation operator and
an implicit summation over repeated µ, ν indices is assumed.

We can always define the rotated fermion operators c̃kaηs =

UckaηsU
†, f̃Raηs = UfRaηsU

† such that f̃Rα+s’s are occu-
pied in |Ψ0⟩ and f̃Rα−s’s are empty in |Ψ0⟩. According to
the discussions in the supplementary material section S4B of
Ref. [61], in the flat-band limit (M = 0), the lowest parti-
cle (hole) excitations only involve c̃ka−s and f̃Ra−s (c̃ka+s

and f̃Ra+s). Thus, the effective periodic Anderson model for
ν > 0 derived in Sec. II C is written in terms of ckas = c̃ka−s

and fRαs = f̃Rα−s. Here we give the explicit forms of the
rotated operators

f̃Rαηs =
∑

α′η′s′

[
eiθµνΣf

µν

]
αηs,α′η′s′

fRα′η′s′ , (A2)

and

c̃kaηs =
∑

a′=1,2
η′s′

[
eiθµνΣc12

µν

]
aηs,a′η′s′

cka′η′s′ (a = 1, 2), (A3)

c̃kaηs =
∑

a′=3,4
η′s′

[
eiθµνΣc34

µν

]
aηs,a′η′s′

cka′η′s′ (a = 3, 4), (A4)

where the eight-by-eight matrices Σf
µν , Σc12

µν , Σc34
µν are defined

in Eqs. (3) to (5).
The M -term in the original basis of the THF model

(Eq. (1)) is

M
∑

aa′=3,4

∑
k

∑
ηs

[σx]aa′c†kaηscka′ηs . (A5)

It favors the Kramers inter-valley coherent state discussed at
the end of Sec. II A, where θx0 and θy0 are nonzero and sat-
isfy θ2x0 + θ2y0 = (π/4)2. Without loss of generality, we as-
sume U = exp(−iπ4 Σ̂x0) for the Kramers inter-valley coher-
ent state. Writing this M -term in terms of the rotated opera-
tors, we obtain

M
∑
k

∑
a,a′=3,4

∑
ηη′ss′

c̃†kaηsOaηs,a′η′s′ c̃ka′η′s′ , (A6)

where O = ei
π
4 Σc34

x0 σxτ0ς0e
−iπ

4 Σc34
x0 = −σzτxς0. The τx

matrix in O represents couplings between the empty and oc-
cupied single-particle states. If we simply project this M -
term onto the empty states, it vanishes, i.e., [Oa−s,a′−s′ ] =
0. A better approximation is applying a Schrieffer-Wolff
transformation to decouple the η = ± states, leading to
a second-order correction to the effective Hamiltonian. As
⟨Ψ0|f̃†

αηsf̃αηs|Ψ0⟩ = (1 + η)/2, the J term in Eq. (2) yields
the following mean-field term (see also the supplementary
material section S4B of Ref. [61])

−J

2

∑
a=3,4

∑
ηs

η · c̃†aηsc̃aηs (A7)

Then, regarding the J
2 term as the zeroth order Hamiltonian

and M as a perturbation, a Schrieffer-Wolff transformation
leads to the correction

−M2

J

∑
|k|<Λc

∑
a=3,4

∑
ηs

η · c̃†kaηsc̃kaηs +O(M4) . (A8)
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The resulting energy levels ±(J/2+M/J2) at k = 0 is fully
consistent with a Taylor expansion of the one-shot energy lev-
els ±

√
J2/4 +M2 derived in Ref. [61]. Projecting the cor-

rection to the active d.o.f., i.e., ckas = c̃ka−s, we obtain the
correction to the effective Hamiltonian

M2

J

∑
|k|<Λc

∑
a=3,4

∑
s

c†kasckas +O(M4) . (A9)

3. Hund’s coupling

In this section, we discuss the effect of ferromagnetic cou-
pling ĤJ between c, f electron. We show that besides the
Hartree mean field in Eqs. (10) and (11), it only brings a
rather small Hund coupling JH of f electron; thus, we choose
JH = 0 and only treat ĤJ by mean-field in the main text.

Both Ĥ(cf) and ĤJ couple the f -electrons to c-electrons,
but thanks to the C3z symmetry, the baths they coupled belong
to different angular momenta and are independent, for which
we can treat them separately. In a polar coordinate, Ĥcf only
couples f -electrons to

c̃kαs =
1

A
∑
a

ˆ
dϕ ·H(cf)

αa (k)ckas (α = 1, 2) , (A10)

where k = k(cosϕ, sinϕ), and A is a normalization factor.
Explicitly, there are c̃k1s ∼

´
dϕ · (γck1s − v′⋆ke

iϕck2s) and
c̃k2s ∼

´
dϕ · (γck2s − v′⋆ke

−iϕck1s). Under the C3z opera-
tion (defined in Sec. II A), c̃k1s and c̃k2s have effective angular
momenta 1, -1, respectively. On the other hand, ĤJ only cou-
ples f -electrons to

c̃kas =
1

A′

ˆ
dϕ · ckas (a = 3, 4) , (A11)

where A′ is a normalization factor. Both ckas (a = 3, 4) have
the effective angular momentum 0 under C3z . Because c̃kas
(a = 1, 2) and c̃kas (a = 3, 4) form different representations
of C3z , they do not couple to each other by Ĥc, hence the
Ĥhyb-bath and the ĤJ -bath are indeed independent.

As a ferromagnetic coupling always flows to zero and be-
comes irrelevant in low energy physics, we can integrate out
the ĤJ -bath in a single attempt.

ĤH = JH
∑
α

nα↑nα↓ , (A12)

where JH , estimated as 0.34meV as shown later, is the ad-
ditional energy that two electrons will acquire if they occupy
the same orbital. A nonzero M does not change the form of
ĤH . If J = 0, there would be no Hund’s coupling JH , and
ĤSI would have a U(4) symmetry, as expected in a four-flavor
Anderson impurity model without multiplet splitting.

We now derive the effective Hund’s coupling ĤH Eq. (A12)
in detail. We start from the free c-electrons Hamiltonian.
The four-by-four Hamiltonian matrix H(c)(k) + ∆H(c) in
Eq. (11), i.e., −v⋆(σx ⊗ σ0kx + σy ⊗ σzky) + 02×2 ⊕Gσ0 +

ϵc,1σ0 ⊗ σ0, can be diagonalized analytically. As discussed at
the end of the last subsection, to O(M2), the M term simply
shifts the energy of a = 3, 4 electrons by M2/J . Thus, all
the analysis below applies to the M ̸= 0 after G is replaced
by G + M2/J . We find the energy eigenvalues and wave-
functions of the H(c)(k) + ∆H(c) as

ϵ1(k) =ϵ+(k) =
ϵc,1 + ϵc,3

2
+

√
G2

4
+ v2⋆k

2

u1(k) =
(
sin θk

2 e−iϕk 0 − cos θk
2 0

)T , (A13)

ϵ2(k) =ϵ+(k) =
ϵc,1 + ϵc,3

2
+

√
G2

4
+ v2⋆k

2

u2(k) =
(
0 sin θk

2 eiϕk 0 − cos θk
2

)T , (A14)

ϵ3(k) =ϵ−(k) =
ϵc,1 + ϵc,3

2
−

√
G2

4
+ v2⋆k

2

u3(k) =
(
cos θk

2 e−iϕk 0 sin θk
2 0

)T , (A15)

ϵ4(k) =ϵ−(k) =
ϵc,1 + ϵc,3

2
−

√
G2

4
+ v2⋆k

2

u4(k) =
(
0 cos θk

2 eiϕk 0 sin θk
2

)T . (A16)

where

θk = arccos
G/2√

G2/4 + v2⋆k
2

(A17)

and ϕk = arg(kx + iky).
Applying a second-order perturbation in terms of ĤJ , we

obtained the correction to the Hamiltonian

∆Ĥ = − J2

N2
M

∑
I

∑
α1α2

s1s
′
1s2s

′
2

∑
k1,k

′
1

k2,k
′
2

(f†
α1s1fα1s

′
1
− νf

4
δs1s′1)

× (f†
α2s

′
2
fα2s2 − νf

4
δs2s′2) · e

−λ2

2
(k2

1+k′2
1 +k2

2+k′2
2 )

×
⟨Ψ0|c†k′

1α1+2s′1
ck1α1+2s1 |ΨI⟩⟨ΨI |c†k2α2+2s2

ck′
2α2+2s′2

|Ψ0⟩
EI − E0

,

(A18)

where |ΨI⟩ are excited states with a single particle-hole pair
and EI are the energies of the excited states. k1,2, k′

1,2 are
limited up to the cutoff Λc. The ĤJ here contains a damp-

ing factor e−
λ2

2 (k2+k′2) for c†k′ck term since the localized f
electron with spread λ does not interact with high energy c-
electron with |k| ≫ λ−1 via ĤJ . Due to the momentum and
spin conservation, for the matrix element to be nonzero, there
must be k1 = k2, s1 = s2, k′

1 = k′
2, s′1 = s′2. For sim-

plicity, we rewrite k1, k′
1, s1, and s′1 as k, k′, s, and s′, re-

spectively. (k, s) and (k′, s′) label the particle and the hole
excitations, respectively. Then the matrix element in the third
line of Eq. (A18) can be written as

nF (ϵ−(k
′))(1− nF (ϵ+(k)))

× ⟨Ψ0|c†k′α1+2s′ckα1+2sc
†
kα2+2sck′α2+2s′ |Ψ0⟩ (A19)
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According to the wave functions given in Eqs. (A13)-(A16),
there are ⟨Ψ0|c†k′α1+2s′ck′α2+2s′ |Ψ0⟩ = δα1α2 sin

2 θk′
2 ,

⟨Ψ0|ckα1+2sc
†
kα2+2s|Ψ0⟩ = δα1α2

cos2 θk
2 . The excitation

energy EI − E0 is given by ϵ+(k) − ϵ−(k
′). Thus, ∆Ĥ is

simplified to

∆Ĥ = − J2

N2
M

∑
αss′

kk′

(f†
αsfαs′ −

νf
4
δss′)(f

†
αs′fαs −

νf
4
δss′)

×
nF (ϵ−(k

′))(1− nF (ϵ+(k))) sin
2 θk′

2
cos2 θk

2

ϵ+(k)− ϵ−(k′)

× e−λ2(k2+k′2) (A20)

The s = s′ contribution is an effective chemical potential
shift, estimated as 0.17meV at CNP, of the f -electrons. As
it is much smaller than U1, we will omit the s = s′ contribu-
tion. The s ̸= s′ contribution can be written as

ĤH = JH
∑
α

nf
α↑n

f
α↓ (A21)

with JH given by

JH =2J2

(
Ω0

2π

)2 ˆ Λc

0

dk′ · k′
ˆ Λc

k0

dk · k · e−λ2(k2+k′2)

×
sin2 θk′

2
cos2 θk

2

ϵ+(k)− ϵ−(k′)
, (A22)

where k0 is determined by ϵ+(k0) = 0. Here we have made
use of the fact that ϵ±(k) and θk only depends on |k| but not
ϕk. At CNP, ϵc,1 = 0 and ϵc,3 = G = J/2 = 8.19meV, tak-
ing the limit Λc → ∞, we obtain JH ≈ 0.34meV. Using the
self-consistent values of ϵc,a shown in Fig. 2(a), we find JH
at ν = 1, 2, 3, 4 are given by 0.30meV, 0.29meV, 0.28meV,
0.26meV, respectively. As JH is small, in this work, we sim-
ply set JH = 0 for simplicity. In Fig. 7(a)(c), we present
the NRG phase diagrams with JH = 0 and JH = 0.34meV,
showing that small finite JH do not lead to qualitative dif-
ference. The effect of JH on the Kondo screening will be
discussed in Appendix B 3.

4. Hybridization function

By definition, the hybridization function ∆(ω) is given by

∆(ω) =
π

N

∑
k

∑
n

|Vnα(k)|2δ(ω − ϵn(k)) (A23)

where Vnα(k) =
∑

a u
∗
an(k)H

(cf)
aα (k)e−

λ2k2

2 is the hy-
bridization between fαs and the n-th energy band of c-
electrons. ∆(ω) does not depend on α because of the C2zT
or C2x symmetry that flips the α index. Substituting ϵn(k)
and uan(k) in Eqs. (A13)-(A16) into the above equation, we

obtain Vnα(k) for α = 1 as

V11(k) =γ sin
θk
2
eiϕke−

λ2k2

2

V21(k) =v′⋆(−kx + iky) sin
θk
2
e−iϕke−

λ2k2

2

V31(k) =γ cos
θk
2
eiϕke−

λ2k2

2

V41(k) =v′⋆(−kx + iky) cos
θk
2
e−iϕke−

λ2k2

2 . (A24)

Using the energy eigenvalues in Eqs. (A13)-(A16) and the
Vnα(k) matrix elements given above, it is direct to obtain

∆(ω) =
Ω0

2v2⋆

∣∣∣ω − ϵc,1 + ϵc,3
2

∣∣∣ (γ2 + v′2⋆ k2
F

)
e−k2

F λ2

×
[
θ(ω − ϵc,3) sin

2 θkF

2
+ θ(ϵc,1 − ω) cos2

θkF

2

]
(A25)

where kF is given by

kF =
1

v⋆

√
[ω − (ϵc,1 + ϵc,3)/2]

2 − (G/2)
2
. (A26)

Making use of Eq. (A17), Eq. (A25) can be further simplified
to

∆(ω) =
Ω0

4v2⋆
|ω − ϵc,3|

(
γ2 + v′2⋆ k2F

)
e−k2

Fλ2

× [θ(ω − ϵc,3) + θ(ϵc,1 − ω)] . (A27)

When ω → ϵ+c,3(ϵc,1−), only the first (second) term in the
second line of Eq. (A27) contributes to ∆(ω), and kF → 0.
Then we obtain the asymptotic behavior of ∆(ω) as ω →
ϵ+c,3(ϵ

−
c,1)

∆(ω) ∼

{
Ω0

4v2
⋆
γ2 · (ω − ϵc,3) +O((ω − ϵc,3)

2), ω → ϵ+c,3
Ω0

4v2
⋆
Gγ2 +O(ω − ϵc,1), ω → ϵ−c,1

.

(A28)

Appendix B: Poor man’s scaling of Anderson models with
energy-dependent couplings

1. Generic theory for U(N ) models

We consider the Anderson impurity model with N symmet-
ric flavors

Ĥ =ϵf N̂f +
U

2
N̂f (N̂f − 1) +

N∑
µ=1

ˆ D

−D

dϵ · ϵ · d†µ(ϵ)dµ(ϵ)

+

N∑
µ=1

ˆ D

−D

dϵ

√
∆(ϵ)

π
(f†

µdµ(ϵ) + h.c.) , (B1)

where µ is the flavor index and Nf =
∑N

µ=1 f
†
µfµ. We

assume the ground state of the isolated impurity has nf f -
electrons, which can take values in 1, 2, · · · , (N − 1). (We
do not consider the empty case (nf = 0), the full case
(nf = N ), nor the mixed valence case where ground states
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with different nf are exactly degenerate.) We further as-
sume the charge gaps to nf − 1 and nf + 1 electrons are
∆E− and ∆E+ = U − ∆E−, respectively. We then ap-
ply a Schrieffer-Wolff transformation to obtain an effective
Coqblin–Schrieffer model for the Hilbert space restricted to
N̂f = nf

Ĥ =

N∑
µ=1

ˆ D

−D

dϵ · ϵ · d†µ(ϵ)dµ(ϵ) +
4g

πU

N∑
µ,µ′=1

ˆ D

−D

dϵdϵ′
[

√
∆(ϵ)∆(ϵ′)(f†

µfµ′ − xδµµ′)d†µ′(ϵ
′)dµ(ϵ)

]
. (B2)

Terms that only involve N̂f are omitted because they only
contribute to an energy shift. The bandwidth D should
be smaller than min(∆E+,∆E−), otherwise the Schrieffer-
Wolff transformation is invalid. The parameters g and x are
given by

g =
U

4

(
1

∆E+
+

1

∆E−

)
, x =

∆E−

U
, (B3)

respectively. If ϵf = −(nf − 1
2 )U , there will be ∆E+ =

∆E− = 1
2U and g = 1, x = 1

2 .
We now truncate the bandwidth to D − dD = D(1 − dt)

(dt ≪ 1) and consider second-order (in g) corrections from
the virtual particle (D − dD < ϵ < D) and hole (−D < ϵ <
−D + dD) excitations. The particle excitation contributes to
the correction

− (4g)2

(πU)2
1

D

∑
µ1µ2µ

′
1µ

′
2

ˆ D−dD

−D+dD

dϵ1dϵ2d

ˆ D

D−dD

dϵ′1dϵ
′
2

×
√

∆(ϵ1)∆(ϵ2)∆(ϵ′1)∆(ϵ′2)d
†
µ1
(ϵ1)⟨dµ′

1
(ϵ′1)d

†
µ′
2
(ϵ′2)⟩dµ2(ϵ2)

× (f†
µ′
1
fµ1 − xδµ1µ

′
1
)P(f†

µ2
fµ′

2
− xδµ2µ

′
2
) . (B4)

The denominator D in the factor is the excitation energy of a
virtual particle. P is a projector to the restricted Hilbert space,
where N̂f = nf . The expectation ⟨dµ′

1
(ϵ′1)d

†
µ′
2
(ϵ′2)⟩ evaluated

on the ground state is δ(ϵ′1 − ϵ′2)δµ′
1µ

′
2
. Then we have

− (4g)2

(πU)2
dD

D
∆(D)

∑
µ1µ2µ′

ˆ D−dD

−D+dD

dϵ1dϵ2
√

∆(ϵ1)∆(ϵ2)

× d†µ1
(ϵ1)dµ2(ϵ2)(f

†
µ′fµ1 − xδµ1µ′)(f†

µ2
fµ′ − xδµ2µ′) , (B5)

where P is omitted as it commutes with f†
µ2
fµ′ and f†

µ′fµ1
.

After a few steps of algebra, the four-fermion operator∑
µ′ f

†
µ′fµ1f

†
µ2
fµ′ can be simplified to

f†
µ2
fµ1 +

∑
µ′

f†
µ′fµ′fµ1f

†
µ2

= f†
µ2
fµ1(1−nf )+nfδµ1µ2 , (B6)

where we have made use of the fact that the Hilbert space is
restricted to N̂f = nf . Substituting this into Eq. (B5), we
obtain the corrections to parameters g and xg as

dg

dt

∣∣∣∣
p

=
4∆(D(t))

πU
((nf − 1) + 2x) g2 , (B7)

d(xg)

dt

∣∣∣∣
p

=
4∆(D(t))

πU

(
x2 + nf

)
g2 . (B8)

Here t is the RG parameter and D(t) = De−t is the reduced
bandwidth after successive t/dt RG steps.

We then calculate the contribution from virtual hole excita-
tion. Following the same process as in the last paragraph, we
obtain

− (4g)2

(πU)2
dD

D
∆(−D)

∑
µ1µ2µ′

ˆ D−dD

−D+dD

dϵ1dϵ2
√

∆(ϵ1)∆(ϵ2)

× dµ1(ϵ1)d
†
µ2
(ϵ2)(f

†
µ1
fµ′ − xδµ1µ′)P(f†

µ′fµ2 − xδµ2µ′)

=
(4g)2

(πU)2
dt∆(−D)

∑
µ1µ2µ′

ˆ D−dD

−D+dD

dϵ1dϵ2
√

∆(ϵ1)∆(ϵ2)

× d†µ2
(ϵ2)dµ1(ϵ1)(f

†
µ1
fµ′ − xδµ1µ′)(f†

µ′fµ2 − xδµ2µ′) . (B9)

In the second equation, we have omitted an energy constant
term from the anti-commutator {d†µ2

(ϵ2), dµ1
(ϵ1)}. P is omit-

ted in the second equation because it commutes with f†
µ′fµ2

and f†
µ1
fµ′ . The four-fermion operator

∑
µ′ f†

µ1
fµ′f†

µ′fµ2
can

be simplified to (N − nf + 1)f†
µ1
fµ2

as the Hilbert space is
restricted to N̂f = nf . Then the corrections to g, xg from
Eq. (B9) can be read out as

dg

dt

∣∣∣∣
h

=
4∆(−D(t))

πU
(N − nf + 1− 2x) g2 , (B10)

d(xg)

dt

∣∣∣∣
h

=
4∆(−D(t))

πU

(
−x2

)
g2 . (B11)

Adding up the particle and the hole contributions we can
obtain the RG equations for g and (xg). The Kondo energy
scale TK can be estimated as the reduced bandwidth D(t)
where g diverges. For a constant ∆(ω) = ∆0, we obtain

dg

dt
=

4∆0

πU
N g2,

d(xg)

dt
=

4∆0

πU
nfg

2 (B12)

and the solution

g(t) =
g(0)

1− g(0) 4∆0

πU N · t
, (B13)

x(t) = x(0)
g(0)

g(t)
+

nf

N
· g(t)− g(0)

g(t)
. (B14)

where g(0) is the initial condition given in Eq. (B3). g(t)
diverges at tK = πU

4Ng(0)∆0
, corresponding the Kondo energy

scale De−tK = De
− πU

4Ng(0)∆0 . As g(t) diverges as t → tK ,
the second term in x(t) dominates and there must be x → nf

N .
In other words, x flows to the occupation fraction.

2. Application to the symmetric state at CNP

We assume a symmetric state of the THF model at CNP and
examine its Kondo energy scale. The Hamiltonian for the bath



19

and the impurity-bath hybridization here are given by H(c,η)

and H(cf,η) in Eq. (1), respectively. The energy eigenvalues
and wave-functions of H(c,−) are

ϵ1(k) =
M

2
+

√
M2

4
+ v2⋆k2

u1(k) =
1√
2

(
sin θk

2
e−iϕk sin θk

2
eiϕk − cos θk

2
− cos θk

2

)T ,

(B15)

ϵ2(k) =− M

2
+

√
M2

4
+ v2⋆k2

u2(k) =
1√
2

(
cos θk

2
e−iϕk − cos θk

2
eiϕk − sin θk

2
sin θk

2

)T ,

(B16)

ϵ3(k) =
M

2
−

√
M2

4
+ v2⋆k2

u3(k) =
1√
2

(
cos θk

2
e−iϕk cos θk

2
eiϕk sin θk

2
sin θk

2

)T ,

(B17)

ϵ4(k) =
M

2
−

√
M2

4
+ v2⋆k2

u4(k) =
1√
2

(
sin θk

2
e−iϕk sin θk

2
eiϕk cos θk

2
− cos θk

2

)T .

(B18)
Following Appendix A 4, we obtain V

(η)
nα (k) for α = 1, η =

− as

V11(k) =
1√
2

(
γeiϕk − v′⋆ke

−2iϕk

)
sin

θk
2
e−

λ2k2

2

V21(k) =
1√
2

(
γeiϕk + v′⋆ke

−2iϕk

)
cos

θk
2
e−

λ2k2

2

V31(k) =
1√
2

(
γeiϕk − v′⋆ke

−2iϕk

)
cos

θk
2
e−

λ2k2

2

V41(k) =
1√
2

(
γeiϕk + v′⋆ke

−2iϕk

)
sin

θk
2
e−

λ2k2

2 . (B19)

where

θk = arccos
M/2√

M2/4 + v2⋆k
2
. (B20)

Using Eq. (A23) we obtain the hybridization function con-
tributed by the fully symmetric c-bands (Fig. 1(b)) for α =
1, η = − as

∆(ω) =
Ω0

4v2⋆

[ ∣∣∣∣|ω| − M

2

∣∣∣∣ θ(|ω| −M)
(
γ2 + v′2⋆ k2

F1

)
sin2 θkF1

2

× e−k2
F1λ

2

+

∣∣∣∣|ω|+ M

2

∣∣∣∣ (γ2 + v′2⋆ k2
F2

)
cos2

θkF2

2
e−k2

F2λ
2
]
,

(B21)

where

kF1 =
1

v⋆

√
(|ω| −M/2)

2 − (M/2)
2
, (B22)

kF2 =
1

v⋆

√
(|ω|+M/2)

2 − (M/2)
2
, (B23)

Due to the time-reversal symmetry and crystalline symme-
tries, as explained in Sec. II B, the hybridization functions for

other α, η must be the same. We should choose the initial
cutoff D = 1

2U1 beyond which the Schrieffer-Wolff transfor-
mation is invalid. For these states kF1,2 ≲ U1

2v⋆
and hence

v′2⋆ k2F1,2 ≲ 119.4meV2, which is significantly smaller than

γ2 ≈ 612.6meV2. The damping factors e−λ2k2
F1,2 ≳ 0.74

are also large. Thus, in the following we approximate ∆(ω)
(|ω| < U1/2) as

∆(ω) ≈ Ω0

4v2⋆

[ ∣∣∣∣|ω| − M

2

∣∣∣∣ θ(|ω| −M)γ2 sin2 θkF1

2

+

∣∣∣∣|ω|+ M

2

∣∣∣∣ γ2 cos2
θkF2

2

]
. (B24)

Eq. (B24) could be further simplified making use of
Eqs. (B20), (B22) and (B23), which yields

∆(ω) =

{
2∆(0)
M |ω|, |ω| > M

∆(0)
(
1 + |ω|

M

)
, |ω| < M

(B25)

where ∆(0) = Ω0γ
2

8v2
⋆
M ≈ 0.0645M .

We first consider the flat-band limit (M = 0), where
∆(ω) = b|ω| and b = 2∆(0)/M ≈ 0.1290. We also as-
sume that there is no multiplet splitting in the symmetric state
such that the effective Anderson model should be a U(8) the-
ory with nf = 4. Naively applying the RG equations derived
in the last subsection gives

dg̃

dt
= −g̃ +

4bD

πU1
N g̃2, (B26)

where N = 8, D = U1/2, g̃ = ge−t. Due to the particle-hole
symmetry at CNP, the initial condition (Eq. (B3)) is g̃(0) = 1.
Ostensibly, it seems that there would be an unstable fixed
point g̃∗ = 2π

4Nb , and an initial g̃(0) below (above) it will
flow to zero (infinity). Using the actual parameters, we find
g̃∗ ≈ 1.52 , hence the system would not be in the Kondo
phase. This result already differs from the standard case with
a constant ∆(ω), where a positive g always flows to infinity.
Furthermore, a more careful RG analysis [94] shows that the
fixed point g̃∗ does not really exist, and actually, any posi-
tive g̃∗ flows to a non-Kondo phase. It is a false result of the
weak coupling expansion, which fails for ∆(ω) ∼ |ω|r with
r > 1

2 . Thus, a ∆(ω) ∼ |ω| bath does not have a strong cou-
pling phase. This conclusion is also consistent with numerical
studies [91–93].

We then consider the case with M ̸= 0. We use the value
M = 3.697meV, which leads to ∆(0) ≈ 0.239meV. The RG
process can be divided into two stages: D(t) = 1

2U1e
−t > M

and D(t) < M . The boundary between the two stages is
t1 = ln U1

2M . The RG equation in the first stage reads

dg

dt
=

2N b

π
g2e−t ⇒ g(t) =

1

1− 2Nb
π (1− e−t)

. (B27)

Due to the particle-hole symmetry, the initial condition given
by Eq. (B3) is g(0) = 1. We have

g1 = g(t1) =
1

1− 2Nb
π (1− 2M

U1
)

(B28)
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M (meV) TK(meV)
exact ∆(ω)

TK(meV)
approximated ∆(ω)

DK (meV)

6 2.45×10−9 1.43×10−9 5.90×10−9

7 2.61×10−8 1.95×10−8 1.16×10−7

8 1.79×10−7 1.31×10−7 1.10×10−6

9 9.06×10−7 7.42×10−7 6.38×10−6

10 3.56×10−6 2.97×10−6 2.64×10−5

11 1.15×10−5 8.44×10−6 8.53×10−5

12 3.16×10−5 2.39×10−5 2.28×10−4

13 7.55×10−5 5.78×10−5 5.28×10−4

14 1.65×10−4 1.36×10−4 1.09×10−3

15 3.14×10−4 2.72×10−4 2.05×10−3

TABLE II. Energy scales of a fully symmetric Kondo phase in an
N = 4 model at various M . This model is used to test the validity
of the poor man’s scaling formula. The second and third columns are
TK obtained from NRG calculations using the exact hybridization
function Eq. (B21) and the approximate one Eq. (B25), respectively.
DK is the Kondo energy scale Eq. (B30) given by poor man’s scaling
with the approximate hybridization function Eq. (B25). As explained
in the text, NRG results for M ≲ 4meV have significant numerical
errors and hence are not tabulated here.

The RG equation in the second stage is given by

dg

dt
=
4N∆0

πU1
g2 +

4N∆0

πU1
g2 · e−(t−t1)

⇒ g(t) =
1

g−1
1 − 4N∆0

πU1
(t− t1)− 4N∆0

πU1
(1− e−(t−t1))

. (B29)

g(t) diverges at tK ≈ t1 + πU1

4g1N∆0
− y with y = 1, corre-

sponding to the Kondo energy scale

DK = Mey · e−
πU1

4g1N∆0 ≈ 3.8× 10−4meV. (B30)

To confirm the validity of the two-stage RG procedure, we
compare it to the Kondo energy scale TK given by the NRG
spectral density for an N = 4 model defined by the same hy-
bridization function ∆(ω). (Notice that the NRG method does
not work well in N = 8 cases due to the large Hilbert space
dimension on a site.) In Table II we tabulate TK from exact
∆(ω) (Eq. (B21)), TK from linearized ∆(ω) (Eq. (B25)), and
the poor man’s scaling DK (Eq. (B30)) at various M . We have
chosen the initial cutoff D in the NRG as 100meV and kept
∼1600 states every step. One can see that (i) the linearization
of ∆(ω) only slightly suppresses TK, and (ii) DK is on the
same order as TK.

We do not tabulate TK and DK for M < 4meV because
when M is small, our NRG calculations fail to respect the
U(4) and particle-hole symmetries due to numerical errors.
To be concrete, for a large odd N that has reached a fixed
point with a singlet ground state, the first excited states should
be eight-fold degenerate, containing 4 single-electron and 4
single-hole excitation states. However, when M = 3meV,
the energies of these eight excitations are all different, vary-
ing from 0.05DN to 1.06DN , where DN = DΛ−(N/2−1) is
the scaled cutoff in the N -th step. A larger M will reduce
this splitting. For example, the energies of these states range
from 0.452DN to 0.616DN for M = 4meV, and 0.532DN to
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FIG. 7. The phase diagram in the parameter space of ϵc,1, ϵf for
different ϵc,3 − ϵc,1 = G and JH . (a) G = 12meV, JH = 0
(same as Fig. 2(e) in main text), (b) G = 8meV,JH = 0, (c)
G = 12meV,JH = 0.34meV. The legend is the same as Fig. 2(e).

0.534DN for M = 5meV. The energy splitting becomes neg-
ligible for M ≥ 6meV. This numerical error should arise from
the ω-dependence of ∆(ω). Our calculations do not have this
problem for a small but constant ∆(ω). Also, our calculations
do not have this problem for the ν > 0 Kondo phase upon the
correlated insulator at CNP discussed in the main text.

3. Application to the effective model for ν > 0 states

In the absence of the Hund’s coupling JH , we can regard
(α, s) as a composite index so that ĤSI (Eq. (14)) is a U(N )
theory with N = 4. Then the flow equations in Appendix B 1
apply. For simplicity, we omit the negative branch of ∆(ω)
(Eq. (A27)) at ω < ϵc,1 because it is far away from the Fermi
level for ν > 0 (Fig. 1(d)). The positive branch of ∆(ω)
can be well approximated by ∆(ω) = ∆(0)(1 − ω/ϵc,3) for
|ω| < −ϵc,3 (Fig. 1(d),Eq. (A28)). We choose the initial cutoff
D to be the minimum value of −ϵc,3 and ∆E±. Substituting
this ∆(ω) into the general RG equations in Appendix B 1, we
obtain
dg

dt
=

4∆(0)

πU1
N g2 +

4∆(0)D

−πU1ϵc,3
(4x+2nf − 2−N )g2e−t (B31)

and
d(xg)

dt
=

4∆(0)

πU1
nfg

2 +
4∆(0)D

−πU1ϵc,3
(2x2 + nf )g

2e−t (B32)

The O(e−t) terms will eventually become irrelevant when t is
sufficiently large. Since in Eq. (B31) x only enter the O(e−t)
terms and is relevant when t is small, we approximate x with
its initial value x = ∆E−

U (Eq. (B3)) in Eq. (B31). Then the
solution of g is

g(t) ≈ 1

g−1(0)− 4∆(0)
πU1

N (t+ y(1− e−t))
, (B33)

where y ≈ ( 4∆E+

U1
+2− 2nf )

D
N ϵc,3

. The Kondo energy scale
is determined t = tK at which g diverges. Assuming tK ≫ 1,
we have

tK ≈ πU1

4N g(0)∆(0)
− y (B34)

and hence

DK ≈ D · ey · e−
πU1

4Ng(0)∆(0) . (B35)
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a. The nf = 1, 3 cases

In the presence of the Hund’s coupling, we have to exam-
ine the derivations in Appendix B 1 carefully. The most im-
portant effect of ĤH is to change the local Hilbert space at
small energy scales. In general, JH leads to a multiplet split-
ting. When the RG energy scale is smaller than the splitting,
the higher energy multiplet will become inaccessible, and the
local Hilbert space is effectively reduced. A minor effect is
that the charge gaps ∆E± will depend on JH and the resulting
coupling between f -spin and d-spin in the Coqblin–Schrieffer
model will break the U(N ) symmetry.

In the following, we study how ĤH changes the RG equa-
tions. We first consider the nf = 1 case. In the virtual particle
excitation process (Eq. (B5)), the intermediate f -multiplet is
given by |F ′⟩ = (f†

µ2
fµ′ − δµ2µ′)|F ⟩, where F is the initial

f -multiplet. (µ should be regarded as the composite index
(α, s).) As |F ′⟩ has the same particle number as |F ⟩, it must
be one of the four states with (n1↑, n1↓;n2↑, n2↓) = (10;00),
(01;00), (00;10), (00;01). All of the possible intermediate
states do not feel the Hund’s coupling (JH

∑
α nα↑nα↓) and

hence they have the same energy as |F ⟩. Hence, the excitation
energy of the intermediate state is purely contributed by d-
electrons. Then all the following derivations apply. The same
argument applies to the virtual hole excitation (Eq. (B9)).
Therefore, the RG equations for nf = 1 will not be affected
by JH . For the same reason, RG equations for nf = 3 will
also not be affected by JH , where the initial and intermediate
states are single-hole states that do not feel JH . The TK for
nf = 1, 3 is still given by Eq. (B35).

b. The nf = 2 case

The Hilbert space with two particles has six states:
(n1↑, n1↓;n2↑, n2↓) = (10;10), (10;01), (01;10), (01;01),
(11;00), (00;11). The former four states have the energy 2ϵf+
U1, and the latter two states have the energy 2ϵf + U1 + JH .
Thus JH leads to a multiplet splitting. We divide the RG
into two stages. In the first stage D(t) is larger than JH ,
then the splitting JH only plays a minor role and can be ne-
glected. Thus the RG equations in the first stage are given by
Eq. (B31). The first stage ends at t1 = ln(D/JH). If g di-
verges before t reaches t1, the Kondo energy scale should be
given by Eq. (B35)

D′
K = D · ey · e−

πU1
4Ng(0)∆(0) . (B36)

If g is still finite at t1

g1 =
g(0)

1− g(0) 4∆(0)
πU1

N
(
ln D

JH
+ yD−JH

JH

) , (B37)

then the RG goes into the second stage.
The effective cutoff and the initial g of the second stage are

JH and g1, respectively. We first examine the virtual parti-
cle excitation process (Eq. (B5)), where the intermediate f -
multiplet is given by |F ′⟩ = (f†

µ2
fµ′ − δµ2µ′)|F ⟩. Here F

is the initial f -multiplet. µ′, µ2 should be regarded as the
composite indices (α′, s′), (α2, s2), respectively. Suppose
|F ⟩ is one of the four low energy states, where each orbital
(α = 1, 2) has one electron; then, for |F ′⟩ to be a low energy
state, the index µ′ must have the same orbital index with µ2,
i.e., α′ = α2, such that each orbital (α = 1, 2) in |F ′⟩ still has
one electron. With this restriction, the four-fermion operator
in Eq. (B6) becomes

f†
α2s2fα1s1 +

∑
s′

f†
α2s′

fα2s′fα1s1f
†
α2s2 (B38)

∑
s′ f

†
α2s′

fα2s′ acting on the bra state (final state) gives nf
α2

,
which must equal to 1 given that the bra state is one of the
four low energy states. Thus the four-fermion operator equals
to δα2α1

δs2s1 . The resulting contributions to the RG equation
are

dg

dt

∣∣∣∣
p

=
4∆(D(t))

πU
(2x) g2 , (B39)

d(xg)

dt

∣∣∣∣
p

=
4∆(D(t))

πU

(
x2 + 1

)
g2 . (B40)

We second examine the virtual hole excitation process
(Eq. (B9)), where the intermediate f -multiplet is given by
|F ′⟩ = (f†

µ′fµ2 − δµ′µ2)|F ⟩. Suppose |F ⟩ is one of the four
low energy states; then, for |F ′⟩ to be in the low energy state,
the index µ′ must have the same orbital index with µ2, i.e.,
α′ = α2. With this restriction, the four-fermion operator in
Eq. (B9) can be written as∑

s′

f†
α1s1fα2s′f

†
α2s′

fα2s2 . (B41)

If |F ⟩ is one of the four low energy states, it at most occu-
pies one electron in the α2 orbital. The α2 orbital of fα2s2 |F ⟩
must be empty, implying

∑
s′ fα2s′f

†
α2s′

= 2. Thus the four-
fermion operator equals 2f†

α1s1fα2s2 . The resulting contribu-
tions to the RG equation are

dg

dt

∣∣∣∣
h

=
4∆(D(t))

πU
(2− 2x) g2 , (B42)

d(xg)

dt

∣∣∣∣
h

=
4∆(D(t))

πU

(
−x2

)
g2 . (B43)

Eqs. (B39), (B40), (B42) and (B43) are identical to equations
of the U(2) case where N = 2, nf = 1. Following the steps
of deriving Eq. (B35), we find x still flows to 1

2 , and

D′′
K ≈ JH · e−

πU1
8g1∆(0) . (B44)

The final expression for the Kondo energy scale at nf = 2
is

DK =

{
D′

K , D′
K > JH

D′′
K , otherwise

. (B45)
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FIG. 8. (a) The RG flows of the many-body spectra of the scaled
Hamiltonian H̃N (N ∈ odd) at ν = 2.5, with mean-field parameters
ϵc,1 = −38.6meV, ϵf/U1 = −1.39, G = 12.04meV. (b)(c) The
RG flows in the LMn phases (n = 2, 3), where ϵf = −(n − 1

2
)U1,

ϵc,1 = −5meV, and G = 12meV. Only spectra at N <= 5 are
shown for the same reason with Fig. 2(d). The levels are labeled by
total charge Q and the SU(4) irreducible representation. The insets
are the corresponding spectral densities.

Several features of in Fig. 7(a-c) can be understood us-
ing the poor man’s scaling result here. First, there are three
domes around ϵf = − 1

2U1,− 3
2U1,− 5

2U1 where TK is rela-
tively small. They correspond to the nf = 1, 2, 3 cases here.
From the poor man’s scaling perspective, these three ϵf ’s
correspond to the minimal initial value of the coupling con-
stant g (Eq. (B3)), which leads to smaller TK’s. Second, when
JH = 0 (Fig. 7(a)(b)), for the same ϵc,1, the dome at the left
has a lower TK than the dome at the right. This is due to when
fixing ∆E+ a larger nf means larger y and then larger TK as
argued in Sec. III B. Whe JH > 0 (Fig. 7(c)) the first dome
also has a lower TK than the third dome since JH does not af-
fect the nf = 1, 3 cases. Third, if JH > 0 (Fig. 7)(c)), when
|ϵc,1| is small (≲ 30meV), TK in the middle dome is the small-
est. The reason is that the Kondo energy scale TK for nf = 2
will be strongly suppressed due to the multiplet splitting if TK

is smaller than JH .

Appendix C: NRG results at other ϵf , ϵc1,2, G

Here, we plot the RG flows of the many-body spectra and
spectral densities at other ϵf , ϵc1,2, G in Fig. 8 from the single
impurity model as a complement to Fig. 2(c)(d). The flow
diagrams here correspond to the Kondo phase with mean field
parameters at ν = 2.5 and LM2,3 phases, respectively.

Appendix D: Hatree-Fock calculation of RKKY energy scale

In this section, we discuss how we estimate the RKKY en-
ergy scale from Hartree-Fock mean field. We consider a 1× 2
supercell respective to the origin lattice in Fig. 1(a), where the
order parameters are uniform along y direction but staggered
along a1 = 2π

3kθ
(
√
3, 1). The supercell is then invariant un-

der translations along a′1 = 4π
3kθ

(0, 1) and a′2 = 4π
3kθ

(
√
3, 0),

and the state at k could couple with the state at k±Q where
Q = kθ(

√
3
2 , 0). The order parameters in real space are de-

fined as

Of
αs,α′s′(R) = ⟨Ψ|f†

RαsfRαs′ |Ψ⟩ ,

Oc
as,a′s′(R) =

1

NM

∑
|k|,|k′|
<Λc

e−i(k−k′)R

(
⟨Ψ|c†kasck′a′s′ |Ψ⟩ − 1

2
δkk′δaa′δss′

)
. (D1)

where NM is the number of the original moiré unit cell. The
order parameters could be decomposed into a uniform part and
a staggered part as Of (R) = Of,0 + eiQ·ROf,1, Oc(R) =
Oc,0 + eiQ·ROc,1, where

Of,0
αs,α′s′ =

1

NM

∑
k∈MBZ

⟨Ψ|f†
kαsfkα′s′ |Ψ⟩ ,

Of,1
αs,α′s′ =

1

NM

∑
k∈MBZ

⟨Ψ|f†
k+Qαsfkα′s′ |Ψ⟩ ,

Oc,0
as,a′s′ =

1

NM

∑
|k|<Λc

(
⟨Ψ|c†kascka′s′ |Ψ⟩ − 1

2
δq,0δaa′δss′

)
,

Oc,1
as,a′s′ =

1

NM

∑
G

∑
|k|<Λc,

|k+Q+G|<Λc

⟨Ψ|c†k+Q+Gascka′s′ |Ψ⟩ ,

(D2)

where G runs over the reciprocal lattice vectors of the un-
folded lattice. Whereas, we only keep Q+G = ±Q for Oc,1

since other c†k+Q+G,as create states with large kinetic energy
and the corresponding order parameters are small.

For simplicity, we only consider spin density wave and
require that the electron density is uniform, i.e. νf (R) =
Tr

[
Of (R)

]
and νc,a(R) =

∑
s

[
Oc

as,as(R)
]

do not depend
on R. The interaction terms in Eq. (9) could be decomposed
into

Ĥeff
I ≈ ĤMF

U + ĤMF
V + ĤMF

W + ĤMF
J

−EU − EV − EW − EJ (D3)

with their expression listed below as

ĤMF
U =

∑
k∈fMBZ

[
(U1νf + 6U2νf − U1O

f,0
α′s′,αs)

]
(
f†
kαsfkα′s′ + f†

k+Qαsfk+Qα′s′

)
− U1

[
Of,1

α′s′,αsf
†
k+Q,αsfkα′s′ + h.c.

]
, (D4)

ĤMF
V = V0νc

∑
as

∑
|k|<Λc

c†kasckas , (D5)

ĤMF
W = νf

∑
k<Λc

∑
as

Wac
†
kasckas

+
∑

k∈fMBZ

∑
a

Waνc,a
(
f†
kαsfkα′s′ + f†

k+Qαsfk+Qα′s′

)
,

(D6)

ĤMF
J = −J

{ ∑
|k|<Λc

∑
αss′

Of,0
αs′,αsc

†
k,α+2,sck,α+2s′
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+
∑

|k|,|k+Q|<Λc

∑
αss′

(
Of,1

αs′,αsc
†
k+Q,α+2,sck,α+2s′ + h.c.

)
+

∑
k∈fMBZ

∑
αss′

[
Oc,0

α+2s,α+2s′

(
f†
kαs′fkαs + f†

k+Qαs′fk+Qαs

)
+

(
Oc,1

α+2s,α+2s′f
†
k+Qαs′fkαs + h.c.

) ]}
, (D7)

where fMBZ denotes the folded moiré Brioullion and

EU =
U1

2
NMν2

f − U1

2

∑
R

Tr
[
Of (R)Of (R)

]
+ 3NMU2ν

2
f ,

EV =
1

2
V0NMν2

c + V0

∑
|k|<Λc

4νc ,

EW = NM

∑
a

Waνc,aνf +
∑
a

∑
|k|<Λc

Waνf ,

EJ = −J
∑
R

∑
αss′

Of
αs′,αs(R)Oc

α+2s,α+2s′(R)

− J
∑

|k|<Λc

∑
αs

1

2
Of,0

αs,α,s . (D8)

We have neglected the Fock channel of ĤV as done in S4.A
[61], assuming that symmetry-breaking is mainly contributed

by f -electron.

We then do two self-consistent calculations to estimate the
relative energy between the spin ferromagnetic (FM) state
and the anti-ferromagnetic (AFM) state. To be concrete,
we choose the spin polarization at the z direction and as-
sume no orbital polarization, which means that Of is diag-
onal and Of

1s,1s = Of
2s,2s for s =↑ / ↓, while Oc is diagonal

in spin space and commute with σµ ⊕ σµ for µ = x, y, z
where σµ is Pauli matrix act on orbital space. We futher
enforce Of (a1) = Of (0), Oc(a1) = Oc(0) for FM state
and Of (a1) = ςxO

f (0)ςx, O
c(a1) = ςxO

c(0)ςx for AFM
state, where ςx is Pauli x matrix in the spin space. We then
do the self-consistent calculation as described above, yield-
ing two converged total energy (per moiŕe unit cell) EFM and
EAFM for spin FM and AFM state, respectively. We define
the RKKY energy scale JRKKY as the effective energy gain at
each nearest neighbor bond of parallel spin, where JRKKY >
0 means ferromagnetic coupling and JRKKY < 0 means anti-
ferromagnetic coupling. Then the FM and AFM state gain en-
ergy of −3JRKKY, JRKKY per moiŕe unit cell, respectively,
for which we can extract JRKKY = 1

4 (EAFM − EFM). We
plot JRKKY as a function of ν in Fig. 4(f).

[1] Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe,
Takashi Taniguchi, Efthimios Kaxiras, and Pablo Jarillo-
Herrero, “Unconventional superconductivity in magic-angle
graphene superlattices,” Nature 556, 43–50 (2018).

[2] Yuan Cao, Valla Fatemi, Ahmet Demir, Shiang Fang,
Spencer L. Tomarken, Jason Y. Luo, Javier D. Sanchez-
Yamagishi, Kenji Watanabe, Takashi Taniguchi, Efthimios
Kaxiras, Ray C. Ashoori, and Pablo Jarillo-Herrero, “Cor-
related insulator behaviour at half-filling in magic-angle
graphene superlattices,” Nature 556, 80–84 (2018).

[3] Rafi Bistritzer and Allan H. MacDonald, “Moiré bands in
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