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Continuous monitoring of an otherwise closed quantum system has been found to lead to a
measurement-induced phase transition (MIPT) characterized by abrupt changes in the entangle-
ment or purity of the many-body quantum state. For an entanglement MIPT, entangling dynamics
compete with measurement dynamics, pushing the system either to a phase with extensive entangle-
ment or to a phase with low-level entanglement. For purification MIPTs, projective measurements
effectively cool and localize the system, inducing a transition from a mixed state to an uncorrelated
pure state. In this work, we numerically simulate monitored dynamics in the all-to-all Sachdev-Ye-
Kitaev (SYK) model for finite N . We witness both entanglement and purification MIPTs in the
steady-state. It is often said that there is an equivalence between entanglement and purification
MIPTs, however we provide numerical evidence to the contrary, implying that entanglement and
purification MIPTs are indeed two distinct phenomena. The reason for such a distinction is quite
simple: entanglement can revive after a completely projective measurement—if measurements do
not occur too often in time—but impurity cannot.

I. INTRODUCTION

Quantum statistical mechanics accurately captures
most properties of many-body quantum systems at equi-
librium where, e.g., the system can be described by a
handful of macroscopic quantities, such as the temper-
ature, total particle number etc. However, many as-
pects of quantum many-body systems out of equilib-
rium [1]—such as entanglement growth in closed quan-
tum systems [2–4]—require more care. Tools from quan-
tum information have been employed to better under-
stand, characterize, and even construct highly correlated
quantum many-body states (or quantum matter) in and
out of equilibrium [5–7].

The dynamics of a closed quantum system out of equi-
librium is governed by a Hamiltonian that introduces
correlations (entanglement) between the system’s con-
stituents. Starting from an initially uncorrelated state,
the entanglement in the system evolves in time, eventu-
ally saturating to some finite value; in which case, the
steady-state is a many-body entangled state. If the in-
teractions are strong and the subsystems are highly con-
nected, then the growth of entanglement is fast com-
pared to all other time scales, and entanglement satu-
rates to an extensive value. Circumstances change when
we “open” the system and externally perturb it with in-
coherent probes (i.e., non-unitary perturbations), such as
coupling the system to a heat bath or measuring parts of
the system.

In this work, we focus on continuously probing a quan-
tum system with measurement devices that we have ac-
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cess to—a process called continuous monitoring. In par-
ticular, we assume that the internal dynamics of the sys-
tem are spontaneously interrupted by local projective
measurements characterized by a measurement strength
pm and a measurement rate Γm; see Fig. 1 for an illus-
tration. Such monitoring dynamics have been feverishly
studied in the past several years, primarily via brickwork
circuit models [8–15] (see also the recent reviews [16, 17]
and references therein) which intersperse discrete two-
body interactions with local projective measurements.

In brickwork circuit models [8–17], it has been shown
that a competition arises between the entanglement dy-
namics of the closed system, which drives the system into
a many-body entangled state, and the decoupling dynam-
ics induced by continuous monitoring, which drives the
system in an uncorrelated product state. This competi-
tion leads to different phases of matter and to a so-called
measurement induced phase transition (MIPT), depend-
ing on whether the internal entangling dynamics or the
measurement dynamics dominates the evolution. Similar
studies with (random) Hamiltonian evolution [18–24]—
which include random Brownian circuits (continuous-
time analogs of brickwork circuit models) [20, 21, 24] and
large N analytically solvable models of coupled clusters
of SYK chains [19, 22]—have come to similar conclu-
sions. A numerical study of the effects of decoherence
on information scrambling and growth of entanglement
for several many body quantum Hamiltonians including
the SYK model was also performed in [25]. Recent ex-
periments regarding entanglement growth and MIPTs in
brickwork circuits with Noisy Intermediate-Scale Quan-
tum (NISQ [26]) devices have also been performed [27–
29].

MIPTs come in two flavors—an entanglement MIPT
and a purification MIPT—which are often conflated into
the singular phenomenon of a MIPT, however we later
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ΓegrΨt → P (r⃗)ΨtP
(r⃗)

Tr(P (r⃗)Ψt)

FIG. 1. Projective measurements sporadically interrupt the
internal, unitary time evolution of a quantum system (here,
5 spins with all-to-all connectivity). A competition between
the measurement rate Γm and the entanglement growth rate
Γegr determines the entanglement dynamics of the system.

discuss how these two phenomena are in fact distinct.
An entanglement MIPT refers to the transition from a
quantum state with extensive entanglement (volume-law
phase) to a quantum state with sub-extensive entangle-
ment (area-law phase). Whereas a purification MIPT
refers to the transition from a highly mixed quantum
state (mixed phase) to an uncorrelated pure state (pure
phase).I.1 For discrete brickwork circuit models [9–17],
the critical point marking a MIPT depends on the prob-
ability that a local measurement will occur as well as
the circuit depth prior to a measurement round [31].
For physical systems evolving under a Hamiltonian [24],
the measurement strength and the rate of entanglement
growth in the closed system establishes a dynamical rate
that competes against the local measurement rate and
dictates which phase the system is in (as well as the cor-
responding critical points).

In this work, we numerically study entanglement and
purification MIPTs in the all-to-all SYK model [38–40]
with finite N , where N is the number of Majorana
fermions (here, N ranges from 10 to 20). We simulate
monitored dynamics and track the entanglement or pu-
rity of the resulting quantum trajectories through time.
We witness entanglement and purification MIPTs in the
steady-state and observe a clear distinction between the
two phenomena.

II. ENTANGLEMENT GROWTH IN THE SYK
MODEL

The SYK model [38–40] is a strongly interacting model
for many-body quantum systems without any quasipar-

I.1 Another intriguing perspective on purification MIPTs comes
from the theory of quantum error correction [30–37], whereby
interprets the open quantum system as a quantum memory that
is robust to decoherence due to measurements.

ticle excitations. Low energy equilibrium states and
dynamics of the system cannot be described in terms
of quasiparticle excitations, as is the case for standard
Fermi liquids, and even the ground state is an entangled
quantum many-body state. Such systems are important
from several different perspectives. From the point of
view of condensed matter physics, such models provide a
window into the fascinating world of strange metals and
high temperature superconductors which are yet to be
fully understood [40].

A feature that underlies many interesting aspects of
the SYK model (and other strongly interacting models
without quasiparticles) is the fast scrambling of informa-
tion. From a physical point of view, fast scrambling can
be understood as a faster-than-usual equilibration of the
systemII.1 after a local perturbation. This perspective is
also important for understanding entanglement dynam-
ics and effect of measurements on it. Fast scramblers
such as the SYK system quickly regenerate their exten-
sive, steady-state entanglement after a short lived local
perturbation (like a projective measurement) occurs on
a few sites.

Consider N all-to-all interacting Majorana fermions,
where the each interaction term includes 4 sites. The
coupling constants are site dependent random variables
with zero mean 〈Jijkl〉 = 0 and finite variance 〈J 2

ijkl〉 =

6J2/N3, where J defines the strength of the interactions.
Let χi be the second-quantized Majorana field operator
at the site i. The SYK Hamiltonian is then

HJ =
∑

1≤i<j<k<l≤N

−Jijkl χiχjχkχl. (II.1)

In order to simulate the evolution of states under this
Hamiltonian for finite N , we use exact diagonalization
with the associated limitation of not being able to simu-
lateN > 24. Although techniques such as random matrix
models or approximate diagonalization methods like the
density matrix renormalization group allow the handling
of larger number of sites, they do not provide the full
spectrum of the Hamiltonian, which is important for the
dynamics of strongly interacting systems.

We change our basis from Majorana operators χ
to spin-1/2 Pauli operators {σx, σy, σz} for computa-
tional purposes. This is done by the standard Jordan-
Wigner transformation. Since two Majoranas map to
one fermion, odd and even Majoranas are related to Pauli
string operators as

χ2i−1 =
1√
2
σx1σ

x
2 ...σ

x
i−1σ

z
i , (II.2)

χ2i =
1√
2
σx1σ

x
2 ...σ

x
i−1σ

y
i . (II.3)

II.1 As compared to a weakly interacting system with well defined
slow moving quasiparticles that do not collide often. Note equi-
libration times in Fermi liquids diverges for low temperatures.
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FIG. 2. Entanglement entropy (ensemble averaged) in a SYK
chain with N = 16 Majoranas, as a function of time. The
coupling strength J = 1. The dynamics have been averaged
over 50 runs.

As was briefly mentioned above, the fast scrambling
behaviour of an all-to-all model like the SYK can be
described via entanglement dynamics. More specifically
let us start by looking at the rate at which entangle-
ment grows in the system under the action of the SYK
Hamiltonian and without any measurements. We mea-
sure the entanglement using half-chain entanglement en-
tropy. Consider the system of N/2 spin-1/2 particles (N
Majorana fermions) on a linear chain with a fermion on
each site. Also, consider partitioning the chain into two
halves A and B, such that log |A| = log |B| = N/4. We
start with a unentangled product state at t = 0. The ini-
tial state is an all-up state ΨAB(0) = |Ψ(0)〉 〈Ψ(0)| where
|Ψ(0)〉 = |1〉1 |1〉2 ... |1〉N/2. Here, |1〉 is the eigenstate of

σz with eigenvalue +1 (|0〉 is the eigenstate with eigen-
value −1). The SYK Hamiltonian is then “switched-on”
such that the state at time t is

ΨAB(t;J ) = e−iHJ t/~ΨAB(0)e+iHJ t/~. (II.4)

We have included the label J into the argument of the
state since ΨAB(t;J ) corresponds to a single realization
HJ .

The half-chain entanglement entropy of the state ΨAB

at time t is,

Shalf(t;J ) = −Tr(ΨA log ΨA) (II.5)

where ΨA ≡ TrB(ΨAB(t;J )). We normalize the entropy
by the number of particles in the half-chain (N/4) and
define the half-chain entropy density shalf ≡ 4Shalf/N ,
such that 0 ≤ shalf ≤ 1. Since J is a random variable,
we average over many Hamiltonian realizations HJ to
compute the ensemble averaged entropy at time t,

〈shalf(t)〉J ≡
ˆ

dJ p(J )shalf(t;J ), (II.6)
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FIG. 3. Average entanglement growth rate Γegr as a function
of J , for different values of N . Dynamics have been averaged
over 50 runs.

where p(J ) is a zero-mean Gaussian distribution for the
random coupling strength J . Due to the ensemble aver-
age and the nature of the distribution p(J ), the average
half-chain entropy depends only on the standard devia-
tion J . Figure 2 shows the evolution of the half-chain
entanglement entropy as a function of time for differ-
ent values of interaction strength J for N = 16 Majo-
rana fermions. For stronger interactions (higher J), en-
tanglement growth is faster, and the saturation value of
〈shalf(t→∞)〉J ≈ .8 (less than 1 due to finite N) is ap-
proached more quickly.

MITPs arise due to a competition between internal
scrambling of the system (generated by the many-body
Hamiltonian HJ ) and the rate of measurements. It is
thus important to quantify how quickly many-body cor-
relations build up within the system, which we quantify
by a so-called entanglement growth rate (EGR). We ex-
plicitly define the EGR as the rate of change of entan-
glement starting from a product state in the absence of
measurements,

EGR(t, J) ≡ d 〈shalf(t)〉J
dt

. (II.7)

The EGR is a function of time, as is clear from Figure 2.
For instance, EGR is larger for small times (near t = 0)
and slowly falls to 0 as steady state is reached. Thus in
order to quantify the EGR in a time-independent way,
we define a time average EGR,

Γegr ≡
1

∆t

ˆ
∆t

dtEGR(t, J). (II.8)

The time average is taken over a period ∆t = t3/4 −
t1/4, where t3/4 and t1/4 are implicitly defined by the
following relations: shalf(t1/4) ≡ 〈shalf(∞)〉J /4 and
shalf(t3/4) ≡ 3 〈shalf(∞)〉J /4. Here, 〈shalf(∞)〉J is the
saturation value of the half-chain entanglement entropy;
e.g., 〈shalf(∞)〉J ≈ .8 for N = 16 and for all values of J
(see Fig. 2).



4

In Fig. 3, we plot Γegr versus the coupling strength
J for different values of N . The EGR grows monoton-
ically (and non-linearly) with the coupling strength J
but is nearly independent of N . The N independence is
owed to the normalization in the Hamiltonian [see dis-
cussion surrounding Eqn. (II.1)]. Note that the coupling
strength J sets an effective time-scale for the interactions
whereas Γegr sets an effective time-scale for the growth of
many-body correlations which develop at a slower rate.

III. MEASUREMENT DYNAMICS

We give a description of the monitored dynamics of the
SYK system. The measurements are done in the σz basis
at each site. Further, the measurements are independent
Markov processes in the sense that the probability that
a measurement takes place at a particular site and at a
particular time is independent of the measurements on
any other site or on the measurement history of the site
itself.

For every time step we make a binary choice of whether
to make a measurement or not. This decision is taken
through a Monte Carlo method. In other words, generate
a random number r between 0 and 1; if r ≤ rm, perform
a measurement, else do not. Here rm is determined by
the measurement rate Γm,

rm = Γmdt, (III.1)

where dt is the simulation time step. The above equation
can also be regarded as the definition of the measurement
rate Γm.

If a measurement occurs in a time step, we randomize
over which and how many sites undergo measurements.
This is in concurrence with the assumption of perform-
ing independent and Markovian measurements at each
site. The number of sites that get measured are cho-
sen assuming a Bernoulli distribution. Thus, given N/2
sites (where N is the number of Majorana fermions), the
probability p(n) for n sites to be projectively measured
is

p(n) =

(
N/2

n

)
pnm(1− pm)N/2−n, (III.2)

which can be considered the definition of the measure-
ment probability pm. We again take the standard Monte
Carlo approach, with bin sizes being determined by
Eqn. (III.2). The sites to be measured are also chosen
randomly with each site having an equal probability of
being measured.

The probabilities corresponding to all possible mea-
surements are calculated. Each site can be projected to

an eigenstate of σzi via {P (ki)
i }ki∈{0,1}, where P

(ki) 2
i =

P
(ki)
i and

∑
k P

(ki)
i = Ii. Here, i labels the site and

ki ∈ {0, 1} labels the eigenstates of σzi . Let n mea-
surements occur with outcomes listed in a measurement
record (bit string) ~r ≡ 〈r1, r2, . . . , rn〉 ∈ {0, 1}n, where

r` is the measurement outcome at the `th measured site.
We define the total projector corresponding to the mea-
surement record ~r as

P (~r) ≡
n∏
i=1

P
(ri)
i . (III.3)

Consider the state Ψ(t1;J ) which has evolved under
the Hamiltonian HJ for time t1 per Eqn. (II.4) but has
not previously been measured. The state after the first
set of n local measurements with outcomes ~r1 is then,

Ψ(t1;~r1,J ) =
P (~r1)Ψ(t1;J )P (~r1)

Tr
(
P (~r1)Ψ(t1;J )

) . (III.4)

The state Ψ(t1;~r1,J ) is a quantum trajectory associated
with the measurement result ~r1 at time t1 that is realized
with probability p(~r1|J ) ≡ Tr

(
P (~r1)Ψ(t1;J )

)
; note that

this necessarily depends on the Hamiltonian realization
HJ as well. Following the first round of measurements,
the dynamics for times t > t1 depend on the previous
measurement record and are determined by interlacing
deterministic Hamiltonian evolution with further mea-
surements. If K rounds of measurements occur at times
t1, t2, . . . , tK (with average spacing ti+1−ti ≈ 1/Γm) with
outcomes ~r1, ~r2, . . . , ~rK , then we describe the entire mea-

surement history via ~R ≡ ⊕K
i=1 ~ri. We formally write

the associated probability for the measurement history
~R as p(~R|J ).

All things considered, the monitored dynamics of the
SYK chain has three primary parameters which dictate
global properties of the system:

1. The entanglement growth rate Γegr [Eqn. (II.8)]
determines how fast correlations spread and how
fast the state returns to its unperturbed dynamics;
Γegr depends on the interaction strength J (Fig. 3).

2. The measurement rate Γm [Eqn. (III.1)] gives the
rate at which measurements (perturbations) occur.

3. The measurement probability pm [Eqn. (III.2)]
conveys the strength of the measurements, in the
sense that higher values of pm leads to a larger
chunk of the SYK chain getting projected onto a
product state.

To gain more insight about the dynamics, note that we
can interpret Γm as the coupling rate between the SYK
chain and a ‘bath’ of measurement devices. Given the
likelihood of a measurement is pm, this results in an ef-

fective (average) decoherence rate Γ
(eff)
m ≡ pmΓm due to

coupling to the bath. This interpretation is similar to
the Lindblad approach taken in Ref. [24] for analyzing
the open-system dynamics of a random Brownian circuit
for a chain of spin-1/2 particles. The authors of [24] in-
troduced a homodyne tuning parameter ϕ which governs
the non-unitary part of the evolution and thus the un-
raveling into particular quantum trajectories; here, the
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measurement probability pm has a similar function (in
particular, pm ∼ cos2 ϕ).

To evaluate typical behavior, we generally focus on en-
semble averages of quantities, such as entropy and purity,
where the average is over the random couplings J and

measurement histories ~R. Consider a particular quan-

tum trajectory Ψ(t; ~R,J ) at time t and a function of the

trajectory f(t; ~R,J ), which may be non-linear in Ψ. We
formally define the ensemble average of f as

〈〈f(t)〉〉 ≡
∑
~R

ˆ
dJ p

(
~R|J

)
p(J )f

(
t; ~R,J

)
, (III.5)

where the sum is over all possible measurement histories
~R [with history ~R occurring with probability p(~R|J )] and
the integral is over the random couplings J . We adopt
double-bracket notation throughout to convey that the
average is with respect to two random variables. Note
that the average depends on the coupling J , the mea-
surement probability pm, and the measurement rate Γm
as well as the initial state.

IV. RESULTS

We present our numerical results of MIPTs for the
SYK chain with N = 16 Majorana fermions. Recall that
a MIPT refers to global changes of a system’s many-
body quantum state—such as many-body entanglement
or global purity of the system—induced by continuously
monitoring the system. An entanglement MIPT refers
to a transition from a state with extensive entanglement
entropy (in the volume-law phase) to a state with sub-
extensive entanglement entropy (in the area-law phase).
Whereas a purification MIPT—quantified by the purity
of the many-body state—refers to a transition from a
highly mixed state (in the mixed phase) to a pure state
(in the pure phase). As our numerical results here in-
dicate, entanglement MIPTs and purification MIPTs are
two distinct phenomena. In both cases however, a compe-
tition between internal scrambling dynamics and decou-
pling dynamics governs which phase the system relaxes
to.

Though there have been many measures to diagnose a
MIPT—such as the entropy, Renyi entropies, a reference
qubit etc. [9–15, 30–32, 34, 36]—we find the half-chain
entanglement entropy and the purity of the global state
sufficient to diagnose entanglement MIPTs and purifica-
tion MIPTs, respectively. We thus focus on these two
quantities throughout.

A. Entanglement phase transition

We compute the half-chain entropy for a single Hamil-

tonian realization HJ and measurement history ~R at
time t starting from an initial pure state Ψ(0) with all
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FIG. 4. Entanglement dynamics of the SYK chain. (Top)
Half-chain entanglement entropy for different values of mea-
surement probabilities pm with a fixed measurement rate
Γm/Γegr = 1. (Bottom) Half-chain entanglement entropy for
different values of Γm/Γegr and fixed pm = .3. Dynamics have
been averaged over 20 batches with 50 runs each. Error bars
show the standard deviation from the batches.

spins pointing up (Ψ(0) = |1〉〈1|⊗N/2). The entropy cor-
responds directly to the amount of entanglement within

the system for a given J and ~R. We then average over
many realizations and measurement histories to quan-
tify the average entanglement entropy. Explicitly, given

a quantum trajectory Ψ(t; ~R,J ) at time t described

by measurement history ~R and Hamiltonian HJ , the
(average) half-chain entanglement entropy at time t is
〈〈shalf(t)〉〉 per Eq. (III.5).

A competition between entanglement growth and de-
coupling (due to measurements) determine the entangle-
ment dynamics of the SYK chain. If the measurements
are too frequent (large Γm/Γegr) and too strong (large
pm), then the system will have sub-extensive entangle-
ment in the steady state (area-law phase); whereas if the
converse is true, then the state will have an extensive
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FIG. 5. Entanglement phase diagram. Steady-state values of
the half-chain entanglement entropy as a function of measure-
ment probability pm and measurement rate Γm/Γegr. Here,
J = 1 (Γegr = .2), N = 16, and a steady-state time t∞ = 200
is chosen. All dynamics have been averaged over 50 runs.

amount of entanglement (volume-law phase). In Fig. 4,
we plot the entanglement dynamics for different values
of pm and Γm. Clearly, the entanglement entropy satu-
rates to a lower values as the measurement probability
pm increases; we observe similar effects when increasing
the measurement rate Γm. For the latter, subtle hints
of an entanglement MIPT can be observed when passing
between Γm . Γegr and Γm & Γegr.

To more clearly highlight the emergence of an entan-
glement MIPT, we look at the steady-state entangle-
ment entropy 〈〈shalf(∞)〉〉. Practically, due to finite-time
simulations and finite-size effects, we cannot go to the
t → ∞ limit. Instead, we pick a large enough time
t∞ � (Γ−1

m ,Γ−1
egr) to observe relaxation but not too large

so that finite-size effects become significant. We then
compute 〈〈shalf(∞)〉〉 for various values (Γm/Γegr, pm)
with fixed EGR Γegr ≈ .2 (J = 1; see Fig. 3). We
plot the results in a 2D phase-diagram in Fig. 5 and wit-
ness an entanglement MIPT—from extensive entangle-
ment (yellow-white) to sub-extensive entanglement (red-
black)—as Γm and pm increase. The fuzzy region in be-
tween is likely due to finite-size effects, as we only simu-
late N/2 = 8 spins. Nevertheless, from the diagram, we
see that, for each value 0 < pm ≤ 1, there exists a critical
measurement rate Γcm where a MIPT occurs. Interest-
ingly, even at pm = 1, there is extensive entanglement
in the steady-state if Γm is low enough. Similar phe-
nomenon was found in recent studies on random Brown-
ian circuits [24] and (randomly) coupled SYK chains in
the large N limit [21]. This is intriguing because, for
pm = 1, the many-body state frequently (on a time scale
T ∼ 1/Γm) gets projected into a product state of the form⊗N/2

i=1 |ki〉〈ki|, where ki ∈ {0, 1} is the measurement out-
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FIG. 6. Purification dynamics of the SYK chain. (Top) Purity
for different values of measurement probabilities pm with a
fixed measurement rate Γm/Γegr = 1. (Bottom) Purity for
different values of Γm/Γegr and fixed pm = .3. Dynamics
have been averaged over 20 batches with 50 runs in each.
Error bars show the standard deviation over the 20 batches.

come at the ith site, however the many-body correlations
quickly revives so that the system spends the majority of
the time in a highly entangled state. We note that such
a revival (and thus the appearance of a nontrivial Γcm at
pm = 1) is distinct to entanglement dynamics and does
not occur in purification dynamics, as we discuss below.

B. Purification phase transition

We now analyze the purification dynamics of an ini-
tially, maximally mixed (infinite temperature) state ρ0 =
I/2N/2; i.e., after a time t of evolution, we compute the
ensemble averaged purity

〈〈
Tr
{
ρ2(t)

}〉〉
per Eqn. (III.5),

where Tr
{
ρ2(0)

}
≤
〈〈

Tr
{
ρ2(t)

}〉〉
≤ 1 and Tr

{
ρ2(0)

}
=

1/2N/2.
Measurements (strictly) increase purity and localize
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FIG. 7. Purification phase diagram. Steady-state values of
the purity as a function of measurement probability pm and
measurement rate Γm/Γegr. Here, J = 1 (Γegr = .2), N = 16,
and a steady-state time t∞ = 1000 is chosen. All dynamics
have been averaged over 50 runs.

the remaining impurity to complementary regions which
have not yet been measured. Internal dynamics, how-
ever, scrambles the impurity into many-body correla-
tions of the system, reducing the purifying effects of later
measurements. A competition arises between scrambling
and purification leading to different purification phases—
a mixed phase and a pure phase—depending on whether
scrambling or measurement dominates. In Fig. 6, we plot
the purification dynamics for different values of pm and
Γm. For high values of the measurement strength pm ≈ 1,
the system necessarily purifies on time-scales ∼ 1/Γm,
however for intermediate values 0 < pm < 1, the system
can either purify or remain mixed for times T � 1/Γm
depending on whether Γm/Γegr � 1 or Γm/Γegr � 1,
as seen qualitatively in Fig. 6. This is indicative of a
purification MIPT.

To more clearly highlight the emergence of a purifi-
cation MIPT, we compute the purity in the steady-
state

〈〈
Tr
{
ρ2(∞)

}〉〉
and plot the results in 2D param-

eter space (Γm/Γegr, pm) in Fig. 7 for fixed Γegr. There
is a clear demarcation (though with a fuzzy bound-
ary due to finite-size effects) between the mixed phase
(black region) and pure phase (white region). Thus, for
a fixed measurement strength pm, we can increase the
measurement rate Γm to go from the mixed phase to
the pure phase (and likewise, we can tune pm starting
from a fixed Γm). Unlike an entanglement MIPT, for
pm = 1, any nonzero measurement rate will necessar-
ily push the system to the pure phase within a time
∼ 1/Γm. This is actually general for any pm and Γm
since Tr

{
ρ2(0)

}
≤
〈〈

Tr
{
ρ2(t)

}〉〉
≤ 1 for any pm, Γm,

and time t > 0. The inequality follows from the simple
fact that unitary evolution and projective measurements
cannot decrease purity. Such an inequality cannot be
written for entangling dynamics since unitary evolution
generally leads to an in increase in the entanglement en-
tropy (for any bipartite cut across the system).

0.2 0.4 0.6 0.8 1.0
pm

10-4

10-3

10-2

10-1

100

λ

N= 16

Γm/Γegr = 5 Γm/Γegr = 0.5 Γm/Γegr = 0.05

FIG. 8. Purification rate λ assuming the ansatz〈〈
Tr

{
ρ2(t)

}〉〉 .
= tanh(λt+ α), where tanhα = Tr

{
ρ2(0)

}
=

1/2N/2. The purification rate is approximately linear in the
measurement rate Γm. Trends show a strong non-linear de-
pendence on pm.

1. Purification time-scales

We attempt to find an intrinsic, purification time-scale
directly from the data. Figure 6 suggests that the dy-
namics of purity closely resembles a tanh-like profile. We
thus take the following ansatz〈〈

Tr
{
ρ2(t)

}〉〉 .
= tanh(λt+ α), (IV.1)

with tanhα =
〈〈

Tr
{
ρ2(0)

}〉〉
= 1/2N/2. Here, the purifi-

cation time-scale is quantified by the fitting parameter
λ, which depends on pm and Γm/Γegr. We find a good
fit with R2 values ranging between 0.996 and 0.999 for
different choices of pm when Γm/Γegr = 5, between 0.994
and 0.999 when Γm/Γegr = 0.5 and between 0.983 and
0.997 when Γm/Γegr = 0.05.

From the fit, we extract the purification rate λ for sev-
eral values of pm and Γm and plot the results in Fig-
ure 8. We note that λ is close to linear in Γm, as intu-
itively expected, and that λ(pm = 1) ∼ Γm up to some
O(1) constant. Hence, λ ∼ Γmf(pm) for some function
f(pm) that may also depend on the critical strength pcm
and critical rate Γcm. From the data in Fig. 8, we see
that f(pm) shows strong non-linear behavior in pm, with
f(pm) changing over two orders of magnitude as the mea-
surement strength pm is tuned from 0 to 1.

V. DISCUSSION

At this juncture, we point out an interesting viewpoint
on purification phases as seen through the lens of quan-
tum error correction [30–37]. We can think of the SYK
chain as a quantum memory which is entangled (e.g.,
shares a large number of Bell pairs) with a quantum com-
puter. The quantum error correction properties of the
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FIG. 9. Quantum jumps in monitored dynamics. (Top) Re-
vival of entanglement entropy and (Bottom) purification tran-
sition for two distinct quantum trajectories (dark blue, light
blue) in the regime of completely projective (pm = 1) but
relatively infrequent (Γm/Γegr = .25) measurements.

memory refer to how well the memory retains entangle-
ment with the quantum computer in the face of external,
deleterious perturbations or errors from the environment
(e.g., measurement devices). The internal unitary dy-
namics of the memory acts as a quantum error correcting
code that hides information (e.g., entanglement with the
quantum computer) from the environment by scrambling
the information non-locally into the memory’s many de-
grees of freedom. In order to access this information,
the environment must couple to an extensive number of
memory qubits. Purification of the system is then inter-
preted as wiping the memory of its initial entanglement
with the quantum computer; see Appendix A for further
discussion on this perspective.

Entanglement dynamics does not admit an equivalent
QEC description because the half-chain entanglement en-
tropy captures both the initial information encoded in the
system as well as the many-body correlations that build
up over time, and these two quantities are not mutually
inclusive. On the other hand, it is often said in the liter-
ature that entanglement and purification MIPTs are two
sides of the same coin, but this is an over-simplification
and is misleading. From previous discussions and by
comparing the phase diagrams of Figs. 5 and 7, we see
that entanglement MIPTs and purification MIPTs are in

fact two distinct phenomena. The reason for this distinc-
tion is quite simple. For an entanglement MIPT, there is
a revival of entanglement even after the system has been
completely projected onto a product state (pm = 1); see
Fig. 9. We can thus have extensive entanglement en-
tropy in the steady state—even though the system has
lost all information about initial conditions—if the en-
tanglement growth is faster than the rate of measure-
ments (Γm/Γegr < 1) because the system spends most
of its time in highly entangled states and is only pro-
jected here-and-there into product states.V.1 Quantita-
tively, this leads to a non-trivial critical measurement
rate Γcm ∼ Γegr at pm = 1; for Γm & Γcm, the system does
not have time to recover to a highly entangled state be-
fore another completely projective measurement occurs,
and the system spends the majority of the time in a prod-
uct state. Contrariwise, for a purification MIPT, there is
no such revival of the mixed phase once the system tran-
sitions to the pure phase (Fig. 9) because the purification
MIPT signals a true loss of initial conditions; i.e., once
the state is pure, it remains pure. Indeed, this follows di-
rectly from the inequality Tr

{
ρ2(0)

}
≤
〈〈

Tr
{
ρ2(t)

}〉〉
≤ 1

which holds for monitoring dynamics. Hence the critical
measurement rate for a purification MIPT at pm = 1 is
trivial. Interpreting the system as a quantum memory,
projections effectively wipe the memory within a time
∼ 1/Γm, and there is no “rewriting” into the memory
thereafter.
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Appendix A: Purification from decoupling

We can qualitatively and quantitatively examine the
QEC properties of a scrambling system (e.g., SYK chain)
undergoing continuous monitoring [30–37] by applying
the so-called decoupling principle [41–43], which can be
explained by the following example. Consider a system S
initially in a mixed state τS which admits a purification

V.1 The steady-state is fluctuating (and thus not quite steady) due
to random quantum jumps induced by measurements, however
one can coarse-grain over a time-scale ∼ 1/Γm to witness steady
behavior. This is effectively done by our averaging procedure
since the measurement process is a Poisson process here.
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ΨRS such that τS = TrR(ΨRS), where R is a reference
that is entangled with S. For instance, consider a system
of N qubits (such that |S| = 2N ) with some fraction γN
qubits in a maximally mixed state and the remaining
(1−γ)N qubits in some pure state—i.e., τS = πSγ ⊗ψS̄γ
where πSγ = I/|Sγ | and |Sγ | = 2γN (|S̄γ | = 2(1−γ)N ).

Then one purification is ΨRS =
(⊗γN

i=1 ΦRiSγi

)
⊗ ψS̄γ ,

where ΦRiSγi is a Bell pair consisting of the ith qubit in
Sγ and the ith qubit in R. Now consider an isometric
channel V : RS → RSE that couples the system S to an
environment E such that,

ΨRSE ≡ V(ΨRS) = VΨRSV
†, (A.1)

where V †V = IRS and thus ΨRSE is pure. We assume
V = IR ⊗ VSE—i.e., the reference acts as a bystander;
see Fig. 10 for an illustration. An instance of this general
setup is the purification dynamics consisting of unitary
evolution and measurements starting from the initially
mixed state τS , where V encodes the internal unitary
evolution as well as (an isometric extension of) the ex-
ternal measurements by measurement devices E.A.1

We are now in the position to state the decoupling
principle. Given the initial state ΨRS sent through the
channel V, the system S and reference R maintain the
entanglement within the state ΨRS with fidelity 1 − ε if
the reference R and environment E are approximately in
a product state (decoupled); i.e.,

‖ρRE − ρR ⊗ ρE‖1 ≤ ε ∼ O(exp(−cN)), (A.2)

where ‖σ‖1 = Tr (
√
σσ†) is the trace norm, ρRE =

TrS(ΨRSE), ρE = TrRS(ΨRSE), ρR = TrSE(ΨRSE) and
c is some constant independent of N .

For instance, given γN initial Bell pairs between S
and R and a random, scrambling unitary US followed by
measurements on (randomly chosen) pmN system qubits,
c = 1− pm − γ [31]. In this case, decoupling fails as γ →
1 − pm. Observe that γ quantifies the initial purity of
the system via Tr

(
τ2
S

)
= 1/2γN . Let γ = 1/N such that

there is initially only one bit of impurity in the system
[Tr
(
τ2
S

)
= 1/2]. In the thermodynamic limit (N → ∞)

the system remains impure for all pm ≤ 1, whereas a
purification phase transition occurs at pcm = 1 [31]. For
unitaries US that do not completely scramble within a
time 1/Γm, the critical point occurs at lower values pcm <
1, which is the case for MIPTs in low-depth brickwork
circuits (for which pm ≈ .16 [9–15]).

The analysis above is for a single round of measure-
ments, however the purification phase is stable in the
steady state (i.e., after a large number of successive, iid
measurements) for reasonable time scales, as we show in
Figs. 6 and 7 of the main text for an SYK chain. To see

this from a decoupling perspective, consider K rounds of
iid measurements (interlaced with random, internal uni-
tary evolution), with each successive measurement occur-
ring at a rate Γm, and consider the associated isometric
channel V(K) : RS → RSEK , where EK denotes the
set of measurement devices for K measurement rounds.
In particular, the isometry is V (K) = IR ⊗ (

⊗K
i=1 VSEi),

where Ei refers to the measurement devices for the ith
round. Define the output state of the isometric chan-

nel as Ψ
(K)
RSE ≡ V(K)(ΨRS) where ΨRS is a pure input.

Then, the system S and reference R maintain the en-
tanglement within the state ΨRS with fidelity 1 −Kαε,
where α ∼ O(1) constant, if the reference R and the
environment EK are approximately decoupled; i.e.,∥∥∥ρ(K)

RE − ρR ⊗ ρ⊗KE
∥∥∥

1
≤ Kαε, (A.3)

where ρ⊗KE =
⊗K

i=1 ρEi and ρEi is the state of the ith
environment (i.e., the ith set of measurement devices) af-
ter the ith measurement round. Why should we expect
Eqn. (A.3) to hold? The reason being that the total error
is bounded by the sum of errors in each step. [This can
be shown explicitly by successively applying the trian-
gle inequality ‖(a− b) + (b− c)‖1 ≤ ‖a− b‖1 + ‖b− c‖1
to the left hand side of Eq. (A.3).] In turn, the error per
step scales as ε up to some O(1) constant such that the
average error is αε.

From Eqn. (A.3), we have that, for K � 1/ε, the
reference R and environment E remain decoupled. In
the context of purification phases, the system remains
in the mixed phase for all reasonable timescales T ∼
poly(N)/Γm, where Γm dictates the frequency of mea-
surements. This gives some credence to the long-time
stability of the mixed phase shown in Fig. 6.

 

ψS̄γ

ΦRSγ

US US USM M M
E1 E2 EK

VRSE1 VRSE2
VRSEK

FIG. 10. Quantum circuit view of purification dynamics.
Part of the system S is initially entangled with a reference
R such that the initial state of the system is in a mixed
phase. Internal, unitary evolution US entangles the system’s
constituents—spreading the initial impurity non-locally into
many-body degrees of freedom—while measurements (with
isometric extensionM) decouples the systems qubits; US and
M together give full isometric extension VRSEi = IR ⊗ VSEi

for the ith measurement round, where Ei labels the set of
measurement devices.

A.1 The inclusion of measurements into the isometry is possible by
the principle of deferred measurements; i.e., we coherently cou-

ple/entangle the measurement devices to the system and projec-
tively measure the measurement devices at the end.
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