
Effective Decision Boundary Learning for Class
Incremental Learning

Chaoyue Ding1,2 Kunchi Li1,2† Jun Wan1,2 Shan Yu1,2 ∗

Abstract

Rehearsal approaches in class incremental learning (CIL) suffer from decision
boundary overfitting to new classes, which is mainly caused by two factors: insuffi-
ciency of old classes data for knowledge distillation and imbalanced data learning
between the learned and new classes because of the limited storage memory. In this
work, we present a simple but effective approach to tackle these two factors. First,
we employ re-sampling strategy and Mixup Knowledge Distillation (Re-MKD)
to improve performances of KD, which would greatly alleviate the overfitting
problem. Specifically, we combine mixup and re-sampling strategies to synthesize
adequate data used in KD training that are more consistent with the latent distribu-
tion between the learned and new classes. Second, we propose a novel Incremental
Influence Balance (IIB) method for CIL to tackle the classification on imbalanced
data by extending the influence balance method into the CIL setting, which re-
weights samples by their influences to create a proper decision boundary. With
these two improvements, we present the Effective Decision Boundary Learning
algorithm (EDBL) which improves the performance of KD and deals with the
imbalanced data learning simultaneously. Experiments show that the proposed
EDBL achieves state-of-the-art performances on several CIL benchmarks.

1 Introduction

Applications of deep neural networks (DNNs) in a real-world require the ability of the system to
learn new classes incrementally [1, 2, 3]. However, DNNs typically suffer from drastic performance
degradation on the previously learned tasks after learning new classes when the past data are
unavailable, which is well documented as catastrophic forgetting [4, 5, 6]. Recently, many methods
in CIL have been proposed to try to deal with this problem. Owing to their superior performances,
Rehearsal-based approaches utilizing KD [7] (RKD) [8, 9, 10, 11, 12] have been widely applied in
CIL. However, recent works revealed that the RKD methods suffer from decision boundary overfitting
to new classes, which is referred to as the (task-recency) bias towards new classes [3, 8, 10, 13].

As shown in Fig. 1, basic RKD approaches typically have two training objectives: transferring the
existing knowledge from the old model by KD and learning new classes via minimizing the KD
loss [7] and the cross entropy (CE) classification loss. However, RKD approaches usually suffer from
the decision boundary overfitting problem caused by insufficient KD and imbalanced data between
the old and new classes.

Problem of Insufficient KD. In CIL setting, the stored exemplars of old classes are limited because
of the small memory budget. It is well known that the high capacity of DNNs is sufficient to memorize
the entire training data [14, 15], so RKD methods suffer from insufficient data for KD training. RKD
methods commonly use the stored exemplars of old classes and data of new classes to compute the KD
loss to preserve the existing knowledge. However, data of new classes are out of distribution (OOD)

∗1 Institute of Automation, Chinese Academy of Sciences, 2 University of Chinese Academy of Sciences. †:
Corresponding and Co-first author is Kunchi Li, likunchi2020@ia.ac.cn.

Preprint. Under review.

ar
X

iv
:2

30
1.

05
18

0v
3

 [
cs

.L
G

]
 2

4
A

pr
 2

02
4

New model

Insufficient KD

Old model

 Imabalanced data Learning

CE LossKD Loss

New model

Old model

Re-MKD IIB Method

CE Loss/IIBMKD Loss

New Classes

Stored Exemplars

Original Training
Data

Overfitting Boundaries

High Influnce
Sample

Basic RKD

Mixed Data

Re-weighting Data

Smoother Boundaries

Boundaries of
 the Old Model

EDBL
Figure 1: Comparisons between the basic RKD and the proposed methods (EDBL). Illustration of the two factors in RKD causing decision
boundary overfitting to new classes.

with the original training dataset of the old model and Beyer et al. [16] demonstrated that OOD data
work in KD to some extent while their performance suffers from great degradation, compared with
using the original training data. The combination of the scantness of exemplars for the old classes
and OOD between the learned classes and the new classes (data of old classes and new classes are
typically OOD in the CIL setting) lead to the new model overfitting to new classes. This phenomenon
is also demonstrated in our experiments (c.f. Sec. 5.5.2) and we refer to it as insufficient KD.

Problem of Imbalanced Learning. Due to the limited memory budget for storing exemplars of
the old classes in RKD approaches, there exists a serious problem of imbalanced data for learning
(few samples for the learned/old tasks are available while we have a large number of samples for
the current/new task), which would lead to decision boundary overfitting to the dominant (new)
classes [17, 18, 19].

In order to tackle the insufficient KD, we employ MKD and re-sampling strategy. We over-sample
the exemplars of the old classes and mix the samples from the old classes and the new classes to
synthesize mixed data for KD training. The interpolated data by an old class and a new class are more
consistent with the distribution of the original training data of old classes than the data of new classes,
which can improve KD in CIL and form a smoother decision boundary (c.f. Fig. 1, Re-MKD).

In order to deal with the imbalanced data learning problem, we attempt to attenuate the influence of
samples that cause the overfitting. To this end, we extend the method of influence balance (IB) [19]
to CIL setting and propose the incremental influence-balanced (IIB) method for CIL. Specifically, we
first derive a metric that measures how much each sample influences the biased decision boundaries.
Then, we decompose the metric into two parts which are referred to as the classification weighting
factor and the KD weighting factor, respectively. Finally, we design the incremental influence-
balanced (IIB) loss function for CIL, which adaptively assigns different weights to samples according
to their influence on decision boundaries (c.f. Fig. 1, IIB Method).

Based on the previous proposal, we divide our method into two phases after re-sampling Mixup-based
data augmentation. Phase 1 is MKD training, which improves the efficacy of KD to form a better
decision boundary through generating sufficient and more related data with the old classes used in
KD training. Phase 2 balances training by utilizing the derived IIB loss, attenuating the influence
of the samples that cause overfitting of the decision boundary. Through the two training phases, we
learn a decision boundary with better generalization capability.

In summary, the main contributions of this work are as follows: (i) We combine MKD with re-
sampling strategy to relieve the insufficient KD problem in RKD methods through synthesizing
data that are more related with the original training data of old classes than data of new classes. (ii)
We extend the IB method into the CIL setting and propose a novel IIB loss function to tackle the
imbalanced learning effectively in CIL. (iii) We propose the EDBL algorithm via combining Re-MKD
and IIB by deriving the incremental influence factor for mixed data. Experiments demonstrate that
the proposed EDBL method achieves state-of-the-art performances on several CIL benchmarks.

2 Related Work

2.1 Bias-Correction Approaches

CIL belongs to continual learning and the main challenge is catastrophic forgetting [4]. Previous
approaches to tackle catastrophic forgetting can be divided into three categories [3]:regularization [20,
21], parameter isolation [22, 23] and replay approaches [24, 25]. RKD belongs to replay approaches

2

and achieves the state-of-the-art performances. RKD methods [12, 9, 8, 10, 26] commonly train the
new model by preserving the existing knowledge and learning classes incrementally via minimizing
the KD loss and the CE loss. We introduce the problem formulation and summarize the popular
strategies of RKD training in Appendix A.

RKD methods suffer from the task-recency bias and the ideas in previous works to alleviate this
problem in CIL are very similar to the approaches in the long-tail learning. For example, iCaRL [12]
employs representation learning strategy, and EEIL [9] utilizes classical image transformation e.g.
random cropping, mirroring etc. to make data augmentation and fine-tune the newly trained model
with a balanced dataset. BiC [8] trains a bias-correction classification layer with a balanced dataset,
which is similar to the approaches of decouple learning and LUCIR [10] belongs to cost-sensitive
learning. Different from the previous works, our method employs re-sampling and MKD strategy to
relieve insufficient KD problem and propose IIB method to deal with the imbalance data learning.
Both improvements are complementary to the previous bias-correction approaches.

2.2 Classes Imbalance

Classes Imbalance is a significant challenge for machine learning [27, 28]. In long-tail learning, the
trained models usually bias towards the dominant classes. Previous efforts to tackle the overfitting
problem can be roughly divided into three groups: (i) data re-balance including re-sampling [29, 30],
data augmentation [31, 32], etc.; (ii) cost-sensitive learning including re-weighting strategy [33, 19],
etc.; (iii) module improvement including representation learning [34, 35], decoupled training [36]
and ensemble learning [37, 38], etc.. In this work, we combine mixup with re-sampling to make data
augmentation and utilize the re-weighting strategy to relieve overfitting. But, we mainly use mixed
data in KD training to relieve insufficient KD problem in CIL and we extend the re-weighting method
in [19] (referred to as IB method in this work) into CIL and combine it with the re-sampling&mixup-
based data augmentation to tackle imbalanced data learning.

2.3 Mixup and Knowledge Distillation

Mixup is first proposed in [39], which generates an interpolated sample (x̂, ŷ) by (xi, yi), (xj , yj)
according to Eq. 1:

x̂ = λxi + (1 − λ)xj , ŷ = λyi + (1 − λ)yj , (1)

where xi, xj are images and yi, yj are labels, respectively, λ is randomly drawn by the Beta function.
In [39], the CE loss (Lce) for mixed data is computed as follows:

Lce(x̂, ŷ) = λLce(x̂, yi) + (1 − λ)Lce(x̂, yj). (2)

After that, some other label mixing methods are proposed such as cutmix [40], manifold mixup [41],
, Remix [31], etc.. Mixup-based data augmentation can greatly improve the generalization of DNNs
in image classification learning while there are some works utilize label mixing methods in various
scenarios such as the long-tail learning [31], continual learning [42, 43]. Recently, some works
validate that label mixing methods improve the performance of KD e.g. [16, 44], which compute the
KD loss with the mixed sample (x̂, ŷ) as follows:

Lkd(x̂, ŷ) =

m∑
i=1

−σi(
T (x̂)

t
)log[σi(

S(x̂))

t
], (3)

where T, S are the teacher model and the student model, t is the temperature, m is the number of the
learned classes of T and σ is the softmax. These works utilize Mixup to improve KD performances
in model compressing setting where the training data are independent-identically-distributed (IID)
with the original training dataset of the teacher model. However, they cannot verify the effectiveness
of their methods in the CIL setting, where the training data are imbalanced and new classes are OOD
with the old classes. In this work, we employ re-sampling in Mixup and validate effectiveness of
mixup between old classes (IID dataset) and new classes (OOD dataset) for KD in the CIL setting.

3 Preliminaries

Influence Function. The influence function [45, 46] in robust statistics was proposed to find the
influential instance of a sample to a model. Recent works have used influence function in DNNs,

3

e.g., [47]. Given a empirical risk R(Θ) = 1
N

∑N
i=1 L(x,Θ), of which the optimal parameter is

Θ∗ = argminΘR(Θ), where N is the number of training data, Θ = (θ,W) are the parameters of
the network and θ,W are the parameters of the feature extractor and the linear classifier (the last
full connected layer, FC), respectively. According to the results in [47], the influence function of the
point (x, y) is given by:

I(x,Θ) = −H
−1
L (∇ΘL(x,Θ)), (4)

where ∇Θ is the gradient operator and HL ≜
∑N

i=1∇2
ΘL(xi,Θ) is the Hessian, which is positive

definite based on the assumption that L is strictly convex in a local convex basin in the vicinity of Θ∗.

Influence Balance Method. Park et al. [19] firstly apply influence function to a learning scheme,
where they design the influence-balanced (IB) loss by utilizing the influence function during training
in long-tailed classification. They treat the influential instance of a sample to a model of a point (x, y)
as the parameters of the model change when the distribution of the training data at the point (x, y) is
slightly modified and referred to it as the IB weighting factor. IB method uses L1 norm of Eq. 4 to
qualify the influence of the point (x, y) and further ignores the inverse Hessian reasonably. The IB
weighting factor is computed as follows:

IB(x,Θ) = ∥∇ΘL(x,Θ)∥1 (5)

IB method focuses on the change in the FC layer of DNNs and the IB weighting factor can be
simplified by:

IB(x,Θ) = ∥f(x) − y∥1∥h∥1 (6)

where f is the network and h is the hidden feature vector of (x, y). Finally, the IB loss, which is used
in balancing training to attenuate the influence of samples that cause an overfitted decision boundary
is given by:

LIB(x, y,Θ) = λk
L(x, y,Θ)

IB(x,Θ)
(7)

where in IB method, L is CE loss function, λk = γn−1
k /

∑K
i=1 n

−1
i is the class-wise re-weighting

term, k is the label of (x, y), ni is the number of samples in the k-th class and γ is the hyper-parameter.
IB method has two training phases:(i) Normal classification training via minimizing the CE loss;
(ii)Balancing training, where IB method fine-tunes the model via minimizing LIB by Eq. 7.

4 The Proposed Method

4.1 Re-sampling MKD

Re-sampling Mixup. Beyer et al. [16] demonstrates that KD training with OOD data suffers from
great degradation and they validate empirically that the data, which are related or overlapped with the
original training data (consistent with the latent distribution of original training data) can perform
as good as the original training data in KD training. So the mixed data generated by mixup using
samples from old classes and new classes, which are usually more related with old classes than
the data of new classes (basic RKD methods directly use data of new classes in KD training) may
improve KD performances in CIL.

Given that the data between the old and new classes are seriously imbalanced in RKD methods, we
consider the ratio between the old classes from the past tasks and the new classes of the current task.
We generate three kinds of mixed data in a batch: mixup among old classes, mixup between old
classes and new classes and mixup among new classes. Owing to the limited data per old class in
RKD methods, we mixup data more frequently for the first two types. Specially, we mixup N

2 times
for the first two types and 1 time mixup for the last type of mixed data, where N is the proportion of
the data between per tail and head class, and we make sure the number of samples from old classes in
a batch isn’t less than a fixed number (32 in this work).

Finally, re-sampling-based Mixup can generate much data through label mixing between old classes
and new classes. These generated data increase the diversity and the number of data used in KD,
which improves the performance of KD in CIL. Our experiments demonstrate that re-sampling-based
Mixup outperforms the original Mixup in [39] (referred to as Vanilla-Mixup in this work) significantly
(c.f. Sec. 5.5.1).

MKD Training. After data augmentation by re-sampling-Mixup, we train the new model by
minimizing two losses: the CE loss (Lce) and the KD loss (Lkd) with the synthesized data in a

4

similar way as in the basic RKD method. We compute Lce and Lkd according to Eq. 2 and 3,
respectively and we replace the teacher and student model with the old model (f t−1

θ,W) and the new
model (f t

θ,W) in Eq. 3, respectively. In this paper, we denote the strategy of Re-sampling Mixup and
MKD training (Re-sampling MKD) as Re-MKD while we denote the strategy of vanilla Mixup and
MKD training as vanilla-MKD.

4.2 IIB Method

4.2.1 IIB Weighting Factor

We extend the IB method into CIL and propose a novel IIB loss function to attenuate the influence of
the samples to relieve overfitting. The experience risk at task t in RKD is R(Θ) = 1

N

∑N
i=1 L(x,Θ),

where L ≜ Lce(yi, f
t
Θ(xi)) + Lkd(f

t−1
Θ (xi), f

t
Θ(xi)) and Θ∗ = argminΘR(Θ) is the optimal

parameter after initial training. We first utilize Eq. 4 to compute the influence of the sample
(x, y) for CIL. Then, like in IB method, we ignore the inverse of the Hessian, which is given
by HL ≜

∑N
i=1∇2

ΘL(xi,Θ) =
∑N

i=1∇2
ΘLce(xi,Θ) + ∇2

ΘLkd(xi,Θ) because it is commonly
multiplied by all the training samples and just the relative influences of the training samples are
needed and we use L1 norm to qualify the influence to obtain the incremental influence-balanced
(IIB) weighting factor. Therefore, according to Eq. 5 in the IB method, the IIB weighting factor of
the point (x, y) for CIL can be represented by:

IIB(x,Θ) = ∥∇ΘL(x,Θ)∥1 = ∥∇ΘLce(x,Θ) + ∇ΘLkd(x,Θ)∥1 (8)

At task t, let h = [h1, . . . , hL]
T be a hidden feature vector (an input to the FC layer), and f(x,Θ) =

[f1, . . . , fm, . . . , fm+n]
T be the output denoted by fk ≜ σ(wT

k h), where σ is the softmax function,
m,n are the number of learned classes and the new classes, respectively. The weight matrix of gtW is
denoted by W = [w1, . . . , wm, . . . , wm+n]

T ∈ R(m+n)×f . Then, ∇ΘLce(x,Θ) and ∇ΘLkd(x,Θ)
is computed as below, respectively.

∂Lce(x,Θ)

∂wkl

= (f
t
k(x) − yk)hl, k ∈ [1,m + n] (9)

∂Lkd(x,Θ)

∂wkl

=

{
(ft

k(x) − ft−1
k (x))hl, k ∈ [1,m]

0, k ∈ [m + 1,m + n]
(10)

Finally, we apply Eq. 9 and 10 to Eq. 8. Thus, the IIB weighting factor can be computed as:
IIB(x,Θ) = (∥[2 ∗ f

t
(x) − y − f

t−1
(x)]

m
1 ∥1 + ∥[ft

(x) − y]
m+n
m+1 ∥1)∥h∥1, (11)

where [V]ji denotes the slice [vi, . . . , vj](j ≥ i) of the vector V = [v1, . . . , vN].

4.2.2 Decomposition of IIB Weighting Factor

The Stability-Plasticity Dilemma. The stability-plasticity dilemma [48] is a well-known constraint
for artificial and biological neural systems. The basic idea is that a learning system requires plasticity
for the integration of new knowledge, but also stability in order to prevent the forgetting of previous
knowledge. Too much plasticity will result in previously encoded data being constantly forgotten,
whereas too much stability will impede the efficient coding of this data at the level of the synapses.

In RKD, the KD loss is used to preserve the existing knowledge by encouraging the new model to
mimic the output of the old model and the CE loss is used to learn to recognize new classes. Eq.
11 considers the influence of the CE loss and the KD loss on the decision boundary, but a sample
may actually perform differently on the classification and KD training. For example, we use data
on motorbikes to train the new model to recognize motorbikes incrementally while preserving the
knowledge of knowing bikes. Because of the similarity between motorbikes and bikes, samples of
motorbikes may improve the performance of KD and preserve the previous knowledge well. That
is because the data which are related or overlapped with the original training data perform well in
KD [16]. But in the classification training, the new model may bias to motorbikes.

Decomposing IIB Factor. Considering the stability-plasticity dilemma, we decompose the IIB
weighting factor into two factors: the classification weighting factor for learning new tasks and
the KD weighting factor for preserving the existing knowledge, which measures how much each
sample influences on forming new boundaries by the classification training and the previous decision
boundaries of the old model preserving training (KD training), respectively.

5

Definition 4.1. In CIL, the classification weighting factor and the KD weighting factor of a sample
(x, y) are defined as the magnitude of the gradient vector of the CE loss and the KD loss on that point,
respectively:

IBce(x,Θ) = ∥∇ΘLce(x,Θ)∥1, IBkd(x,Θ) = ∥∇ΘLkd(x,Θ)∥1 (12)

Then, we use a hyper-parameter α to make trade-off on these two factors. Therefore, IIB weighting
factor is computed via:

IIB(x,Θ) = IBce(x,Θ) + αIBkd(x,Θ) = (∥[ft
(x) − y]∥1 + α∥ft

(x) − f
t−1

(x)∥1)∥h∥1 (13)

where IIB(x,Θ) ≤ ∥∇ΘLce(x,Θ)∥1 + ∥∇ΘLkd(x,Θ)∥1, and α ≤ 1.

4.2.3 IIB Loss

During the balancing training, we attempt to fine-tune the decision boundary to create a more
generalized one, so we multiply the CE loss function by the inverse of IIB weighting factor, resulting
in IIB loss as follows:

LIIB(x, y,Θ) = λk
Lce(x, y,Θ)

IIB(x,Θ)
(14)

where λk is the class-wise re-weighting term (c.f. Sec. 3 and Eq. 7).

4.3 EDBL Algorithm

We propose the EDBL algorithm to combine Re-MKD and IIB method to improve knowledge
transferring and deal with imbalanced data classification synthetically to generate more generalized
decision boundaries in CIL. After MKD training, considering an mixed sample (x̂, ŷ), we apply Eq. 1
to Eq. 13 to compute the IIB weighting factor as follows:

IIB(x̂,Θ) = (∥[ft
(x̂) − λyi − (1 − λ)yj]∥1 + α∥ft

(x̂) − f
t−1

(x̂)∥1)∥h∥1 (15)

Then, we use this IIB weighting factor to compute LIIB according to Eq. 14.

Inspired by [16], which validates empirically that a large number of epochs improves the performance
of KD, so we add the KD loss to the IIB loss. Then the overall loss Loverall for balancing training is
as follows:

Loverall(x̂, ŷ,Θ) = LIIB(x̂, ŷ,Θ) + Lkd(x̂, ŷ,Θ) (16)

Overall, EDBL has two training phases: MKD training and balancing training. During the two
training phases, Lkd is continually used for distillation to encourage the decision boundary in the
new model to mimic the one in the old model, and LIIB re-weights the interpolated samples by their
influences on a decision boundary in the balancing training phase. The pseudo-code of EDBL is
presented in Algorithm 1 in Appendix B.

5 Experiments

5.1 Datasets

We conduct experiments on CIFAR-10, CIFAR-100 [49] and Tiny-Imagenet [50] to validate our
approach. We pad four pixels for images in CIFAR-10 and CIFAR-100 and then random crop them
into 32× 32 pixels. We use horizontal flip in all image pre-processings [12, 8].

5.2 Baselines and Protocols

We compare EDBL with some SOTA methods in CIL such as Mnemonics [51], PODNet-CNN [52]
and SS-IL [26], etc.. We adopt two protocols to conduct experiments: (1) Base-half: we start from
a model trained on half of all classes in the dataset, and the remaining half of classes come in 5
and 10 phases and stores 20 samples for each old class [10]. (2) Base-0: we follow the protocol
in iCaRL [12] to conduct experiments, where all of classes come in 2, 5, or 10 phases and the
memory budget is a fixed value. We report the results of two inference strategies: CNN output and
the nearest-mean-of-exemplar strategy (NME) [12] to evaluate our methods (denoted as EDBL-CNN
and EDBL-NME, respectively).

We follow the exemplar management of iCaRL to select exemplars for each old class. We use two
common metrics: average accuracy and average incremental accuracy [12] to measure performances.

6

(a) (b) (c) (d)

Figure 2: Comparison results of average accuracy on Base-half experiments with 5, 10 phases on
CIFAR-100, Tiny-Imagenet.

5.3 Implementation Details and Hyper-parameters Tuning

The λ in Eq. 1 is randomly sampled from the Beta function B = (1, 1) for all the experiments.
To make comparisons fairly, we use the same networks for our methods and baselines. We follow
[12, 8, 10] and [43] to use ResNet32 (d=64) for experiments on CIFAR-10/100 and ResNet18
(d=512) for Tiny-Imagenet in this work. When training networks, we follow the standard practices
for fine-tuning existing networks. We use stochastic gradient descent (SGD). As for the training
hyper-parameters such as batch size, weight decay, momentum, learning rate, epochs etc., we set
these parameters semi-heuristically and tune a few of parameters on CIFAR-100 and Tiny-Imagenet
experiments with 5 incremental learning phases, then we use the same setting of these parameters
for other experiments on CIFAR-10/100 and Tiny-Imagenet, respectively. We mainly tune λk in
Eq. 14 and α in Eq. 15 by grid searching. All the hyper-parameters are given in Appendix C.

Table 1: Average incremental accuracy (%) on
Base-half experiments. Models with an asterisk
* denotes using the results in [51], The two mod-
els with † or ‡ are reported directly from [53]
and [52], respectively. Because SS-IL [26] with
NME performs much better than the original SS-
IL in this work, we alternatively select SS-IL
with NME (SSIL-NME) as a baseline.

Base-half CIFAR-100 Tiny-imagenet
Phases 5 10 5 10

LwF* [54] 49.59 46.98 / /
iCaRL* [12] 57.12 52.66 / /

BiC* [8] 59.36 54.2 / /
LUCIR* [10] 63.17 60.14 / /

PODNet-CNN‡ [52] 64.83 63.19 / /
Mnemonics* [51] 63.34 62.28 / /

TPCIL† [53] 65.34 63.58 / /
iCaRL [12] 59.67 56.13 48.98 39.27

BiC [8] 61.14 58.4 49.23 47.67
LUCIR [10] / / 49.31 47.56

SSIL-NME [26] 64.94 60.99 48.93 45.74
EDBL-CNN(ours) 66.57 62.06 52.43 53.80
EDBL-NME(ours) 66.65 64.73 50.99 49.97

5.4 Results

5.4.1 Results on Base-half

Table 1 presents the comparisons of our methods with
the baselines on Base-half experiments. From Ta-
ble 1, we can find that EDBL-NME outperforms all
the compared methods on all the experiments signifi-
cantly. EDBL-CNN also surpasses all the compared
methods on all the experiments except the experiment
on CIFAR-100 with 10 phases. The comparison re-
sults of average accuracy at each incremental learning
phase are given in Fig. 2. Fig. 2 demonstrates that our
methods (EDBL-CNN and EDBL-NME) surpass all
the baselines at nearly each incremental learning phase.

5.4.2 Results on Base-0

Table 2: Average incremental accuracy (%) on
Base-0 experiments.

Base-0 CIFAR-10 CIFAR-100
Phases 2 5 2 5 10

iCaRL [12] 89.7 77.13 68.35 67.24 63.98
BiC [8] 89.29 78.5 70.15 68.06 65.9

PODNet-CNN [52] / 76.27 / 66.72 57.88
RemiX-CNN [31] 78.52 70.36 64.98 64.37 60.85
RemiX-NME [31] 82.07 77.41 67.19 67.18 64.46
SSIL-NME [26] 89.97 77.9 68.7 65.83 56.11

EDBL-CNN(ours) 91.6 77.42 72.28 72.2 66.53
EDBL-NME(ours) 89.82 78.51 70.71 69.33 67.99

We further conducted experiments on CIFAR-10/100
following Base-0 protocol to evaluate our method. The
memory budgets on CIFAR-10 and CIFAR-100 are
fixed to 200 and 2000 [12], respectively. CIFAR-10 is
split into 2 and 5 phases while CIFAR-100 is split into 2,
5 and 10 phases. Our methods employ Mixup strategy
which may help to relieve the overfitting problem while
Remix [31] adapted Mixup to generate more effective
interpolated data to tackle the long-tail learning. To
compare our method with Remix, we directly employ
Remix to train the new model to learn new classes
incrementally with the optimal hyper-parameters given in [31]. We report the results of Remix-CNN
and Remix-NME. From Table 2, we can find that EDBL-CNN and EDBL-NME outperform all
baselines on nearly all experiments except the experiment with 5 phases and 2 phases on CIFAR-10,

7

(a) Basic RKD in [9] (b) EDBL

Figure 3: t-SNE visualization on a random subset (4 classes) from CIFAR-10 (2 incrmental phases).

Table 3: The effectiveness of Re-MKD&IIB of EDBL (Average Accuracy on each incremental
phase).

Dataset CIFAR-10 CIFAR-100
phase 1 2 3 4 5 1 2 3 4 5

Baseline 0.9894 0.775 0.5544 0.464 0.4427 0.848 0.7085 0.5606 0.4891 0.392
+ Vanilla-MKD 0.9905 0.8095 0.587 0.4894 0.4189 0.8355 0.718 0.5658 0.4836 0.3625

+ IIB 0.9894 0.8527 0.6678 0.558 0.5183 0.848 0.6914 0.5851 0.5068 0.4476
+ Re-MKD 0.9905 0.8387 0.6446 0.6066 0.5926 0.8624 0.761 0.5744 0.5882 0.5629
+ IIB-KD 0.989 0.819 0.7143 0.6782 0.6329 0.8624 0.7355 0.636 0.5788 0.5362

EDBL-CNN(ours) 0.992 0.8727 0.7245 0.6794 0.6618 0.85 0.767 0.7093 0.6573 0.6051

respectively. Both of EDBL-CNN and EDBL-NME outperform Remix-CNN and Remix-NME on all
the experiments by large margins about [1.1%, 7%]. We also give the results of average accuracy at
each incremental learning phase and the results show that our methods surpass all the baselines at
nearly each incremental learning phase, similarly (c.f. Appendix D).

5.5 Ablation Study

5.5.1 Analysis on Re-MKD and IIB

The base work in [9] is a vanilla basic RKD which trains the new model via minimizing the KD
loss and the CE loss without any other strategies. We use it as the baseline in ablation study. The
memory size in the ablation study is fixed to 200 and 2000 for CIFAR-10/100, respectively and the
experiments are conducted in the same way as in the Base-0 experiments. Table 3 demonstrates the
effectiveness of Re-MKD and IIB components in the proposed EDBL algorithm, where IIB-KD is the
training strategy that uses the IIB loss and the KD loss to fine-tune the new model in the balancing
training phase.

In summary, we can observe that: (1) The Re-MKD component can improve the performance of the
baseline at each incremental batch by large margins, about [1%, 16%] and Re-MKD outperforms
Vanilla-MKD (vanilla-Mixup-based MKD) significantly. This validates that the generated data by
re-sampling-based Mixup are more related with old classes to improve the performance of KD.
This also demonstrates that the Re-MKD would relieve the problem of insufficient KD; (2) The IIB
component can improve the performance of the baseline at each incremental batch remarkably, and
surpasses baseline by up to [5.5%, 7.5%] on CIFAR-10 and CIFAR-100 at the last phase. Besides,
IIB-KD further improves the performance based on the improvement by IIB, which exceeds baseline
by 19% and 13% on CIFAR-10 and CIFAR-100, respectively at the last phase. All of these reflect the

8

effectiveness of IIB loss for CIL; (3) EDBL achieves the best performances, which implies EDBL
can learn more generalized decision boundaries effectively.

Further, we conduct visualization experiments with 2 incremental learning phases on a ran-
domly selected subset with 4 classes from CIFAR-10 and the memory is fixed to 200. As
shown in Fig. 3, the features extracted by the new model trained by EDBL has the less mu-
tual intrusion between the learned classes (the first batch classes) and the new classes (the
second batch classes), which reflects indirectly that the decision boundaries learned by
EDBL are with more generalizability than the ones generated by the Basic RKD method.

Table 4: Sensitivity on memory (Average Ac-
curacy on the last phase of the experiments), *
denotes using the results in [42].

Memory 200 500 1000 2000
GEM* [55] 0.2829 0.3204 0.3546 /

ER-Res.* [56] 0.2869 0.3190 0.3406 /
CLDR* [42] 0.3434 0.3770 0.4020 /
iCaRL [12] 0.4189 0.4999 0.5133 0.5431

SSIL-NME [26] / 0.4984 0.5217 0.5371
EDBL-CNN(ours) 0.4268 0.5265 0.5574 0.6051

5.5.2 Study on Memory Budget

We further study the sensitivity of EDBL on the size of
memory budget by conducting experiments on CIFAR-
100 with 5 phases following Base-0 protocol. The av-
erage accuracy on the last phase of the experiments
are demonstrated in Table 4 and the table shows that
EDBL-CNN obtains the best performances. CLDR [42]
utilizes manifold mixup to make a regularization to alleviate catastrophic forgetting while our method
outperforms CLDR by large margins about [8%,15%].

5.5.3 Sensitivity of α

Table 5: Sensitivity study on α (Average Accuracy on the last
phases of the experiments).

Dataset CIFAR-10 CIFAR-100
α 1 1e-3 1e-5 0 1 1e-3 1e-5 0

CNN 0.6034 0.596 0.6309 0.6176 0.4955 0.4977 0.5018 0.4715
NME 0.6485 0.6599 0.6577 0.6424 0.4836 0.4883 0.5016 0.5015

In IIB method, we introduce the hyper-
parameter α to trade off the classification
weighting factor and the KD weighting
factor to compute IIB loss. Here, we
choose the strategy, which is RKD + IIB-
KD in table 3 and α = {1, 1e− 3, 1e−
5, 0} to conduct experiments with 5 in-
cremental phases on CIFAR-10/100 and the memory is fixed to 200, 2000, respectively.

From Table 5, we can observe that IIB method is sensitive to the setting of α and setting a small value
for α improves the performance significantly while α = 0 is not the optimal value, where α = 0
denotes that IIB degenerates into the IB method. This implies that stability-plasticity dilemma really
exists in CIL and we should carefully treat this issue to achieve a better performance.

6 Conclusion

In this paper, we analyzed the causes of the decision boundary overfitting problem in CIL by two
factors: insufficient KD and imbalanced data learning. We proposed the EDBL algorithm to address
these problems. First, in order to deal with insufficient data for KD, we presented the re-sampling
MKD strategy, which generates much data by Mixup and re-sampling to be used in KD training,
which are more consistent with the latent distribution of old classes. Second, we extended IB method
into CIL through deriving a novel IIB loss, which re-weights samples by their influence on decision
boundary to alleviate the problem of learning with imbalanced data. On top of this, we propose
EDBL algorithm to combine re-sampling MKD and IIB method which can improve the knowledge
transferring and deal with the imbalanced data classification simultaneously. Experiments show that
EDBL achieves state-of-the-art performances on several benchmarks and ablation study validates
that both of Re-MKD and IIB are effective in CIL.

Limitation and Broader Impacts. One limitation is that more GPU memory and training time are
needed because:(i) re-sampling Mixup generates much mixed data during training, (ii)EDBL has
two training phases, so EDBL nearly requires twice as much training time as basic RKD method.
Fortunately, both of re-sampling MKD or IIB are effective in CIL, so we can employ them in real
applications flexibly. Moreover, EDBL significantly relieves catastrophic forgetting, which promotes
the practical use of DNNs. The negative impacts may occur in some malicious or misuse scenarios.
The appropriate proposes of employing EDBL (re-sampling MKD/IIB) are supposed to be ensured
with attentions.

9

References

[1] Gregory Ditzler, Manuel Roveri, Cesare Alippi, and Robi Polikar. Learning in nonstationary
environments: A survey. IEEE Computational Intelligence Magazine, 10(4):12–25, 2015.

[2] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019.

[3] Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Greg
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

[4] Yoshua Bengio, Mehdi Mirza, Ian Goodfellow, Aaron Courville, and Xia Da. An empirical
investigation of catastrophic forgeting in gradient-based neural networks. 2013.

[5] Robert M French. Interactive tandem networks and the sequential learning problem. In submitted
to the 1995 Cognitive Science Society Conference. Citeseer, 1995.

[6] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989.

[7] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[8] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.
Large scale incremental learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 374–382, 2019.

[9] Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek
Alahari. End-to-end incremental learning. In Proceedings of the European conference on
computer vision (ECCV), pages 233–248, 2018.

[10] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified
classifier incrementally via rebalancing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 831–839, 2019.

[11] Ahmet Iscen, Jeffrey Zhang, Svetlana Lazebnik, and Cordelia Schmid. Memory-efficient
incremental learning through feature adaptation. In European Conference on Computer Vision,
pages 699–715. Springer, 2020.

[12] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 2001–2010, 2017.

[13] Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and
Joost van de Weijer. Class-incremental learning: survey and performance evaluation on image
classification. arXiv preprint arXiv:2010.15277, 2020.

[14] Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio,
Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al.
A closer look at memorization in deep networks. In International Conference on Machine
Learning, pages 233–242. PMLR, 2017.

[15] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

[16] Lucas Beyer, Xiaohua Zhai, Amélie Royer, Larisa Markeeva, Rohan Anil, and Alexander
Kolesnikov. Knowledge distillation: A good teacher is patient and consistent. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10925–10934,
2022.

[17] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit,
and Sanjiv Kumar. Long-tail learning via logit adjustment. arXiv preprint arXiv:2007.07314,
2020.

[18] Zhiliang Peng, Wei Huang, Zonghao Guo, Xiaosong Zhang, Jianbin Jiao, and Qixiang Ye.
Long-tailed distribution adaptation. In Proceedings of the 29th ACM International Conference
on Multimedia, pages 3275–3282, 2021.

10

[19] Seulki Park, Jongin Lim, Younghan Jeon, and Jin Young Choi. Influence-balanced loss for
imbalanced visual classification. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 735–744, 2021.

[20] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526, 2017.

[21] Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcoming
catastrophic forgetting by incremental moment matching. arXiv preprint arXiv:1703.08475,
2017.

[22] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super
neural networks. arXiv preprint arXiv:1701.08734, 2017.

[23] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by
iterative pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 7765–7773, 2018.

[24] David Isele and Akansel Cosgun. Selective experience replay for lifelong learning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[25] Arslan Chaudhry, Naeemullah Khan, Puneet K Dokania, and Philip HS Torr. Continual learning
in low-rank orthogonal subspaces. arXiv preprint arXiv:2010.11635, 2020.

[26] Hongjoon Ahn, Jihwan Kwak, Subin Lim, Hyeonsu Bang, Hyojun Kim, and Taesup Moon. Ss-il:
Separated softmax for incremental learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 844–853, 2021.

[27] Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE Transactions on
knowledge and data engineering, 21(9):1263–1284, 2009.

[28] Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: A systematic study.
Intelligent data analysis, 6(5):429–449, 2002.

[29] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote:
synthetic minority over-sampling technique. Journal of artificial intelligence research, 16:321–
357, 2002.

[30] Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersampling for class-imbalance
learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2):539–
550, 2008.

[31] Hsin-Ping Chou, Shih-Chieh Chang, Jia-Yu Pan, Wei Wei, and Da-Cheng Juan. Remix:
rebalanced mixup. In European Conference on Computer Vision, pages 95–110. Springer, 2020.

[32] Yuhang Zang, Chen Huang, and Chen Change Loy. Fasa: Feature augmentation and sampling
adaptation for long-tailed instance segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 3457–3466, 2021.

[33] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based
on effective number of samples. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 9268–9277, 2019.

[34] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large-
scale long-tailed recognition in an open world. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2537–2546, 2019.

[35] Xiao Zhang, Zhiyuan Fang, Yandong Wen, Zhifeng Li, and Yu Qiao. Range loss for deep face
recognition with long-tailed training data. In Proceedings of the IEEE International Conference
on Computer Vision, pages 5409–5418, 2017.

[36] Alakh Desai, Tz-Ying Wu, Subarna Tripathi, and Nuno Vasconcelos. Learning of visual
relations: The devil is in the tails. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 15404–15413, 2021.

[37] Hao Guo and Song Wang. Long-tailed multi-label visual recognition by collaborative training on
uniform and re-balanced samplings. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15089–15098, 2021.

11

[38] Jiarui Cai, Yizhou Wang, and Jenq-Neng Hwang. Ace: Ally complementary experts for solving
long-tailed recognition in one-shot. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 112–121, 2021.

[39] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

[40] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon
Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 6023–6032,
2019.

[41] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-
Paz, and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states.
In International Conference on Machine Learning, pages 6438–6447. PMLR, 2019.

[42] Xuejun Han and Yuhong Guo. Continual learning with dual regularizations. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pages 619–634.
Springer, 2021.

[43] Fei Zhu, Zhen Cheng, Xu-yao Zhang, and Cheng-lin Liu. Class-incremental learning via dual
augmentation. Advances in Neural Information Processing Systems, 34, 2021.

[44] Dongdong Wang, Yandong Li, Liqiang Wang, and Boqing Gong. Neural networks are more
productive teachers than human raters: Active mixup for data-efficient knowledge distillation
from a blackbox model. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1498–1507, 2020.

[45] Anthony Robinson. Residuals and influence in regression, 1984.
[46] Frank R Hampel, Elvezio M Ronchetti, Peter J Rousseeuw, and Werner A Stahel. Robust

statistics: the approach based on influence functions, volume 196. John Wiley & Sons, 2011.
[47] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.

In International Conference on Machine Learning, pages 1885–1894. PMLR, 2017.
[48] Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin. The stability-plasticity dilemma: In-

vestigating the continuum from catastrophic forgetting to age-limited learning effects. Frontiers
in psychology, 4:504, 2013.

[49] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[50] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.
[51] Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and Qianru Sun. Mnemonics training: Multi-

class incremental learning without forgetting. In Proceedings of the IEEE/CVF conference on
Computer Vision and Pattern Recognition, pages 12245–12254, 2020.

[52] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and Eduardo Valle. Podnet:
Pooled outputs distillation for small-tasks incremental learning. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XX 16,
pages 86–102. Springer, 2020.

[53] Xiaoyu Tao, Xinyuan Chang, Xiaopeng Hong, Xing Wei, and Yihong Gong. Topology-
preserving class-incremental learning. In European Conference on Computer Vision, pages
254–270. Springer, 2020.

[54] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947, 2017.

[55] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

[56] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and M Ranzato. Continual learning with tiny episodic memories.
2019.

12

Appendix

A Problem Formulation and RKD Methods

A.1 Problem Formulation of CIL.

In the CIL setting, a datasetD = {(x, y)|x ∈ X , y ∈ Y} is split to T subsets:D = D1∪D2∪· · ·∪Dt,
where X is a set of images with labels Y and the subsets have no overlapped classes, then a learning
system is trained to learn each subset incrementally. At task t, we have a model f t−1

θ,W which has
incrementally learned the old classes C̃t−1 = {C1, C2, . . . , Ct−1}, where θ,W denote the parameters
of the feature extractor and the linear layer of the network, respectively and Ci denotes the classes
in i subset (task i). Now, given the new subsets Dt with the new classes Ct, the goal is to train a
new model f t

θ,W that can perform classification on all the classes C̃t = C̃t−1 ∪ Ct. In rehearsal-
knowledge-distillation-based (RKD) methods, they store a small number of image exemplars of the
old classes after the completion of each incremental learning task for experience replay at the future
tasks. We denote Et as the selected exemplars of the current task (the new classes) to be stored after
the completion of task t. We denote Ẽt = Ẽt−1 ∪ Et−1, D̃t = Dt ∪ Ẽt, X̃ t = {x|(x, y) ∈ D̃t},
Ỹt = {y|(x, y) ∈ D̃t} as all the stored exemplars of the old classes, all the observable dataset, all the
available images and labels at task t, respectively.

A.2 Training Strategy of RKD Method.

Most previous works [12, 9, 8, 26] of RKD methods have the common process that uses all the
available data to train the new model by minimizing two losses: the classification cross-entropy (CE)
loss and the knowledge distilation (KD) loss. The CE loss is used to learn new classes and The KD
loss is used to encourage the new network f t

θ,W to mimic the output of the previous task model f t−1
θ,W .

The CE loss (LCE) and the KD loss (Lkd) are typically computed as follows:

LCE =
∑

(x,y)∈D̃t

m+n∑
i=1

−δi(x)log[σi(f
t
θ,W (x))] (17)

Lkd =
∑
x∈X̃ t

m∑
i=1

−σi(f
t−1
θ,W (x))log[σi(f

t
θ,W (x))]. (18)

where δi(x) is the label indicator function, m, n are the number of learned and new classes respectively
and σ is either the softmax or sigmoid function. So the new model f t

θ,W are trained by the overall
loss:

L = Lkd + λLCE (19)

where λ is the hyper parameter. Note that f t
θ,W is continually updated at task t, whereas the network

f t−1
θ,W is frozen and will not be stored after the completion of task t.

However, the dataset of the new classes (Dt) in the new task are out-of distribution (OOD) with
the original training data (D̃t−1) of the old model f t−1

θ,W , so the performances of KD suffer from
huge degradation. Moreover, RKD methods suffer from the task-recency bias [3]. After training
the new model, to tackle the task-recency bias, various RKD methods have different subsequent
processing. For example, iCaRL [12] takes the nearest-mean-of-exemplars (NME) classification
strategy to make inference, BiC [8] trains a bias-correction layer with a balanced dataset and EEIL [9]
further fine-tunes the whole model by using the balanced dataset of stored exemplars.

B EDBL Algorithm

The training process of our method (EDBL) is shown in Algorithm 1. At each incremental learning
task, we first make data augmentation by re-sampling Mixup, then we train the new model with the
mixed data in the same way as in the basic RKD method.At last, we fine-tunes the whole model by
Eq. 16 in the balancing training phase.

13

Algorithm 1 EDBL Algorithm for CIL

Input: Exemplars (Ẽt, t > 1) and data of new classes (Dt), f t−1.
Output: Exemplars Ẽt+1 = Ẽt ∪ Et, The New Model f t

Mixup with Re-sampling:
Employ Mixup and Re-sample old classes to generate interpolated dataset D̂.
Phase 1: MKD Training
for i = 1 to T1 do

sample a mini-batch D̂m from D̂
Lce ←Eq. 2, Lkd ← Eq. 3,
L(Θ) = 1

m

∑
(x̂,ŷ)∈D̂m

Lce(x̂, ŷ,Θ) + γ1Lkd(x̂, ŷ,Θ)

Update Θt+1 = Θt − η1∇L(Θ)
end for
Phase 2: Balancing Training
for i = 1 to T2 do

sample a mini-batch D̂m from D̂
IIB(x̂, ŷ,Θ)← Eq. 15
Loverall(Θ) = 1

m

∑
(x̂,ŷ)∈D̂m

λk
Lce(x̂,ŷ,Θ)
IIB(x̂,ŷ,Θ) + γ2Lkd(x̂, ŷ,Θ), Lce, Lkd is computed by Eq.2

and 3
Update Θt+1 = Θt − η2∇Loverall(Θ)

end for
Exemplar Management: Utilize the strategy in [12] to make exemplar management to select
Et (maybe also remove some samples from Ẽt) to generate Ẽt+1 .

C Implement Detail

C.1 Typical Training Hyper-parameters Selection

We draw λ in Eq. 1 randomly from the Beta function B = (1, 1) for all the experiments. In re-ampling
Mixup, we heuristically make sure the number of samples from old classes in a batch isn’t less
than 32. We semi-heuristically set the typical training hyper-parameters, e.g. epoch, learning rate,
batch-size, etc. and tune a few of parameters on CIFAR-100 and Tiny-Imagenet experiments with 5
incremental learning phases, then we use the same setting of these parameters for other experiments
on CIFAR-10/100 and Tiny-Imagenet, respectively. All experiments use the same batch size, weight
decay, momentum: 128, 0.0002, 0.9, respectively. Other training details of the two stages are as
below:

MKD Training. In Mixup-based Knowledge distillation (MKD) We train the new model with
different hyper parameters on different datasets. For CIFAR-10/100, we train the network for 150
epochs at each task. The learning rate is set to 0.1, and reduced by a factor of 10 at 60, 100, 130
epochs. As for Tiny-Imagenet, the number of training epochs is 250 at each task. The learning rate is
set to 0.1, and reduced by a factor of 10 at epochs 75, 125, 175 and 225.

Balancing Training. For CIFAR-10/100, the training epoch is 100, the learning rate is set to 0.01 and
reduced by a factor of 10 at 30, 60, 80 epochs. For Tiny-Imagenet, the number of training epochs is 150
for each task. The learning rate is set to 0.01, and reduced by a factor of 10 at epochs 60, 100 and 130.

Table 6

Dataset Experiments γ α

CIFAR-10 Base-0-2 Phases 10 1e-6
Base-0-5 Phases 100 5e-6

CIFAR-100

Base-0-2 Phases 100 5e-6
Base-0-5 Phases 300 5e-6
Base-0-10 Phases 100 5e-6

Base-half-5 Phases 300 5e-6
Base-half-10 Phases 100 5e-6

Tiny-Imagenet Base-half-5 Phases 10 1e-6
Base-half-10 Phases 10 5e-6

C.2 Tuning on λk and α

We mainly make tuning on λk in Eq. 14 and α
in Eq. 16. λk origins from the IB method and
it is given by λk = γn−1

k /
∑K

i=1 n
−1
i , where

k is the label, ni is the number of samples in
the k-th class and γ is the hyper-parameter. We
tune γ and α by grid searching and adopt dif-
ferent values on different dataset and different
experiments, which are given in Table 6.

14

D Comparison Results of Average Accuracy

(a) (b)

(c) (d) (e)

Figure 4: Comparison results of average accuracy of Base-0 experiments on CIFAR-10 with 2, 5
phases and CIFAR-100 with 2, 5, 10 pahses.

We conducted experiments on CIFAR-10/100 following Base-0 protocol to evaluate our method. The
memory budgets on CIFAR-10 and CIFAR-100 are fixed to 200 and 2000, respectively. CIFAR-10
is split into 2 and 5 phases while CIFAR-100 is split into 2, 5 and 10 phases. Remix[31] adapted
Mixup to generate more effective interpolated data to tackle the long-tail learning. Our method
employs Mixup technique, so we use Remix as a compared method and directly employ Remix to
train the new model to learn new classes incrementally with the optimal hyper-parameters given
in [31]. In this supplement, to compare Remix with our method fairly, we further combine Remix
with knowledge distillation (KD) to conduct experiments and report the results of CNN output and
the nearest-mean-of-exemplar strategy (NME) (denoted as RemixKD-CNN and RemixKD-NME,
respectively).

The comparison of the results are shown in Fig. 4. From Fig. 4, we can find that our methods (EDBL-
CNN and EDBL-NME) outperform all the baselines nearly on every incremental task except EDBL-
CNN loses to some baselines at the experiment on CIFAR-100 with 10 phases. Especially, our
methods surpass Remix-CNN, Remix-NME and RemixKD-CNN, RemixKD-NME significantly by
large margins about [1.1%, 22%] at the last incremental phase. We re-conducted the experiment of
our methods on CIFAR-10 with 5 phases and we got better results, compared with the results given
in Table 2. The incremental average accuracies of EDBL-CNN and EDBL-NME on CIFAR-10 with
5 phases are 80.4% and 81.894%, respectively, which surpass all the baselines significantly.

15

	Introduction
	Related Work
	Bias-Correction Approaches
	Classes Imbalance
	Mixup and Knowledge Distillation

	Preliminaries
	The Proposed Method
	Re-sampling MKD
	IIB Method
	IIB Weighting Factor
	Decomposition of IIB Weighting Factor
	IIB Loss

	EDBL Algorithm

	Experiments
	Datasets
	Baselines and Protocols
	Implementation Details and Hyper-parameters Tuning
	Results
	Results on Base-half
	Results on Base-0

	Ablation Study
	Analysis on Re-MKD and IIB
	Study on Memory Budget
	Sensitivity of

	Conclusion
	Problem Formulation and RKD Methods
	Problem Formulation of CIL.
	Training Strategy of RKD Method.

	EDBL Algorithm
	Implement Detail
	Typical Training Hyper-parameters Selection
	Tuning on k and

	Comparison Results of Average Accuracy

