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Using two-frequency driving in two dimensions opens up new possibilites for Floquet engineering,
which range from controlling specific symmetries to tuning the properties of resonant gaps. In
this work, we study two-band lattice models subject to two-tone Floquet driving and analyse the
resulting effective Floquet bandstructures both numerically and analytically. On the one hand, we
extend the methodology of Sandholzer et al. [10.1103/PhysRevResearch.4.013056] from one to two
dimensions and find competing topological phases in a simple Bravais lattice when the two resonant
drives at 1w and 2w interfere. On the other hand, we explore driving-induced symmetry breaking
in the hexagonal lattice, in which the breaking of either inversion or time-reversal symmetry can
be tuned independently via the Floquet modulation. Possible applications of our work include a
simpler generation of topological bands for ultracold atoms, and the realisation of non-linear Hall
effects as well as Haldane’s parity anomaly in inversion-symmetric parent lattices.

I. INTRODUCTION

Topological phenomena emerge naturally for electrons
under the effect of strong magnetic fields, exemplified by
the quantum Hall effect (QHE) [1]. In these phenom-
ena, the underlying physical mechanism is the breaking
of time-reversal symmetry due to the magnetic field. Sev-
eral years after the discovery of the QHE it was noticed
that topological insulators can also arise without an am-
bient magnetic field, such as the anomalous quantum Hall
state [2] and the quantum spin Hall effect [3]. Today,
anomalous topological phases can be realised by Floquet
engineering, that is, periodic driving of a quantum sys-
tem. So far, Floquet engineered topological phenomena
have been largely limited to single-frequency protocols,
applied to optical lattices [4-13], real materials [14-17],
photonic and plasmonic waveguides [18-20], and other
synthetic systems [21-24]. Recently, bichromatic and
multi-frequency Floquet engineering has emerged as a
powerful strategy to enhance the driving capabilities.
These include time-reversal or spatial symmetry break-
ing [25-35] and interference between different Floquet
harmonics [36-42]. The combination of both two-path
interference and time-reversal symmetry breaking has
led to the proposal [43] and experimental demonstra-
tion [44] of a topological pump in one-dimensional lattice.
To our knowledge, all experimental results in the multi-
frequency regime have been limited to one-dimensional
driving patterns, motivating the need to find novel strate-
gies for two-dimensional driving.

In this work, we use the idea of two-tone Floquet engi-
neering to generate novel topological bandstructures and
topological phase transitions from simple parent lattices
in two dimensions. On the one hand, we consider reso-
nant driving for the lowest two bands of a triangular lat-
tice. Although this model only features a single potential
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minimum per unit cell, we are able to drive topological
transitions by tuning the amplitude and relative phase
between lw and 2w drives. The simplicity of this scheme
could open up new pathways for realising strongly cor-
related topological insulators, which have remained out
of reach in existing methods. On the other hand, we
apply two-frequency driving to an inversion-symmetric
(graphene-like) hexagonal lattice. This driving scheme
enables the selective breaking of inversion symmetry
while maintaining time-reversal symmetry, giving access
to a new class of Floquet Hamiltoninans. Thus, we find
that an external breaking of inversion symmetry is not
necessary to drive the celebrated parity anomaly in the
Haldane model [2]. The two-frequency approach generi-
cally applies to Floquet-driven systems in lattices, rang-
ing from condensed matter to synthetic quantum matter.

The remainder of this paper is structured as follows.
The relevant two-tone driving waveforms, and possible
experimental implementations, are introduced in section
II. Afterwards, we show how resonant lw—2w driving in
a triangular lattice leads to topological phase transitions
(section III). Section IV discusses the effective breaking of
time-reversal and inversion symmetry under off-resonant
driving in a hexagonal lattice.

II. 1w—2w FLOQUET DRIVING IN TWO
DIMENSIONS

Two-frequency driving can be applied, in princple, to
any physical system which has been employed for Floquet
engineering so far [14]. As a generic starting point, we
consider a particle confined to a static potential Vi, (r),
and subject to an oscillating force
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FIG. 1.

Single- and two-frequency Lissajous curves for two-
dimensional driving. The plots show the real-space modu-
lation figures r,(7) (Eq. 4). These shapes are topologically
equivalent to those of the time-dependent force F(7), since the
two are related to one another by taking the second derivative
(Eq. 2). (a-c) Circular strong driving at 1w (a), circular weak
driving 2w (b), or both drives combined (c) can be used to
resonantly address a higher-band transition. The thin line in
(c) represents the dominant lw waveform, the same as (a).
(d-f) Superposition of an elliptical driving field at 1w and a
linear field at 2w with relative phases ¢y1 = 0 (d), 0.27 (e),
and 0.57 (f). (g-1) Superposition of two circular drives with
relative phase ¢gz2 = 0.97, ¢y1 = 0.5, @yo = 0.4m, driving
strength Ko = Ky2 = 0.7, and K1 = Ky1 = 0.5 (g), 0.65
(h), and 0.8 (i).

In solid state systems, the driving force F(7) can directly
correspond to the oscillating field E(7) of a laser coupling
to free electrons [17, 45]. Equivalently, the application of
periodic driving can be seen as ‘minimal coupling’ using
the vector potential as ¢ — ¢—A(7)/h. Furthermore, col-
lective modes such as phonons [46] or magnons [47] can
also be involved. In waveguide-based synthetic lattices,
transverse movements of the waveguides provide an ef-
fective inertial force [19]. For optical lattices, the driving
force can be provided by an oscillating optical or mag-
netic gradient [48]. Alternatively, an inertial force can
result from a periodic displacement of the entire lattice
potential, an approach known as ‘lattice shaking’ [4, 5].
In this case, the Hamiltonian in the lab frame is

A2

Hap (1) = f—m o+ Viat [1 — T (7)] (3)

related to Eq. 2 by two unitary transformations [49]. In
summary, the derivations in this work directly carry over
from engineered quantum platforms, such as ultracold
atoms in optical lattices, to condensed matter systems.

We define the two-dimensional driving pattern r,,(7)
as

T (T) = + A0 cos(2wT 4+ @g2) (4)
Ym (T) =Ay1 cos(wT + @y1)+Ay2 cos(2wT + py2) -

Az cos(wT)

These two-tone driving waveforms are visualised as Lis-
sajous curves in Fig. 1 for the relevant choices of driving
parameters (phases and amplitudes) used in this work.
The amplitude of the vector potential is given by the di-
mensionless driving strength K,g = mwgAapga/h, where
o is the lattice spacing and A,g is the real-space am-
plitude. The index o € {x,y} denotes the direction,
whereas € {1,2} indicates the frequency.

Resonant circular lw—2w driving. The combination of
a strong circular lw drive (Fig. la, ¢,1 = 7/2) with a
weak circular 2w drive (Fig. 1b, @m0 = 0, @y = 7/2)
leads to a modulated circular pattern (Fig. 1c). Due to
two-path interference when addressing the s—p resonance
of the triangular lattice, this driving pattern can be used
to drive topological transitions in two dimensions, similar
to the topological pump of ref. [44].

Off-resonant lw—2w driving to access spatial and tem-
poral symmetries. Alternatively, an elliptical driving field
at 1w and a linearly polarised laser at 2w (Az2 = 0, Py2 =
0) leads to a competition between the breaking of in-
version symmetry and time-reversal symmetry. For in-
stance, the choice ¢y1 = 0 results in a ‘boomerang’
pattern (Fig. 1d), which breaks inversion symmetry but
not time-reversal symmetry. Conversely, the case of
w1 = /2 (Fig. 1f) gives a rounded ‘kite’ shape in which
the breaking of time-reversal symmetry dominates over
the breaking of inversion symmetry. Tuning the phase
@y1 thus allows to interpolate between the two symme-
try breaking situations (Fig. le), thereby accessing novel
topological regimes.

Instead of combining linear and elliptical drives,
the competition between inversion-breaking and time-
reversal-breaking can be achieved by superimposing two
circular drives of opposite helicity (Fig. 1g-i). The way in
which inversion symmetry is broken in this case depends
on the relative orientation of the driving pattern to the
lattice geometry. This can be tuned by increasing ¢,o
and ¢, by the same amount (i.e. by delaying the two
frequency drives with respect to each other), which ro-
tates the driving pattern around the origin (Fig. 1g, see
also refs. [29, 33, 34]). Driving a topological transition
via changing only a relative phase can be experimentally
advantageous in condensed matter systems where chang-
ing polarisation or amplitude can lead to spurious effects.

Ezxperimental implementation. In this work we focus
on a triangular and a hexagonal lattice. A corresponding
optical lattice potential, and the resulting tight-binding
parameters, can be found in Appendix A. In waveguide-
based systems, the lattice geometry can generally be cho-
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FIG. 2. Resonant band coupling in the triangular lattice (a),
with relevant parameters t; = —0.05, t2 = —0.07, t3 = —0.07,
e = —0.66 in units of F,.. and dimensionless inter-band cou-
pling nsp = 0.19. Resonant one-photon or two-photon pro-
cesses lead to the coupling of lower and higher bands, corre-
sponding to the green and black arrows in (b), respectively.
Floquet driving lifts the degeneracy of the static band struc-
ture in the rotating frame (c) and opens a band gap (d). The
ring-shape minima of the band structure leads to a ring-shape
Berry curvature (e). (f) shows a trivial spatially localized
Berry curvature under two-frequency driving, which features
a strong Berry curvature dipole.

sen freely [19]. The time-dependence of the driving term
is encoded in an additional spatial coordinate, which can
accommodate multi-frequency driving. Finally, in solid
state systems, the laser field corresponding to the driving
term at 2w can be generated via second-harmonic gener-
ation, ensuring that it is phase-stable with respect to the
lw term. The relative phase between the two can then
be tuned using a dispersive material of varying thickness.
Tight-binding Hamiltonians for two-dimensional Flo-
quet engineering. By expanding the original Hamilto-
nian (Eq. 1) in a Wannier basis and transforming it to
quasimomentum space, we get the following expression

zZ
Z{En&;rldn B Z [tm (ei(ei(r)+q~bi)&2&n + h.c.)}
n

=1

—F(7)- onnn/d;fl&n/} .

Here, €, tn,i, o’ are the band centre energies, nearest-
neighbour tunnelling matrix elements, and interband
coupling elements, respectively, for bands n, n’ (Ap-
pendix B). b; = ja; +kay are the nearest-neighbour tun-
neling vectors and ¢ indexes the in-equivalent neighbours
up to the coordination number Z; ay, as correspond to
the primitive translation vectors in two dimensions. The
time-periodic Peierls phases are 0;(7) = b - Iy, (7).
In second quantisation, a, denotes the annihilation op-
erator in band n. The first line of Eq. 5 describes
static and time-dependent contributions to intra-band
processes whereas the second line is the inter-band cou-
pling that arises from periodically forcing the system.
The coupling elements 7),,,,» can be understood as dipole
matrix elements of Bloch states [41]. Consequently, the
first line is diagonal in quasimomentum and band index
n, whereas the second line contributes off-diagonal ele-
ments to the Hamiltonian.

We use the Hamiltonian in Eq. 5 as the starting point
for the Floquet analysis. If the periodic drive resonantly
addresses the gap between s and p bands, we addition-
ally employ a unitary transformation to ‘rotate away’ the
energy difference (sec. III). In order to evaluate the effec-
tive Floquet Hamiltonian, we employ two complementary
methods. On the one hand, we calculate the effective
Hamiltonian analytically in inverse powers of the driving
frequency w using the well-known high-frequency expan-
sion (HFE) [50-54]. Since we work in the weak driv-
ing regime the HFE remains valid. On the other hand,
we can numerically obtain the effective Hamiltonian via
the Trotter decomposition [55]. We use this numerical
method to validate the results of the analytic calcula-
tion and to justify the truncation of the high-frequency
expansion a posteriori. To characterise the band topolo-
gies, the Berry curvature is evaluated via the eigenstates
in the discretised two-dimensional Brillouin zone. The re-
sulting Chern number is the surface integral of the Berry
curvature over the closed Brillouin torus [56, 57].

III. RESONANTLY DRIVEN TRIANGULAR
LATTICE

The first situation we consider is a simple triangular
lattice in which the lowest two bands (s and p) are reso-
nantly coupled with two frequencies, inspired by ref. [43]
and building on previous works using single-frequency
driving [58-60].

In the non-shaken case the static Hamiltonian for a
triangular tight-binding model is

ﬂ- =
i=1

3
€+ Zti cos(q - bZ)] oz . (6)

The nearest-neighbour tunneling vectors are b; =
(=1,1)b, by = (1,0)b, b = (0,1)b and q = (g, qy)
Gotey oy —tate,
V2 Y T 2
(Fig. 2a). The simplest way to couple s and p bands is

in the rotated coordinate é, =




to apply single-frequency driving, parametrised by Eq. 4
with Aze = Ay2 = 0 and denoting ¢, as ¢.

Starting from Eq. 5 the time-dependent Hamiltonian
can be written as

3
H(r)= {z—: + Zti cos[q-b; + 02(7)]} o+

i=1
[Nsplw Ky cos(wT) + nsphw Ky cos(wT + ¢)] oy,
(7)
where ¢ = (g5 — ¢,)/2 = —Ag/2 with Ae being the

gap size. The other parameters are t; = t,; — I:I” with
i = 1,2,3, the Peierls phases are 6;(1) = —¢ [ F(7') -
b; dr’ = —[K, sin(w7)& + K sin(wr +¢)y] - b; /b, and the
Pauli matrices are o; with j = z,y,2. The dimension-
less driving strengths are denoted by K, = mwA,i1a/h,
K, = mwAyia/h, respectively. The tight-binding pa-
rameters, including the tunneling amplitudes, inter-band
coupling and band center energies, are obtained from a
triangular lattice potential by evaluating the Wannier
functions (Appendix B, Fig. 2a).

Single-frequency circular driving resonant with the gap.
If the frequency w is near-resonant with the gap, corre-
sponding to the dominant one-photon process, we apply
the unitary Ur(7) = exp(—iwTo,/2) to eliminate the en-
ergy gap between the two bands (Fig. 2d). This gives

3

H(r) = {5—1— hew /2 + ZtiCOS [a-b; + 91(7)]} Tz
=1

o+ [nephw Ky cos(wr) + nephw Ky cos(wr + )

X [og cos(wT) — oy sin(wT)] /2.
(8)
The terms proportional to the identity matrix can be
omitted without affecting the topology of the bands.

By analysing Eq. 8 in the high-frequency expan-
sion (Appendix C), we find a ring-shaped gap opening
(Fig. 2e, see also refs. [13, 61]). However, the off-diagonal
terms are dominanted by constants. Physically, this cor-
responds to on-site couplings between the s and p bands,
which yield topologically trivial bands (Fig. 3a).

Single-frequency elliptical driving resonant with half
the gap. Driving the system at half the gap energy (fuw =
12.8t; = 0.64F,...) leads to neighbouring-site interband
couplings which can give rise to topological bands. Start-
ing from the waveforms in Eq. 4 with K;» = K5 = 0 and
applying the unitary Ug (1) = exp(—iwTo.) gives

3
H(r) = {5 +hw+ Y ticos[q-b; + ei(f)]} 0.
i=1 9
+ Nsphw K, cos(wT) + nephwK, cos(wT + ¢)] )

X [0y cos(2wT) — oy sin(2wT)]/2,

where € + hw ~ 0. In this case, the only non-zero Fourier
components of the drive are £1w and +3w. Contrary
to the direct one-photon resonance, the inter-band cou-
plings happen via two-photon processes (Fig. 2b). We
now find quasimomentum-dependent ¢, and o, terms

S

a) Single frequency resonant b) Single frequency half resonant
T b
; «
S S
(o] o
2 0 C=0 20 C=0
= <
= [
-3 c=1
_nl —nt
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
Driving strength K, Driving strength K,
<) Two—frequency (1w + 2w) driving d)
T H bl
H b
= =
K8 SC
2 0 2 0
2 k:
= =
C=1
-3
— -7
- -3 0 Z n 0 0.04 0.08
Phase ¢y, Band gap size (7))
FIG. 3. Phase diagrams of the triangular lattice un-

der resonant driving. Single-frequency driving on resonance
(hw = 25.6t1 = 1.28Frec, Ky = 0.5, ¢ + hw/2 ~ 0)
leads to trivial bands (a), whereas driving on half-resonance
(hw = 12.8t1 = 0.64Fyec, Ky = 0.5, ¢ + hw ~ 0) in-
duces topological bands (b). The trivial regions in (b) are
caused by bands being shifted out of resonance due to the
ac-Stark effect. (c) shows the competition between the two
resonant processes induced by the two-frequency driving with
Kz =04,K,1 = 0.5, Kz = 0.02, K2 = 0.02. (d) resulting
band gap evaluated for a cut through (c) along the red line.

in the effective Hamiltonian (Appendix C), leading to
topologically non-trivial regions in the phase diagram
(Fig. 3b, see also ref. [60]). Lines at K, = 0 and ¢ =0
have zero extent in the phase diagram of Fig. 3b, pre-
venting the observation of a transition from C # 0 to
C = 0 in a realistic experiment. While large driving
amplitudes (beyond K, = 0.5) render the model topo-
logically trivial, this effect is not due to an interference
between different processes, but rather due to the ac-
Stark effect that shifts the bands out of resonance [4].
Combining the above two resonant schemes at lw and
2w introduces genuine topological transitions as function
of driving phase, as outlined in the following.

Two-frequency resonant elliptical driving. The com-
petition between resonant lw and 2w driving results in
an interplay between topological phases with C' = 0 and
C = +1. We now consider the full two-tone waveforms
of Eq. 4 for fixed [Ky1, Ky2, Ky1, Ky2|, and tuneable ¢,



and @yo (pz2 = 0). This Floquet scheme allows to cross
topological transitions purely by changing the phase be-
tween lw and 2w drives, as is evident from the distinct re-
gions of C' =0 and C' # 0 in the phase diagram (Fig. 3c).
The values of the induced band gaps are on the order of
0.1 to 0.2 tunnelling energies, which can be enlarged by
choosing stronger driving amplitudes.

Realising topological band structures in a Bravais lat-
tice, such as the simple triangular lattice considered here,
has important implications. For instance, it simplifies the
generation of topological bands in the context of ultracold
atoms. Up to now, two-dimensional topological models
in optical lattices have been realised either in bipartite
lattices [10, 12, 60], square lattices with moving superlat-
tices [8, 9, 11], or by employing spin-orbit coupling [62].
These implementations rely on the relative phase stabil-
ity between lattice or Raman laser beams, leading to a
significant technological overhead. An insufficient phase
stability may have been an obstacle for realising strongly
correlated phases in two-dimensional topological lattices.
The triangular lattice, on the contrary, can be built by
simply superimposing three standing waves in the plane
with no active stabilisation. Therefore, the lw—2w Flo-
quet scheme could provide an avenue towards realising
correlated topological states of matter. In addition to its
conceptual simplicity, the two-tone driving leads to the
appearance of Berry curvature along a ring-shaped gap,
which can be asymmetrically distributed (Fig. 2f), partic-
ularly in the topologically trivial regions of Fig. 3c. This
supports a non-zero Berry curvature dipole, enabled by
periodic driving, although the underlying lattice is trivial
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FIG. 4.

Off-resonant driving in the hexagonal lattice (a)
with tunnelings t1 = t2 = t3 = 0.06 in units of Fre.. The
static band structure features two degenerate Dirac points
(b). Floquet driving lifts the degeneracy and opens a band
gap (c) by effectively breaking symmetries.

and inversion-symmetric. This finding is relevant beyond
the field of ultracold atoms and it could enable the obser-
vation of nonlinear Hall effects which so far have relied
on materials with broken inversion symmetry [63].

IV. OFF-RESONANTLY DRIVEN HEXAGONAL
LATTICE

The second application of the two-frequency driving
method considers the hexagonal lattice in brick-wall con-
figuration, shown in Fig. 4a. This potential can be
realised in the same setup as the triangular lattice of
sec. III, but the derivation also applies to 120° honey-
comb lattices [12] as well as real graphene [17].

We start from the tight-binding Hamiltonian

3
Hy(r) = {Zti cos[q-b; + ei(f)]} Oat

i=1

{Zti sin[q-b; + 9¢(7')]} Oys

i=1

The nearest-neighbour tunneling vectors are by = (0, 1)b,
by = (—1,1)b and by = (—1,0)b in the rotated coordi-
nate system {é,,¢é,} (Fig. 4a). The waveforms of Eq. 4
result in the following Peierls phases:

01(7) = —Ky1 sin(wr + @y1) — Kyo sin(2wr + y2) = —05(7),

02(7) = K1 sin(wr) + Ko sin(2wr + ¢g2),

(11)
with the driving strengths being K,; = mwAia/h,
K. = 2mwAga/h, Ky = mwAypa/h, and Ky =
2mwAy2a/h, as before. Since we do not consider inter-
banding couplings here, there is no need to apply uni-
taries and the high-frequency expansion can be directly
conducted.

Single-frequency elliptical driving. The choice K o =
Kyo =0, K1 > 0 corresponds to elliptical driving, giv-
ing rise to topological or trivial bands. For any K,; > 0
and ¢,1 mod m # 0 we recover the well-known topo-
logical gap opening at both Dirac points due to time-
reversal symmetry breaking (Fig. 4b-c) [64]. The limits
of Ky1 = 0 or ¢,;1 mod m = 0 correspond to linearly
polarised driving, leaving time-reversal symmetry intact
and both Dirac points remain closed. However, the triv-
ial region with C' = 0 is only a ‘line’ of zero extent in the
phase diagram (Fig. 5a, as before in Fig. 3b). Usually, a
manifestly broken inversion symmetry of the underlying
lattice is required to cross a topological phase transition
and induce Haldane’s ‘parity anomaly’, thereby extend-
ing the trivial ‘lines’ in the phase diagram to finite re-
gions [2, 10]. In the following, we demonstrate that in-
version symmetry can be broken by employing the two-
tone Floquet drive only. Therefore, a topological phase
transition between trivial and non-trivial regions can be
achieved purely via driving.
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elliptical driving (K1 = 0.9, Ky2 = Ky2 = 0) can break time-reversal symmetry and result in a non-zero Chern number (a).
The breaking of the inversion and time-reversal symmetries can be independently controlled by adding a linearly polarized field
(Ky1 = Ky2 = 0.9, Kz2 = 0 and @22 = py2 = 0) (b), as well as using two circular fields with opposite polarization (Kz1 = Ky1,
Ko = Ky2 = 0.7, o1 = 7/2 and @y2 = @z2 — 7/2) (¢). The transition paths I - I - III marked in (b) and (c) correspond to

the Lissajous curves in Fig. 1d-f and Fig. 1g-i, respectively.

Two-frequency driving. Starting from the above case
of single-frequency elliptical driving, we add linearly po-
larized ‘light’ by setting Ko = 0 while Ky # 0. The
driving field further breaks inversion symmetry and the
competition between the breaking of inversion and time-
reversal symmetry can be observed in Fig. 5b-c. The
topological phase transition can simply be induced by
tuning the phase along the marked path, corresponding
to the Lissajous curves in Fig. 1d-f.

Alternatively, constraining K1 = Kyi, Kz = Kya,
w1 = /2, and py2 = g2 — /2 in Eq. 4, the 1w — 2w
driving scheme corresponds to two counter-rotating, cir-
cularly polarized fields. Clearly, when one circular driv-
ing field is much larger than the other, the resulting
Chern number will correspond to the helicity of the dom-
inant field. However, when the amplitude of one circu-
lar field approaches the other one, the Lissajous curve
becomes a ‘cloverleaf’ pattern and the breaking of time-
reversal symmetry is suppressed (Fig. 1g-i). This compe-
tition allows to interpolate between topologically trivial
and non-trivial settings (with either positive or negative
mass terms) purely by changing driving phases. The re-
sulting gap sizes are similar to the known results in the
Haldane model [10]. Interestingly, we found that a pure
Dirac Hamiltonian subject to two-frequency driving does
not show a corresponding gap opening in the case of bro-
ken inversion symmetry. While time-reversal symmetry
breaking via circular driving can be captured within the
approximate Dirac Hamiltonian [17], the inversion sym-
metry breaking relies on the presence of a lattice po-
tential. Mathematically, this can be seen from the fact
that the driven Dirac Hamiltonian remains linear and
its Fourier components at w and 2w will not mix in the
high-frequency expansion. Conceptually, a specific driv-

ing pattern favours a gap opening specific to one sublat-
tice of the honeycomb, which does not apply to the Dirac
Hamiltonian.

We also studied the behaviour of inversion symmetry
breaking beyond the validity of the high-frequency ex-
pansion, using numerically calculated band structures.
Here, the gap opening scales roughly as 1/w* which be-
comes dominant in the low-frequency regime. There-
fore, the lw—2w scheme could be particularly interest-
ing for phase-controlled topological transitions in laser-
driven graphene, which could be readily implemented in
setups such as used in ref. [17].

V. CONCLUSION

We have shown that two-frequency Floquet driving in
two dimensions gives rise to rich topological phase dia-
grams, both for resonant and off-resonant modulation.
We identify the relative phase between the lw and 2w
drives as an important control parameter over the sym-
metry properties and the resulting topologies in the effec-
tive Floquet Hamiltonians. In many experiments, phase-
only control is advantageous over other parameters, such
as frequencies or amplitudes. For periodically driven real
materials, such as graphene [17], incoherent excitations
and electron relaxation can strongly affect the measure-
ments, potentially obscuring any topological response.
Incoherent effects often depend on the polarisation of
the incident light, especially close to the contacts of a
sample. Several of the driving schemes proposed in this
work, particularly the case of counter-rotating, circular
drives, depend only on the relative phase between the
light fields. Therefore, we believe that our approach will



lead to novel applications in manipulation and detection
of topological phenomena. By combining the schemes
considered here with spin-dependent Floquet engineer-
ing [48], it may become possible to access the entire ‘pe-
riodic table’ of topological insulators [65].
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Appendix A: Optical lattice potential

Lattices of various geometric configurations can be readily realised in the setup of ref. [66], that is,

Viat (.’137 y) =
— Vicos(kpz + 0/2)? — Vy cos(kpz)? — V,, cos(kry)? (A1)
— 24/ V,V, cos(krx) cos(kry) cos(¢),

where k;, = 2m/\. The spacing between neighbouring minima of a one-dimensional standing wave is a = A/2, the
recoil energy is E,.. = (hkr)?/(2m), the wavelength ) is 1064nm, and the atoms are potassium-40. The following
choice of parameters: Vz = 0.6, V, = 0.3, V,, = 2.8 all in units of F,.., § = 7, and ¢ = 0 yields a triangular lattice.
The hexagonal lattice can be realized by setting Vz = 12, V; = 0.8 and V,, = 4.65. Compared to the tight-binding
lattices, we have the length of the unit cells b = v/2a = \/ V2. The tight-binding parameters can be evaluated from
the realistic lattice potential (Appendix B), yielding t; = —0.05, to = —0.07, t3 = —0.07, ¢ = —0.66 in units of E,..
(triangular lattice, ns, = 0.19) and ¢, =ty = t3 = 0.06 in units of E,.. (hexagonal lattice).

Appendix B: Derivation of the Hamiltonian

We start from Hamiltonian in co-moving frame,

52

Hom () = 3=+ Viar(7) = F(7) -7 (B1)
where p and # are momentum and position operators, respectively, and F = —mi, (7) = —A (7). The Hamiltonian has

two parts. The first two terms include the static lattice Hamiltonian and the last term represents a time-dependent
dispersion. .
Next, we expand Hp,(7) in Wannier basis [67],

wn,R(r) = wn(r — R) = (277)2 /BZ e—ik-R(bn,k(r) dk , (B2)

where n is band index, ¢, x(r) = eikrumk(r) is Bloch state, R = nja; + noay is arbitrary lattice vector, and a;, as

are primitive translation vectors in two dimensions.
In second quantization, we can rewrite the field operator in Wannier basis as

Y(r) =Y w; g(r)ang (B3)
n,R

where @, r is the annihilation operator.
The first part of the co-moving Hamiltonian can be expanded as

A2

e = 3 alpinme [wnn(e) | 2 Vi) o) (B4)

2m
n,m,R,R’

Using the fact that the static Hamiltonian cannot mix different bands and the Wannier functions are exponentially
localized, we only consider the onsite and nearest-neighbour couplings in individual bands,

Hy(r)=>" {dL,R&n,Ren +y [a;yRan,Rmti + h.c.] } : (B5)
b;

n,R

cn= [ uns) [”2 Vi) ) (536)

2m

= [ [ Vi) i, (®7)
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b; = ja; 4+ kay are the nearest-neighbour tunneling vectors. In the configuration of triangular and hexagonal lattices,
i €{1,2,3}. &, is the band center energy and ¢; is the nearest-neighbour tunneling amplitude.
Now we consider the driving term which can couple different bands on-site but has negligible inter-site effects, i.e.

) == Y alnimme [ 0, P, dr
n,m,R,R’
==Y d} ganr / wy g (r) [F(7) - Flw) g(t)dr— > al pamm / wn m () [F(r) - # wh, g () dr (58)
n,R n,m#n,R

— Z n ranrF(T) R+ Z dIL’R&m}RaF(T) D!

m#n

Here we define the inter-band coupling as

—_ % ’ / W g (£)FwE, g (r) dr| (BY)

By numerically evaluating 7, according to the method in [66, 68], we justify that the dipole-like coupling term

J Wi r(r)Fw;, g (r) dr between s and p band is along the direction 7’ = 7 = é,+¢é,. In addition, we evaluate tunnelings
and band center energies through calculating the Wannier functions of atoms in a realistic lattice potential.

The on-site driving term dIL’Rdﬂ,RF(T) - R breaks translation symmetry, so we need to rotate it away by applying
the unitary

U(r) = exp (—i > XR(T)&L,Rdn,R> : (B10)

Ul(r), (B11)

where xr(7) = 7R - ¥, (7). Then, transforming the Hamiltonian into quasi-momentum space and only considering
the lowest two bands, we get the final Hamiltonian,

Z

Hy(r)= > {5ndIL&n +y° [tn (ei<ei<r>+q»bi)dlan + h.c.)} ~F(r)-F Y nnm&L&m}, (B12)

ne{s,p} i=1 mée{s,pl#n

with the time-periodic Peierls phase 0;(7) = xr4b,(7) — XR(T) = Fbi - I (7).

Appendix C: Analytical Hamiltonian by the high-frequency expansion

In the following, we write down the effective Floquet Hamiltonian, analytically derived using the high-frequency
expansion (HFE) in tight-binding approximation. The idea of the HFE is to decompose the original time-dependent
Hamiltonian into Fourier components and obtain the effective Hamiltonians, then neglect the small high frequency
terms. The effective Hamiltonian is decomposed into terms of different orders,

o0

A=Y HEY, (C1)

n=0

which is in inverse power of w, i.e. H e(g) ~ w~ ™. If the frequency is much higher than other energy scales in the

system, the high-order effective Hamiltonian can be truncated. Here we only use the first two orders [52],

eﬁ—*/H )dr = Hy , (C2)
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Oasphw[Ka + Ky cos(¢)] /2
off oynsphw Ky sin(p) /2

o:{e + hw/2 + t1 cos[(gz — qy)b]Jo(2K ) + t2 cos(geb)[Jo(Kz)Jo(Ky) — 2J1(Kz)J1(Ky) cos(p)+
2J2(Kq)J2(Ky) cos(2¢)] + ts cos(qyb)[Jo (K ) Jo(Ky) + 2J1(Ka)J1(Ky) cos(p) + 2J2(Ke)J2(Ky) cos(2¢)]}

Gattop{—tr cos[(gs — 4,)8)T2(2K) (Ko + K, cos(p)] — b cos(q:b) {1 (K2 )y (K, K, + Ko cos(ip)]+
) Jo(K,) T2 (K )[Ks + K, cos(p)] + Jo( K Ja (K, ) [, cos(9) + Ko cos(20)]} + £ cos(q,b){ 1 (K. ) i (K,)
i, Ky + K cos(9)] — Jo(K,)Jo(Ka) Kz + K, cos(¢)] — Jo(K2) Ja(K, Ky cos(p) + Ko cos(2¢)]}}/2

ayNsp sin(p){t1 cos[(qz — qy)b]J2 (2K ) Ky — t2 cos(qzb){J1 (K2 ) J1 (Ky) Ky — Jo(Ky)J2 (Ko ) Ky + Jo(Kz)J2(Ky)
[Ky + 2Kz cos(@)]} + ta cos(qyb){J1(Kz) J1 (Ky) Kz + Jo(Ky) J2(Kz) Ky — Jo(Kz)J2(Ky)[Ky 4+ 2K cos(¢)]}}/2

o hw[K2 + K} + 2K, K, cos(¢)]/8

TABLE I. Effective Hamiltonian for the triangular lattice under single frequency driving resonant with the gap

Ay = % Z% ] = A, (C3)
=1

Here, H; are the Fourier components of the time-dependent Hamiltonian, I:I(T) =30 Hyellor,

Table I is the effective Hamiltonian for the triangular lattice when the driving field is resonant with the gap energy.
The constant terms are much larger than the quasimomentum dependent terms in off-diagonal, which means the
on-site inter-band couplings are dominant. We safely neglect the Bessel functions higher than the second order as the
driving strength K < 1 remains in weak driving regime.

Table II shows the case of single-frequency driving resonant with the half the gap. Now the off-diagonal terms are
dominantly quasimomentum dependent. The Hamiltonian for the triangular lattice in two-frequency driving scheme
are not listed here.

70 o:{e + hw + 1 cos[(ge — qy)b]Jo(2Kz) + t2 cos(qub)[Jo (K2 ) Jo(Ky) — 21
eff )

2)J1(Ky) cos(p)+
2J2(Kz)J2(Ky) cos(2¢)] + ts cos(qyb)[Jo (K ) Jo(Ky) + 2J1(K=)J1 (Ky) cos(p (Kz)J2

(K.
+ 2J2(Ky) J2(Ky) cos(20)]}

oxnsp{—t1sinf(gz — qy)b]J1(2K+) Ky sin(p) — ta sin(gxb) sin(@){ Ky Jo (Ky) J1 (Ke) + Ko J1 (Ky) J2(Kz)—
) J1(K2)J2(Ky)[Ky + 2Ka cos(p) + 2Ky cos(2¢)] + Jo(Kz)J1(Ky)[Ka + 2K, cos(¢)]
a%Y, —ts sin(gyb) sin(2p){ Ky Jo(Kz)J1(Ky) + J1(Ka)J2(Ky) [ Kz + 2Ky cos(¢)]}}

(
oy ey {1 sinl(ge — ,)b11 (2K.) (Ko + K, cos(0)] + ta sin(qub){Jo(K,) J1 (K2 )[Ko + K, cos()]—
T(K) T (KoK, + Ko cos(p)] + 1 (K, Jo(K2) Ko cos(p) + Ky cos(2)] — 1 (K)o (K,
(K cos(20) + K, cos(3¢)]} + ta sin(g,b) sin(20){—Jo(K,) 1 (Ko ) [Ko + K, cos()] — Ji (K, Ja(K.)
Ky + Ko cos(9)] + 1 (K,) Jo(Ko) Kz cos(i) + Ky cos(29)] + 1 (Kx) Jo(K,) K cos(2¢) + K cos(30)]}}

Jznfpﬁw[Kg + K§ + 2K, K, cos(p)]/4

OxTsp{—t2 8in(gz0){ KzJ1 (Ky) Jo(Kz) + Jl( Kz) Jo(Ky)[Ky 4 2K cos(p)]}
+t3sin(gyb){— Ko J1(Ky) J2(Ko) + J1(Kz)J2(Ky)[Ky + 2K, cos(p)]}}/3

oynsp{ta sin(qeb){Ji (Ky)Jo(K:)[Ky + Kz cos(p )]+ J1(K2)Jo(Ky)[Ky cos(p) + Kz cos(2¢)]}
Ft3 sin(qyb){J1(Ky) J2(Kz)[Ky + Kz cos(@)] — Ji(Kz) 2(Ky)[K cos(p) + Ko cos(2¢)]}}/3

Uznsphw[K.z + Ki + 2K, Ky cos(p)]/12

Fr(1)
Heﬁ,3

TABLE II. Effective Hamiltonian for the triangular lattice under single frequency driving resonant with the half the gap

For the hexagonal lattice, Table III gives the general Hamiltonian under single-frequency off-resonant driving, while
Table IV is the Hamiltonian under two-frequency off-resonant driving. Note that the second order Bessel functions

are omitted in H gf) in Table IV but kept in the numerical calculations.



o {[t1 cos(gqyb) + t3 cos(qub)] Jo(Ky1) + t2 cos[(gz — gy)b]Jo(Kz1)}

8
oy{[t1 sin(gyd) — t3sin(g=b)]Jo(Ky1) — t2sin[(ge — qy)b]Jo(Ke1)}
H(l) 2D nhwt2Jn( Ko1)Jn(Ky1) [(—1)"’“1&1 sin(gzb) + t3 sin(qyb)} sin(nyy1)

TABLE III. Effective Hamiltonian for the hexagonal lattice under single frequency off-resonant driving

R o2{[t1 cos(gyb) + t3 cos(qxb)]Jo(Ky1)Jo(Ky2) + t2 cos[(qz — qy)b]Jo(Ka1)Jo(Ka2)—

AL 2[t1 sin(gab) + t3 sin(qyb)]J1 (Ky2)J2(Ky1) sin(20y1 — @y2) + 2ta sin[(gz — qy)b]J1 (Ka2)J ( 1) sin(pz2)}
b
b)

) — t3sin(gwb)]Jo (Ky1)Jo (K y2) — t2sinf[(ge — gy)b]Jo(Ku1) Jo(Ku2)+
|1 (Ky2) J2 (K. ul)sm(%ﬁyl—¢y2)+2t2COS[(q - qy) ]Jl(Kw)Jz( K1) sin(pa2)}

oy{[t1 sm( Qy
2[t1 cos(gzb) — ts3 cos(gy

02 525 {6J0(Ky2) J1 (Ky1)[taJ1 (Ku1)J1 (Ka2)(t1 cos(qub) — ta cos(qyb)) cos(@zz — py1) + (£ — t3)
- J1(Ky1)J1(Ky2) cos(2py1 — @y2)] — 6t2Jo(Ky2)J1 (K1) [t2J1 (K1) J1 (Ke2) cos(pa2) + J1(Ky1)J1(Ky2)
Hy (t1 cos(gzb) + t3 cos(gyb)) cos(py1 — py2) — J1(Ky1)Jo(Ky2)(t1 Sln(qzb) + t3sin(gyb)) sin(py1)]
—taJ1(Ka2)J1(Ky2)[3J0 (K1) Jo(Ky1)(t1 sin(gzb) + ts sin(gyd)) sin(pez — @y2) — 2J1 (K1) J1 (Ky1)
(t1sin(qub) — t3sin(gyb))(sin(pz2 — py1 — @y2) + 3sin(wa2 + @y1 — ©y2))]}

TABLE IV. Effective Hamiltonian for the hexagonal lattice under two frequency off-resonant driving
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