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Differential equations are a ubiquitous tool to study dynamics, ranging from physical systems to
complex systems, where a large number of agents interact through a graph with non-trivial topolog-
ical features. Data-driven approximations of differential equations present a promising alternative
to traditional methods for uncovering a model of dynamical systems, especially in complex systems
that lack explicit first principles. A recently employed machine learning tool for studying dynamics
is neural networks, which can be used for data-driven solution finding or discovery of differential
equations. Specifically for the latter task, however, deploying deep learning models in unfamiliar
settings—such as predicting dynamics in unobserved state space regions or on novel graphs—can
lead to spurious results. Focusing on complex systems whose dynamics are described with a system
of first-order differential equations coupled through a graph, we show that extending the model’s
generalizability beyond traditional statistical learning theory limits is feasible. However, achieving
this advanced level of generalization requires neural network models to conform to fundamental
assumptions about the dynamical model. Additionally, we propose a statistical significance test to
assess prediction quality during inference, enabling the identification of a neural network’s confidence
level in its predictions.

I. INTRODUCTION

Coupled differential equations serve as a fundamental
modeling tool for dynamical systems, enabling classical
analyses such as stability and control. In its simplest
form, a dynamical system is defined as a set of coupled
ordinary differential equations ẋ(t) = FFF(x, t) that de-
scribe the rate of change of a dependent variable x at
time t. Discovering a dynamical model entails the task
of finding a suitable vector field FFF , and requires a deep
understanding of first principles from, e.g. fluid or solid
mechanics, as well as insights derived from experiments
and, above all, creativity.

In today’s data-rich world, there is an allure to leverage
this abundant resource for synthesizing FFF . One popular
approach involves utilizing symbolic regression analysis
to determine the elementary functions that constitute
FFF [1–4]. However, these techniques assume that parsi-
monious enumeration of the dynamics in terms of known
basis functions exists, is finite, and is possible to deter-
mine. This may not always be the case [5], especially if
no prior knowledge about a system is available [6]. To
guarantee that any vector field can be expressed with
symbolic regression, one would need to resort to a dic-
tionary that spans infinite dimensional functional spaces
(as is the case for a Fourier basis). Generally, the sys-
tem identification task solved by symbolic regression us-
ing experimental data is NP-hard for both classical and
quantum systems [7, 8].

Instead of identifying the elementary functions that
constitute FFF , an alternative and appealing method ap-
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a) b)

FIG. 1. Reconstruction of a two-dimensional vector field rep-
resenting mass-action kinetics (MAK) i.e., protein-protein in-
teraction dynamics [9, 10] (see Tab. I for definition) a) uti-
lizing a feed-forward neural network, and b) utilizing a dedi-
cated graph neural network that conforms to inductive biases,
appropriate for modeling dynamics described as a system of
coupled ordinary differential equations. The application of
these biases extends the domain of vector-field approxima-
tion for MAK dynamics well beyond the range of our training
data, indicated as black crosses.

proximates the vector field using a feed-forward neural
network [11, 12], which is a universal function approx-
imator for continuous functions between two Euclidean
spaces [13, 14]. Within the bounded support of train-
ing data, the accuracy of approximation of a deep learn-
ing model is guaranteed by the Universal Approxima-
tion Theorems (UAT) for various deep neural networks
including those with arbitrary depth [15, 16], bounded
depth and width [17], and permutation invariant neural
networks operating on sets or graphs [18–20].

While UAT does not give a recipe for how to find the
weights of neural networks, potentially non-globally opti-
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mal solutions found through gradient descent in practice
give good approximations [21–25] for various tasks re-
lated to dynamical systems, such as control [26–28] and
forecasting [29, 30].

However, if a neural network is used to understand dy-
namical systems by, e.g. extrapolating predictions in re-
gions of state space that were not observed during train-
ing, it needs to have an ability to generalize. Such gen-
eralization capacity is not guaranteed by UAT and has
traditionally been studied through the lens of the Statis-
tical Learning Theory (SLT) [31, 32], which provides dif-
ferent generalization bounds [33] for trained models that
rely on the assumption of the independent and identically
distributed (i.i.d.) sampling of training and test data.
Importantly, learning to generalize is impossible with-
out appropriate inductive biases [34–36]. An architecture
that disrespects the physical realism of the true dynam-
ical model (adheres to wrong inductive biases) may lead
to an abrupt cut-off from the domain within which the
model performs well, i.e. the training setting.

Fig. 1 illustrates the importance of inductive biases for
generalization of the model of dynamics. The dynamics
depicted here is described by a system of two first order
ordinary differential equations ẋ1 = F −Bxb1 +Rx2, and
ẋ2 = F − Bxb2 + Rx1. Note that there exists a mirror
symmetry between the variables x1 and x2. The neural
network model in Fig. 1a) does not account for this sym-
metry and does not generalize beyond the training data’s
support. The prediction of a dedicated graph neural net-
work model, as shown in Fig. 1(b), which is proposed in
this paper, utilizes an inductive bias that the vector field
is invariant under the transformation x1 ↔ x2. This al-
lows the model to form predictions about the vector field
beyond the training domain. This example not only il-
lustrates one possible violation of UAT assumptions, but
also a possibility to stretch the model’s generalization
capacity with appropriate inductive biases. The second
kind of violation often comes in forecasting problems,
which is even more challenging, since it involves making
consecutive predictions in time, where numerical errors
accumulate [37, 38].

In this paper, we show that graph neural networks’ ca-
pacity to generalize can be stretched to form predictions
in scenarios that go beyond the classical boundaries of
UAT and SLT. However, to achieve this level of general-
ization, the neural network models have to adhere to ba-
sic assumptions about the vector field that describes the
dynamics. To measure the limitations of neural network
generalization capacity during inference, we also define a
statistical significance test, driven by the allowed fluctu-
ations of the model variance.

We concentrate on a sub-domain of dynamical systems
known as complex systems. Complex systems are of-
ten modeled as networks (graphs) composed of a large
number of interdependent, internally equivalent elements
called agents [39, 40]. The emergent behavior and glob-
ally observed features of these systems arise from the
local interactions among agents. Examples of complex

systems include ecosystems, economies, the brain, as well
as social networks. We consider a general class of dynam-
ical models on networks [9] where the change in the state
of each agent i, denoted as ẋi(t) ∈ Rk, depends not only
on its own state xi(t) but also on the sum of the states
of its neighbors:

ẋi(t) = L(xi(t)) +
⊕

j

Aij(t)Q(xi(t),xj(t)) (1)

= FFF(xi(t),x(t),A(t)),

where x(t) ∈ Rn×k is a tensor that collects states of all n
nodes at time t. This system can be described by a sys-
tem of first order ordinary differential equations (ODEs),
where A(t) ∈ Rn×n represents a potentially time-varying
network adjacency matrix of a graph G, L is a function
that describes self-interactions, Q is a function that mod-
els pairwise interactions between neighbors, and

⊕
de-

notes an aggregation function. Dynamical systems of ar-
bitrary size and connectivity structure can be described
using the same functions L,Q,

⊕
thereby entailing the

same type of dynamics, only on a different network.

By making appropriate choices for the functions L, Q,
and

⊕
, Eq. 1 can represent a wide variety of models

for complex network dynamics [9], including biochemi-
cal dynamics, birth-death processes, spreading processes,
gene regulatory dynamics [9], as well as chaotic [41], dif-
fusive [42], oscillatory [43], neuronal [44] dynamics. It is
worth noting that for many complex systems, the dynam-
ical model, i.e., the functional forms of L, Q, and

⊕
re-

mains unknown, as there are no first principles [45] from
which such models can be derived ab initio, making data-
driven approaches a particularly alluring option. Note
that although the Eq. 1 is general, it does not encom-
pass all categories of dynamical systems, including non-
local [46] and stochastic [47] dynamics, which are avenues
for future research. Furthermore, in this study we will
concentrate on a simple case of local interactions-driven
deterministic, autonomous, time-invariant dynamics that
occurs on undirected, unweighted, static graphs.

The paper is organized as follows. In Sec. II, we in-
troduce a prototype neural network model, denoted as
ΨΨΨ, designed to approximate the dynamical system FFF de-
scribed by Eq. 1, as well as a general learning setting for
the task of approximating FFF . In Sec. III, we define the
generalization capacity of a neural model for dynamics
through a series of test settings that extent beyond the
conventional boundaries of SLT. In Sec. IV, we outline
the statistical significance test that identifies the limit
of a neural network’s generalization capacity. Lastly, in
Sec. V we assess the generalization capacity of the pro-
posed model as well as our ability to quantify prediction
accuracy.
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II. A GRAPH NEURAL NETWORK MODEL
FOR THE VECTOR FIELD OF COMPLEX

NETWORK DYNAMICS

To approximate a dynamical system with a neural net-
work, we need to learn the vector field FFF : Rn×k → Rn×k

which describes the change in the state of system’s vari-
ables x(t). While we are free to choose any neural net-
work for the task, some models allow for more efficient
training and better generalization than others. A natural
candidate neural network is that which mimics the struc-
ture of the function that is approximated. Therefore, for
dynamics on a complex network, a neural network model
should resemble Eq. 1. Since the functions L,Q,

⊕
are

independent of the graph structure and the system size, a
neural network model may also posit such independences.
A graph neural network (GNN) [48, 49] ΨΨΨ is naturally
suited for this task, as it is an universal function approx-
imator and exhibits permutation invariance with resepct
to the ordering of nodes, xi. Furthermore, the number of
parameters in a GNN scale w.r.t. k, and not with n, thus
significantly reducing the dimensionality of the task.

Since Eq. 1 consists of separate and potentially differ-
ent functions that describe the self- and the neighbor-
interactions, namely L and Q, we separate ΨΨΨ into two
separate functions:

ẋ = ψψψself(x) +ψψψnbr(x), (2)

Here ψψψself(·) is a simple feed forward neural network with
one or more hidden layers. Each hidden layer applies a
linear transformation followed by a non-linearity σ to an
output of the previous layer. Starting from an input h0

which is a tensorized x, the transformation at each layer
α ∈ {1, ..., N} is defined as

hα = σ(hα−1W
⊤
α + bα).

Here Wα ∈ Rdα×dα−1 is a weight matrix, and b ∈ Rdα

is a bias term. The output of the N th — last — layer is
the output of the neural network.

The neighbor-interaction term ψψψnbr must include
quadratic terms xixj that are a likely functional form
of Q. A prototypical single-layer graph neural network,
such as a convolutional graph neural network does not
simply satisfy such a condition. However, including mul-
tiple graph neural layers may cause other problems. Note
that Eq. 1 considers local interactions: per infinitesimal
unit of time, a signal propagates from a node to its im-
mediate neighbors. A multi-layer graph neural network
would include terms Aκ that allow for κ-hop interactions
via length κ walks in a network at a timescale smaller
than the infinitesimal dt thereby subdividing dt to κ in-
tervals and breaking an assumption of temporal locality.

To ensure that ψψψnbr includes quadratic terms, but no
powers of adjacency matrix, we define it as a pair of feed
forward neural networks, integrated through a graph ad-
jacency matrix [50] and an aggregation function:

ψψψnbr(x) = ψψψ
⊕ [

A⊙
(
ψψψq1(x)⊤1 ×b ψψψ

q2(x)⊤2
)]
. (3)

Here ψψψ
⊕

(·),ψψψq1(·),ψψψq2(·) are feed-forward neural net-
works (single-layer or multi-layer), an operator ⊙ de-
notes a standard “broadcasted” element-wise multipli-
cation, while ×b indicates a “batched” matrix-matrix
product; ⊤1,⊤2 denote specific transpose operations.
ψψψ

⊕
is an invariant pooling layer, which is an opera-

tion that maintains the invariance with respect to the
order of inputs [18–20] when aggregating neighbor inter-
action terms. Other forms of a GNN are possible, as long
as they adhere to relevant inductive biases for dynami-
cal systems), see Sec. I in the Supplemental Information
(SI) for further discussion, along with the details for all
neural network mappings for the GNN described here.
The importance of inductive biases is revealed through

comparison of the model outlined here to other graph
neural network models [51–55], that take the graph struc-
ture into the account but may not conform to other bi-
ases regarding complex network dynamics. We found
that a graph neural network that: (i) separates self-
and neighbor-interaction terms; (ii) includes only κ = 1
power of adjacency matrix; and (iii) includes quadratic
terms xixj , significantly outperforms in its generaliza-
tion ability other state-of-the-art deep graph neural net-
works [56]: SAGEConv [53], GraphConv [51], ResGat-
edGraphConv [52], GATConv [55], ChebConv [54]. To
further test our hypothesis on appropriate inductive bi-
ases, we have reduced the tested deep GNNs to shal-
low (single graph convolutional layer) models. We found
that the shallow models perform better than their multi-
layer counterparts. Notably, the ResGatedGraph-
Conv model [57], which closely aligns with the model
discussed in this section, demonstrates good generaliza-
tion ability. The detailed results of this analysis are pre-
sented in Sec. IV of the SI.

A. Learning setting

The training and test data are defined as D =
{(x,y)}, s.t. x ∈ Rn×k,y ∈ Rn×k. The best neural ap-
proximation ΨΨΨ∗ is obtained by minimizing the loss L be-
tween the true labels y and the predicted labels ŷ in the
training data:

ΨΨΨ∗ = arg min
ΨΨΨ:Rn×k→Rn×k

E
P(x,y)

L(ŷ,y),

where ŷ = f(ΨΨΨ,x, θθθ),

and θθθ are non-trainable parameters necessary to estimate
ŷ, e.g. adjacency matrix A. In the subsequent sections,
we will omit the superscript “∗” and refer to the best
model obtained after training as ΨΨΨ. The results pre-
sented in the subsequent sections were obtained using
the normalized ℓ1 norm:

L =
1

Z

[
E(x,y)∈D

[
∥y − f(ΨΨΨ,x, θθθ)∥1 (4)

+ λVari ∥yi − fi(ΨΨΨ,x, θθθ)∥1
]]
,
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where ∥·∥1 denotes the ℓ1 norm and the normalization
Z = nk. ℓ1 is a preferred choice due to its robustness
in high-dimensional spaces which are often susceptible
to the curse of dimensionality when using other metrics
like ℓ2 [58]. Additionally, its inherent interpretability is
particularly suitable for our generalization analysis.

The loss per each sample, or node, can be further
weighed to reduce bias towards optimizing for common
nodes at a cost of poor predictions at rare nodes [12].
Instead of such weighting, we adopt a regularizer that
penalizes solutions with high variance in the loss across
nodes, without a priori defining which nodes are impor-
tant.

In Sec. VA and Sec. VB, we will consider cases where
labels originate from a vector field y = FFF(x) and ŷ =
ΨΨΨ(x). In Sec. VA and Sec. VBa, we will consider analyti-
cally computedFFF(x), whereas in Sec. VBb it will be com-
puted numerically, following a Newton’s quotient rule.
Lastly, in Sec. VC, we will discuss training with labels de-
rived from noisy trajectories: y = I[FFF ,x,A, t1, t2]+εεε and
predicted labels defined as ŷ = I[ΨΨΨ,x,A, t1, t2]. Here εεε
denotes observational noise, and numerical integration is
denoted as

I[g,x,A, t1, t2] = x+

∫ t2

t1

g(x′,A)dτ. (5)

Note that the time step dτ in the numerical integration
may be different for the true and the predicted labels.

Let us further denote probability density functions as-
sociated with a training setting by ϕ, and with a test
setting by ω. For training, we consider two types of
datasets: x ∼ ϕx(x) are i.i.d. samples from a pre-defined
distribution, or non-i.i.d. samples {x(t)} obtained by nu-
merical integration x(t) = I[FFFFFFFFF ,x0, t0, t] with a random
initial condition x0 ∼ ϕx0

(x).

III. GENERALIZABILITY OF A NEURAL
NETWORK MODEL OF DYNAMICS

Neural networks belong to the class of over-
parameterized models, whose training through gradient
descent and generalization are currently not fully un-
derstood within classical SLT [59–61][62]. Furthermore,
since real training data would be in the form of non-i.i.d.
time series trajectories that likely do not comprehensively
cover the state space, it remains unclear whether such
data is adequate to reconstruct FFF . Therefore, in this sec-
tion, we introduce various test settings for neural models
of complex network dynamics and define a model’s gen-
eralization capacity as its ability to make accurate pre-
dictions across increasingly challenging test settings, as
well as test settings that increasingly diverge from the
training setting.

A neural network may be used to perform three dis-
tinct tasks, which, in the context of this paper, we define
as approximation, prediction, and forecasting. Approxi-
mation of dynamics pertains to the ability of accurately

learning the vector field. In other words, a good ap-
proximation is achieved if the trained model possesses a
low ’in-sample’ loss, i.e., the loss on the training data.
Approximation capacity of neural networks is generally
guaranteed by UAT.

The next two tasks, prediction and forecasting, relate
to model’s increasing generalizability capacity. Predic-
tion of dynamics considers how well a model performs
“out-of-sample”, i.e. when it is tested on a data which
is not part of the training set. For example, in standard
SLT, one considers model’s ability to extrapolate to un-
seen input datapoints which are sampled from the same
probability distribution function as the training data. A
more generalizable model is that which can achieve a loss
as low as during training in more general settings, for
example, when the equivalence between probability dis-
tributions is relaxed, or when the training and test data
have different support. We note that SLT offers no per-
formance guarantees when the statistical properties of
the test data deviate from those of the training data.
Furthermore, when the support of the test data is not
equivalent to the support of the training data, UAT is
no longer valid, since it is built upon an assumption that
an approximated function has a compact support [63]. It
is worth noting that the last condition is typically ab-
sent in traditional machine learning approaches, as an
input standardization step ensures that the model never
receives inputs outside the range of values it was trained
on [64]. However, in the context of dynamical systems,
standardization would modify the dynamics’ outcomes
and break connections to physical reality, as distinct in-
puts would be non-injectively mapped to the same stan-
dardized values.

Specifically in the context of complex network dynam-
ics, prediction may also entail the substitution of the
graph utilized during training with an alternative graph.
To study network effects, a neural model needs to form
reliable predictions when the interaction rules are pre-
served, but the dynamical system is different in terms of
who interacts with whom, or the network size. For ex-
ample, one can consider a test graph from the canonical
ensemble [65] of the training graph [66], or a graph with
different size.

Lastly, a special type of prediction is forecasting,
whereby a model can be used to form m-step predictions
to the future. Accurate long-term predictions of dynam-
ics are difficult for both numerical calculators and neural
networks alike, because error accumulation can cause di-
vergence in finite time [38].

All in all, we underscore that a model can strive for
various degrees of generalization, from approximation to
predictions and, finally, forecasting. It is also important
to consider the data which was used during training: a
model trained using non-i.i.d. time series data may adopt
biases that would lead to poorer prediction capacity out-
side the training setting. Therefore, in Sec. V we will
assess the performance of the GNN presented in Sec. II
in performing all of these tasks, using both data that
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adheres to SLT assumptions as well as time series data.

IV. NEURAL NETWORK NULL MODEL

As a means to gauge the representativeness of the pre-
diction during inference, we suggest using a statistical
hypothesis test, based on a dedicated null model.

Null model Let us consider an ensemble {ΨΨΨm} of over-
parameterized neural networks that are trained on boot-
strapped versions of training data D. Each ΨΨΨm is a re-
alization of a random variable, where the sources of ran-
domness are the stochastic nature of the optimization
algorithm and the initialization of weights. Our ansatz
is that an ensemble of neural networks disagrees more
on the estimate of the vector field FFF as the test sam-
ples diverge from the training setting. Fig. 2 shows an
example of such behaviour, where the variance of overpa-
rameterized neural networks {ΨΨΨm} indeed increased once
we departed from the training range.

a) b)

FIG. 2. An ensemble of 10 overparameterized feed forward
neural networks {Ψm(x)} trained independently to approx-
imate F(x) = cos 2x within the range [−2, 2] (50 training
samples are indicated with black circles). a) Predictions of
the models outside the training range, x ∈ [−5, 5]. b) Sample
variance across ensemble of neural networks {Ψm(x)}.

d-statistic One possible statistic to quantify accept-
able amount of model variance is the variance across neu-
ral networks in the prediction of ith node’s derivative i.e.
d(xi) = Var(ΨΨΨm(xi)) — the variance term in the bias-
variance decomposition [67]. In the case that the node
state variable xi is multi-dimensional (k > 1, but not too
large), one can generate the null distribution fd(ξ) and
perform a statistical test for each dimension separately.

To estimate the d-statistic, we first train a total of M
neural networks using, for each, a different bootstrapped
sample of the same dataset D. The distribution of d-
statistic, fd(ξ) is then obtained by repeatedly taking a
size m sub-sample of neural networks and computing a
d-statistic of some input xi. By analyzing variance in
such a bootstrapped dataset, we estimate the effect of
changes in the training data on the estimated models,
thereby performing a form of stability analysis.

Significance test Since we expect the variance across
models to increase, i.e. to fall to the right of the null
distribution fd(ξ), an appropriate significance test is

right-tailed. A null hypothesis H0 tests whether, for a
given test data point x∗

i , a corresponding value of the
d-statistic, d∗ comes from a null distribution fd(ξ) that
is generated by the null model. We reject this hypothesis
if the p-value, defined as

p := 1−
∫ d∗

0

fd(ξ)dξ ≡
∫ ∞

d∗
fd(ξ)dξ ≤ α, (6)

where we set α = 0.05 in the discussed analysis.
The significance test cannot tell whether the estimated

derivative is close to the ground truth derivative, as the
test does not estimate the bias term in bias-variance de-
composition. Nevertheless, as is evident in Fig. 2 as well
as Fig. 5 discussed in the next section, the d-statistic is
correlated with the average loss on the test dataset. As
the total error can be decomposed into the variance and
bias terms, high variance necessarily indicates high error.
The opposite, however, is not necessarily true, since an
ensemble of models could be very certain about a very
wrong prediction.

V. APPROXIMATION, PREDICTION AND
LONG-RANGE FORECASTING OF DYNAMICS

In this section, we detail the primary findings of this
paper, focusing on neural approximation, prediction and
forecasting of complex network dynamics. We commence
by examining scenarios in Sec. VA under the premise
that the functionFFF is accessible for analytical estimation.
In this section, we also employ training data drawn from
a uniform distribution U(0, 1), ensuring uniform coverage
of the state space. This approach minimizes model bias
towards any specific regions within the state space. In
Sec. VB, we relax the assumption of i.i.d. training data
to explore the models’ ability to predict and to forecast
dynamics given more realistic training conditions. Addi-
tionally, in this section we employ the statistical signif-
icance testing to quantify the models’ confidence in the
prediction. We end this section with a discussion on con-
siderations regarding training with noisy and irregularly
sampled time series data. The training details are listed
in Sec. III of SI.

A. Approximation and prediction of complex
network dynamics

Here we consider approximation and prediction of five
models of complex network dynamics with k = 1 variable
per node: mass-action kinetics (MAK), population dy-
namics (PD), Michaelis–Menten (MM) equation, suscep-
tible–infectious–susceptible (SIS) model discussed in [9],
as well as heat diffusion (Heat) [68]. The true functional
forms of these models are listed in Tab. I. The train-
ing graph is sampled from an Erdös-Rényi (ER) network
ensemble [69] with n = 100 nodes and edge probability
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Dynamics L Q
Train data
x ∼ U(0, 1)
G ≡ Gtrain

Test data
x ∼ U(0, 1)
G ≡ Gtrain

Test data
x ∼ B(5, 2)
G ≡ Gtrain

Test data
x ∼ U(0, 1)

G ∼ Ptrain(G)

Test data
x ∼ U(0, 1)
G ∼ Ptest(G)

Heat – B(xj − xi) 0.8± 0.08 0.81± 0.08 1.06± 0.1 0.8± 0.8 0.72± 0.72
MAK F −Bxbi Rxj 0.55± 0.07 0.55± 0.07 0.53± 0.08 0.56± 0.56 0.48± 0.48

MM −Bxi R
xh
j

1+xh
j

1.79± 0.26 1.81± 0.29 1.48± 0.29 1.8± 1.8 2.66± 2.66

PD −Bxbi Rxaj 2.6± 0.3 2.59± 0.29 2.23± 0.32 2.59± 2.59 1.27± 1.27
SIS −Bxi R(1− xi)xj 0.29± 0.03 0.29± 0.03 0.31± 0.02 0.29± 0.29 0.87± 0.87

TABLE I. The percent relative error (all numbers are in % unit), Eq. 7 of neural network approximation and predictions
shows robust genralization ability. The reported results are sample mean and standard deviation of η. The first results column
reports approximation accuracy or the error on the training data Dtrain, where the input graph G = Gtrain. The remaining
columns report model prediction accuracy or the error on the test data Dtrain. From the left, we sample test data from the same
distribution as training data, namely D : {x ∼ U(0, 1),FFF(x)}; we then use a different distribution: D : {x ∼ B(5, 2),FFF(x)}.
In both cases, we form predictions on the graph used during training. Lastly, we use test data from the same distribution as
training data but consider novel input graphs: first, we sample from the training graph’s network ensemble (Ptrain(G): ER,
n = 100, p = 0.1), and, lastly, we sample from a different network ensemble (Ptest(G): ER, n = 100, p = 0.6).

1 2 3 4 5 6 7 8 910
1
2
3
4
5
6
7
8
9

10

b

a)
Heat

1 2 3 4 5 6 7 8 910

b)
MAK

1 2 3 4 5 6 7 8 910
a

c)
MM

1 2 3 4 5 6 7 8 910

d)
PD

1 2 3 4 5 6 7 8 910

e)
SIS

10 1

100

101

Ra, b

FIG. 3. The ratio Ra,b between prediction error and the approximation error shows robust generalisation for small changes
in distribution parameters. The prediction error is a sample mean obtained when test data D : {x ∼ B(a, b),FFF(x)}, the
approximation error is a sample mean obtained using Dtrain.

p = 0.1. To quantify the performance of a model, trained
using a graph Gtrain and data samples Dtrain, we consider
the percent relative error computed using ℓ1 norm:

η(x ∈ D,G) = ∥ΨΨΨ(x,G)−FFF(x,G)∥1
∥FFF(x,G)∥1

· 100, (7)

where x is a sample from a dataset D, and G is an input
graph with adjacency matrix A.

In Tab. I, we compare the sample mean ⟨η(x,G)⟩x∈D
in approximation to various prediction scenarios. When
x ∈ Dtrain,G = Gtrain, ⟨η⟩ is an in-sample error, or the
approximation accuracy. Across different models, we ob-
serve that the in-sample error is less than 3% for all dy-
namics. Furthermore, when test data is sampled from
the training data’s probability distribution U(0, 1), the
prediction accuracy is equal to the approximation ac-
curacy, indicating a lack of overfitting. However using
test data sampled from a different — beta distribution
(x ∼ B(5, 2)) — reveals small deviations from the in-
sample error: the prediction accuracy may be better or
worse than the approximation accuracy, depending on
the dynamics. To study this effect in greater detail, we
considered the ratio Ra,b between prediction and approx-
imation accuracy where the former is computed using

samples from a beta distribution, characterized by pa-
rameters a, b. As shown in Fig. 3, Ra,b varies minimally
depending on the distribution of the test data, indicat-
ing that it is possible to form accurate predictions on test
data that has different statistical properties from training
data. Note that for most dynamics, the biggest discrep-
ancy between prediction and approximation accuracy is
in the region a = 1, b > 5, where the beta distribution
becomes increasingly right-skewed, meaning that a large
portion of the distribution’s mass is concentrated near 0,
with a long tail extending towards 1. As the entries in
x tend towards zero, ΨΨΨ(x) converges to a constant value
that remains unaffected by the inputs. Under these con-
ditions, the difference between FFF(x) and ΨΨΨ(x) is solely
attributed to the bias terms b within the linear layers.
These bias terms may not necessarily provide an accu-
rate approximation of the constant value to which ΨΨΨ(x)
is converging.

Next, we study the prediction quality of models trained
on one graph and applied on novel graphs. In the last
two columns of Tab. I, we consider two new graphs, one
sampled from the ensemble of the training graph Gtrain

(G ∼ Ptrain(G)), another graph sampled from a denser
Erdös-Rényi ensemble (G ∼ Ptest(G)), with n = 100 and
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FIG. 4. Prediction error when the train graph is replaced
by a novel graph, as a function of a) the density of the novel
graph G, p, and b) the size of the novel graph, |G|. The neural
networks were tested using samples from uniform distribution
and 10 different ER graphs with parameters p, n. The lack of
correlation between the error and the size or a density of a
graph suggests that neural network models of dynamics can be
repurposed to form predictions on novel graphs not observed
during training.

p = 0.6). The prediction accuracy matches the approxi-
mation accuracy for predictions on a graph from Ptrain;
however, when applied to graphs from an ensemble with
statistical properties differing from those of the training
graph, the accuracy of these predictions diverges from the
approximation accuracy. The larger errors observed in
MM and PD dynamics could be attributed to the inher-
ent non-linearity of their equations. Overall, however, as
we shown in Fig. 4, a neural network that approximated
dynamics in a system of size n is able to make predic-
tions on different graphs of different size and connectiv-
ity, while maintaining a small relative error. It implies
that the learned representation encapsulates a form of
conditional independence between the dynamics it models
and the particular training graph, and a neural network
can be successfully reused to model dynamics on another
graph.

B. Long-range forecasting of dynamics from time
series data

Now we turn our attention to forecasting and training
using more realistic data, derived from time series. In this
section, we also study the d-statistic, and its potential to
quantify the reliability of the forecasts.

a. Forecasting k = 1 dynamics with a neural network
trained using analytical derivatives As a first test, we
again consider k = 1 dynamics defined in the previous
section. To construct the d-statistic, a set of 50 neural
networks were trained on data D = {x,FFF(x)} where x
was taken from five time series trajectories, and the dy-
namics were simulated on an ER random graph Gtrain

with n = 10, p = 0.5. The trajectories were generated by
solving the initial value problem, with initial conditions
sampled from U(0, 1).

Given that F(x) approaches zero as the dynamics ap-
proaches a steady state, we opt not to consider η for
evaluating the accuracy for individual data samples x.

Instead, as detailed in Tab. II, we present the percent
relative error for the full forecasted trajectory:

ηtraj(x0,G) =
∑

tr
∥I[ΨΨΨ,x0,A, t0, t]− I[FFF ,x,A, t0, t]∥1∑

tr
∥I[FFF ,x,A, t0, t]∥1

· 100

(8)

where the integral I is defined in Eq. 5, A is an adja-
cency matrix of G, the initial conditions x0 are novel
for the neural networks, t0 = 0, tr ∈ {t0, t1, ..., tR},
δr = tr+1 − tr = 0.0101 ∀r. The results suggest that
forecasts on the training graph Gtrain consistently achieve
accuracy ηtraj(x0,Gtrain) significantly below 5%. More-
over, neural networks trained on a graph with n = 10
nodes can effectively make long-term forecasts not only
on the graphs they were initially trained on but also on
new, unseen graphs, such as an Erdős-Rényi (ER) graph
with n = 15 nodes and p = 0.3. Fig. 5b showcases the
dynamics on Gtest as predicted by one of the trained neu-
ral networks, accompanied by a measured d-statistic that
evaluates the neural network’s confidence in its predic-
tions.

Dynamics G ≡ Gtrain G ≡ Gtest

Heat 0.14± 0.05 0.19± 0.07
MAK 0.39± 0.11 0.56± 0.15
MM 4.02± 0.53 5.07± 0.76
PD 0.54± 0.07 1.6± 0.13
SIS 1.75± 0.28 2.62± 0.51

TABLE II. Forecasting accuracy in terms of the percent rel-
ative error for the full forecasted trajectory, ηtraj(x0,G), de-
fined in Eq. 8. All values are in % units. The left column re-
ports the accuracy of forecasting dynamics on Gtrain, whereas
the second column reports the accuracy in the forecast on a
novel graph, here, ER with n = 15, p = 0.3. In both cases,
the initial value x0 ∼ U(0, 1).

While the forecasts in Fig. 5b) looks accurate across
different dynamics, the d-statistic indicated low confi-
dence in the MAK and PD forecasts despite the seem-
ingly precise predictions, suggesting a “false negative”,
where the prediction is accurate, but the model ensem-
ble is not confident in it. However, generally, we observe
a consistent correlation between the d-statistic and out-
of-sample loss. This is illustrated in Fig. 5a), where a
monotonic increase in error is observed as the initial con-
dition increasingly diverges from the domain of the initial
condition that was used to generate training trajectories.
This increase is accompanied by a rise in data points re-
jected by the statistical significance test, highlighting the
d-statistic’s potential as a marker for the model’s opera-
tional domain.
b. Forecasting k = 2 dynamics with a neural network

trained using numerical derivatives So far, we have op-
erated with an assumption that FFF is available. However,
in practical situations, the training data would be derived
from time series {x(t)}. Importantly, ẋ = FFF(x) would
not be an observable. To address this, if we collect R
signal samples x(tr) at times tr ∈ {t0, t1, ..., tR}, we can
approximate the labels for our training data numerically,
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FIG. 5. Forecasts of five complex network dynamics are accurate both on a graph used during training, as well as on novel
input graphs. The d-statistic successfully identifies the limit of model’s generalization. a) compares the training loss (green
triangle) with the test loss (purple circles), as a function of ∆, where the initial value x(t0) ∼ U(0, 1) + ∆. The orange circles
indicate the fraction of rejected data points based on the d-statistic for a given ∆. Here the test graph is isomorphic to the
training graph. In b), we changed the test graph to a larger one, n = 15, p = 0.3 and contrast the true dynamics (solid lines)
and the neural network forecasts (dotted lines) for a new set of initial values that are sampled from the training distribution.
The insets contrast the cumulative distribution of the d-statistic in training data (purple) and in test data (orange) and show
the distributions in the range up to a critical value for the significance level of 5%. The title reports the percentage of accepted
data points, i.e. the percentage of datapoints for which the corresponding d-statistic fell within the 95% of the null (purple)
distribution.

e.g. y = ẋr ≈ x(tr+1)−x(tr)
δr

, where δr = tr+1 − tr.
To test the ability of neural networks to forecast

the dynamics in this case, we study Fitzhugh-Nagumo
(k = 2) neuronal dynamics (FNH) [44] on an empirical
network of Caenorhabditis elegans (C. elegans) connec-
tome [70][71], with n = 279 neurons. The dynamics for
each node is defined as [72]

dxi,1
dt

= xi,1 − x3i,1 − xi,2 −
ρ

kini

n∑

j=1

Aij(xj,1 − xi,1)

dxi,2
dt

= a+ bxi,1 + cxi,2,

where ρ, a, b, c are constants detailed in the SI. This dy-
namics describes neural spikes, with nonlinear dynamics
of membrane voltage xi,1 of sodium channel reactivation,
and xi,2 potassium channel deactivation after external
stimulus. Note that this type of non-linear dynamics ex-
hibits rich bifurcation properties [73]. We constructed
training data from one time series trajectory and trained
an ensemble of M = 20 neural networks to evaluate the
quality of predictions of a novel trajectory using the d-
statistic. As Fig. 6 shows, overall, the graph neural net-
work model is capable of approximating neuronal dynam-
ics in C. elegans and forming long-term forecasts using
novel initial values. However, the prediction quality may

vary across nodes: the forecast for a node 0 is accurate for
the full forecasting window (b,c), whereas for a node 137
it is reasonably accurate for the first cycle up to t = 10,
which is equivalent to ≈ 1000 forecasted segments, after
which the forecast diverges from the true trajectory (e,f).
By considering the variance in model prediction, we ob-
serve that the prediction for a node 0 is accompanied
by a high acceptance rate of the d-statistic, whereas the
prediction for a node 137 is deemed largely insignificant.
The exact reasons of the correlation between out-of-

sample loss and the variance in model prediction, while
not fully explored within the scope of this paper, could
be attributed to inherent properties of the dynamical sys-
tems under study, such as Lipschitz continuity, and the
neural network’s intrinsic spectral learning bias towards
low-frequency components [74–76]. Therefore, some part
of the generalization out-of-range may be due to the dom-
inance of low frequencies in the decomposition of func-
tions FFF we considered.

C. Learning & predictions in presence of noise and
irregular sampling

The dataset derived from time series could furthermore
be sampled at potentially irregular intervals and be sub-
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FIG. 6. Forecasting FitzHugh-Nagumo Neuronal Dynamics (k = 2) on a C. elegans connectome graph. The forecasts is
produced solving an initial value problem for a novel initial condition sampled from a uniform distribution. Panel a) illustrates
the connectome, with edge transparency reflecting the synaptic weight magnitude. Panels b) and e) compare true (blue dashed
line) versus model-predicted (orange solid line) neuronal activity time series for two nodes highlighted in a). Panels c) and
f) show the phase space diagrams corresponding to these nodes. Panels d) and g) present the cumulative distribution of the
d-statistic using training data (null distribution), as well as the predicted time series (test distribution). This comparison allows
us to deduce the fraction of accepted datapoints in each time series, and conclude that the forecast for a node i = 0 is sufficient,
whereas the forecast for a node i = 137 is unreliable.

ject to observational noise: assuming additive noise, the
observed signal is z[x(t)] = x(t) + εεε(t). If δr is time-
varying, numerically approximating the derivative ẋ may
introduce large numerical errors, especially if the sig-
nal is noisy. As an alternative, one could learn ΨΨΨ at
a much higher frequency ∆t to allow estimates x(tr), i.e.
x̂(tr) from x(tr−1) using numerical integration. We set
δr ≫ ∆t so that ∆t

δr
≈ 0 ∀r. This procedure is illustrated

in Fig. 7a) and uses the following loss function:

L =

R∑

r=0

∥∥∥∥∥z[x(tr)]− z[x(tr−1)]−
∫ tr

tr−1

ΨΨΨ(x̂(τ))dτ

∥∥∥∥∥
1

. (9)

Here the gradient descent is computed through a forward
computational graph, employing an ODE solver [77]. In
Sec. V of SI, we derive the gradient update rule for loss
in Eq. 9.

Fig. 7b) shows an example of training the neural net-
work to approximate heat diffusion from irregularly sam-
pled, noisy time series data. Approximating the rate of
change in the system state is possible even in a realistic
setting where the state variables are observed with noise
and at irregular sampling intervals.

To test the effect of noise, we trained another neu-
ral network using the same data with observational
noise removed. We then considered a test error
ED:x∼ϕx0

(x) [∥x̂(δ)− x(δ)∥1], where x̂(δ) is a prediction,
obtained by numerically integrating ΨΨΨ starting with x
over the interval t = [0, δ], with a step size ∆t, whereas
x(δ) is obtained by integrating FFF . The errors of the

a) b)
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FIG. 7. a) Illustration of training a neural network from ir-
regularly sampled one dimensional signal x(tr), tr ∈ [0, R]
(orange solid line). True labels are the observed signal
z(tr), compared during training to predicted labels x̂(tr) =

z(tr−1) +
∫ tr
tr−1

Ψ(x̂(τ))dτ . Here the integral is evaluated nu-

merically using infinitesimal time ∆t. b) shows neural net-
work approximations of heat diffusion dynamics when a noisy,
irregularly sampled signal used in training. In the inset, the
square scatter points indicate the temporary initial values
which are inputs to the neural network, whereas the trian-
gles represent the predicted labels.

two models are not significantly different (respectively,
0.09 ± 0.06 for the model with noise and 0.07 ± 0.04 for
the model without the noise). In contrast, a random un-
trained neural network yields a significantly larger loss of
0.24± 0.03.

Overall, the neural networks can approximate vari-
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ous dynamical models and extrapolate predictions even
when statistical properties of the input data, or the graph
structure change, transcending the formal boundaries of
SLT and UAT. We also showed that training and gener-
alization are also possible using time series data. As ex-
pected, there exists a limit for how much generalization
can be achieved, however, we note the presence of regu-
larity that is observed in the gradual increase in test loss.
Using the proposed d-statistic we can therefore evaluate
the confidence in the inferred prediction, even in cases
when we depart from standard SLT, UAT assumptions
of i.i.d. sampling and a compact support.

CONCLUSION AND DISCUSSION

We presented a comprehensive framework to approx-
imate, predict and forecast dynamics, defined as a sys-
tem of ordinary differential equations coupled via a com-
plex network (graph), a ubiquitous model of dynamics
in complex systems. We introduced a toolbox to ana-
lyze the quality of neural approximations with the stan-
dard ruler of statistical learning theory, as well as in
more diverse settings: (i) when statistical properties for
train and test data differ, (ii) train samples are non-i.i.d.,
(iii) the ground truth functions have a non-compact sup-
port (iv) training and test graphs differ, and (vi) when
trained models are used to form long-range forecasts. We
showed that if a model adheres to the basic assump-
tions about the vector field that describes dynamics, the
trained model is not only expressive within the conditions
that it was trained on, but also has potential to gener-
alize beyond boundaries set out by UAT and by SLT.
The confidence in the inferred predictions within these
diverse test settings can also be reliably estimated with
a dedicated null model and a statistical test.

The set of tools we have presented could be extended to

understand both the limits and benefits of deep learning
models for complex dynamical systems. While we ob-
served some generalization capacity, we note that if the
functions that constitute FFF , namely, L and Q are not
learnt accurately, the model’s generalization is impeded.
More exotic training settings hold potential to help re-
solve these issues. We also suggest studying neural train-
ability through the property of dynamic isometry and the
mean-field theory [78, 79], enforcing physical constraints
e.g. Lipschitz continuity of dynamics [80], and expanding
the range of tools from SLT [59–61]. We also limited our
analysis to the simplest case where the dynamics is de-
terministic and autonomous, and the graphs are static,
undirected, connected and fully known. It will be impor-
tant to study the effects of increased complexity of the
structure on the approximations.
More broadly, we emphasize that applications of deep

learning models of dynamical system go beyond mere
predictions within statistical confines of training data.
Therefore it is imperative that these models be con-
structed to maintain accuracy with conditions, that were
not encountered during training, e.g. when test data has
a different support to training data. Expanding our
proposed framework holds a potential of enabling fore-
casting, modeling and, ultimately, understanding a wide
spectrum of complex dynamical systems.
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[55] P. Veličković, G. Cucurull, A. Casanova, A. Romero,
P. Lio, and Y. Bengio, Graph attention networks, arXiv
preprint arXiv:1710.10903 (2017).

[56] M. Fey and J. E. Lenssen, Fast graph representa-
tion learning with pytorch geometric, arXiv preprint
arXiv:1903.02428 (2019).

[57] X. Bresson and T. Laurent, Residual gated graph con-
vnets, arXiv preprint arXiv:1711.07553 (2017).

[58] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, On the
surprising behavior of distance metrics in high dimen-
sional space, in Database Theory—ICDT 2001: 8th In-
ternational Conference London, UK, January 4–6, 2001
Proceedings 8 (Springer, 2001) pp. 420–434.

[59] M. Belkin, D. Hsu, S. Ma, and S. Mandal, Reconciling
modern machine-learning practice and the classical bias–
variance trade-off, Proceedings of the National Academy
of Sciences 116, 15849 (2019).

[60] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals,
Understanding deep learning (still) requires rethinking
generalization, Communications of the ACM 64, 107
(2021).

[61] D. Jakubovitz, R. Giryes, and M. R. Rodrigues, General-
ization error in deep learning, in Compressed Sensing and
Its Applications: Third International MATHEON Con-
ference 2017 (Springer, 2019) pp. 153–193.

[62] Novel SLT frameworks, including algorithm stability [82,
83], algorithm robustness [84], PAC-Bayes theory [85, 86],
compression and sampling [87, 88] are active fields of re-
search and could possibly shed light on generalization in
this class of models.

[63] Some UAT results cover density in non-compact domains,
e.g. [16]. Nonetheless, the authors proceeded with the
assumption that a target function maps to zero outside
of a given support.

[64] H. Anysz, A. Zbiciak, and N. Ibadov, The influence of in-
put data standardization method on prediction accuracy
of artificial neural networks, Procedia Engineering 153,
66 (2016).

[65] G. Bianconi, Entropy of network ensembles, Physical Re-
view E 79, 036114 (2009).

[66] Alternatively, one may consider a micro-canonical ensem-
ble by employing, e.g. a configuration model [89], thereby
imposing harder constraints of fixed number of edges.

[67] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Fried-
man, The elements of statistical learning: data mining,

inference, and prediction, Vol. 2 (Springer, 2009).
[68] M. Newman, Networks (Oxford university press, 2018).
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I. NEURAL NETWORK MAPPINGS

Now we detail each neural network’s effects on an input
vector x ∈ Rn×k, layer by layer. Before propagation, we
tensorize x ∈ Rn×k → h1 ∈ Rn×1×k. All dimensions are
counted from 1.

a. Self-interactions The function ψψψself performs a
mapping Rn×1×k → Rn×1×k. It consists of input, hid-
den, and output layers. The input layer performs a
mapping Rn×1×k ×3 Rk×h1 ∈ Rn×1×h1 realized through a
3-mode product of a tensor with a matrix. Overall, the
layer is defined as

h2 = σ1(h
1 ×3 W1 + b1), (1)

where W1 ∈ Rk×h1 , b1 ∈ R1×h1 . Element-wise, Eq. 1 is
defined as

[h2]i,j,k = σ1

(∑

m

h1i,j,m(W1)m,k + (b1)j,k

)
.

Note that all layers in a neural networks that constitute
Eq. 2 of the main text compute Eq. 1, with the difference
in the dimensions of the input vector h, the matrix W
and the vector b that determine the dimensions of the
mapping, as well as non-linearity σ.

Subsequent hidden layer has W2 ∈ Rh1×h1 and b2 ∈
R1×h1 . After applying this layer, we have a vector in
Rn×1×h1 . In the current analysis, we found one hidden
layer to be sufficient, but their number can be increased
arbitrarily. Lastly, the output layer consists of W3 ∈
Rh1×k, b3 ∈ R1×k and maps the vector back to dimension
Rn×1×k. In all layers, the non-linearity σ = tanh.

b. Neighbor interaction The function ψψψnbr consists
of three feed forward neural networks. Firstly, we ap-
ply ψψψq1 ,ψψψq2 that both map the input to an embedded
dimension: Rn×1×k → Rn×1×h2 . These neural networks
consist of two layers. The input layer that is parameter-
ized with W1 ∈ Rk×h2 and b1 ∈ R1×h2 , σ1 = tanh and
the hidden layer, parameterized with W2 ∈ Rh2×h2 ,
b2 ∈ R1×h2 and identity function as σ2.

To combine the functions ψψψq1 and ψψψq2 , we first trans-
pose the outputs of these functions. The first transpose

∗ anino@ethz.ch

is defined as ψψψq1(x) ∈ Rn×1×h2 → Rh2×n×1 and is real-
ized through two transpose operations: Rn×1×h2 →1,3

Rh2×1×n →2,3 Rh2×n×1 denoted collectively as “⊤1”.
The output of ψψψq2 is transposed Rn×1×h2 →1,3 Rh2×1×n,
realized through an operation denoted as “⊤2”. We then
perform a “batched” matrix-matrix product of the trans-
posed outputs, i.e. Rh2×n×1×bRh2×1×n ∈ Rh2×n×n. This
operation element-wise is defined as

[ψψψq1,2(x)]i,j,k =
∑

m

ψψψq1(x)⊤1
i,j,mψψψ

q2(x)⊤2
i,m,k.

The result of this product is an approximation of inter-
actions of all pairs of nodes in the network. To filter
out the non-neighbor interactions, we compute ΦΦΦ⊙ψψψq1,2

that maps Rh2×n×n → Rh2×n×n. Here the operator ⊙
denotes a standard “broadcasted” element-wise multipli-
cation. Element-wise this multiplication is defined

[
ΦΦΦ⊙ψψψq1,2(x)

]
i,j,k

= Φj,k [ψψψ
q1,2(x).]i,j,k

Lastly, to return to the original dimension, we apply
an invariant pooling layer ϕϕϕ

⊕
:

ψψψ
⊕
(ΦΦΦ⊙ψψψq1,2(x)) =


∑

j

[
ΦΦΦ⊙ψψψq1,2(x)

]
i,j,k



⊤3

×3W3+b3.

Here ⊤3 denotes a transpose Rh2×1×n →1,3 Rn×1×h2 ,
W3 ∈ Rh2×k,b3 ∈ R1×k.
Note that we assumed that the function Q can be ap-

proximated by a product of two neural network func-
tions. It is a reasonable assumption for factorizable Q,
i.e. Q(x1,x2) = q(x1)q(x2). Most of the dynamics we
will discuss are indeed factorizable. One exception is heat
diffusion on graphs, which is factorizable only for homo-
geneous degree distributions. Nevertheless, our simula-
tions show the described neural network model can also
approximate Heat dynamics. More generally, one may
consider a neural network of the following form

ẋi = ψψψself(xi) +ψψψ
⊕

 ∑

j:Aij ̸=0

ψψψQ(xi,xj)


 , (2)

where ψψψQ acts on edges, and the 2nd term overall is a
universal approximation of functions on edge sets [1, 2],
while the 1st term is as before.
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A GNN can be further constrained to achieve physical
realism of a model. For example, if the system is closed, it
does not exchange energy or mass with the environment,
therefore

∑
i ẋi(t) = C ∀t (assuming k = 1). A neural

network can be weakly or strongly constrained to adhere
to such conservation of a derivative.

If Lipschitz continuity of FFF is known, it can be used
to regularize and potentially improve the neural approx-
imation ΨΨΨ [3]. In order to guarantee the local exis-
tence and uniqueness of the solution to the initial value
problem ψψψself(x) +ψψψnbr(x) for different (x0), the learned
vector field FFF has to be Lipschitz continuous (see Pi-
card–Lindelöf theorem [4]). To enforce Lipschitz conti-
nuity of ΨΨΨ, we are using 1-Lipschitz activation function
tanh [3].

II. TWO DIMENSIONAL VECTOR FIELD

To test our intuition about the neural network model,
we first consider dynamics in the simplest possible net-
work: heat diffusion on a connected network of n = 2
nodes. Both datasets include 100 samples, the training
set is sampled from a beta distribution ψX ∼ B(5, 2),
whereas the test set is composed of a uniformly spaced
set of points of a two-dimensional lattice in the region
[0, 2]. As Fig. 1 shows, after 500 training epochs, the
neural network approximates the state space well within
the region of support of the beta distribution ([0, 1]) even
when ψX ̸≡ ωX . Furthermore, we observe a monotonic
increase in loss as a function of distance from the training
support.

III. SIMULATION DETAILS

Dynamics The following parameters were used to sim-
ulate the dynamics.

1. Heat: B = 0.5.

2. MAK: B = 0.1, R = 1, F = 0.5, b = 3.

3. PD: B = 2, R = 0.3, a = 1.5, b = 3.

4. MM: B = 4, R = 0.5, h = 3.

5. SIS: B = 4, R = 0.5.

6. FHN: ρ = 1, a = 0.28, b = 0.5, c = −0.04.

Loss In all cases, during training we optimize an ℓ1
loss function, as defined in Eq. 4 of the main text. In all
cases, unless otherwise stated, λ = 1.

Integration For numerical integration we used an ex-
plicit Runge-Kutta 5(4) method [5]. Implemented in
torchdiffeq python package [6].

𝑥 !

Epoch: 0

Epoch: 500

𝓕(𝐱)

𝚿 𝐱

𝑥 !

𝑥" 𝑥"

FIG. 1. Learnt (pink arrows) and true (purple arrows) vector
field of diffusion dynamics on a connected n = 2 node graph.
The training sample are taken from a beta distribution B(5, 2)
and tested on a uniform lattice defined within range [0, 2].
Color shows normalized ℓ1 loss at a given square, calculated
for an arrow that originates within this square.

Figure 1: Neural networks (a our model and b SAGE-
Conv [7]) were trained using 200 training samples with
x1, x2 sampled from a beta distribution B(5, 2). Both
models were trained in 1000 epochs at a learning rate
of 0.005 with no weight decay. The strength of the reg-
ularizer in the loss function was set to λ = 0.1. The
architectures are described in Sec. IV.
Figure 2: 10 overparameterized feedforward neural

networks were trained with 251 parameters (h = 10)
each with 4 fully connected layers and Tanh activations.
Each network was trained in 3000 epochs, using 40 boot-
strapped samples from 50 total number of samples, using
the learning rate of 0.003 and no weight decay. Samples
were taken from a uniform distribution U [−2, 2]. The
target function is F(x) = cos(2x) +N (0, σ = 0.01).
Table 1, Figures 3,4: Each neural network was

trained for 2000 epochs at a learning rate of 0.001 and the
weight decay of 0.001. We used a total of 5000 training
samples, where x was sampled from a uniform distribu-
tion U(0, 1). The batch size was set to 100. The hidden
layers have dimensions h1 = h2 = 30. Bothψψψself andψψψnbr

contain one hidden layer. After 1000 training epochs, we
also used ReduceOnPlateau scheduler with the pa-
tience parameter set to 50 and the cooldown parameter
set to 10.
The reported values are an average and a standard

deviation across 103 samples. For the two right-most
columns, we sampled a new ER graph with n = 100, p =
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0.1 and n = 100, p = 0.6. In Fig. 3, the results for each
parameter value of the beta distribution (a and b) are also
averaged over 103 independent samples. The heatmap
shows the range [0.1, 12]. In Fig. 4a) and c), the reported
results are an average and standard deviation across 10
graphs at each p (in a)) or n (in c)), where for each
graph we computed the mean loss over 100 input samples
from U(0, 1). In Fig. 4b), the results are an average and
standard deviation across 1000 samples from U(0, 1)+∆.

Figure 5: For each dynamics, a total of 50 neural net-
works were trained, each with 90% of data. The training
data were generated by solving five initial value problems
(IVPs). In each problem, the initial state was sampled
from a uniform distribution U(0, 1). Each initial value
was integrated over the time interval t ∈ [0, 2] with a step
size dt = 0.0101, totalling to 995 samples in a training
dataset. To generate labels, FFF was evaluated analytically
for each x(t). The models were trained for 2000 epochs
at a learning rate of 0.005 and the weight decay of 0.001.
The batch size was set to 50. The hidden layers have
dimensions h1 = h2 = 30. ψψψself, ψψψq1 and ψψψq2 all contain
one hidden layer. After 1000 training epochs, we also
used ReduceOnPlateau scheduler with the patience
parameter set to 50 and the cooldown parameter set to
10.

Fig. 5a) The test graph is equivalent to the training
graph. For a given ∆ value, 10 independent time series
trajectories were computed, starting from an initial value
sampled from a shifted uniform distribution U(0, 1)+∆.
For each initial value, a neural network prediction was
computed by taking a random neural network from an
ensemble and using it for integration. 100 samples x(t)
from the predicted trajectory were then used to com-
pute the distribution of the d-statistic. The d-statistic
for the full sample (the null distribution) was evaluated
by taking 100 samples from the training data. m = 20
subsample of M = 50 neural networks were taken for
each sample. We used a statistical significance level of
α = 0.05 to compute the number of accepted datapoints
by comparing the null distribution to the test distribu-
tion following Eq. 4 of the main text. The orange circles
show the average and the standard deviation for accepted
datapoints across the samples. The purple circles report
the loss, computed for each trajectory, averaged over tra-
jectories.

Fig. 5b) We computed the d-statistic of the full sam-
ple and of the test sample in the same way, however now
using 1000 draws for estimating the statistics. The fig-
ures show predicted trajectories computed using a ran-
dom neural network from the ensemble. The title reports
the fraction of datapoints that passed the significance
test. Here the test graph is not equivalent to the train-
ing graph, but is sampled from and Erdös-Rényi ensemble
with n = 15, p = 0.3.

Figure 6: A total of 20 neural networks were trained,
each with 90%. To increase the expressivity of the model,
ψψψself has 2 hidden layers with h1 = 30, whereas ψψψq1 ,ψψψq2

have 3 hidden layers each with h2 = 30. Note that FHN

dynamics is not fully described by Eq.1 of the main text,
since the interaction term is proportional to node’s de-
gree. Therefore we use a degree-scaled undirected adja-
cency matrix Ã = A

k as an input to a neural network.
Here k is a vector that contains nodes’ degrees.

The training data were generated by solving one ini-
tial value problem. The initial state was sampled from
U(0, 1) and integrated over the time interval t ∈ [0, 50]
with a step size dt = 0.01, totalling to 5000 training sam-
ples. To generate labels, FFF was evaluated numerically via

Newton’s difference quotient: y(t) = x(t+dt)−x(t)
dt . The

models were trained for 1000 epochs at a learning rate of
0.005 and weight decay of 0. The batch size was set to
200 samples.

For testing results presented in the figure, we sampled
a new initial value from a uniform distribution and com-
pared the ground truth time series trajectories to trajec-
tories predicted by one of the trained models. The initial
values were integrated over the time interval t ∈ [0, 100]
with a step size dt = 0.01.

We then zoomed in to predicted dynamics for two
nodes, namely node i = 0, for which the prediction was
highly accurate, and node i = 137, for which the predic-
tion during testing was inaccurate. To compute the null
distribution of the d-statistic for each of these nodes, we
took 1000 samples xi(t) from the training data computed
d = Var(ΨΨΨm(x(t))i) for each dimension k across m = 5
randomly selected models for each sample. To evalu-
ate the prediction accuracy, we similarly computed the
distribution of the d-statistic using the test data. Note
that since k = 2 for the Fitzhugh-Nagumo dynamics, the
d-statistic was computed for each dimension k indepen-
dently.

Figure 7 b): A neural network was trained for 2000
epochs at a learning rate of 0.0001 and a weight decay
0.001. The batch size was set to 50. The hidden layers
have dimensions h1 = h2 = 30. ψψψself, ψψψq1 and ψψψq2 all
contain one hidden layer.

The training data were generated by solving one initial
value problem of Heat Diffusion dynamics with B = 1.5
on an Erdös-Rényi graph with n = 10 and p = 0.3. The
initial state was sampled from U(0, 1) and integrated over
the time interval t ∈ [0, 1]. To generate a time-varying
step size, we subsampled 100 time stamps from a list
(0,∆t, 2∆t, ..., 1), where ∆t = 0.0001, therefore ⟨tr⟩ ≈
0.01. The time series were then obtained by integrating
FFF using the time-varying timesteps tr. We then added
normally distributed noise with σ = 0.01 to the time
series to obtain z(tr).

To test the effect of noise, we trained another neural
network using the same data without observational noise.
We then considered a test loss discussed in the main text,
which we evaluated by drawing 1000 samples x from a
uniform distribution. Lastly, we also compared the ob-
served losses for these two cases to the loss, observed in
one untrained neural network.



4

IV. COMPARISON WITH OTHER GRAPH
NEURAL NETWORKS

In this section, we conduct a comparative analysis of
several graph neural networks (GNNs) and their effective-
ness in approximating complex network dynamics, dis-
cussed throughout the paper. Specifically, we examined
five well-known GNNs: SAGEConv [7], ChebConv [8],
GraphConv [9], ResGatedGraphConv [10], and
GATConv [11], where the naming conventions are from
PyTorch Geometric, which was employed for their imple-
mentation. We train all neural networks, including ours
(denoted GNVF – “Graph Neural Vector Field”), using
the same training setting. The graph used for training is
sampled from an Erdös-Rényi ensemble with parameters
p = 0.5 and n = 10. Training was done in 1000 epochs us-
ing Adam optimizer with a learning rate of 0.005 and no
weight decay. The training data consists of 200 samples
from a uniform distribution U(0, 1), whereas test data
contains 500 samples taken from the same distribution,
or a shifted uniform distribution.

Each graph neural network has 3 graph convolution
layers: the first graph layer maps from original input’s
dimension k to a hidden dimension h = 30, the next
two layers map from the hidden dimension to the same
hidden dimension. Lastly, we apply a linear decoding
layer to revert back to the original input’s dimension.
We also reduced the size of the GNVF, by removing the
hidden layers in ψψψself, ψψψq1 and ψψψq2 .

In Tab. I, we present the in-sample error and out-of-
sample error as a relative percent error defined in Eq.
7 of the main text under two distinct conditions: firstly,
when the test data is sampled from a partially unobserved
range (specifically, x ∼ U(0, 1)+0.5), and secondly, when
the training graph is replaced with a new graph sam-
pled from a different ensemble, namely an Erdös-Rényi
graph with parameters p = 0.2 and n = 120. Com-
paring our model to other architectures, we observe a
substantially smaller error both in-sample and out-of-
sample. Furthermore, our proposed model shows signif-
icantly better performance with novel test graphs com-
pared to other GNNs, suggesting that these models may
impose other types of biases to the system thereby caus-
ing poorer generalization. Amongst GNN architectures
we observe that those which distinguish between self-
and neighbor- interactions — specifically, GraphConv,
ResGatedGraphConv, and our model detailed in the
main text — demonstrate superior performance com-
pared to those that do not, such as SAGEConv, Cheb-
Conv, and GATConv.

If we removed all but one graph convolution layer and
enforced the spatio-temporal locality constraint that we
discussed in the main text, we observe in Tab. II that,
somewhat counter-intuitively, the out-of-sample loss is
improved in almost all cases.

V. DERIVATION OF THE COMPUTATIONAL
GRAPH AND GRADIENT COMPUTATION IN A

NEURAL ODE MODEL

In the example discussed in Sec. VI of the main text,
we use a neural ODE [12] model realized through a for-
ward computational graph with an automatic differenti-
ation [13]. Here we derive the computational graph and
its gradient computation for the custom loss function Eq.
8 of the main text.
For simplicity, let us assume a scalar variable, i.e. d = 1

and that its ground truth trajectory is {xr}, where index
r denotes specific times {t0, t1, ..., tR} at some irregular
time samplings. We also assume that observations are
corrupted with additive noise: z[xr] = xr+ϵr, where ϵr ∼
N (0, σ). A neural network represents a scalar function
Ψ : R1 → R1 and is parameterized with weights w. The
goal of learning is finding parameters w that minimize
the following objective:

L =
R∑

r=0

Lr (z[xr], x̂r) (3)

=
R∑

r=0

Lr

(
xr + ϵr, xr−1 + ϵr−1 +

∫ tr

tr−1

Ψ(x̂(τ))dτ

)
.

As in regular non-convex optimization, the weights are
updated according to the following rule:

wl+1
k = wl

k − η
∂L(x̂r, z[xr];w)

∂wk
, (4)

= wl
k − η

R∑

r=0

∂Lr(x̂r, z[xr];w)

∂wk
,

where η is a learning rate and l is a training step.
Let us first find an expression of the derivative for L:

∂Lr(x̂r, z[xr];w)

∂wk
=
∂Lr(x̂r, z[xr];w)

∂xr

∂x̂r
∂wk

. (5)

To compute Eq. 5, let us subdivide an interval [tr−1, tr]
into N intervals, each of granularity ∆t = (tr − tr−1)/N
as follows: {tr,j}Nj=0, where tr,j = tr−1 + j∆t. The dy-
namics of x̂r is

x̂r = x̂r,N = x̂r,N−1 +∆tΨr,N−1

Ψr,N−1 = Ψ(x̂r,N−1),

which means that x̂r,N is a function of two variables,
x̂r,N = f(x̂r,N−1,Ψr,N−1). The derivative of x̂r therefore
is

∂x̂r,N
∂wk

=
∂x̂r,N
∂x̂r,n−1

∂x̂r,N−1

∂wk
+

∂x̂r,N
∂Ψr,N−1

∂Ψr,N−1

∂wk
.

Since
∂x̂r,N

∂x̂r,N−1
= 1 and

∂x̂r,N

∂Ψr,N−1
= ∆t, we get

∂x̂r,N
∂wk

=
∂x̂r,N−1

∂wk
+∆t

∂Ψr,N−1

∂wk
,
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Model |ΨΨΨ|
Train data
x ∼ U(0, 1)
G ≡ Gtrain

Test data
x ∼ U(0, 1) + 0.5

G ≡ Gtrain

Test data
x ∼ U(0, 1)
G ∼ Ptest(G)

Heat

GNVF 242 3.69± 0.56 6.75± 0.46 3.45± 0.44
SAGEConv 3781 22.87± 1.2 43.34± 1.6 59.39± 0.48
GraphConv 3781 7.48± 0.82 54.76± 5.18 60.51± 12.45
ResGatedGraphConv 7711 2.99± 0.52 16.85± 2.19 24.28± 1.65
GATConv 2131 91.43± 5.55 100.34± 0.7 99.68± 2.57
ChebConv 18421 3.16± 0.54 12.88± 1.68 56.84± 0.23

MAK

GNVF 242 3.85± 0.53 11.17± 0.99 3.11± 0.37
SAGEConv 3781 27.68± 1.79 59.0± 2.53 64.08± 0.73
GraphConv 3781 8.36± 1.17 33.24± 2.48 49.62± 2.47
ResGatedGraphConv 7711 2.0± 0.32 46.06± 3.05 34.31± 1.21
GATConv 2131 58.04± 5.15 61.39± 2.4 76.21± 4.26
ChebConv 18421 3.71± 0.82 55.33± 2.73 64.42± 0.56

MM

GNVF 242 1.75± 0.31 15.7± 1.89 5.3± 1.01
SAGEConv 3781 12.86± 1.09 34.54± 1.91 109.46± 11.29
GraphConv 3781 3.84± 0.73 27.63± 1.24 57.98± 9.13
ResGatedGraphConv 7711 1.52± 0.17 17.74± 1.33 68.91± 6.46
GATConv 2131 64.19± 5.34 60.78± 3.04 158.75± 20.38
ChebConv 18421 2.43± 0.39 13.15± 1.18 103.73± 10.1

PD

GNVF 242 5.5± 0.44 28.77± 2.39 9.46± 0.55
SAGEConv 3781 30.99± 1.89 61.62± 3.11 71.56± 0.85
GraphConv 3781 6.27± 0.88 63.42± 4.32 32.27± 2.77
ResGatedGraphConv 7711 3.19± 0.64 54.28± 4.12 60.28± 1.46
GATConv 2131 48.49± 3.73 103.24± 1.43 70.56± 2.05
ChebConv 18421 2.9± 0.79 53.78± 3.48 72.75± 0.91

SIS

GNVF 242 0.65± 0.07 15.21± 1.74 0.88± 0.1
SAGEConv 3781 25.59± 1.49 45.91± 2.73 61.68± 0.9
GraphConv 3781 6.55± 0.72 70.91± 4.7 50.21± 1.71
ResGatedGraphConv 7711 2.36± 0.51 53.89± 4.99 27.01± 2.38
GATConv 2131 73.08± 4.52 130.39± 5.78 74.54± 1.82
ChebConv 18421 2.46± 0.63 86.15± 8.32 62.52± 0.21

TABLE I. This table presents the performance of various GNN models with multiple graph convolution layers under different
testing settings. The |ΨΨΨ| column indicates the number of trainable parameters. The accuracy is defined as a percent relative
error, defined in Eq. 7 of the main text.

which is a recurrence relation

∂x̂r,N
∂wk

=
N−1∑

j=0

∆t
∂Ψr,j

∂wk
. (6)

Note that
∂x̂r,0

∂wk
= ∂x̂r−1

∂wk
= 0, since x̂r,0 is by definition

“a temporary initial condition” for a segment [tr−1, tr].
By substituting Eq. 6 back to the Eq. 5, we get

∂Lr(x̂r, z[xr];w)

∂wk
=
∂Lr(x̂r, z[xr];w)

∂x̂r

N−1∑

j=0

∆t
∂Ψr,j

∂wk
,

(7)

where
∂Ψr,j

∂wk
is just the regular gradient of differentiable

neural network Ψr,j = Ψ(x̂r,j ;w). Putting Eq. 7 back to

the Eq. 4, we get that weights are updated as follows:

wl+1
k = wl

k − η

R∑

r=0

∂Lr(x̂r, z[xr];w)

∂x̂r

N−1∑

j=0

∆t
∂Ψr,j

∂wk
. (8)

From Eq. 8, one can see how observational noise af-
fects the computation of the gradient: it affects only the
derivative of the loss w.r.t. x̂r. E.g. in case Lr is com-
puted using ℓ2 norm: Lr(x̂r, z[xr];w) = (x̂r − z[xr])

2,

we get ∂Lr(x̂r,z[xr];w)
∂x̂r

= 2(x̂r − z[xr]). For ℓ1 norm,

Lr(x̂r, z[xr];w) = |x̂r − z[xr]|, we get ∂Lr(x̂r,z[xr];w)
∂x̂r

=

sgn[x̂r − z[xr]] for x̂r ̸= z[xr].
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Model |ΨΨΨ|
Train data
x ∼ U(0, 1)

G ≡ H

Test data
x ∼ U(0, 1) + 0.5

G ≡ H

Test data
x ∼ U(0, 1)
H ∼ P(H)

Heat

SAGEConv 121 23.59± 1.04 25.56± 1.06 61.64± 0.37
GraphConv 121 24.24± 2.4 186.26± 18.61 59.49± 3.19
ResGatedGraphConv 271 1.73± 0.16 18.83± 1.57 31.89± 1.09
GATConv 151 73.89± 6.95 126.18± 4.44 79.01± 2.1
ChebConv 361 13.39± 4.47 251.08± 26.02 59.18± 3.75

MAK

SAGEConv 121 28.36± 1.69 36.23± 1.69 63.81± 0.54
GraphConv 121 0.87± 0.22 19.34± 2.32 17.41± 2.89
ResGatedGraphConv 271 0.91± 0.19 26.11± 2.82 17.52± 2.43
GATConv 151 59.71± 5.35 42.46± 1.64 74.68± 1.69
ChebConv 361 8.69± 1.96 20.77± 1.35 65.01± 2.31

MM

SAGEConv 121 13.82± 1.0 32.67± 1.64 119.63± 11.92
GraphConv 121 5.76± 0.56 22.62± 1.8 27.07± 5.79
ResGatedGraphConv 271 0.82± 0.14 8.98± 0.86 7.52± 1.33
GATConv 151 71.6± 5.02 67.36± 2.9 132.3± 7.86
ChebConv 361 5.52± 0.68 25.84± 1.22 117.72± 10.48

PD

SAGEConv 121 32.97± 1.67 53.46± 2.13 73.81± 1.1
GraphConv 121 6.31± 0.64 29.93± 1.79 8.62± 1.41
ResGatedGraphConv 271 1.86± 0.25 40.33± 3.08 10.65± 1.08
GATConv 151 66.95± 4.02 97.08± 4.47 68.92± 1.27
ChebConv 361 10.65± 1.48 46.97± 3.23 70.85± 1.39

SIS

SAGEConv 121 27.47± 1.43 68.36± 5.59 64.33± 0.72
GraphConv 121 1.02± 0.36 46.54± 5.59 23.51± 3.54
ResGatedGraphConv 271 1.27± 0.39 43.01± 4.4 21.15± 2.64
GATConv 151 72.61± 4.66 138.6± 6.46 74.49± 1.79
ChebConv 361 7.28± 1.92 134.55± 9.6 61.58± 1.91

TABLE II. This table presents the performance of various GNN models with a single graph convolution layer under different
testing settings. The |ΨΨΨ| column indicates the number of trainable parameters. The accuracy is defined as a percent relative
error, defined in Eq. 7 of the main text.
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