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A complete framework for exciting and detecting thermally-induced, stabilized sine-Gordon
breathers in ac-driven long Josephson junctions is developed. The formation of long-time stable
breathers locked to the ac source occurs for a sufficiently high temperature. The latter emerges
as a powerful control parameter, allowing for the remarkably stable localized modes to appear.
Nonmonotonic behaviors of both the breather generation probability and the energy spatial correla-
tions versus the thermal noise strength are found. The junction’s resistive switching characteristics
provides a clear experimental signature of the breather.

Introduction.—Owing to its simplicity and nonlinear
nature, the sine-Gordon (SG) equation [1] is universally
recognized as a fundamental modelling tool within the
scientific community [2]. The SG framework, in fact,
provides a very accurate and intuitive viewpoint for a
large variety of phenomena occurring in, e.g., gravity and
black holes [2, 3], tectonic stress transfer [4], biology [5],
superconductivity and Josephson junctions (JJs) [2, 6],
Bose-Einstein condensates [7].

A key feature of the SG equation is its rich spectrum
of solutions, which includes both kink-type and breather-
type solitons [1]. The first are topological excitations
which can be visualized as 2π-twists in a mechanical
chain of linearly coupled pendula [8, 9]. A breather is
a space-localized, time-periodic bound state stemming
from the kink-antikink attraction [8, 9].

The long Josephson junction (LJJ) is a (quasi) one-
dimensional, superconductor-based system whose elec-
trodynamics is reliably described by the SG model [1].
Being the subject of many seminal experiments [10–12]
and striking applications [12–16], this device has played
an outstanding role in the spreading of the soliton con-
cept throughout natural and applied sciences [2, 8, 9]. In
LJJs, a kink represents a magnetic flux quantum Φ0 [1],
induced by a supercurrent loop, whose properties reflect
into the I -V characteristic of the junction [10–12].

Due to its nontopological structure, mastering the
breather’s physics is a very tough challenge. In particu-
lar, experimental evidence of this oscillating state has
yet to be provided in LJJs, despite the numerous in-
vestigations on the matter [17–23], primarily due to its
friction-triggered radiative decay and its elusiveness with
respect to I -V measurements [20, 24]. The Josephson
breather’s detection would, therefore, solve a long-lasting
problem in nonlinear science, but it would also pave the
way for several applications in, e.g., information trans-
mission [25], quantum computation [26], generation of
THz radiation [27].

Previous works (e.g., see Ref. [19]), analyzed the sta-

bilization of stationary SG breathers via ac-driving, with
specific ad-hoc initial conditions. Such a scenario, how-
ever, has remained experimentally unexplored. This is
presumably due to the practical difficulties in creating
persistent breather states, given the stabilization effect’s
crucial dependence on the initial condition. Moreover,
the phenomenon’s robustness against thermal fluctua-
tions has not been addressed so far.

On the other hand, the little discussed topic of
breathers in a noisy environment has recently gained
attention [21–23, 28, 29], and positive stochastically-
induced effects on both the generation and the dynamics
of these nonlinear waves have been demonstrated. The
present manuscript thus examines a lossy, ac-driven LJJ
in the presence of thermal noise. The emergence of long-
time stable breathers locked to the sinusoidal force is ob-
served for a sufficiently high temperature. The latter
is, consequently, a powerful control parameter, allowing
for the localized modes to appear, while not endanger-
ing their persistence. The achievement of both the cre-
ation and the stabilization in a single effort should not
be overlooked, given the multistability of the SG system,
responsible for the possible emergence of kink-antikink
pairs.

As a result, both the probability of exciting solely
breathers and the energy spatial correlations are seen to
behave nonmonotonically versus the noise strength. Fur-
thermore, at fixed noise intensity, the excitation proba-
bility is evaluated in the ac frequency-amplitude space,
illustrating the reliability of the approach for different
breathing frequencies. A much-awaited, clear experimen-
tal signature of the stabilized bound state is finally found
in the junction’s resistive switching characteristics.

Note that, although the Josephson realm provides a
solid physical background for this letter, the formalism
is quite general, and an interdisciplinary flavor character-
izes the analysis. In other words, since many complex and
apparently different phenomena [2–7] can be understood
through the lens of the SG model, significant insights into
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its fundamental excitations have a wide scope within the
scientific community. The topic of SG breathers is indeed
of general interest: from DNA systems [30] and structural
geology [31] to high-Tc superconductivity [32].

Other examples of breather-type states intensely
studied are: polygonal breathers [33], matter–wave
breathers [34], breather wave molecules [35], roto-
breathers in JJ ladders [36, 37]. Besides, in JJ parallel
arrays, the theoretically-predicted oscillobreathers, due
to their rapid pulsations, have eluded an experimental
verification for decades [38]. Exploring the noisy, ac-
driven scenario in a fashion similar to that presented
here could lead to interesting developments even in the
discrete world [39, 40].

The model.—Taking into account dissipation, an ac
current uniformly distributed in space, and thermal fluc-
tuations, the equation of motion for the LJJ reads [10, 41]

ϕxx − ϕtt − αϕt = sinϕ− η sin(ωt)− γT (x, t), (1)

with ϕ(x, t) indicating the phase difference between
the two superconducting wave functions (the notation
∂ϕ/∂x = ϕx is used throughout). The friction coefficient
α = G/ (ωpC) is defined in terms of the effective normal
conductance G, the capacitance per unit length C, and
the Josephson plasma frequency ωp =

√
2πJc/ (Φ0C),

with respect to which frequency is normalized in Eq. (1)
(Jc is the critical Josephson current density) [10]. The
spatial length scale is the Josephson penetration depth
λJ =

√
Φ0/ (2πJcLP ), where LP is the inductance per

unit length. Moreover, ω and η are, respectively, the nor-
malized frequency and amplitude of the external ac driv-
ing (η is given in units of Jc), and γT (x, t) is a Gaussian,
zero-average noise source with the correlation function

〈γT (x1, t1)γT (x2, t2)〉 = 2αΓδ(x1 − x2)δ(t1 − t2), (2)

in which Γ = 2ekBT/ (~JcλJ) is the noise strength, pro-
portional to the absolute temperature T , e is the elec-
tron charge, kB is the Boltzmann constant, and ~ is the
reduced Planck constant. Equation (1) is numerically in-
tegrated via an implicit finite-difference scheme, in the
spatio-temporal domain [−l/2, l/2]× [0, T ], with initial
conditions

ϕ(x, 0) = ϕt(x, 0) = 0, (3)

and periodic boundary conditions

ϕ(−l/2, t) = ϕ(l/2, t), (4)

the latter corresponding to an annular-geometry LJJ [11].
More details, including the approximation of the stochas-
tic term, can be found in [42]. In what follows, the
junction length is l = 50, the damping parameter is
α = 0.2 [14], and ω < 1, since below-plasma frequencies
are those natural to SG breathers [8, 9].

FIG. 1. Two simulated energy density profiles
ε(x, t) = (ϕ2

t + ϕ2
x)/2 + 1− cosϕ [8, 9]. In panel (a),

the spatio-temporal region [−21.5,−11.5]× [30, 130] is mag-
nified to better appreciate both the formation and the first
few oscillations of a single breather located at x ≈ −16.5.
In panel (b), the inset focuses on [−22, 17]× [950, 975]
to illustrate the ac-locking of multiple nonlinear modes.
Parameter values: T = 1000 (observation time), ω = 0.6,
η = 0.59, and Γ = 5× 10−4.

Noise-induced, stabilized breathers.—Figure 1
displays two simulated energy density profiles
ε(x, t) = (ϕ2

t + ϕ2
x)/2 + 1− cosϕ [8, 9]. Both pan-

els demonstrate that, in the presence of thermal
fluctutations and ac forcing, remarkably stable breather
excitations can form in the junction. In a purely
dissipative case, breathers radiatively decay within
∼ 1/α = 5 [23], a lifetime which is surpassed by multiple
orders of magnitude here. Note also the stability of the
modes with respect to the position, i.e., their centers do
not drift away from the originary positions [x ≈ −16.5
in Fig. 1(a)] over hundreds of oscillations, despite the
noise influence. These interesting features hold widely
among the different realizations. One or more breathers
typically appear in random spots within a few driving
cycles (t ≈ 50 in Fig. 1). After a transient, a state
similar to that of Fig. 1, stable over very long times [43],
eventually sets in.

Further information regarding the stabilized oscilla-
tory modes is perhaps useful here: (i) their breathing
cycles are locked to the external ac force [Fig. 1(b), inset];
(ii) they are strongly localized in space, over the charac-
teristic length λb (ω) = 1/

√
1− ω2 [8, 9], i.e., the width of

an unperturbed breather at frequency ωb = ω; (iii) their
amplitude is & Ab (ω) = 4 arctan

(√
1− ω2/ω

)
[8, 9],

which is that of an unperturbed breather at the driving’s
frequency ω [44].

Keeping the parameter values ω = 0.6 and η = 0.59 as
in Fig. 1, the junction’s response versus the noise strength
Γ ∈ [10−5, 4× 10−2] [14] is now explored, for T = 500
and N = 1000 realizations. Specifically, simulating for a
time long enough to let the generation events to unravel,
the final state of each run is classified as follows: (a) no
excitations, if the phase profile is essentially flat over the
spatial domain; (b) breathers only, if the observed modes’
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FIG. 2. (a): Probability of having no excitations (Pa, blue),
breathers only (Pb, green), and at least a free kink-antikink
couple (Pc, red) versus Γ. (b): Energy-based coefficient of
spatial correlation, see Eq. (5), as a function of Γ. Parameter
values: T = 500, ω = 0.6, η = 0.59, and N = 1000.

amplitudes lie between Ab and 2π, the latter being the
phase value associated with kink-type structures [8, 9];
(c) at least a free kink-antikink couple, if at least a 2π-
step excitation is present.

As illustrated in Fig. 2(a), for the lower Γ values, the
probability Pa of having no excitations is 1 (see the blue
circles). As the noise intensity is increased, a new sce-
nario soars, that of breather-only formation. Indeed, for
Γ roughly in [5× 10−4, 10−2], the corresponding proba-
bility Pb is & 0.9 (see the green circles). This provides a
rather wide range of working temperatures for the cur-
rent approach. The stochastic influence eventually be-
comes disruptive for the oscillatory bound state, and the
kink-antikink regime takes over for Γ > 10−2 (see the red
circles, Pc). The probability of exciting solely breathers
therefore exhibits a nonmonotonicity versus Γ, highlight-
ing the crucial role of the temperature as a control pa-
rameter in the setup. In this regard, the fact that ther-
mal noise can allow for the formation process, without
compromising the long-time stability of the breathers, is
noteworthy.

Furthermore, the energy spatial correlation evaluated
at the characteristic scale λb [42]

Cε̄(λb) ∝
〈∫

ε̄(x)ε̄(x+ λb)dx
〉

〈∫
ε̄(x)dx

〉2 , (5)

where ε̄(x) is the time-averaged energy density, shows a
nonmonotonic behavior as a function of Γ [see Fig. 2(b)].
Thus, an appropriate amount of environmental noise, in-
stead of degradation, enhances the junction’s sensitivity
to the external force, leading to nontrivial spatial cor-
relations—a somewhat counter-intuitive outcome. The
noise amplitude also impacts the typical timescale of the
generation events: for stronger fluctuations, they occur
earlier in the simulations. This aspect is quantitatively
addressed in [42].

It is now important to examine, at fixed Γ > 0, the be-
havior of the breather-only generation probability Pb in
the frequency-amplitude parameter space [45]. To cope
with such a heavy computational task, N = 500 runs are

FIG. 3. Probability of generating solely breathers in the
(ω, η) parameter space. The red circle identifies the com-
bination ω = 0.6 and η = 0.59. Parameter values: T = 500,
Γ = 5× 10−3, and N = 500.

performed for each (ω, η) pair, focusing on ω ∈ [0.5, 0.8]
and η ∈ [0.2, 0.8], with ∆ω = 0.02 and ∆η = 0.05. The
simulation time and noise amplitude are T = 500 and
Γ = 5× 10−3, respectively.

Figure 3 shows that several high-Pb (ω, η) (green, yel-
low) areas exist for breather-only formation. Note that,
for the scenario of Fig. 1 to occur, the combined action
of noise and the deterministic force must provide an en-
ergy of the order of Eb (ω) = 16

√
1− ω2 [8, 9], i.e., that

expected for a breather at frequency ω, without breaking
up any of the subsequent kink-antikink bonds. Two rea-
sons are behind the low-probability (purple) region. The
first one, for η & 0.7 (see Fig. 3), is the kink-antikink (k-
ak) regime, associated to an excess of energy input. For
the remaining purple (ω, η) area, no excitations are ob-
served. One may notice that, at lower ω values, higher
amplitudes η are needed to excite the nonlinear breath-
ing states. This is qualitatively explained by the above
expression of Eb (ω), which implies that breathers with
lower frequencies require more energy.

Another topic worth discussing is the system’s topol-
ogy and its influence on the examined phenomenon. Due
to Eq. (4), the (initially null) topological charge is con-
served, thus no unpaired kinks/antikinks can arise. By
contrast, for Neumann-type boundary conditions, i.e., for
an overlap-geometry LJJ [21, 22], single kinks/antikinks
can emerge at the borders, usually forming bound states
with their virtual counterparts [19, 46]—what one may
call edge-breathers. The latter case was extensively ana-
lyzed as well (not shown here), and the overall picture is
not drastically altered. The difference is that in the peri-
odic framework, i.e., annular LJJs, there are no preferred
locations for the emergence of breather states, whereas
in the Neumann case, i.e., overlap LJJs, edge-breathers,
being essentially single-soliton modes, are more likely ob-
served since they provide an energetic advantage.

Detection.—The lowest dc current value to break up an
unperturbed breather into a kink-antikink pair crucially
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depends on its phase [17, 20]. Starting from this insight,
and taking full advantage of the developed setup, a much-
awaited, clear experimental signature of the oscillatory
bound state is provided.

The parameters ω = 0.6, η = 0.59, and Γ = 5× 10−4

are selected here to work with a highly favorable breather
formation scenario (see Figs. 2 and 3). The physi-
cal idea behind the detection scheme is quite simple:
(i) excite stabilized breathers; (ii) embed their prop-
erties into the switching characteristics of the device
by destroying them at different stages of their oscilla-
tion cycle. More precisely, the ac-driven LJJ is first let
to evolve up to t = (t? + τ), where t? is a time much
greater than that typical for the occurrence of the gen-
eration events, and τ is an arbitrary (time) displace-
ment. With the chosen values of ω, η, and Γ, breathers
emerge roughly within t = 50 (see Fig. 1 and [42]),
thus t? = 250 is taken to allow the system to reach its
long-time stable configuration. Next, the smooth cur-
rent bias γ {1− exp[−0.1(t− t? − τ)]} [20] is applied for
t > (t? + τ), while the ac force is slowly turned off, and
one should record whether the junction switches to a re-
sistive state—namely, whether the kink-antikink splitting
is triggered and a measurable voltage drop appears. The
previous steps have then to be repeated a number of times
to obtain, for each different τ value, the minimal current
γsw leading to a significant switching probability over N
realizations, say, Psw ≥ 0.75.

A few relevant points underlying the above approach
should be mentioned. Past proposals with a similar
goal [20] have encountered the serious issue of dissipation.
The modes’ stability for t ≤ (t? + τ) practically solves
the problem here. Second, as previously mentioned, the
breather oscillations are locked to the ac-drive, ensuring
that breathers from all the repetitions at fixed τ arrive in
phase at t = (t? + τ). This is crucial, since the whole idea
revolves around breaking up the solitonic bound states at
different stages of their oscillation cycle [47]. Note also
that the randomness in the number of breathers emerg-
ing in each realization does not harm the described se-
quence in any way. Lastly, the slow switch-off of the ac
driving for t > (t? + τ) avoids the simultaneous action of
noise, the smooth current bias, and the ac source at full
strength. The latter situation, in fact, can potentially
lead to additional kink-antikink states that would pretty
much take over the switching dynamics of the junction.

The quantity γsw(τ) displays a peculiar oscillatory be-
havior (see Fig. 4). A period approximately equal to
10 ≈ 2π/ω can be appreciated, which reflects the breath-
ing cycle. This outcome is markedly different from that
obtained both in the absence of excitations and in a
kink-antikink regime, where no sensitivity to the dis-
placement τ is exhibited. Indeed, in the small-noise
case Γ = 10−5, where essentially no excitations appear
[Pa ≈ 1 in Fig. 2(a)], one gets Psw ≈ 0 for γ ∈ [0, 0.4],
independently of τ . With Γ = 4× 10−2 [Pc ≈ 1 in

FIG. 4. Lowest current value γsw at which the resistive
state is triggered with probability Psw ≥ 0.75 as a func-
tion of the time displacement τ ∈ [0, 59]. The ac driv-
ing’s slow switch-off consists in the time-dependent ampli-
tude η exp[−0.01(t− t? − τ)] for t > (t? + τ). Parameter val-
ues: T = 500, ω = 0.6, η = 0.59, Γ = 5× 10−4, t? = 250, and
N = 500.

Fig. 2(a), i.e., kink-antikink scenario] the minimal cur-
rent is γsw ≈ 0.17 ∀τ .

Conclusions.—This letter addresses the formation of
breathers stable over long times, for sufficiently high tem-
peratures, in ac-driven LJJs. Nonmonotonic behaviors of
both the probability of generating solely breathers and
the energy spatial correlations are obtained as a func-
tion of the noise strength, highlighting the latter’s criti-
cal role as a control parameter. The efficacy of the phe-
nomenon for different breathing frequencies is demon-
strated. Lastly, the breather induces peculiar oscilla-
tions into the junction’s resistive switching characteris-
tics, which is exploitable to experimentally reveal it.

Preliminary simulations indicate that the results are
robust even to static disorder due, e.g., to impurities in
the device. It may also be interesting to design a setup
where preferred locations for the emergence of breathers
can be selected. This could be, reasonably, achieved by
locally heating the junction or by means of a spatially-
modulated ac force [19].
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THE SINE-GORDON EQUATION

The sine-Gordon (SG) equation

ϕxx − ϕtt = sinϕ, (1)

which can be derived from the energy density ε(x, t) = (ϕ2
t + ϕ2

x)/2 + 1− cosϕ, admits topological soliton solutions

ϕ±(x, t) = 4 arctan

[
exp

(
± x− vt√

1− v2

)]
(2)

known as kinks (ϕ+) and antikinks (ϕ−). In Eq. (2), v < 1 is the constant velocity of the travelling wave, whose
relativistic behavior is due to the structure of Eq. (1). In the realm of long Josephson junctions (LJJs), the limiting
velocity is the propagation speed of electromagnetic signals in the device, commonly known as the Swihart velocity,
c̄ = λJωp = 1/

√
LPC, with λJ being the Josephson penetration depth, ωp the Josephson plasma frequency, LP the

inductance per unit length, and C the capacitance per unit length [1].

Breathers are space-localized, time-periodic solutions of Eq. (1) given by

ϕb(x, t) = 4 arctan





√
1− ω2

b

ωb

sin

[
ωb(t−vex)√

1−v2
e

]

cosh

[√
1−ω2

b (x−vet)√
1−v2

e

]




, (3)

where 0 < ωb < 1 and ve < 1 are, respectively, the excitation’s proper frequency and the envelope velocity. Notably,
Eq. (3) can be obtained via analytic continuation from the profile describing the kink-antikink collision. If ve = 0—the
most relevant case for the present work—besides the duration of each breathing cycle Tb = 2π/ωb, the parameter

ωb yields the energy Eb = 16
√

1− ω2
b , the amplitude Ab = 4 arctan

(√
1− ω2

b/ωb

)
, and the characteristic length

λb = 1/
√

1− ω2
b of the nonlinear mode. Therefore, high (low) energy breathers possess low (high) frequencies and

high (low) oscillation amplitudes.

For more information concerning the SG equation, even in the presence of perturbation terms, see Refs. [2, 3] and
references therein.

NUMERICAL SOLUTION OF THE PERTURBED SINE-GORDON EQUATION

An implicit finite-difference scheme is employed to integrate the following perturbed SG equation

ϕxx − ϕtt − αϕt = sinϕ− η sin(ωt), (4)

where α is the dissipation coefficient and ω and η are, respectively, the frequency and amplitude of the monochromatic
force. More specifically, the spatial domain is divided into N cells of length ∆x = h and the temporal domain into
M intervals of duration ∆t = k. Within this framework, the restriction of ϕ(x, t) is indicated as ϕm

n = ϕ(nh,mk), for
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2

n = 1, ...,N and m = 1, ...,M. Then, one replaces the derivatives in Eq. (4) with [4]

ϕx =
1

2h

(
ϕm
n+1 − ϕm

n−1

)
+O(h2),

ϕt =
1

2k

(
ϕm+1
n − ϕm−1

n

)
+O(k2),

ϕxx =
1

2h2

(
ϕm+1
n+1 − 2ϕm+1

n + ϕm+1
n−1 + ϕm−1

n+1 − 2ϕm−1
n + ϕm−1

n−1

)
+O(h2 + k2),

ϕtt =
1

k2

(
ϕm+1
n − 2ϕm

n + ϕm−1
n

)
+O(k2).

(5)

If O(h2) and O(k2) terms are neglected, and both the initial and the boundary conditions are imposed, one gets a
system of equations, whose resolution determines the new (unknown) values ϕm+1

n , given the previous ones ϕm
n and

ϕm−1
n , with n = 1, ...,N . For periodic boundary conditions, the matrix representing the system is cyclic tridiagonal,

i.e., it has nonzero elements only on the diagonal, the subdiagonal, the superdiagonal, and in the corners. The solution
is therefore found by combining the Sherman-Morrison formula with Thomas’ algorithm (the latter being a simplified
form of Gaussian elimination) [5]. Moreover, Wilkinson’s iterative refinement method is used at each step to prevent
the accumulation of rounding errors [5].

According to Ref. [6], the noisy perturbation γT (x, t), whose statistical properties are

〈γT (x, t)〉 = 0 and 〈γT (x1, t1)γT (x2, t2)〉 = 2αΓδ(x1 − x2)δ(t1 − t2), (6)

can be numerically handled as

√
2αΓ

Wm
n√
hk
, (7)

in which Γ is the noise strength and Wm
n are independent normal random variables with zero mean and unit variance.

The computational scheme’s precision was tested by systematically varying the values of the space and time
steps, and by examining the discrepancy with a variety of analytical SG solutions, such as Eqs. (2) and (3), in
the α = η = Γ = 0 case.

Throughout the work, the chosen discretization steps are h = k = 0.01.

ENERGY-BASED ANALYSIS OF THE SPATIAL CORRELATIONS

The energy density ε(x, t), along with its spatial correlations, is a key physical quantity to characterize the emergence
of localized, coherent structures [7, 8]. In particular, considering the time average

ε̄(x) =
1

T

∫ T

0

ε(x, t)dt, (8)

where T is the observation time, the following spatial correlation function is introduced

Cε̄(X ) ∝
〈∫

ε̄(x)ε̄(x+ X )dx
〉

〈∫
ε̄(x)dx

〉2 , (9)

in which X is a space displacement, 〈...〉 denotes the ensemble average, and the integrals are performed over the whole
spatial domain.

To truly appreciate Eq. (9)’s significance, it is useful to discuss its behavior in distinct scenarios: (i) no excitations
(i.e., spatially-uniform condition); (ii) breathers stable both in amplitude and position over long times; (iii) turbulent
kink-antikink regime, with different excitations possibly appearing and wandering/annihilating over time. In the
first, trivially-correlated case, the energy is equally distributed among all the system’s sites, therefore a flat Cε̄(X )
is obtained [Cε̄(X ) = 1 under appropriate normalization in Eq. (9)]. When long-time stable breathers are present,
each one results in a prominent ε̄(x) spike of width λb = 1/

√
1− ω2, with λb being the characteristic length of an

unperturbed breather with frequency ωb = ω (ω is the frequency of the sinusoidal force, see above). Thus, Cε̄(X )
peaks at X = 0, and it decays to 1 with the typical scale λb as X is increased. In the third situation, a nearly
spatially-homogeneous Cε̄(X ) ≈ 1 is restored, but the underlying reason is rather different from that of (i). Many
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FIG. 1. Energy-based coefficient of spatial correlation versus Γ ∈ [10−5, 4× 10−2]. Parameter values: ∆x = ∆t = 0.01, l = 50,
T = 500, α = 0.2, ω = 0.6, η = 0.59, and N = 1000.

solitonic excitations are indeed observed temporarily in the system, but due to thermal agitation they do not leave
long-lasting marks on a few (random) spots. On average, see Eq. (8), the spatial domain is roughly explored in a
uniform way by these strongly fluctuation-driven transients.

In light of the above, it is natural to evaluate the system’s response in terms of Cε̄(X = λb), as a function of Γ.
As displayed in Fig. 1 [i.e., Fig. 2(b) in the main text, reported here for the reader’s convenience], such a quantity
behaves nonmonotonically versus Γ ∈ [10−5, 4× 10−2]. The values of the remaining parameters are: ∆x = ∆t = 0.01,
l = 50 (system length), T = 500, α = 0.2, ω = 0.6, η = 0.59, and N = 1000 (number of realizations). At each in-
tegration step, the phase ϕ is regularized via moving averages before calculating ϕt and ϕx needed to evaluate
ε(x, t) = (ϕ2

t + ϕ2
x)/2 + 1− cosϕ. Clearly, the previously mentioned cases (i), (ii), and (iii) correspond to the phe-

nomenology observed at low, intermediate, and high noise strengths, respectively. Therefore, the trend in Fig. 2 is
well-understood on physical grounds.

In short, an appropriate amount of environmental noise can enhance the system’s sensitivity to the external force,
leading to nontrivial spatial correlations.

TYPICAL TIMESCALE OF THE SOLITONIC FORMATION EVENTS

The noise strength is reasonably expected to influence the typical timescale of the random emergence of the solitonic
states (breathers and kink-antikink couples). To examine this, focusing on the fraction of realizations where at least
one generation event takes place, one can record the time t̂ at which the first excitation with amplitude greater or

FIG. 2. Average time
〈
t̂
〉

and the corresponding standard deviation as a function of the noise amplitude Γ ∈ [10−5, 4× 10−2].
Parameter values: ∆x = ∆t = 0.01, l = 50, T = 500, α = 0.2, ω = 0.6, η = 0.59, and N = 1000.
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equal to Ab = 4 arctan
(√

1− ω2/ω
)

is observed, with Ab being the amplitude of an unperturbed breather at frequency
ωb = ω.

Figure 2 shows the average time
〈
t̂
〉

and the corresponding standard deviation as a function of Γ ∈ [10−5, 4× 10−2].
The values of the remaining parameters are ∆x = ∆t = 0.01, l = 50, T = 500, α = 0.2, ω = 0.6, η = 0.59, and
N = 1000. A clear result is found: for higher noise amplitudes, on average, nonlinear modes appear in earlier
stages of the simulations.
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