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LACUNARY SEQUENCES IN ANALYSIS, PROBABILITY AND

NUMBER THEORY

CHRISTOPH AISTLEITNER, ISTVÁN BERKES AND ROBERT TICHY

Abstract. In this paper we present the theory of lacunary trigonometric sums
and lacunary sums of dilated functions, from the origins of the subject up to re-
cent developments. We describe the connections with mathematical topics such
as equidistribution and discrepancy, metric number theory, normality, pseudo-
randomness, Diophantine equations, and the subsequence principle. In the final
section of the paper we prove new results which provide necessary and sufficient
conditions for the central limit theorem for subsequences, in the spirit of Nikishin’s
resonance theorem for convergence systems. More precisely, we characterize those
sequences of random variables which allow to extract a subsequence satisfying a
strong form of the central limit theorem.
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1. Introduction

The word “lacunary” has its origin in the Latin lacuna (ditch, gap), which is a
diminutive form of lacus (lake). Accordingly, a lacunary sequence is a sequence
with gaps, and a lacunary trigonometric sum is a sum of trigonometric functions
with gaps between the frequencies of consecutive summands. The origin of the
theory of lacunary sums might lie in Weierstrass’ famous example of a continuous,
nowhere differentiable function (1872). Since then the subject has evolved into many
very different directions, reflecting for example the emergence of modern measure
theory and axiomatic probability theory in the early twentieth century, profound
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2 C. AISTLEITNER, I. BERKES AND R. TICHY

developments in harmonic analysis and Diophantine approximation, the establish-
ment of ergodic theory as one of the key instruments of number theory, or the
interest in notions of pseudo-randomness which are associated with the evolution
of theoretical computer science. Throughout this paper we will be concerned with
convergence/divergence properties of infinite trigonometric series

∞
∑

k=1

ck cos(2πnkx) or

∞
∑

k=1

ck sin(2πnkx),

as well as with the asymptotic order and the distributional behavior of finite trigono-
metric sums

N
∑

k=1

ck cos(2πnkx) or
N
∑

k=1

ck sin(2πnkx)

(the latter often in the simple case where ck ≡ 1), and with their generalizations

∞
∑

k=1

ckf(nkx) and

N
∑

k=1

ckf(nkx).

Here (ck)k≥1 is a sequence of coefficients, and (nk)k≥1 is a sequence of positive in-
tegers (typically increasing), which satisfies some gap property such as the classical
Hadamard gap condition

nk+1

nk

> q > 1, k ≥ 1,

or the “large gap condition” (also called “super-lacunarity property”)

nk+1

nk

→ ∞, k → ∞.

Furthermore, f is a 1-periodic function which is usually assumed to satisfy some reg-
ularity properties (such as being of bounded variation, being Lipschitz-continuous,

etc.), and which for simplicity is usually assumed to be centered such that
∫ 1

0
f(x) dx =

0.

Early appearances of such lacunary sums include the following.

• Sums of the form
∑N

k=1 f(2kx), where f is an indicator function of a dyadic
sub-interval of [0, 1], extended periodically with period 1. Borel used such
sums in 1909 to show that almost all reals are “normal”; more on this topic
is contained in Section 6 below.

• Uniform distribution of sequences ({nkx})k≥1 in Weyl’s seminar paper of
1916; more on this in Section 2. Here and throughout the paper, we write
{·} for the fractional part function.

• Kolmogorov’s theorem on the almost everywhere convergence of lacunary
trigonometric series if the sequence of coefficients is square-summable (1924),
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a result related to his Three Series Theorem for the almost sure conver-
gence of series of independent random variables. Later it turned out that
Kolmogorov’s convergence theorem for trigonometric series actually remains
true without any gap condition whatsoever, a result which was widely be-
lieved to be “too good to be true” before being established by Carleson [77]
in 1966. More on this in Section 2.

• Foundational work on the distribution of normalized lacunary trigonometric
sums, in particular the central limit theorems of Kac (1946) and Salem and
Zygmund (1947), and the laws of the iterated logarithms of Salem and Zyg-
mund (1950) and of Erdős and Gál (1955). More on this in Sections 4 and 5.

A fundamental observation is that the unit interval, equipped with Borel sets and
Lebesgue measure, forms a probability space, and that consequently a sequence of
functions such as (cos(2πnkx))k≥1 or (f(nkx))k≥1 can be viewed as a sequence of
random variables over this space; if f is 1-periodic and if (nk)k≥1 is a sequence
of positive integers then these random variables are identically distributed, but in
general they are not independent. However, under appropriate circumstances the
gap condition which is imposed upon (nk)k≥1 can ensure that these random vari-
ables have a low degree of stochastic dependence. Consequently lacunary sums often
mimic the behavior of sums of independent and identically distributed random vari-
ables. This viewpoint was in particular taken by Steinhaus, Kac, and Salem and
Zygmund in their fundamental work on the subject. In a particularly striking situa-
tion, the dyadic functions considered by Borel actually turn out to be a version of a
sequence of Bernoulli random variables which are truly stochastically independent;
accordingly, Borel’s result on the normality of almost all reals is nowadays usually
read as the historically very first version of the strong law of large numbers in prob-
ability theory.

When taking this probabilistic viewpoint, the theory of lacunary sums could be seen
as a particular segment of the much wider field of the theory of weakly dependent
random systems in probability theory, which is associated with notions such as mix-
ing, martingales, and short-range dependence. However, it should be noted that
the precise dependence structure in a lacunary function system (f(nkx))k≥1 is con-
trolled by the analytic properties of the function f , in conjunction with arithmetic
properties of the sequence (nk)k≥1. It is precisely this interplay between probabilis-
tic, analytic and arithmetic aspects which makes the theory of lacunary sums so
interesting, so challenging and so rewarding. In the following sections we want to
illustrate some instances of these phenomena in more detail.
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2. Uniform distribution and discrepancy

Let (xn)n≥1 be a sequence of real numbers in the unit interval. Such a sequence is
called uniformly distributed modulo one (in short: u.d. mod 1) if

(1) lim
N→∞

1

N

N
∑

n=1

1A(xn) = λ(A)

for all sub-intervals A ⊂ [0, 1] of the unit interval. The word “equidistributed” is
also used for this property, synonymously with “uniformly distributed modulo one”.
In this definition, and in the sequel, 1 denotes an indicator function, and λ denotes
Lebesgue measure. In informal language, this definition means that a sequence is
u.d. mod 1 if every interval A asymptotically receives its fair share of elements of the
sequence, which is proportional to the length of the interval. Note that (for example
as a consequence of the Glivenko–Cantelli theorem) for a sequence of independent,
uniformly (0, 1)-distributed random variables (Un)n≥1 one has

1

N

N
∑

n=1

1A(Un) = λ(A) almost surely

for all intervals A ⊂ [0, 1], so that in a vague sense uniform distribution of a deter-
ministic sequence can be interpreted in the sense that the sequence shows “random”
behavior; more on this aspect in Section 6 below. Uniform distribution theory can
be said to originate with Kronecker’s approximation theorem and with work of Bohl,
Sierpiński and Weyl on the sequence ({nα})n≥1 for irrational α. However, the theory
only came into its own with Hermann Weyl’s [222] seminal paper of 1916. Among
many other fundamental insights, Weyl realized that Definition (1), which in ear-
lier work had only be read in terms of counting points in certain intervals, can be
interpreted in a “functional” way and can equivalently be written as

(2) lim
N→∞

1

N

N
∑

n=1

f(xn) =

∫ 1

0

f(x) dx

for all continuous functions f . This viewpoint suggests that uniformly distributed
sequences can be used as quadrature points for numerical integration; in the multi-
dimensional setting and together with quantitative error estimates this observation
forms the foundation of the so-called Quasi-Monte Carlo integration method, a con-
cept which today forms a cornerstone of numerical methods in quantitative finance
and other fields of applied mathematics (more on this below). Furthermore, Weyl
realized that the indicator functions in (1) or the continuous functions in (2) could
also be replaced by complex exponentials, as a consequence of the Weierstrass ap-
proximation theorem; thus by the famous Weyl Criterion a sequence is u.d. mod 1
if and only if

lim
N→∞

1

N

N
∑

n=1

e2πihxn = 0
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for all fixed non-zero integers h, thereby tightly connecting uniform distribution the-
ory with the theory of exponential sums.

For the particular sequence ({nα})n≥1 it can be easily seen from the Weyl criterion
that this sequence is u.d. mod 1 if and only if α 6∈ Q. However, for other parametric
sequences of the form ({nkα})k≥1 the situation is much more difficult, and in general
it is completely impossible to determine whether for some particular value of α the
sequence is u.d. or not. It turns out that in a metric sense the situation is quite
different. Metric number theory arose after the clarification of the concept of real
numbers, the realization that the reals drastically outnumber the integers and the
rationals, and the development of modern measure theory. Loosely speaking, the
purpose of metric number theory is to determine properties which hold for a set
of reals which is “typical” with respect to a certain measure; here “typical” means
that the measure of the complement is small. In the present paper the measure
under consideration will always be the Lebesgue measure, and a set of reals will
be considered typical if its complement has vanishing Lebesgue measure; however,
metric number theory has for example also been intensively studied with respect to
the Hausdorff dimension or other fractal measures.

Returning to Weyl’s results, what he proved in the metric setting is the following.
For every sequence of distinct integers (nk)k≥1, the sequence ({nkα})k≥1 is u.d. mod
1 for (Lebesgue-) almost all reals α. In other words, even if we cannot specify the
set of α’s for which uniform distribution holds, at least we know that the set of such
α’s has full Lebesgue measure. It is amusing that after formulating the result, Weyl
continues to write:

Wenn ich nun freilich glaube, daß man den Wert solcher Sätze, in
denen eine unbestimmte Ausnahmemenge vom Maße 0 auftritt, nicht
eben hoch einschätzen darf, möchte ich diese Behauptung hier doch
kurz begründen.1

One should recall that Weyl’s paper was written in a time of intense conflict of
formalists vs. constructivists (with Weyl favoring the latter ones), and only very
briefly after the notion of a set of zero (Lebesgue) measure had been introduced
at all. Today, Weyl’s theorem is seen as one of the foundational results of metric
number theory, together with the work of Borel, Koksma, Khinchin and others.

While uniform distribution modulo one is a qualitative asymptotic property, it is
natural that one is also interested in having a corresponding quantitative concept
which applies to finite sequences (or finite truncations of infinite sequences). Such

1Even if I think that the value of theorems, which contain an unspecified exceptional set of
measure zero, is not particularly high, I still want to give a short justification.
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a concept is the discrepancy of a sequence, which is defined by

DN(x1, . . . , xN) = sup
A⊂[0,1]

∣

∣

∣

∣

∣

1

N

N
∑

n=1

1A(xn) − λ(A)

∣

∣

∣

∣

∣

.

Here the supremum is taken over all sub-intervals A ⊂ [0, 1], and it is easy to
see that an infinite sequence (xn)n≥1 is u.d. mod 1 if and only if the discrepancy
DN(x1, . . . , xN) tends to 0 as N → ∞. With a slight abuse of notation, we will
write throughout the paper DN(xn) = DN(x1, . . . , xN) for the discrepancy of the
first N elements of an infinite sequence (xn)n≥1. From a probabilistic perspective,
the discrepancy is a variant of the (two-sided) Kolmogorov–Smirnov statistic, where
one tests the empirical distribution of the point set x1, . . . , xN against the uniform
distribution on [0, 1]. Without going into details, we note that DN (x1, . . . , xN ) can
be bounded above in terms of exponential sums by the Erdős–Turán inequality, and
that the error when using x1, . . . , xN as a set of quadrature points to approximate
∫ 1

0
f(x) dx by 1

N

∑N
n=1 f(xn) can be bounded above by Koksma’s inequality in terms

of the variation of f and the discrepancy DN ; for details see the monographs [96, 161],
which contain all the basic information on uniform distribution theory and discrep-
ancy. See also [181] for a discussion of equidistribution and discrepancy from the
viewpoint of analytic number theory, and [164, 165, 192] for expositions which put
particular emphasis on the numerical analysis aspects.

Weyl’s metric result from above can be written as

lim
N→∞

DN ({nkα}) = 0 for almost all α,

for any sequence (nk)k≥1 of distinct itegers. Strikingly, the precise answer to the
corresponding quantitative problem is still open more than a hundred years later.
It is known that for every strictly increasing sequence of integers (nk)k≥1 one has

(3) DN ({nkα}) = O

(

(logN)3/2+ε

√
N

)

for almost all α.

This is a result of R.C. Baker [38], who improved earlier results of Cassels [78] and
of Erdős and Koksma [104] by using Carleson’s celebrated convergence theorem in
the form of the Carleson–Hunt inequality [140]. In his paper Baker wrote that

[. . . ] probably the exponent 3/2 + ε could be replaced by ε [. . . ]

but it turned out that this is not actually the case. Instead, Berkes and Philipp [64]
constructed an example of an increasing integer sequence (nk)k≥1 for which

(4) lim sup
N→∞

∣

∣

∣

∑N
k=1 cos(2πnkx)

∣

∣

∣

√
N logN

= +∞ for almost every x.

By the Erdős–Turán inequality this gives a corresponding lower bound for the dis-
crepancy, which implies that the optimal exponent of the logarithmic term in an
upper bound of the form (3) has to be at least 1/2. But the actual size of this opti-
mal exponent, one of the most fundamental problems in metric discrepancy theory,
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still remains open. Note that for pure cosine-sums
∑N

k=1 cos(2πnkx) it is easily seen
that one has a metric upper bound with exponent 1/2 + ε in the logarithmic term;
this follows from the orthogonality of the trigonometric system, together with Car-
leson’s inequality and the Chebyshev inequality. Thus, in connection with (4), the
optimal upper bound in a metric estimate for pure cosine sums is known. For sums
∑N

k=1 f(nkx) with f being a 1-periodic function of bounded variation, the optimal
exponent also is 1/2 + ε, but this is a much deeper result than the one for the pure
cosine case, and was established only recently in [15, 169]. By Koksma’s inequality,
an upper bound for the discrepancy implies an upper bound for sums of function
values for a (fixed) function of bounded variation, but the opposite is not true. So
while the case of a fixed function f is solved and is an important test case for the
discrepancy, the problem of the discrepancy itself (which requires a supremum over
a whole class of test functions) is more involved and remains open.

3. Arithmetic effects: Diophantine equations and sums of common

divisors

One of the most classical tools of probability theory is the calculation of expectations,
variances, and higher moments of sums of random variables. Due to trigonometric
identities such as

(5) cos a cos b =
cos(a+ b) + cos(a− b)

2
,

the calculation of moments of sums of trigonometric functions (with integer frequen-
cies) reduces to a counting of solutions of certain Diophantine equations. Indeed,
while the first and second moments

∫ 1

0

N
∑

k=1

cos(2πnkx) dx = 0 and

∫ 1

0

(

N
∑

k=1

cos(2πnkx)

)2

dx =
N

2

are trivial and do not depend on the particular sequence (nk)k≥1 (as long as the
elements of the sequence are assumed to be distinct), interesting arithmetic effects
come into play when one has to compute higher moments, and it can be clearly seen
how the presence of a gap condition leads to a behavior of the moments which is
similar to that of sums of independent random variables. More precisely, assume
that we try to calculate

∫ 1

0

(

N
∑

k=1

cos(2πnkx)

)m

dx

for some integer m ≥ 3. By (5) this can be written as a sum

2−m
∑

±

∑

1≤k1,...,km≤N

1 (±nk1 ± · · · ± nkm = 0) .

Here the first sum is meant as a sum over all positive combinations of “+” and “-”
signs inside the indicator function at the end. Now assume that, for simplicity, we
consider the particular sequence nk = 2k, k ≥ 1, which is a prototypical example
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of a sequence satisfying the Hadamard gap condition. Then the majority of the
solutions of

±nk1 ± · · · ± nkm = 0

arise from cancellation in a pairwise way; that is, after a suitable re-ordering of
the indices, one has k1 = k2, k3 = k4, . . . , km−1 = km, and suitable opposing signs.
There are further solutions, coming for example from the fact that nk+1−nk−nk = 0
for all k, but one can show that they play an overall insignificant role. Thus one
is led to calculating the combinatorial quantity which stems from the solutions
with pairwise cancellation, which turns out to be exactly the same combinatorial
quantity that arises when calculating an m-th moment of a sum of independent
random variables. Thus the moments of the trigonometric lacunary sum converge
to those of a suitable Gaussian distribution, which gives rise to the classical limit
theorems for lacunary trigonometric sums. The situation is more delicate if one
only has the Hadamard gap condition nk+1/nk > q > 1 rather than exact expo-
nential growth, and again more delicate if one considers a sum of dilated functions
∑

f(nkx) instead of a pure trigonometric sum, but the principle described here is
very powerful also in these more general situations. For a long time this was the
key ingredient in most of the proofs of limit theorems for lacunary sums; see for
example [103, 145, 193, 201, 214, 221]. A different method is based on the approxi-
mation of a lacunary sum by a martingale difference; here the “almost independent”
behavior is not captured by controlling the moments of the sum, but in the fact that
later terms of the sum (functions with high frequency) oscillate quickly in small re-
gions where earlier summands (functions with much lower frequency) are essentially
constant. As far as we can say, this method was first used in the context of lacunary
sums by Berkes [53] and, independently, by Philipp and Stout [196]. We will come
back to this topic in Section 4.

Broadly speaking, the “almost independent” behavior of sums of dilated functions
breaks down when the lacunarity condition is relaxed. Many papers have been de-
voted to this effect; see in particular [57, 59, 102, 184]. In order to maintain the
“almost independent” behavior of the sum, there are two natural routes to take. On
the one hand, one could randomize the construction of the sequence (nk)k≥1, and
assume that the undesired effects disappear almost surely with respect to the under-
lying probability measure – it turns out that this is a very powerful method, and we
will come back to it in Section 7 below. On the other hand, when adapting the view-
point that the “almost independence” property is expressed in the small number of
solutions of certain Diophantine equations, one could try to compensate the weaker
growth assumption by stronger arithmetic assumptions. A prominent example of a
class of sequences for which the latter approach has been very successfully used are
the so-called Hardy–Littlewood–Pólya sequences, which consist of all the elements of
the multiplicative semigroup generated by a finite set of primes, sorted in increasing
order. These sequences are in several ways a natural analogue of lacunary sequences;
note that the sequence (2k)k≥1 actually also falls into this framework by consisting
of all elements of the semigroup generated by a single prime. Such sequences gener-
ated by a finite set of primes have attracted the attention of number theorists again
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and again, a particularly interesting instance being Fürstenberg’s [126] paper on
disjointness in ergodic theory. It is known that Hardy–Littlewood–Pólya sequences
(if generated by two or more primes) grow sub-exponentially, and the precise (only
slightly sub-exponential) growth rates are known (Tijdeman [216]). What is more
striking (and a much deeper fact) is that also the number of solutions of the rel-
evant linear Diophantine equations can be bounded efficiently – this is Schmidt’s
celebrated Subspace Theorem [207] in a quantitative form such as that of Evertse,
Schlickewei and Schmidt [107] or Amoroso and Viada [30]. By a combination of the
(slightly weaker) growth condition with the (strong) arithmetic information avail-
able for Hardy–Littlewood–Pólya sequences, much of the machinery that is used for
Hadamard lacunary sequences can be rescued for this generalized setup; see [194] as
well as [19, 65, 123].

We briefly come back to the case of sums of dilated functions
∑

f(nkx) without
the presence of a growth condition on (nk)k≥1. We assume for simplicity that
∫ 1

0
f(x) dx = 0, so trivially

∫ 1

0

N
∑

k=1

f(nkx) dx = 0,

but already the calculation of the variance

(6)

∫ 1

0

(

N
∑

k=1

f(nkx)

)2

dx

is in general quite non-trivial. If f(x) = cos(2πx), then one can simply use the
orthogonality of the trigonometric system. If f is a more general function, then one
can still express f by its Fourier series, expand the square and integrate, and thus
translate the problem of calculating (6) into a problem of counting the solutions
of certain linear Diophantine equations. When carrying out this approach, one is
naturally led to the problem of estimating a certain sum involving greatest common
divisors. For example, assume that f(x) = {x}−1/2. In this case a classical formula
(first stated by Franel and first proved by Landau) asserts that

∫ 1

0

f(mx)f(nx) dx =
1

12

(gcd(m,n))2

mn
,

and consequently

∫ 1

0

(

N
∑

k=1

({nkx} − 1/2)

)2

dx =
1

12

∑

1≤k,ℓ≤N

(gcd(nk, nℓ))
2

nknℓ
.

The sum on the right-hand side of this equation is called a GCD sum. A similar
identity holds for example for the Hurwitz zeta function ζ(1 − α, ·), where

∫ 1

0

ζ(1 − α, {mx})ζ(1 − α, {nx}) dx = 2Γ(α)2
ζ(2α)

(2π)2α
(gcd(m,n))2α

(mn)α
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for α > 1/2, thus leading to a GCD sum

∑

1≤k,ℓ≤N

(gcd(nk, nℓ))
2α

(nknℓ)α

with parameter α. If f(x) is a general 1-periodic function, then one usually does not
obtain such a nice exact representation of the variance of a sum of dilated function
values, but typically the variance (6) can be bounded above by a GCD sum, which
together with Chebyshev’s inequality and the Borel–Cantelli lemma allows to make
a statement on the almost everywhere asymptotic behavior of a sum of dilated func-
tion values.

This connection between sums of dilated functions and GCD sums is explained in
great detail in Chapter 3 in Harman’s monograph on Metric Number Theory [136],
where mainly the context of metric Diophantine approximation is treated (see also [127,
155]). Recently this connection has also led to a solution of the problem of the al-
most everywhere convergence of series of dilated functions. Recall that Carleson’s
theorem [77] asserts that the series

∞
∑

k=1

ck cos(2πnkx)

is almost everywhere convergent provided that
∑

k c
2
k < ∞. It is natural to ask

which assumption on the sequence of coefficients (ck)k≥1 is necessary to ensure the
almost everywhere convergence of the more general series

(7)

∞
∑

k=1

ckf(nkx),

under some regularity assumptions on f . Gaposhkin [129, 130] obtained some partial
results, but a satisfactory understanding of the problem was only achieved very
recently, when the connection with GCD sums was fully understood and optimal
upper bounds for such sums were obtained. Exploiting this connection with GCD
sums, it was shown in [15, 169] that for 1-periodic f which is of bounded variation
on [0, 1] the series (7) is almost everywhere convergent provided that

∞
∑

k=3

c2k(log log k)γ <∞

for some γ > 2, and this result is optimal in the sense that the same assumption
with γ = 2 would not be sufficient. In [16] it was shown that for the class Cα of
1-periodic square integrable functions f with Fourier coefficients aj, bj satisfying

aj = O(j−α), bj = O(j−α)

for 1/2 < α < 1, a sharp criterion for the almost everywhere convergence of (7) is
that

(8)

∞
∑

k=1

c2k exp

(

K(log k)1−α

(log log k)α

)

<∞
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with a suitable K = K(α). In the case of 1-periodic Lipschitz α functions f ,
Gaposhkin [130] proved that for α > 1/2, the series (7) converges a.e. under
∑

k c
2
k < ∞ (just like in the case of Carleson’s theorem) and Berkes [60] showed

that this result is sharp, i.e. for α = 1/2 the exact analogue of Carleson’s theorem is
not valid. No sharp convergence criteria exists in the case 0 < α ≤ 1/2; for sufficient
criteria for see Gaposhkin [129]. See also [4, 68, 128] for a general discussion and
several further results for the convergence of series

∑

k ckf(nkx).

For general periodic f ∈ L2 the direct connection between the integral (6) and GCD
sums breaks down, but upper bounds for (6) as well as for

(9)

∫ 1

0

(

N
∑

k=1

ckf(nkx)

)2

dx

can be given in terms of the coefficients ck, of the Fourier coefficients of f , and
arithmetic functions such as d(n) =

∑

d|n 1, σs(n) =
∑

d|n d
s, or the Erdős-Hooley

function ∆(n) = supu∈R
∑

d|n,u≤d≤eu 1. See Koksma [156, 157], Weber [220], and

Berkes and Weber [69, 70]. A typical example (see [220]) is the bound

∫ 1

0

(

∑

k∈H
ckf(kx)

)2

dx ≤
( ∞
∑

ν=1

a2ν∆(ν)

)

∑

k∈H
c2kd(k)

valid for any set H of disjoint positive integers lying in some interval [er, er+1], r ≥ 1.
Here ak are the complex Fourier coefficients of f . Using standard methods, such
bounds lead easily to a.e. convergence criteria for sums

∑

k ckf(kx), see the papers
cited above.

In Wintner [223] it was proved that if f is a periodic L2 function with Fourier
coefficients ak, bk, then the series

∑

k ckf(kx) converges in L2 norm for all coefficient
sequences (ck)k≥1 satisfying

∑

k c
2
k < ∞ if and only if the functions defined by the

Dirichlet series
∞
∑

k=1

akk
−s,

∞
∑

k=1

bkk
−s,

are bounded and regular in the half plane ℜ(s) > 0. There is also a remarkable con-
nection between the maximal order of magnitude of GCD sums with the order of ex-
treme values of the Riemann zeta function in the critical strip; see [72, 94, 138, 209].

Naturally, estimating the integral (6) provides important information also on the
asymptotic behavior of averages

(10)
1

N

N
∑

k=1

f(nkx).
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By the Weyl equidistribution theorem, for any 1-periodic f with bounded variation
in (0, 1) we have

(11) lim
N→∞

1

N

N
∑

k=1

f(kx) =

∫ 1

0

f(x) dx a.e.

(actually for every irrational x). Khinchin [150] conjectured that (11) holds for every
1-periodic Lebesgue integrable f as well. This conjecture remained open for nearly
50 years and was finally disproved by Marstrand [178]. An example for a periodic
integrable f and a sequence (nk)k≥1 of positive integers such that the averages (10)
do not converge almost everywhere had already been given earlier by Erdős [100].
On the other hand, Koksma [157] proved that (11) holds if f ∈ L2 and the Fourier
coefficients ak, bk of f satisfy

∞
∑

k=1



(a2k + b2k)
∑

d|k

1

d



 <∞,

and Berkes and Weber [70] proved that the last condition is optimal. No similarly
sharp criteria are known in the case f ∈ L1. For further results related to the
Khinchin conjecture, see [37, 50, 70, 74, 185].

4. The central limit theorem for lacunary sequences

Salem and Zygmund [201] proved the first central limit theorem (CLT) for lacunary
trigonometric sums. More specifically, they showed that for any integer sequence
(nk)k≥1 satisfying the Hadamard gap condition one has

lim
N→∞

λ

(

x ∈ (0, 1) :
N
∑

k=1

cos(2πnkx) ≤ t
√

N/2

)

= Φ(t),

where Φ denotes the standard normal distribution. Note that
∫ 1

0

(

N
∑

k=1

cos(2πnkx)

)2

dx =
N

2
,

so the result above contains the “correct” variance for the limit distribution, exactly
as it should also be expected in the truly independent case. This result has been
significantly strengthened since then; for example, Philipp and Stout [196] showed
that under the Hadamard gap condition the function

S(t, x) =
∑

k≤t

cos(2πnkx),

considered as a stochastic process over the space ([0, 1],B[0, 1], λ), is a small per-
turbation of a Wiener process, a characterization which allows to deduce many fine
asymptotic results for this sum. It is also known that the central limit theorem
for pure trigonometric lacunary sums remains valid under a slightly weaker gap
condition than Hadamard’s: as Erdős [102] proved, it is sufficient to assume that
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nk+1/nk ≥ 1 + ck−α, α < 1/2, while such an assumption with α = 1/2 is not suffi-
cient.

The whole situation becomes very different when the cosine-function is replaced
by a more general 1-periodic function, even if it is such a well-behaved one as a
trigonometric polynomial. For example, consider

(12) f(x) = cos(2πx) − cos(4πx), nk = 2k, k ≥ 1.

In this case the lacunary sum is telescoping, and it can be immediately seen that
there cannot be a non-trivial limit distribution. A more delicate example is attrib-
uted to Erdős and Fortet2, and goes as follows. Let

f(x) = cos(2πx) + cos(4πx), nk = 2k − 1, k ≥ 1.

Then it can be shown that N−1/2
∑N

k=1 f(nkx) does indeed have a limit distribution,
but one which is actually non-Gaussian. More precisely, for this example one has

lim
N→∞

λ

(

x ∈ (0, 1) :

N
∑

k=1

f(nkx) ≤ t
√

N/2

)

=
1√
π

∫ 1

0

∫ t/2| cos(πs)|

−∞
e−u2

duds.

Thus the limit distribution in this case is a so-called “variance mixture Gaussian”,
which can be seen as a normal distribution whose variance is a function rather than
a constant. This limiting behavior can be explained from the observation that

(13) f(nkx) = cos((2k+1 − 2)πx) + cos((2k+2 − 4)πx)

and

(14) f(nk+1x) = cos((2k+2 − 2)πx) + cos((2k+3 − 4)πx).

Combining the second term on the right-hand side of (13) with the first term on the
right-hand side of (14) we obtain

cos((2k+2 − 4)πx) + cos((2k+2 − 2)πx) = 2 cos(πx) cos((2k+2 − 3)πx),

so the whole lacunary sum
∑N

k=1 f(nkx) can essentially be written as 2 cos(πx)
multiplied with a pure cosine lacunary sum. This is exactly what the “variance
mixture Gaussian” indicates: the limit distribution is actually that of 2 cos(πx)
independently multiplied with a Gaussian. The failure of a Gaussian central limit
theorem in the example above can be seen as a consequence of the fact that the
Diophantine equation

nk+1 − 2nk = 1

2The Erdős–Fortet example is first mentioned in print in a paper of Salem and Zygmund [202].
They mention the example without proof, and write: “This remark is essentially due to Erdős.”.
Later the example was mentioned in a paper of Kac [146], who wrote: “It thus came as a surprise
when simultaneously and independently of each other, Erdős and Fortet constructed an example
showing that the limit [. . . ] need not be Gaussian”, with a footnote: “In Salem and Zygmund this
example is erroneously credited to Erdős alone.” No proof is given in Kac’s paper either, but he
writes: “Details will be given in [a forthcoming] paper by Erdős, Ferrand, Fortet and Kac”. Such
a joint paper never appeared.
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possesses many solutions k for this particular choice of sequence. Equipped with
this observation, one could readily construct similar examples with other trigono-
metric polynomials f , and other variance mixture Gaussians as limit distributions,
by creating situations where there are many solutions k, ℓ to

(15) ank − bnℓ = c

for some fixed a, b, c. However, interestingly, a special role is played by such equations
when c has the particular value c = 0; very roughly speaking, solutions of the
equation for c = 0 effect only the limiting variance (in a Gaussian distribution),
but not the structure of the limiting distribution itself. This is visible in a paper
of Kac [145], who studied the sequence nk = 2k, k ≥ 1, where indeed the only
equations that have many solution are of the form 2mnk − nℓ = 0 for some m (the
solutions being ℓ = k+m). Kac proved that for this sequence and any 1-periodic f
of bounded variation and zero mean one has

(16) lim
N→∞

λ

(

x ∈ (0, 1) :

N
∑

k=1

f(nkx) ≤ tσf
√
N

)

= Φ(t)

with a limiting variance σ2
f , provided that

(17) σ2
f :=

∫ 1

0

f 2(x) dx+ 2
∞
∑

m=1

∫ 1

0

f(x)f(2mx) dx 6= 0.

Thus in this case the limit distribution is always a Gaussian, and the failure of the
trivial example in (12) to produce such a Gaussian limit comes from the fact that
the limiting variance is degenerate.

These observations show that there is a delicate interplay between arithmetic, an-
alytic and probabilistic effects; in particular, it is obviously not only the order of
growth of (nk)k≥1 which is responsible for the fine probabilistic behavior of a la-
cunary sum. Takahashi [211] proved a CLT (with pure Gaussian limit) under the
assumption that nk+1/nk → ∞, and Gaposhkin [128] proved that a CLT (with pure
Gaussian limit) holds when nk+1/nk is an integer for all k, or if nk+1/nk → α for
some α such that αr 6∈ Q, r = 1, 2, . . . (and if additionally the variance does not
degenerate). A general framework connecting Diophantine equations and the dis-
tribution of lacunary sums was established in Gaposhkin’s profound paper [131],
where he proved that a CLT (with pure Gaussian limit) holds if for all fixed positive
integers a, b the number of solutions k, ℓ of the Diophantine equation (15) is bounded
by a constant which is independent of c (where only c 6= 0 needs to be considered,
provided that the variance does not degenerate). One can check the validity of this
general condition for sequences satisfying the assumptions mentioned earlier in this
paragraph, such as nk+1/nk → ∞ or nk+1/nk → α for αr 6∈ Q. Finally, an optimal
result was established in [13]: For (nk)k≥1 satisfying the Hadamard gap condition,

the limit distribution of N−1/2
∑N

k=1 f(nkx) is Gaussian provided that the number
of solutions (k, ℓ) of (15), subject to k, ℓ ≤ N , is of order o(N) (for all fixed a, b,
uniformly in c 6= 0). If, on the other hand, for some a, b, c the number of solutions
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is Ω(N), then the CLT generally fails to hold. If the number of solutions with c = 0

also is of order o(N), then the CLT has the “correct” variance
∫ 1

0
f(x)2dx, in perfect

accordance with the independent case. Even if the number of solutions is of order
Ω(N) for some a, b, c, then the deviation of the distribution of N−1/2

∑N
k=1 f(nkx)

from the Gaussian distribution can be quantified in terms of the ratio “(number of
solutions)/N”. This shows for example that while the CLT generally fails in the
case nk+1/nk → p/q, one obtains an “almost CLT” if both p and q are assumed to be
large. Another example for such an “almost CLT” is when the growth constant in
the Hadamard gap condition is assumed to be very large. See the statement of [13,
Theorem 1.3] and the subsequent discussion for more details.

Note that Gaposhkin’s condition implies that the CLT also holds for all subsequences
that are picked out of (nk)k≥1. This is not the case under the assumptions from [13],
where one might be able to extract a subsequence along which the CLT fails (by
choosing a subsequence which allows a large number of solutions of the relevant
Diophantine equations). It is interesting that the probabilistic behavior of lacunary
sums might change when one passes to a subsequence of the original sequence –
this is in clear contrast to the bevahior of sums of independent random variables,
where any subsequence of course is independent as well. A similar remark holds for
permutations of lacunary sums resp. permutations of sums of independent random
variables. These phenomena have received strong attention during the last years; see
for example [17, 18, 19, 21, 114]. To give only one sample result, in [17] the following
is shown. As noted above, the CLT is true for pure trigonometric sums under the
Erdős gap condition nk+1/nk ≥ 1 + ck−α for some α < 1/2. However, this is only
true for the unpermuted sequence (i.e. sorted in increasing order). If permutations
of the sequence are allowed, then this gap condition is not sufficient anymore for the
validity of the CLT, as is no other gap conditon weaker than Hadamard’s. More
precisely, for any sequence (εk)k≥1 with εk → 0 there exists a sequence of positive
integers satisfying nk+1/nk ≥ 1 + εk, together with a permutation σ : N 7→ N, such

that the permuted (pure trigonometric) sum N−1/2
∑N

k=1 cos(2πnσ(k)x) converges in
distribution to a non-Gaussian limit. One can also construct such examples where
the norming sequence N−1/2 has to be replaced by (logN)1/2N−1/2 and the limit is a
Cauchy distribution, and examples where no limit distribution exists at all. See [17]
for details on this particular result, and Chapter 3 of [61] for a detailed discussion
of permutation-invariance of limit theorems for lacunary (trigonometric) systems.

We close this section with some further references. For Hadamard lacunary (nk)k≥1,
the limit distribution of N1/2DN(nkx) was calculated in [14]; under suitable Dio-
phantine assumptions it coincides with the Kolmogorov distribution, which is the
distribution of the range of a Brownian bridge. A central limit theorem for Hardy–
Littlewood–Pólya sequences was established in [124]. In [87] the Erdős–Fortet ex-
ample was revisited from the perspective of ergodic theory, and was interpreted in
terms of the limiting behavior of certain modified ergodic sums, and generalized to
cases such as expanding maps, group actions, and chaotic dynamical systems under
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the assumption of multiple decorrelation. See also [86, 88]. The limit distribution

of N−1/2
∑N

k=1 cos(2πnkx) for the special sequence nk = k2, k ≥ 1, was determined
by Jurkat and Van Horne in [141, 142, 143], and turned out to have finite moments
of order < 4, but not of order 4. The theory of such sums is closely related to theta
sums, and goes back to Hardy and Littlewood [135]. For further related results,

see [80, 108, 219]. For non-Gaussian limit distributions of N−1/2
∑N

k=1 cos(2πnkx)
near the Erdős gap condition nk+1/nk ≥ 1 + ck−1/2 see [58]. For a multidimensional
generalization of Kac’s results see [112, 120], and for a multidimensional generaliza-
tion of the CLT for Hardy–Littlewood–Pólya sequences (considering a semi-group
generated by powers of matrices instead) see [167, 168]. See also [85, 90] for general-
izations of the CLT for Hardy–Littlewood–Pólya sequences to a very general setup
of sums over powers of transformations/automorphisms.

5. The law of the iterated logarithm for lacunary sequences

Together with the law of large numbers (LLN) and the central limit theorem (CLT),
the law of the iterated logarithm (LIL) is one of the fundamental results of prob-
ability theory. Very roughly speaking, the (strong) law of large numbers says that
when scaling by N−1 one has almost sure convergence of a sum of random variables,
and the central limit theorem says that when scaling by N−1/2 one has a (Gaussian)
limit distribution. The law of the iterated logarithm operates between these two
other asymptotic limit theorems; in its simplest form, it says that for a sequence
(Xn)n≥1 of centered i.i.d. random variables (under suitable extra assumptions, such
as boundedness) one has

lim sup
N→∞

∑N
n=1Xn√

2N log logN
= σ almost surely,

where σ is the standard deviation. Heuristically, the law of the iterated logarithm
identifies the threshold between convergence in distribution and almost sure conver-

gence for sums of i.i.d. random variables; indeed, while
∑N

n=1
Xn√

2N log logN
converges to 0 in

distribution by the CLT, it does not converge to 0 almost surely by the LIL. The
first version of the LIL was given by Khinchin in 1924, and a more general variant
was established by Kolmogorov in 1929. Note that the law of large numbers for
trigonometric sums or sums of dilated functions is rather unproblematic: for any
sequence of distinct integers (nk)k≥1 one has

(18) lim
N→∞

1

N

N
∑

k=1

f(nkx) =

∫ 1

0

f(x) dx,

as long as one can assume a bit of regularity for f (such as f being a trigonometric
polynomial, being Lipschitz-continuous, being of bounded variation on [0, 1], etc.).
Only if one is not willing to impose any regularity assumptions upon f the situation
becomes quite different; see the remarks at the end of Section 3.
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The most basic law of the iterated logarithm for lacunary systems is

(19) lim sup
N→∞

∑N
n=1 cos(2πnkx)√
2N log logN

=
1√
2

a.e.

under the Hadamard gap condition on (nk)k≥1; this was obtained by Salem and
Zygmund (upper bound) [203] and Erdős and Gál (lower bound) [103]. Generally
speaking, as often in probability theory the lower bound is more difficult to estab-
lish than the upper bound, since the latter can be proved by an application of the
first Borel–Cantelli lemma (convergence part), while the former is proved by the
second Borel–Cantelli lemma (divergence part, which needs some sort of stochastic
independence as an extra assumption). Note that (19) is a perfect analogue of (18)
with the “correct” constant on the right-hand side.

As in the case of the CLT, replacing pure trigonometric sums by sums of more
general 1-periodic functions makes the situation much more delicate. As in the
previous section, a key role is played by Diophantine equations. However, while
for the CLT it is crucial that the number of solutions of Diophantine equations
“stabilizes” in some way to allow for a limit distribution (albeit a potentially non-
Gaussian one), no such property is necessary for the validity of a form of the LIL
(since, as noted above, this is defined as a lim sup, not as a lim). Instructive examples
are the following. In all examples, we assume that f is 1-periodic with mean zero
and bounded variation on [0, 1].

• If nk+1/nk → ∞ as k → ∞, then

lim sup
N→∞

∑N
n=1 f(nkx)√

2N log logN
=

(
∫ 1

0

f 2(x) dx

)1/2

a.e.

• If nk = 2k, k ≥ 1, then

lim sup
N→∞

∑N
n=1 f(nkx)√

2N log logN
= σf a.e.,

with

σ2
f =

∫ 1

0

f 2(x)dx + 2

∞
∑

m=1

∫ 1

0

f(x)f(2mx) dx.

• Assume that nk+1/nk ≥ q > 1, k ≥ 1. Then there exists a constant C
(depending on f and on q) such that

(20) lim sup
N→∞

∑N
n=1 f(nkx)√

2N log logN
≤ C a.e.

• If nk = 2k − 1, k ≥ 1, and if f(x) = cos(2πx) + cos(4πx), then

(21) lim sup
N→∞

∑N
n=1 f(nkx)√

2N log logN
=

√
2| cos(πx)| a.e.

The first result in this list (due to Takahashi [213]) is in perfect accordance with
the LIL for truly independent random sums, in accordance with the fact that
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also the CLT holds in the “truly independent” form under the large gap condi-
tion nk+1/nk → ∞. The second result is an analogue of Kac’s CLT in Equations
(16) and (17): as with the CLT, also the LIL holds for the sequence (2k)k≥1, but
the limiting variance deviates from the one in the “truly independent” case. Note
that in contrast to the CLT case we now do not need to require that σf 6= 0 for the
validity of the statement. The third result (Takahashi [212]) asserts that there is an
upper-bound version of the LIL for lacunary sums (even for sequences where there is
no convergence of distributions, and any form of the CLT fails). Finally, the fourth
result (the Erdős–Fortet example for the LIL instead of the CLT) shows the remark-
able fact that the lim sup in the LIL for Hadamard lacunary sums might actually be
non-constant – this is very remarkable, and a drastic deviation from what one can
typically observe for sequences of independent random variables. In particular this
example shows that under the Hadamard gap condition an upper-bound version of
the LIL is in general the best that one can hope for. Not very surprisingly, the source
of all these phenomena are (as in the previous section) Diophantine equations such
as (15), and their number of solutions within the sequence (nk)k≥1. So in the LIL
there is again a complex interplay between probabilistic, analytic and arithmetic
aspects which controls the fine asymptotic behavior of lacunary sums.

In probability theory there is a version of the LIL for the Kolmogorov–Smirnov
statistic of an empirical distribution. This is called the Chung–Smirnov LIL, and
in the special case of a sequence (Xn)n≥1 of i.i.d. random variables having uniform
distribution on [0, 1] (where the Kolmogorov–Smirnov statistic coincides with the
discrepancy) it asserts that

lim sup
N→∞

NDN (Xn)√
2N log logN

=
1

2
almost surely.

Here the number 1/2 on the right-hand side arises essentially as the maximal L2

norm (“standard deviation”) of a centered indicator function of an interval A ⊂ [0, 1]
(namely the indicator function of an interval of length 1/2). Based on the princi-
ple that lacunary sequences tend to “imitate” the behavior of truly independent
sequences, it was conjectured that an analogue of the Chung–Smirnov LIL should
also hold for the discrepancy of ({nkx})k≥1, where (nk)k≥1 is a Hadamard lacunary
sequence. This was known as the Erdős–Gál conjecture, and was finally solved by
Philipp [193], who proved that for any q > 1 there exists a constant Cq such that
for (nk)k≥1 satisfying nk+1/nk ≥ q we have

(22)
1√
32

≤ lim sup
N→∞

NDN ({nkx})√
2N log logN

≤ Cq a.e.

An admissible value of Cq was specified in [193] as Cq = 166/
√

2 + 664/(
√

2q−
√

2).
The first inequality in (22) follows from (a complex version of) Koksma’s inequality
together with (19), so the novelty is the second inequality (upper bound). Note also
that the upper bound in (22) implies Takahashi’s “upper bound” LIL in (20), again
as a consequence of Koksma’s inequality.
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Philipp’s result has been extended and refined into many different directions. The
most precise results, many of which were obtain by Fukuyama, show again a fasci-
nating interplay between arithmetic, analytic and probabilistic effects. As a sample
we state the following results (all from Fukuyama’s paper [113]):

Let nk = θk, k ≥ 1. Then

(23) lim sup
N→∞

NDN ({nkx})√
2N log logN

exists and is constant (almost everywhere). Denoting the value of this lim sup by
Σθ, we have:

• If θr 6∈ Q for all r = 1, 2, . . . , then Σθ = 1/2 a.e.
• If r denotes the smallest positive integer such that θr = p/q for some coprime

p, q, then 1/2 ≤ Σθ ≤
√

(pq + 1)/(pq − 1)/2 a.e.

• If θr = p/q as above and both p and q are odd, then Σθ =
√

(pq + 1)/(pq − 1)/2
a.e.

• If θ = 2, then Σθ =
√

42/9 a.e.

• If θ > 2 is an even integer, then Σθ =
√

(p+ 1)p(p− 2)/(p− 1)3/2 a.e.

• If θ = 5/2, then Σθ =
√

22/9 a.e.

All these results were obtained by very delicate calculations involving Fourier anal-
ysis and Diophantine equations. The calculations from [113] were continued by the
same author and his group in [119, 121, 122, 125], so that now we have a relatively
comprehensive picture on the behavior of these lim sup’s in the case when (nk)k≥1

is (exactly) a geometric progression.

In [7, 8] for general Hadamard lacunary sequences (nk)k≥1 a direct connection was
established which links the number of solutions of (15) with the value of the lim sup
in the LIL, in the same spirit as this was done before in [13] for the CLT (as de-
scribed in the previous section). In particular, if the number of solutions of (15) is
sufficiently small, then the LIL holds with the constant 1/2 on the right-hand side,
exactly as in the truly independent case. Another interesting observation is that
if (nk)k≥1 is Hadamard lacunary with growth factor q > 1, and if Σ denotes the
value of the lim sup in (23), then the difference |Σ− 1/2| can be quantified in terms
of q and tends to zero a.e. as q → ∞. Thus there is a smooth transition towards
the “truly independent” LIL as the growth factor q increases, and under the large
gap condition nk+1/nk → ∞ the value of Σ actually equals 1/2. Another remark-
able fact is that there exist Hadamard lacunary sequences for which the lim sup
in the LIL for the discrepancy is not a constant almost everywhere, but rather a
function of x, similar to what happened in (21) for the LIL for

∑

f(nkx). In some
cases the limit functions in the LIL for the discrepancy can be explicitly calculated,
and are “surprisingly exotic” (in the words of Ben Green’s MathSciNet review of [6]).

As noted above, Philipp’s LIL for the discrepancy has been extended into many
different directions. For example, while it is known that the result can fail as soon
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as the Hadamard gap condition is relaxed to any sub-exponential growth condition,
it turns out to be possible to obtain an LIL for the discrepancy when a weaker
growth condition is compensated by stronger arithmetic assumptions. In particu-
lar, an analogue of Philipp’s result has been proved for Hardy–Littlewood–Pólya
sequences [195]; see also [5, 65, 123, 215]. As a closing remark concerning the LIL,
it is interesting that the optimal value of the lower bound in (22) is still unknown;
cf. [25] for more context.

While much effort has been spent towards understanding the probabilistic behavior
of lacunary sums at the scales of the CLT and LIL, it seems that investigations at
other scales (such as in particular at the large deviations scale) were only started
recently. The few results which are currently available point once again towards an
intricate connection between probabilistic, analytic and arithmetic effects; see the
very recent papers [22, 111].

6. Normality and pseudorandomness

Normal numbers were introduced by Borel [73] in 1909. From the very beginning
the concept of normality of real numbers was associated with “randomness”. While
normality of real numbers was originally defined in terms of counting the number
of blocks of digits, it is not difficult to see3 that a number x is normal in base b if
and only if the sequence ({bnx})n≥1 is equidistributed. As Borel proved, Lebesgue-
almost all real numbers are normal in a (fixed) integer base b ≥ 2, and thus almost
all reals are normal in all bases b ≥ 2 (such numbers are called absolutely normal).
While normal numbers are ubiquitous from a measure-theoretic perspective,4 it is
difficult to construct normal numbers. The most fundamental construction is due
to Champernowne, who proved (using combinatorial arguments) that the number

0.1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . . ,

which is obtained by a concatenation of the decimal expansions of the integers, is
normal in base 10. The idea of creating normal numbers by a concatenation of the
(b-ary) expansions of the values of (simple) functions at integers (or primes) is still
the most popular, and probably most powerful, method in this field. We only note
that Copeland and Erdős [89] proved that

0.2 3 5 7 11 13 17 19 23 . . . ,

which is obtained by concatenating the decimal expansions of the primes, is normal
in base 10, and refer to [92, 93, 171, 174, 186, 187] for more results of this flavor.
It should be noted, however, that there have been earlier constructions of a con-
ceptually very different nature, such as that of Sierpinski [208] in 1917. See [43]

3Probably first explicitly mentioned by D.D. Wall in his PhD thesis, 1949.
4Interestingly, while the set of normal numbers is large from a measure-theoretic point of view, it

turns out to be small from a topological point of view. More precisely, the set of normal numbers is
meager (of first Baire category), see e.g. [133]. In the words of Edmund Hlawka [139, p. 78]: “Thus
whereas the normal numbers almost force themselves on to the measure theorist, the topologist is
apt to overlook them entirely.”
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for an exposition of Sierpinski’s construction and more context, and see also [44] on
an early (unpublished) algorithm of Turing for the construction of normal numbers.
We finally mention a very recent idea for the construction of a normal number by
Drmota, Mauduit and Rivat [95], which is not based on the concatenation of deci-
mal blocks as above, but rather on the evaluation of an automatic sequence along
a subsequence of the index set (in this particular case, the Thue–Morse sequences
evaluated along the squares); see also [183, 210].

While Lebesgue-almost all numbers are normal and there are some constructions
of normal numbers, it is generally considered to be completely hopeless to prove
that natural constants such as π, e,

√
2, . . . are normal in a given base (although

the experimental evidence clearly points in that direction: [189, 218, 224]). Many
such open problems “for the next millennium” are contained in Harman’s survey
article [137]; see also [33]. However, it is quite clear that the mathematical machin-
ery which would be necessary to prove the normality of

√
2 or other such constants

is completely lacking; compare the rather deplorable current state of knowledge on
the binary digits of

√
2 as given in [34, 98, 217]. A small spark of hope is provided

by the very remarkable formulas of Bailey, Borwein and Plouffe (now widely known
as BBP formulas), which allow to calculate deep digits of π (and other constants)
without the need of computing all previous digits. See [51] for a very comprehen-
sive “source book” covering computational aspects of π, and see [35] for a very rare
example of a possible strategy of what a proof of the normality of π could possibly
like (cf. also [162]).

Since normality of x in a base b can be expressed in terms of the equidistribution of
the sequence ({bnx})n≥1, it is very natural to consider the discrepancy of DN({bnx})
and call this (with a slight abuse of language) the discrepancy of x (as a normal
number, with respect to a base b). Remarkably, it is still unknown how small
the discrepancy of a normal number can be (this is known as Korobov’s problem).
Levin [166] constructed (for given base b) a number x such that

DN({bnx}) = O

(

(logN)2

N

)

;

by Schmidt’s general lower bound the exponent of the logarithm cannot be reduced
below 1, but the optimal size of this exponent remains open.

One of the most interesting, and most difficult, aspects of normal numbers is nor-
mality with respect to two or more different bases. Extending work of Cassels [79],
Schmidt [206] characterized when normality with respect to a certain base im-
plies normality with respect to another base, and when this is not the case. See
also [48, 76]. However, generally speaking it is very difficult to construct numbers
which are normal with respect to several different bases, and the “constructions”
are much less explicit than the ones of Champernowne and Copeland–Erdős men-
tioned above. The problem of the minimal order of the discrepancy of normal num-
bers seems to be very difficult when different bases are considered simultaneously.
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Aistleitner, Becher, Scheerer and Slaman [12] constructed a number x such that

DN({bnx}) = Ob

(

N−1/2
)

for all integer bases b ≥ 2; this is considered to be an “unexpectedly small” order
of the discrepancy by Bugeaud in his MathSciNet review of [12]. It is not known if
the exponent −1/2 of N in this estimate is optimal or not; indeed, no non-trivial
lower bounds whatsoever (beyond the general lower bound (logN)/N of Schmidt)
are known for this problem, but it is quite possible that whenever simultaneous nor-
mality with respect to different (multiplicatively independent) bases is considered,
there must be at least one base for which the discrepancy is “large”.

In a recent years, there has been a special focus on algorithmic aspects of the con-
struction of normal numbers. A particularly striking contribution was a polynomial-
time algorithm for the construction of absolutely normal numbers due to Becher,
Heiber and Slaman [45]. See also [29, 47, 205]. Related to such algorithmic and
computational problems are questions on the complexity of the set of normal num-
bers from the viewpoint of descriptive set theory in mathematical logic; in this
framework, the rank of the set of normal numbers [152] and absolutely normal num-
bers [46] within the Borel hierarchy has been determined.

The notion of normality can be extended in a natural way to many other situa-
tions, where it is always understood that normality should be the typical behaviour.
For example, one can consider normal continued fractions, where the “expected”
number of occurences of each partial quotient is prescribed by the Gauss–Kuzmin
measure; see for example [1, 49]. Other generalizations consider for example normal-
ity with respect to β-expansions [39, 173], a numeration system which generalizes
the b-ary expansion to non-integral bases β, or normality with respect to Cantor ex-
pansions [3, 109, 175], a numeration system which allows a different set of “digits”
at each position. For a particularly general framework, see [172]. Interestingly, in
such generalized numeration systems there can be more than one natural definition
of normality, using as starting point for exampe either the idea of counting blocks
of digits, or the idea of equidistribution of an associated system. The relation be-
tween such different (sometimes conflicting) notions of normality has been studied
in particular detail for Cantor expansions [2, 170, 176].

Normal numbers feature prominently in the chapter on random numbers in Volume 2
of Knuth’s celebrated series on The Art of Computer Programming [153]. There he
tries to come to terms with the notion of “random” sequences of numbers, and intro-
duces an increasingly restrictive scheme of “randomness” of deterministic sequences.
The concept of normality is also the starting point for one of the (quantitative) mea-
sures of pseudorandomness, which were introduced by Mauduit and Sárközy [179]
and then studied in a series of papers. Note in this context that the transformation
T : x 7→ bx mod 1, which is at the foundation of the concept of normal numbers,
can in some sense be seen as the continuous analogue of the recursive formula which
defines a linear congruential generator (LCG), one of the most classical devices for
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pseudorandom number generation. For this connection between normal numbers
and pseudo-random number generators, see for example [36]. Another very fruitful
aspect of normal numbers is the connection with ergodic theory, which comes from
the observation that the sequence ({bnx})n≥1 is the orbit of x under the transforma-
tion T from above, and that this transformation is measure-preserving (with respect
to the Lebesgue measure) and ergodic. We will not touch upon this connection in
any detail, and instead refer to [91, 149].

Another sequence which is often associated with “randomness” is the sequence
({xn})n≥1 for real x > 1, or more generally ({ξxn})n≥1 for ξ 6= 0 and x > 1.
This looks quite similar to a (Hadamard) lacunary sequence such as (bnx)n≥1, but
its metric theory is of a very different nature in several respects. Both sequences are
variants of a geometric progression, but while in the lacunary sequence the base b is
fixed and x is assumed to be a “parameter”, now ξ is assumed to be fixed and the
base x of the geometric progression is the parameter. While (bnx)n≥1 can in many
ways be easily interpreted in terms of harmonic analysis, digital expansions, ergodic
theory, etc., such simple interpretations fail for ({xn})n≥1. Note in particular that in
contrast to lacunary sequences there now is no periodicity when replacing x 7→ x+1,
there is no “orthogonality”, and the calculation of moments of sums

∑

f(xn) does
not simply reduce to the counting of solutions of Diophantine equations. Still, what
is preserved from the setup of lacunary sequences is that xn (as a function of x)
oscillated quickly on intervals where xm is essentially constant, provided that n is
significantly larger than m, and there are good reasons to consider systems such as
(cos(2πxn))n≥1 to be “quasi-orthogonal” and “almost independent” in some appro-
priate sense.

One of the most fundamental results on this type of sequence is due to Koksma [154]:
assuming that ξ 6= 0 is fixed, the sequence ({ξxn})n≥1 is uniformly distributed mod
1 for almost all x > 1. In particular, when ξ = 1, the sequence ({xn})n≥1 is
uniformly distributed mod 1 for almost all x > 1. In very sharp contrast with
Koksma’s metric result is the fact that until today not a single example of a number
x is known for which ({xn})n≥1 is indeed uniformly distributed. This problem is
related with Mahler’s problem on the range of ({(3/2)n})n≥1, which also seems to be
completely out of reach for current methods (cf. [97, 110]). The sequence ({xn})n≥1

is discussed at length in Knuth’s book, where it is conjectured that this sequence is
a good candidate to pass several very strict pseudorandomness criteria for almost
all x. For example, Knuth conjectured that for all sequences of distinct integers
(sn)n≥1 the sequence ({xsn})n≥1 (a subsequence of the original sequence) has a strong
equidistribution property called complete uniform distribution, for almost all x > 1;
this was indeed established by Niederreiter and Tichy [188]. It is also known that
({xn})n≥1 satisfies an law of the iterated logarithm in the “truly independent” form

lim sup
N→∞

NDN ({xn})√
2N log logN

=
1

2
a.e.,
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and similarly satisfies a central limit theorem which is perfectly analogous to the one
for truly independent systems [9]. Note that Knuth’s assertion that the sequence
({xn})n≥1 shows good pseudo-random behavior for almost all x > 1 is of limited
practical use, as long as no such value of x is found. The discrete analogue would
be to study the pseudo-randomness properties of an mod q for n = 1, 2, . . . , where a
and q are fixed integers. Investigations on the pseudo-randomness properties of such
sequence were carried out for example by Arnol’d [32], who experimentally observed
good pseudorandom behavior; cf. also [10].

To close this section, we note that equidistribution is of course just one property
which can be used to characterize “pseudorandom” behavior (essentially by analogy
with the Glivenko–Cantelli theorem). There are many other statistics which could
be applied to a sequence in [0, 1] to determine whether it behaves in a “random”
way or not. One class of such statistics are gap statistics at the level of the average
gap (which is of order 1/N when considering the first N elements of a sequence
in [0, 1]), such as the distribution of nearest-neighbor gaps, or the pair correlation
statistics. We do not give formal definitions of these concepts here, but note that
they are inspired by investigations of the statistics of quantum energy eigenvalues in
the context of the Berry–Tabor conjecture in theoretical physics; see [177] for more
context. Pseudorandom behavior with respect to such statistics is called “Poisso-
nian”, since it agress with the corresponding statistics for the Poisson process. The
general principle that lacunary systems show pseudorandom behavior is also valid
in this context. For example, Rudnick and Zaharescu [199] showed that for (nk)k≥1

satisfying the Hadamard gap condition the sequence ({nkx})k≥1 is Poissonian for
almost all x, and Aistleitner, Baker, Technau and Yesha [11] showed that the same
holds for ({xn})n≥1 for almost all x > 1.

This section on normal numbers and sequences of the form ({ξxn})n≥1 gives of course
only a very brief overview of the subject, and has to leave out many interesting
aspects. For a much more detailed exposition we refer the reader to the book of
Bugeaud [75].

7. Random sequences

In the previous sections we have illustrated the philosophy that gap sequences ex-
hibit many probabilistic properties which are typical for sequences of i.i.d. random
variables. In many cases the large gap condition nk+1/nk → ∞ gives “true” random
limit theorems, the Hadamard gap condition nk+1/nk ≥ q > 1 is a critical transi-
tion point where a mixture of probabilistic, analytic and arithmetic effects comes
into play, and the “almost independent” behavior is lost when the gap condition is
relaxed below Hadamard’s. There are results which hold under weaker gap condi-
tions such as the Erdős gap condition nk+1/nk ≥ 1 + ck−α, 0 < α < 1/2, or under
additional arithmetic assumptions, but as a whole the Hadamard gap condition is
the critical point where the “almost independent” behavior of systems of dilated
functions starts to break down.
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However, while almost independent behavior is generally lost under a weaker gap
condition (without strong arithmetic information), there is another possible per-
spective on the problem. As noted, for a fixed sequence (nk)k≥1 one cannot ex-
pect “almost independent” behavior of ({nkx})k≥1, say, without assuming a strong
growth condition on (nk)k≥1. However, even without such a growth condition one
might expect that ({nkx})k≥1 shows independent behavior for “typical” sequences
(nk)k≥1. Here the word “typical” of course implies that the sequence has to be taken
from a generic set in some appropriate space which possesses a measure, so quite
naturally this idea leads to considering “random” sequences (nk)k≥1 = (nk(ω))k≥1

which are constructed in a randomized way over some probability space.

Of course there are many possible ways how a random sequence can be constructed.
From results of Salem and Zygmund [204] for trigonometric sums with random signs
it follows easily that if we define a sequence (nk)k≥1 by flipping a coin (independently)
for every positive integer to decide whether it should be contained in the sequence
or not, and let P denote the probability measure on the space over which the “coins”
are defined, then for P-almost all sequences as defined above one has

(24)
1√
N

N
∑

k=1

cos(2πnkx)
D−→ N(0, 1/4)

and

(25) lim sup
N→∞

1√
2N log logN

N
∑

k=1

cos(2πnkx) =
1

2
for almost all x,

where N(0, σ2) denotes the normal distribution with mean 0 and variance σ2 and
D−→ denotes convergence in distribution. Note that (24) and (25) are not exactly

matching with the truly independent case, where the limit distribution would be
N(0, 1/2) and the limsup in the LIL would be 1/

√
2. The “loss” on the right-hand

sides of (24) and (25) comes from the fact that a Dirichlet kernel is “hiding” in this
linearly growing sequence, and this kernel is highly localized near 0 and 1 so that its
contribution is lost in the CLT and LIL. By the strong law of large numbers (SLLN)
clearly nk ∼ 2k as k → ∞, P-almost surely, so the sequences constructed here are
very far from satisfying any substantial gap condition; in contrast, their (typical)
order of growth is only linear. It should be noted that the gaps nk+1 − nk in this
sequence are not bounded: with full P-probability, nk+1−nk = 1 for infinitely many
k (roughly, in half of the cases), but for infinitely many k, the gap nk+1 − nk has
order of magnitude c log k; this follows from the “pure heads” theorem of Erdős and
Rényi, see [198].

We call an increasing sequence (nk)k≥1 of positive integers a B2 sequence if there
exists a constant C > 0 such that for any integer ν > 0 the number of representations
of ν in the form ν = nk±nℓ, k > ℓ ≥ 1, is at most C. By a result of Gaposhkin [131]
already mentioned in Section 4, the sequence (f(nkx))k≥1 satisfies the CLT for all
Hadamard lacunary (nk)k≥1 and all 1-periodic Lipschitz continuous f if and only if
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for any m ≥ 1, the set-theoretic union of the sequences (nk)≥1, (2nk)≥1, . . . , (mnk)≥1

satisfies the B2 condition.5 No similarly complete result is known for sequences
(nk)k≥1 growing slower than exponentially, but Berkes [54] proved that if (nk)k≥1 is
a B2 sequence satisfying the gap condition

(26) nk+1/nk ≥ 1 + ck−α, k ≥ 1,

for some c > 0, α > 0, then (cos(2πnkx))k≥1 satisfies the CLT and LIL. To verify
the B2 property for a concrete sequence (nk)k≥1 is generally a difficult problem, but
the situation is quite different for random constructions. Let I1, I2, . . . be disjoint
blocks of consecutive integers and let n1, n2, . . . be independent random variables
on some probability space (Ω,F ,P) such that nk is uniformly distributed over Ik.
Clearly, the number of different sums ±nk1 ± nk2 ± nk3 , 1 ≤ k1, k2, k3 ≤ k − 1, is
at most 8(k − 1)3, and thus if the size of Ik is ≥ k5, then the probability that nk

is equal to any of these sums is ≤ 8k3k−5 = O(k−2). Thus by the Borel-Cantelli
lemma, with P-probability 1, such a coincidence can occur only for finitely many k.
Thus the equation

±nk1 ± nk2 ± nk3 ± nk4 = 0, k1 ≤ k2 ≤ k3 < k4

has only finitely many solutions, which implies that (nk)k≥1 is a B2 sequence.

Let us recall now that by a result of Erdős [102], (cos(2πnkx))k≥1 satisfies the CLT
with limit distribution N(0, 1/2), provided that (26) holds with α < 1/2, and this
result is sharp, i.e. there exists a sequence (nk)k≥1 satisfying (26) with α = 1/2 such
that the CLT fails for (cos(2πnkx))k≥1. Note that the counterexample is irregular:
while nk+1/nk − 1 is of the order O(k−1/2) for most k, there is also a subsequence
along which nk+1/nk → ∞. One may therefore wonder if regular behavior of nk+1/nk

implies the CLT; in particular, Erdős [102] conjectured that the CLT holds for

(cos(2πnkx))k≥1 if nk = ⌊e(kβ)⌋ for some β in the range 0 < β ≤ 1/2. (Note that for
β > 1/2 condition (26) is satisfied with α < 1/2, so the CLT follows from Erdős’
result.) This conjecture was proved by Murai [184] for β > 4/9, but for smaller β the
problem is still open. Random constructions provide here important information.
Kaufman [148] proved that if c is chosen at random, with uniform distribution on a

finite interval (a, b) ⊂ (0,∞), then (cos(2πnkx))k≥1 with nk = e(ck
β) satisfies the CLT

with probability 1 for any fixed β > 0. An even wider class of random sequences with
the CLT property is obtained by choosing the blocks Ik in the random construction
above as the integers in the interval

(27) Jk =
(

e(ck
β)(1 − rk), e(ck

β)(1 + rk)
)

, rk = o(k−(1−β)).

A simple calculation shows that these intervals are disjoint for k ≥ k0 and for nk ∈ Jk
we have (26) with α = 1 − β, in fact we even have

nk+1/nk = 1 + c1(1 + o(1))/k1−β

5Note that the definition of the B2 property used in [131] is slightly different from the standard
usage in number theory (see e.g. [134]) requiring that the number of solutions of ν = nk +nℓ, k >
ℓ ≥ 1, is bounded by C, but this does not affect the discussion below.
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with some constant c1 > 0. Now if rk decreases like a negative power of k, then the
length of Jk will be ≥ k5 and thus the constructed random sequence (nk)k≥1 will
be a B2 sequence with probability 1, so (cos(2πnkx))k≥1 satisfies the CLT. In other

words, the CLT for (cos(2πnkx))k≥1 holds for a huge class of sequences nk ∼ e(ck
β)

for any c > 0, β > 0.

Concerning B2 sequences, it is worth pointing out that Erdős [101] proved, decades
before Carleson’s convergence theorem, that

∑∞
k=1(ak cos(2πnkx) + bk sin(2πnkx))

is almost everywhere convergent if (nk)k≥1 is a B2 sequence. The question of how
slowly B2 sequences can grow is a much investigated problem of number theory,
see e.g. Halberstam and Roth [134], Chapters II and III. It is easily seen that
a B2 sequence (nk)k≥1 cannot be o(k2) and Erdős and Rényi [105] proved by a
random construction that for any ε > 0 there exists a B2 sequence (nk)k≥1 with
nk = O(k2+ε). Changing the B2 property slightly and requiring that all numbers
nk ± nℓ, k > ℓ, are actually different, makes the problem considerably harder. The
“greedy algorithm” yields a B2 sequence (nk)k≥1 with nk = O(k3), see [180], and
it took nearly 40 years to improve this to nk = o(k3), see [26]. The best currently

known (random) construction is due to Ruzsa [200], and satisfies nk = k1/(
√
2−1)+o(1).

Let (ωn)n≥1 be a nondecreasing sequence of positive integers tending to +∞ and let
us divide the set of positive integers into disjoint blocks I1, I2, . . . such that the cardi-
nality of Ik is ωk. Using these blocks in the random construction above, the resulting
random sequence (nk)k≥1 cannot be a B2 sequence if (ωn)n≥1 grows slower than any
power of n, but it is proved in Berkes [55] that with P-probability 1, (cos(2πnkx))k≥1

still satisfies the CLT and LIL. The limit distribution here is N(0, 1/2) and the lim-
sup in the LIL is 1/

√
2, so that the “loss of mass” phenomenon observed in the

case of the random sequence (nk)k≥1 in the Salem-Zygmund paper [204] does not
occur here. The gaps in this sequence satisfy nk+1 − nk ≤ 2ωk+1, i.e. they can grow
arbitrarily slowly. An LIL for the discrepancy of ({nkx})k≥1 under the same gap
condition was given in Fukuyama [118]. In [55] the question was raised if there
exists a sequence (nk)k≥1 with bounded gaps nk+1 − nk = O(1) such that the CLT
holds. Bobkov and Götze [71] showed that if we want no loss of mass in the CLT,
the answer is negative: if (nk)k≥1 is any increasing sequence of positive integers

with nk+1 − nk ≤ L, k ≥ 1, such that N−1/2
∑N

k=1 cos(2πnkx) has a Gaussian limit
distribution N(0, σ2), then necessarily σ2 < 1/2 and L ≥ 1/(1− 2σ2). On the other
hand, Fukuyama [115, 116, 117] showed that for any σ2 < 1/2 there exists indeed
a random subsequence (cos(2πnkx))k≥1 of the trigonometric system satisfying the
CLT with limit distribution N(0, σ2) and with bounded gaps nk+1 − nk ≤ L with
L ∼ 4/(1 − 2σ2) as σ2 → 1/2. This shows that the result of Bobkov and Götze is
optimal up to a factor 4. This remarkable result is the “small gaps” counterpart of
Erdős’ central limit theorem [102]: the latter determines the smallest gap sizes in
(nk)k≥1 implying the CLT for (cos(2πnkx))k≥1, while Fukuyama’s result determines
the smallest gap size which still allows a CLT with limit distribution N(0, σ2) to hold.
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It is worth pointing out that the bounded gap sequences in [115, 116, 117] are
obtained by rather complicated random constructions, while using the previously
discussed simple construction and choosing the nk as independent random variables
uniformly distributed over adjoining blocks Ik with equal length results in a random
sequence (nk)k≥1 satisfying almost surely

(28)
1√
N

N
∑

k=1

cos(2πnkx)
D−→ N(0, Y ),

where Y ≥ 0 is a random variable and N(0, Y ) is a “variance mixture” normal
distribution with characteristic function E exp(−Y t2/2), see [71]. We also note that
there is generally no “loss of mass” phenomenon for the LIL for trigonometric series
with bounded gaps, see [23, 24]. For further results for trigonometric series with
bounded/random gaps, see [42, 41, 62].

8. The subsequence principle

The purpose of the previous sections was to illustrate the principle that thin subse-
quences of the trigonometric system, or thin subsequences of a more general system
of dilated functions, exhibit properties which are typical for sequences of indepen-
dent random variables. However, an analogous principle holds in a much wider
framework: it is known that, under suitable technical assumptions, sufficiently thin
subsequences of general systems of random variables behave like genuine indepen-
dent sequences, in the sense that a general sequence of random variables allows
to extract a subsequence showing independent behavior. For example, Gaposhkin
[128, 132] and Chatterji [83, 84] proved that if (Xn)n≥1 is any sequence of random
variables satisfying supn EX

2
n < ∞, then there exist a subsequence (Xnk

)k≥1 and
random variables X ∈ L2, Y ∈ L1, Y ≥ 0, such that

(29)
1√
N

∑

k≤N

(Xnk
−X)

D−→ N(0, Y )

and

(30) lim sup
N→∞

1√
2N log logN

∑

k≤N

(Xnk
−X) = Y 1/2 a.s.,

where as at the end of the previous section N(0, Y ) denotes the “variance mix-
ture”normal distribution with characteristic function E exp(−Y t2/2), and where

again
D−→ denotes convergence in distribution. A functional (Strassen type) ver-

sion of (30) was proved by Berkes [52]. By a result of Komlós [159], from any
sequence (Xn)n≥1 of random variables satisfying supn E|Xn| < ∞ one can select a
subsequence (Xnk

)k≥1 such that

(31) lim
N→∞

1

N

∑

k≤N

Xnk
= X a.s.
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for some X ∈ L1. Chatterji [81] proved that if (Xn)n≥1 is a sequence of random vari-
ables satisfying supn E|Xn|p <∞ for some 0 < p < 2, then there exist a subsequence
(Xnk

)k≥1 and a random variable X with E|X|p <∞ such that

(32) lim
N→∞

1

N1/p

∑

k≤N

(Xnk
−X) = 0 a.s.

These results establish the analogues of the central limit theorem (CLT), the law
of the iterated logarithm (LIL), the strong law of large numbers (SLLN) and Mar-
czinkiewicz’ strong law for subsequences (Xnk

)k≥1. Note the mixed (or randomized)
character of (29)–(32): the limit X in the strong law of large numbers, the cen-
tering factor X in Marczinkiewicz’ strong law, and the limiting variance Y in the
CLT (which also determines the limsup in the LIL) all become random. For fur-
ther limit theorems for subsequences of arbitrary random variable sequences, see
Gaposhkin [128]. On the basis of these and several other examples, Chatterji [82]
formulated the following heuristic principle:

Subsequence Principle. Let T be a probability limit theorem valid for all se-
quences of i.i.d. random variables belonging to an integrability class L defined by
the finiteness of a norm ‖ ·‖L. Then if (Xn)n≥1 is an arbitrary (dependent) sequence
of random variables satisfying supn ‖Xn‖L < +∞ then there exists a subsequence
(Xnk

)k≥1 satisfying T in a mixed form.

In a profound study, Aldous [27] proved the validity of the subsequence principle
for all distributional and almost sure limit theorems subject to minor technical
conditions. To formulate his results, let M denote the class of probability measures
on the Borel sets of R, equipped with the Lévy metric. By [27], a subset A ⊂ M×R∞

is called a limit statute if:

(a) P ((λ,X1(ω), X2(ω), . . .) ∈ A) = 1 provided X1, X2, . . . are i.i.d. random vari-
ables with distribution λ.

(b) (λ, x1, x2, . . .) ∈ A and
∑

|xi − x′i| <∞ implies that (λ, x′1, x
′
2, . . .) ∈ A.

An a.s. limit theorem can thus be identified with a limit statute, where the analytic
statement of the theorem is expressed by (a), while relation (b) means that a small
perturbation of the sequence X1, X2, . . . does not change the validity of the limit
theorem. Let us give two examples of limit statutes representing the strong law of
large numbers and the law of the iterated logarithm:

A1 =
{

(λ,x) ∈ A : limN→∞N−1
∑N

k=1 xk = |λ|1
}

∪ {(λ,x) : |λ|1 = ∞},

A2 =
{

(λ,x) ∈ A : lim supN→∞(2N log logN)−1/2
(

∑N
k=1 xk −N |λ|1

)

= |λ|2
}

∪ {(λ,x) : |λ|2 = ∞}.
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Here |λ|1 and |λ|2 denote the mean and variance of λ provided they are finite, and
we write |λ|1 = ∞, resp. |λ|2 = ∞ if

∫

R
|x|dλ(x) = ∞, resp.

∫

R
|x|2dλ(x) = ∞.

On the other hand, by the definitions in [27], a weak limit theorem for i.i.d. random
variables is a system

T = (f1, f2, . . . , {Gλ, λ ∈ M0})

where

(a) M0 is a measurable subset of M.

(b) For each k ≥ 1, fk = fk(λ, x1, x2, . . .) is a real function on M×R∞, measurable
in the product topology, satisfying the smoothness condition

|fk(λ,x) − fk(λ,x′)| ≤
∞
∑

k=1

ck,i|xi − x′i|

where 0 ≤ ck,i ≤ 1 and limk→∞ ck,i = 0 for each i.

(c) For each λ ∈ M0, Gλ is a probability distribution on the real line such that the
map λ→ Gλ is measurable (with respect to the Borel σ-field in M0).

(d) If λ ∈ M0 and X1, X2, . . . are independent random variables with common
distribution λ then

fk(λ,X1, X2, . . . , )
D−→ Gλ as k → ∞.

For example, the central limit theorem corresponds to the case when M0 is the class
of distributions with mean 0 and finite variance,

(33) fk(λ, x1, x2, . . .) =
x1 + . . .+ xk − kE(λ)√

k

and Gλ = N(0,Var(λ)).

Let now (Xn)n≥1 be a sequence of random variables with supn ‖Xn‖L <∞ with any
norm ‖ · ‖L on R. Then (Xn)n≥1 is bounded in probability, i.e.

lim
K→∞

P (|Xn| > K) = 0 uniformly in n.

By an extension of the Helly–Bray theorem (see e.g. [66]), (Xn)n≥1 has a subsequence
(Xnk

)k≥1 having a limit distribution conditionally on any event in the probability
space with positive probability, i.e. for any A ⊂ Ω with P (A) > 0 there exists a
distribution function FA such that

lim
k→∞

P (Xnk
≤ t | A) = FA(t)

for all continuity points t of FA. According to the terminology of [66], such a
subsequence is called determining. Thus when investigating asymptotic properties
of sufficiently thin subsequences of sequences (Xn)n≥1 with bounded norms, we can
assume, without loss of generality, that (Xn)n≥1 itself is determining. As is shown
in [27, 66], for any determining sequence (Xn)n≥1 there exists a random measure µ
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(i.e. a measurable map from the underlying probability space (Ω,F ,P) to M) such
that for any A with P (A) > 0 and any continuity point t of FA we have

(34) FA(t) = EA(µ(−∞, t])

where EA denotes conditional expectation given A. This measure µ is called the
limit random measure of (Xn)n≥1; see Section 9 below for more details.

With these preparations, we are now in a position to formulate the subsequence
theorems of Aldous.

Theorem A (Aldous [27]). Let (Xn)n≥1 be a determining sequence with limit ran-
dom measure µ and let A be a limit statute. Then there exists a subsequence (Xnk

)k≥1

such that for any further subsequence (Xmk
)k≥1 ⊂ (Xnk

)k≥1 we have

P ((λ(ω), Xm1
(ω), Xm2

(ω), . . .) ∈ A) = 1.

Theorem B (Aldous [27]). Let (Xn)n≥1 be a determining sequence with limit ran-
dom measure µ and let

T = (f1, f2, . . . , {Gλ, λ ∈ M0})

be a weak limit theorem. Assume that P (µ ∈ M0) = 1. Then there exists a sub-
sequence (Xnk

)k≥1 such that for any further subsequence (Xmk
)k≥1 ⊂ (Xnk

)k≥1 we
have

lim
k→∞

P (fk(Xm1
(ω), Xm2

(ω), . . . µ(ω)) ≤ t) = EGµ(ω)(t)

at all continuity points t of the distribution function on the right hand side.

Writing out Theorem A and B in the case of the limit statutes A1, A2 above and
the weak limit theorem defined by (33), we get the CLT, LIL and SLLN for thin
subsequences of determining sequences, as stated in (29), (30), (31) above.

The proof of Komlós’ result (31) exemplifies the technique used in the field of sub-
sequence behavior before Aldous’ paper [27], and in particular in proving the results
(29)–(32) mentioned above. As Komlós showed, if (Xn)n≥1 is a sequence of random
variables with bounded L1 norms, then its sufficiently thin subsequences (Xnk

)k≥1

are, after a random centering and small perturbation, an identically distributed
martingale difference sequence with finite means and thus, by classical martingale
theory, they satisfy the SLLN. Martingale versions of the CLT and LIL yield also
relations (29), (30) and their functional versions. While this method yields several
further limit theorems for lacunary sequences, martingale difference sequences cer-
tainly do not satisfy all i.i.d. limit theorems in a randomized form and thus the
general subsequence principle cannot be proved in such a way. The proof of Theo-
rems A and B in [27] uses a different way and utilizes near exchangeability properties
of subsequences of general sequences of random variables. Let (Xn)n≥1 be a deter-
mining sequence with limit random measure µ and let (Yn)n≥1 be a sequence of
random variables, defined on the same probability space as the Xn’s, conditionally
i.i.d. with respect to µ, with conditional distribution µ. (For the construction of
such an (Yn)n≥1 one may need to enlarge the probability space.) Clearly, (Yn)n≥1
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is exchangeable, i.e. for any permutation σ : N → N of the positive integers, the
sequence (Yσ(n))n≥1 has the same distribution as (Yn)n≥1, and it satisfies limit the-
orems of i.i.d. random variables in a mixed form. For example, if EY 2

1 < ∞ and
Y = E(Y1 | µ), Z = Var (Y1 | µ), then

N−1/2
N
∑

k=1

(Yk − Y )
D−→ N(0, Z)

and

lim sup
N→∞

(2N log logN)−1/2

N
∑

k=1

(Yk − Y ) = Z1/2 a.s.

This principle holds in full generality, i.e. for all a.s. and distributional limit theorems
in the above formalization. Indeed, if the Yn are conditionally i.i.d. with respect to
µ and with conditional distribution µ (a random probability measure on R) and if
A is a limit statute, then

(35) P ((µ, Y1, Y2, . . .) ∈ A|µ)(ω) = P (µ(ω), Y ∗
1 , Y

∗
2 , . . .) ∈ A) a.e.

where (Y ∗
n )n≥1 is an i.i.d. sequence with marginal distribution µ(ω). By the definition

of limit statute, the last probability in (35) equals 1 and taking expectations we get

P ((µ, Y1, Y2, . . .) ∈ A) = 1,

which is exactly our claim. Specializing to the case of the limit statutes A1 and A2

above, we get relations (29) and (30). A similar argument works for distributional
limit theorems. Now, as is shown in [27], for every k ≥ 1 we have

(36) (Xn1
, Xn2

, . . .Xnk
)

D−→ (Y1, Y2, . . . , Yk) as n1 < n2 < . . . < nk, n1 → ∞.

In other words, for large indices the finite dimensional distributions of the sequence
(Xnk

)k≥1 are close to those of the limiting exchangeable sequence (Yk)k≥1 and thus
one may expect that limit theorems of (Yk)k≥1 (which, as we have just seen, are
mixed versions of i.i.d. limit theorems) continue to hold for sufficiently thin subse-
quences (Xnk

)k≥1 as well. Of course, a limit theorem for (Xnk
)k≥1 can describe a

complicated analytic property of the infinite vector (Xn1
, Xn2

, . . . , Xnk
, . . .) which

does not follow from the weak convergence of the finite dimensional distributions
of the sequence, but with a suitable thinning procedure and delicate analytic ar-
guments, Aldous showed an infinite dimensional extension of (36), leading to the
validity of Theorems A and B.

Although the theorems of Aldous are of exceptional generality, there are important
results for lacunary sequences which are not covered by them. As was shown by
Gaposhkin [128], for every uniformly bounded sequence (Xn)n≥1 of random variables
there exists a subsequence (Xnk

)k≥1 and bounded random variables X and Y ≥ 0
such that for any numerical sequence (an)n≥1 satisfying

(37) AN :=

N
∑

k=1

a2k → ∞, aN = o(A
1/2
N )
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we have

(38)
1

AN

N
∑

k=1

ak(Xnk
−X)

D−→ N(0, Y ),

and if the second relation of (37) is replaced by

(39) aN = o(AN/(log logAN)1/2)

then we have

(40) lim sup
N→∞

1
√

2A2
N log logAN

N
∑

k=1

ak(Xnk
−X) = Y 1/2 a.s.

The difference of these results from (29) and (30) is that in the CLT and LIL we have

weighted sums
∑N

k=1 ak(Xnk
−X) instead of ordinary sums

∑N
k=1(Xnk

−X). For ev-
ery fixed coefficient sequence (an)n≥1 the CLT and LIL in (38) and (39) follow from
Theorems A and B, but the subsequence (Xnk

)k≥1 provided by the proofs depends
on (ak)k≥1 and it is not clear that we can select a subsequence (Xnk

)k≥1 satisfying
(38) and (39) simultaneously for all considered coefficient sequences (ak)k≥1.

Another important situation not covered by Aldous’ general theorems is when we
investigate permutation-invariance of limit theorems for subsequences. Since the
asymptotic properties of an exchangeable sequence (Yn)n≥1 do not change after any
permutation of its terms, it is natural to expect that the conclusions in Theorem A
and B remain valid after an arbitrary permutation of the subsequence (Xnk

)k≥1

in the theorems. However, the proofs of Theorem A and B are not permutation-
invariant and it does not follow that, e.g., any sequence (Xn)n≥1 of random variables
with bounded L1 norms contains a subsequence (Xnk

)k≥1 satisfying the strong law
of large numbers after any permutation of its terms. Using ad hoc methods, the
latter result has been proved by Berkes [56] and another classical case, namely the
unconditional a.e. convergence of series

∑

ck(Xnk
−X) under

∑

c2k <∞ for subse-
quences (Xnk

)k≥1 of L2 bounded sequences (Xn)n≥1, has been settled by Komlós [160]
(see [27] for another proof via exchangeability). It clearly would be desirable to pro-
vide further general results in this direction.

We now formulate some structure theorems for lacunary sequences enabling one to
handle problems of the kind discussed above. Recall that if (Xn)n≥1 is a determin-
ing sequence with limit random measure µ and (Yn)n≥1 is a sequence conditionally
i.i.d. with respect to the σ-algebra generated by µ and with conditional marginal
distributions µ, then there exists a subsequence (Xnk

)k≥1 such that (36) holds. This
shows that, in some sense, for large indices the sequence (Xnk

)k≥1 resembles the
sequence (Yk)k≥1, but this property is far too weak to deduce limit theorems for
(Xnk

)k≥1 from those valid for the exchangeable sequence (Yk)k≥1. The following
theorem, proved by Berkes and Péter [63], shows that with a suitable choice of the
subsequence (nk)k≥1, the variables (Xnk

)k≥1 can be chosen to be close to the Yk in
a pointwise sense. We call a sequence (Xn)n≥1 of random variables ε-exchangeable
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if on the same probability space there exists an exchangeable sequence (Yn)n≥1 such
that P (|Xn − Yn| ≥ ε) ≤ ε for all n. Then we have

Theorem C (Berkes and Péter [63]). Let (Xn)n≥1 be a sequence of random variables
bounded in probability, and let (εn)n≥1 be a sequence of positive reals tending to zero.
Then, if the underlying probability space is large enough, thee exists a subsequence
(Xnk

)k≥1 such that, for all l ≥ 1, the sequence Xnl
, Xnl+1

, . . . is εl-exchangeable.

Note that Theorem C provides a different approximating exchangeable sequence

(Y
(l)
j )j≥1 for each tail sequence (Xnl

, Xnl+1
, . . .), with termwise approximating error

εl. The following theorem describes precisely the structure of the the sequences

(Y
(l)
j )j≥1.

Theorem D (Berkes and Péter [63]). Let (Xn)n≥1 be a determining sequence of
random variables, and let (εn)n≥1 be a sequence of positive reals. Then there exists
a subsequence (Xmk

)k≥1 and a sequence (Yk)k≥1 of discrete random variables such
that

(41) P
(

|Xmk
− Yk| ≥ εk

)

≤ εk k = 1, 2 . . . ,

and for each k > 1 the atoms of the finite σ-field σ{Y1, . . . , Yk−1} can be divided into
two classes Γ1 and Γ2 such that the following holds. Firstly,

(42)
∑

B∈Γ1

P (B) ≤ εk.

Secondly, for any B ∈ Γ2 there exist PB-independent random variables {Z(B)
j , j =

k, k + 1, . . . } defined on B with common distribution function FB such that

(43) PB

(

|Yj − Z
(B)
j | ≥ εk

)

≤ εk, j = k, k + 1, . . .

Here FB denotes the limit distribution of (Xn)n≥1 relative to B and PB denotes
conditional probability given B.

We now give applications of Theorem D to the problems discussed above. First we
note that using Theorem D it is a simple exercise to prove, for suitable subsequences
of a uniformly bounded sequences (Xn)n≥1, the weighted CLT and LIL in (38),
(40) simultaneously for all permitted coefficient sequences (an)n≥1. Next we give a
permutation-invariant form of Theorem B for distributional limit theorems.

Definition 1. We call the weak limit theorem T = (f1, f2, . . . , S, {Gµ, µ ∈ M0})
regular if there exist sequences pk ≤ qk of positive integers tending to +∞ and a
sequence ωk → +∞ such that

(i) fk(λ, x1, x2, . . .) depends only on λ, xpk , . . . , xqk .

(ii) fk satisfies the Lipschitz condition

|fk(λ, xpk , . . . , xqk) − fk(λ′, x′pk , . . . , x
′
qk

)| ≤

≤ 1

ωk

qk
∑

i=pk

|xi − x′i|α + ̺∗(λ, λ′)
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for some 0 < α ≤ 1, where ̺∗ is a metric on M0 generating the same topology
as the Prohorov metric ̺.

For example, the central limit theorem can be formalized by the functions

fk(λ, x[k1/4], . . . , xk) =
x[k1/4] + . . .+ xk − kE(λ)

√
k

,

leading to a regular limit theorem. Note that originally we formalized the CLT with
the functions fk in (33) containing all variables x1, x2, . . ., but under bounded second
moments the first k1/4 terms here are irrelevant and hence we can always switch to
the present version. The same procedure applies in the general case.

Theorem E (Aistleitner, Berkes and Tichy [20]). Let (Xn)n≥1 be a determining
sequence with limit random measure µ̃. Let T = (f1, f2, . . . , S, {Gµ, µ ∈ M0}) be a
regular weak limit theorem and assume that P (µ̃ ∈ M0) = 1. Then there exists a
subsequence (Xnk

)k≥1 such that for any permutation (X∗
k)k≥1 of (Xnk

)k≥1 we have

(44) fk(X∗
1 , X

∗
2 , . . . , µ̃) →d

∫

Gµ̃dP.

In case of the CLT formalized above, assuming supn EX
2
n < +∞ implies easily that

µ̃ has finite variance almost surely, and thus denoting its mean and variance by X
and Y , respectively, we see that the integral in (44) is the distribution N(0, Y ).
Hence (44) states in the present case that

1√
N

N
∑

k=1

(X∗
k −X)

D−→ N(0, Y ),

which is the permutation-invariant form of the CLT.

Concerning a.s. limit theorems, a permutation-invariant form of the strong law of
large numbers for subsequences of an L1-bounded sequence was proved, as already
mentioned, in Berkes [56], and a similar argument yields the corresponding result for
the LIL. No permutation-invariant version of the general result in Theorem A has
been proved in the literature, but there is no need for that, since a.s. limit theorems
can be reformulated in a distributional form and thus the proof of Theorem B applies
with obvious changes. For illustration, we give here the reformulation of the LIL:

Theorem F. Let (Xn)n≥1 be a sequence of random variables with E|Xn| ≤ 1, n =

1, 2, . . . Put Sn =
∑n

i=1Xi, Sk,l =
∑l

i=k+1Xi, and L(N) = (2N log logN)1/2. Then
lim supN→∞ SN/L(N) = 1 a.s. iff for any ε > 0 there exists a sequence m1 < m2 <
· · · of positive integers such that mk ≥ 5k and

P

(

max
mk≤j≤mk+1

Sk,j

L(j)
> 1 + ε

)

≤ 2−k, k ≥ k0,

and

P

(

max
mk≤j≤mk+1

Sk,j

L(j)
< 1 − ε

)

≤ 2−k, k ≥ k0.
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It is worth pointing out that given a sequence (Xn)n≥1 of random variables, find-
ing a subsequence (Xnk

)k≥1 satisfying the permutation-invariant form of some limit
theorem generally requires a much faster growing sequence (nk)k≥1 than to find a
subsequence to satisfy the original limit theorem. This is a phenomenon which also
occurs for lacunary trigonometric sums or lacunary sums of dilated functions; com-
pare the last paragraph of Section 4 above.

In conclusion we note that if (Xn)n≥1 is a sequence of random variables with fi-
nite means over the probability space (0, 1) equipped with the Borel σ-algebra and
Lebesgue measure such that for all n ≥ 1 and (a1, . . . , an) ∈ Rn we have

(45) C1

(

n
∑

k=1

|ak|p
)1/p

≤ E

∣

∣

∣

∣

∣

n
∑

k=1

akXk

∣

∣

∣

∣

∣

≤ C1

(

n
∑

k=1

|ak|p
)1/p

for some p ≥ 1 and positive constants C1, C2, then the closed subspace of L1(0, 1)
spanned by the Xn is isomorphic with the ℓp space (Hilbert space if p = 2). Relation
(45) holds, in particular, if the Xn are i.i.d. symmetric p-stable random variables with
p > 1, i.e. their characteristic function (Fourier transform) is given by exp(−c|t|p)
with some c > 0. Thus applying the subsequence principle to the “limit theorem”
(45) provides important information on the subspace structure of L1(0, 1). Using this
method, Aldous [28] proved the famous conjecture that every infinite dimensional
closed subspace of L1(0, 1) contains an isomorphic copy of ℓp for some 1 ≤ p ≤ 2. For
a further application of this method, see an improvement of the classical theorem of
Kadec and Pe lczyński [147] on the subspace structure on Lp, p > 2, in Berkes and
Tichy [67].

9. New results: Exact criteria for the central limit theorem for

subsequences

By the classical resonance theorem of Landau [163], for a real sequence (xn)n≥1

the series
∑∞

n=1 anxn converges for all (an)n≥1 ∈ ℓp (1 ≤ p ≤ ∞) if and only if
(xn)n≥1 ∈ ℓq, where 1/p + 1/q = 1. A deep extension of this result to the case of
function series was given by Nikishin [190]. We call a sequence (fn)n≥1 of measurable
functions on (0, 1) a convergence system in measure for ℓp if for any real sequence
(an)n≥1 ∈ ℓp the series

∑∞
n=1 anfn converges in measure. In the case p = 2 Nikishin

proved the following result.

Theorem G (Nikishin [190, 191]). A function system (fn)n≥1 over (0, 1) is a conver-
gence system in measure for ℓ2 if and only if for any ε > 0 there exists a measurable
set Aε ⊂ (0, 1) with measure exceeding 1− ε and a constant Kε > 0 such that for all
N ≥ 1 and all (a1, . . . , aN) ∈ RN we have

(46)

∫

Aε

(

N
∑

n=1

anfn

)2

dx ≤ Kε

N
∑

n=1

a2n.

The sufficiency of (46) is obvious, so the essential (and highly remarkable) state-
ment is the converse: if a sequence (fn)n≥1 is a convergence system in measure for
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ℓ2, then, except for a subset of (0, 1) with arbitrary small measure, (fn)n≥1 behaves
like an orthonormal sequence.

In the previous section we discussed the subsequence principle stating that suffi-
ciently thin subsequences of arbitrary sequences of random variables, subject to
mild boundedness conditions, satisfy “all” limit theorems for i.i.d. random variables
in a mixed (randomized) form. A typical special case of this principle is the following
result:

Theorem H (Gaposhkin [132]). Let (Xn)n≥1 be a sequence of random variables
satisfying

(47) sup
n

EX2
n < +∞.

Then there exists a subsequence (Xnk
)k≥1 together with random variables X and

Y ≥ 0 such that for any further subsequence (Xmk
)k≥1 of (Xnk

)k≥1 we have

(48)
1√
N

N
∑

k=1

(Xmk
−X)

D−→ N(0, Y ),

where N(0, Y ) denotes the “variance mixture” normal distribution with characteris-
tic function E exp(−Y t2/2).

If (X2
n)n≥1 is uniformly integrable then by well-known compactness results (see e.g.

[99]) there exist a subsequence (Xmk
)k≥1 and random variablesX ∈ L2 and Y ∈ L1/2,

Y ≥ 0, such that

(49) Xmk
→ X weakly in L2, (Xmk

−X)2 → Y 2 weakly in L1.
6

As Gaposhkin [128] showed, in this case the random variables X, Y in (48) can be
chosen as in (49).

In Theorem H, condition (47) is not necessary: simple examples show (see below)
that there exist sequences (Xn)n≥1 of random variables without any finite moments,
but having subsequences satisfying (48). The purpose of this section is to give nec-
essary and sufficient conditions for the existence of subsequences (Xnk

)k≥1 satisfying
the randomized CLT (48), and it will turn out that our conditions have the same
character as Nikishin’s conditions for the existence of a subsequence being a con-
vergence system, i.e. “nice” behavior of the sequence on subsets of the probability
space with measure as close to 1 as we wish.

To formulate our results, call a sequence (Xn)n≥1 of random variables nontrivial if
it has no subsequence converging with positive probability. It is easily seen that
for non-degenerate sequences the random variable Y in Theorem H is almost surely

6A sequence (ξn)n≥1 of random variables in Lp, p ≥ 1, is said to converge weakly to ξ ∈ Lp

if E(ξnη) → E(ξη) for any η ∈ Lq, where 1/p + 1/q = 1. This type of convergence should not
be confused with weak convergence of probability measures and distributions, called generally

convergence in distribution, and denoted by
D−→.
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positive and Gaposhkin’s theorem can be rewritten in a form involving a pure (i.e.
not mixed) Gaussian limit distribution.

Theorem J. Let (Xn)n≥1 be a nontrivial sequence of random variables satisfying
(47). Then there exists a subsequence (Xnk

)k≥1 and random variables X, Y with
Y > 0 such that for all subsequences (Xmk

)k≥1 of (Xnk
)k≥1 and for any set A in the

probability space with P (A) > 0 we have

(50) PA

(

∑N
k=1(Xmk

−X)

Y
√
N

< t

)

→ Φ(t) for all t.

Here PA denotes the conditional probability with respect to A, and Φ is the cumulative
distribution function of the standard normal distribution.

The nontriviality of (Xn)n≥1 is assumed here to avoid degenerate cases. If Xnk
→ X

on some set A with positive probability then for any sufficiently thin subsequence
(Xmk

)k≥1 of (Xnk
)k≥1 we have

∑

|Xmk
−X| < +∞ a.s. on A, and consequently

a−1
N

N
∑

k=1

(Xmk
−X) → 0 a.s. on A

for any norming sequence aN → ∞ (random or not). Since for any sequence (Xn)n≥1

satisfying (47) (and in fact any tight sequence (Xn)n≥1) there is a subsequence
(Xnk

)k≥1 and a measurable partition A ∪ B of the probability space such that Xnk

converges on A and is nontrivial on B, there is no loss of generality in assuming that
(Xn)n≥1 is nontrivial.

Clearly, if (Xn)n≥1 satisfies the conclusion of Theorem J, then so does the sequence
(Xn + 2−nZ)n≥1 for any a.s. finite random variable Z, and thus the assumption (47)
is, as stated above, not necessary in Theorem J. Below we will give necessary and suf-
ficient condition for the CLT for lacunary subsequences of a given sequence (Xn)n≥1

of random variables without any moment assumption on (Xn)n≥1. To formulate our
results, let us note that if all subsequences (Xmk

)k≥1 of a sequence (Xn)n≥1 satisfy
(50) for some random variables X, Y , then (Xn)n≥1 is bounded in probability (see
Lemma 2 below). As mentioned in the previous section, every sequence (Xn)n≥1 of
random variables bounded in probability has a subsequence (Xnk

)k≥1 which has a
limit distribution relative to every set A of the probability space with P (A) > 0.
Such a sequence was called determining. This concept is the same as that of stable
convergence, introduced by Rényi [197]; our terminology follows that of functional
analysis. Hence in our investigations we can assume without loss of generality that
the original sequence (Xn)n≥1 is determining. Now if (Xn)n≥1 is determining and FA

denotes its limit distribution relative to the set A, then, as we noted in the previous
section, there exists a random measure µ (called the limit random measure of (Xn))
such that

(51) FA(t) = EA(µ(−∞, t])
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for any continuity point t of FΩ, where EA denotes conditional expectation relative
to A. Let F• denote the distribution function of µ; we shall call it the limit random
distribution of (Xn)n≥1. We can state now our first new theorem.

Theorem 1. Let (Xn)n≥1 be a nontrivial sequence of random variables. Then the
following statements are equivalent:

A) There exist a subsequence (Xnk
)k≥1 and random variables X, Y with Y > 0 such

that (50) holds for all subsequences (Xmk
)k≥1 of (Xnk

)k≥1 and for any set A ⊂ Ω
with P (A) > 0.

B) For every ε > 0 there is a subsequence (Xnk
)k≥1 and a set Aε ⊂ Ω with P (Aε) ≥

1 − ε such that

(52) sup
k

∫

Aε

X2
nk
dP < +∞.

If (Xn)n≥1 is determining, then two further equivalent statements are:

C) We have

(53)

+∞
∫

−∞

x2dF•(x) < +∞ almost surely.

D) For every ε > 0 there exists a set Aε ⊂ Ω with P (Aε) ≥ 1 − ε such that

(54)

+∞
∫

−∞

x2dFAε(x) < +∞.

Our second new theorem characterizes sequences (Xn)n≥1 for which (50) holds with
X ∈ L2, Y ∈ L1/2.

Theorem 2. Let (Xn)n≥1 be a nontrivial sequence of random variables defined on an
atomless probability space (Ω,F , P ). Then the following statements are equivalent:

A) There exists a subsequence (Xnk
)k≥1 and random variables X, Y with Y > 0,

X ∈ L2, Y ∈ L1/2 such that (50) holds for all subsequences (Xmk
)k≥1 of (Xnk

)k≥1

and all sets A ⊂ Ω with P (A) > 0.

B) There exists a subsequence (Xnk
)k≥1 and sequences (Yk)k≥1, (τk)k≥1 of random

variables satisfying

(55) Xnk
= Yk + τk,

where

(56) sup
k

EY 2
k < +∞,

∑

k

|τk| < +∞ a.s.
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If (Xn)n≥1 has a limit distribution F , then a third equivalent statement is:

C) We have

(57)

+∞
∫

−∞

x2dF (x) < +∞.

In other words, for the validity of (50) with X ∈ L2, Y ∈ L1/2, assumption (47) is
necessary and sufficient after a small perturbation of (Xn)n≥1, and for identically
distributed (Xn)n≥1 even this perturbation is not needed. A particularly simple case
when X ∈ L2, Y ∈ L1/2 is satisfied is when X, Y are nonrandom.

A trivial example showing the difference between condition (D) of Theorem 1 and
condition (C) of Theorem 2 is the following. Let {Hk, k ≥ 1} be a partition of
the probability space with P (Hk) = 2−k for k = 1, 2, . . . , and let (Xn)n≥1 be a
sequence of random variables on this space which is conditionally i.i.d. given each
Hk with mean 0 and variance 2k. Then (Xn)n≥1 is nontrivial, determining and
clearly satisfies condition (D) of Theorem 1, but since it is identically distributed
(in fact exchangeable) and since EX2

1 = +∞, condition (C) of Theorem 2 is not
satisfied.

9.1. Some lemmas. The key for the proof of our theorems is a general structure
theorem for lacunary sequences which was proved in [63], and which was stated as
Theorem D in the previous section. Furthermore, we need the following lemmas.

Lemma 1. Let (Xn)n≥1 be a sequence of random variables such that for some ran-
dom variables X, Y with Y > 0 and for all subsequences (Xnk

)k≥1 we have

(58)

N
∑

k=1

(Xnk
−X)

Y
√
N

D−→ N(0, 1).

Then (Xn)n≥1 is bounded in probability.

Proof. Clearly (58) implies that the sequence (XnN
− X)/(Y

√
N) is bounded in

probability as N → ∞, and thus XnN
/
√
N is bounded in probability for any sub-

sequence (nk)k≥1. If (Xn)n≥1 were not bounded in probability then one could find
a subsequence (mk)k≥1 and a constant c > 0 such that P (|Xmk

| ≥ k) ≥ c for

k = 1, 2, . . . , i.e. Xmk
/
√
k would not be bounded in probability, a contradiction. �

Lemma 2. Let (Xn)n≥1 be a sequence of random variables and assume that for some
random variables X and Y > 0 and all sets A ⊂ Ω with P (A) > 0 we have

(59) PA











N
∑

k=1

(Xk −X)

Y
√
N

< t











→ Φ(t) for all t.
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Assume further that (59) remains valid if we replace X, Y by some random variables
X∗ and Y ∗ > 0. Then X = X∗ a.s. and Y = Y ∗ a.s.

Proof. From the assumption it follows that the sequences

N−1/2
N
∑

k=1

(Xk −X) and N−1/2
N
∑

k=1

(Xk −X∗)

are bounded in probability, and thus the same holds for their difference
√
N(X−X∗),

whence X = X∗ a.s. To prove Y = Y ∗, fix c > 1 and set A = {Y ∗ ≥ cY }. If
P (A) > 0 then clearly we cannot have both (59) and the analogous relation with
Y replaced by Y ∗. Thus P (A) > 0 for all c > 1 whence Y ∗ ≤ Y a.s. The same
argument yields Y ≤ Y ∗ a.s., completing the proof. �

Lemma 3. Let X1, X2, . . . , Xn be i.i.d. random variables with distribution function
F and set Sn = X1 + · · · +Xn. Then for any t > 0 we have

(60) P (|Sn| ≤ 2t) ≤ A
t√
n







∫

|x|≤t

x2dF (x) − 2







∫

|x|≤t

xdF (x)







2





−1/2

,

provided the difference on the right-hand side is positive and
∫

|x|≤t

dF (x) ≥ 1/2. Here

A is an absolute constant.

Proof. Let F ∗ denote the distribution function obtained from F by symmetrization.
From a well-known concentration function inequality of Esseen [106, Theorem 2] it
follows that the left-hand side of (60) cannot exceed

A1
t√
n







∫

|x|≤2t

x2dF ∗(x)







−1/2

,

where A1 is an absolute constant. Hence to prove (60) it suffices to show that
∫

|x|≤t

dF (x) ≥ 1/2 implies

(61)

∫

|x|≤2t

x2dF ∗(x) ≥
∫

|x|≤t

x2dF (x) − 2







∫

|x|≤t

xdF (x)







2

.

Let ξ and η be independent random variables with distribution function F , and set

C = {|ξ − η| ≤ 2t}, D = {|ξ| ≤ t, |η| ≤ t}.
Then

∫

|x|≤2t

x2dF ∗(x) =

∫

C

(ξ − η)2dP
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≥
∫

D

(ξ − η)2dP

= 2

∫

|ξ|≤t

ξ2dP · P (|η| ≤ t) − 2







∫

|ξ|≤t

ξdP







2

≥
∫

|ξ|≤t

ξ2dP − 2







∫

|ξ|≤t

ξdP







2

,

provided P (|η| ≤ t) ≥ 1/2. Thus (61) is valid. �

Lemma 4. Let (Ω,F , P ) be an atomless probability space and X1, X2, . . . a se-
quence of random variables on (Ω,F , P ) with limit distribution F . Then there exist
a subsequence (Xnk

)k≥1 and sequences (Yk)k≥1 and (τk)k≥1 of random variables on
(Ω,F , P ) such that Xnk

= Yk + τk, k = 1, 2, . . . , such that the random variables Yk
have distribution function F , and such that

∑

k |τk| < +∞ a.s.

Proof. Let (X̂n)n≥1 be discrete random variables such that P (|Xn −X ′
n| ≥ 2−n) ≤

2−n, n = 1, 2, . . . , and denote by Fn the distribution function of Xn. Clearly Fn → F
and thus εn := ̺(Fn, F ) → 0, where ̺ denotes the Prohorov distance. By a theorem
of Strassen [8] there exists a probability measure µn on R2 with marginals Fn and
F such that

µn((x, y) : |x− y| ≥ εn) ≤ εn.

Let c be a possible value of X̂n. Since the probability space restricted to A = {X̂n =
c} is atomless, there exists a random variable Vn on this space such that

PA(Vn < t) =
µn((x, y) : x = c, y < t)

µn((x, y) : x = c)

for all t. Carrying out this construction for all possible values of c in the range of
X̂n, we get a random variable Vn defined on the whole probability space such that
the joint distribution of X̂n and Vn is µn. Clearly the distribution of Vn is F and
P (|X̂n − Vn| ≥ εn) ≤ εn. Choosing (nk)k≥1 so that εnk

≤ 2−k we get

P
(

|X̂nk
− Vnk

| ≥ 2−k
)

≤ 2−k,

i.e.

P
(

|Xnk
− Vnk

| ≥ 2 · 2−k
)

≤ 2 · 2−k

and thus
∑

k |Xnk
− Vnk

| < +∞ a.s. by the Borel–Cantelli lemma. Thus the de-
composition Xnk

= Yk + τk, where Yk = Vnk
and τk = Xnk

− Vnk
, satisfies the

requirements. �

Our final two lemmas concern the properties of the limit random distribution of
determining sequences.
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Lemma 5. Let (Xn)n≥1 be a determining sequence of random variables with limit
random distribution F . Then for any set A ⊂ Ω with P (A) > 0 we have

(62) EA





+∞
∫

−∞

x2dF•(x)



 =

+∞
∫

−∞

x2dFA(x),

in the sense that if one side is finite then the other side is also finite and the two
sides are equal. The statement remains valid if in (62) we replace the interval of
integrations by (−t, t), provided t and −t are continuity points of FA.

Proof. This lemma follows easily from (51) by integration by parts. �

Lemma 6. Let X,X1, X2, . . . be random variables such that both sequences (Xn)n≥1

and (Xn − X)n≥1 are determining; let F• and G• denote, respectively, their limit

random distributions. Then
+∞
∫

−∞
x2dG•(x) < +∞ a.s. implies

+∞
∫

−∞
x2dF•(x) < +∞

a.s. and conversely.

Proof. Let ε > 0 and choose a set A ⊂ Ω such that P (A) ≥ 1 − ε and on A

both X and
+∞
∫

−∞
x2dF•(x) are bounded. Let FA and GA denote the limit random

distribution of (Xn)n≥1 resp. (Xn −X)n≥1 relative to A. Replacing Xn by Xn + τn
where τn → 0 a.s. clearly does not change the limit distributions FA, GA, F•, G•, and
thus by passing to a subsequence and using Lemma 4 we can assume, without loss
of generality, that the Xn are identically distributed on A. Then

EAX
2
1 = EAX

2
2 = · · · =

+∞
∫

−∞

x2dFA(x),

where the last integral is finite by the boundedness of
+∞
∫

−∞
x2dF•(x) on A and

Lemma 5. By Minkowski’s inequality and the boundedness of X on A it follows
that EA((Xn −X)2) is also bounded, and thus Fatou’s lemma implies that

+∞
∫

−∞

x2dGA(x) ≤ lim inf
n→∞

EA

(

(Xn −X)2
)

< +∞.

Using Lemma 5 again it follows that
+∞
∫

−∞
x2dG•(x) < +∞ a.s. on A. As the measure

of A can be chosen arbitrarily close to 1, we get
∫

x2dG•(x) < +∞ a.s., as required.
�

9.2. Proof of the theorems. We begin with the proof of Theorem 1. Using diag-
onalization and Chebyshev’s inequality it follows that if a sequence (Xn)n≥1 satisfies
(B), then it has a subsequence bounded in probability and thus also a determining
subsequence. By Lemma 1 the same conclusion holds if (Xn)n≥1 satisfies (A). Thus
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to prove our theorem it suffices to prove the equivalence of (A), (B), (C), (D) for
determining sequences (Xn)n≥1. In what follows we shall prove the implications
(A) =⇒ (C) =⇒ (D) =⇒ (B); since (B) =⇒ (A) follows easily from Theorem D in
the previous section by diagonalization, this will prove Theorem 1.

Assume that (Xn)n≥1 is a determining sequence satisfying (A), i.e. there exists a
subsequence (Xnk

)k≥1 and random variables X, Y with Y > 0 such that for any
further subsequence (Xmk

)k≥1 of (Xnk
)k≥1 and any set A ⊂ Ω with P (A) > 0 we

have

(63) PA











N
∑

k=1

(Xmk
−X)

Y
√
N

< t











→ Φ(t) for all t.

We claim that (Xn)n≥1 satisfies (C). Clearly we can assume without loss of generality
that (Xnk

)k≥1 = (Xk)k≥1 and since (Xn−X)k≥1 contains a determining subsequence,
we can assume also that (Xn −X)n≥1 itself is determining. Moreover, since (Xn −
X)n≥1 satisfies (C) if and only if (Xn)n≥1 does (see Lemma 6), we can assume that
X = 0. Assume indirectly that (Xn)n≥1 does not satisfy (C), i.e. there exists a set
B ⊂ Ω with P (B) > 0 such that

(64) lim
t→∞

t
∫

−t

x2dF•(x) = +∞ on B.

Then there exists a set B∗ ⊂ B with P (B∗) ≥ P (B)/2 such that on B∗ the random
variable Y is bounded and (63) holds uniformly, i.e. there exists a constant K > 0
and a numerical sequence Kt → +∞ such that

t
∫

−t

x2dF•(x) ≥ Kt and Y ≤ K on B∗.

Also, 1 − F•(t) + F•(−t) → 0 a.s. as t → ∞, and thus we can choose a set B∗∗ ⊂
B∗ with P (B∗∗) ≥ P (B∗)/2 such that on B∗∗ the last convergence relation holds
uniformly, i.e. there exists a positive numerical sequence εt ց 0 such that

(65) 1 − F•(t) + F•(−t) ≤ εt on B∗∗.

We show that there exists a subsequence (Xmk
)k≥1 of (Xnk

)k≥1 such that (63) fails
for A = B∗∗. Since our argument will involve the sequence (Xn)n≥1 only on the set
B∗∗, in the sequel we can assume, without loss of generality, that B∗∗ = Ω. That is,
we may assume that (65) holds on the whole probability space.
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Let C be an arbitrary set in the probability space with P (C) > 0. Integrating (65)
and using (51) and Lemma 5 we get

(66)

t
∫

−t

x2dFC(x) ≥ Kt, 1 − FC(t) + FC(−t) ≤ εt, t ∈ H,

where H denotes the set of continuity points of FΩ. Choose t0 ∈ H so large that
εt0 ≤ 1/16 and then choose t1 so large that

K
1/2
t /4 ≥ 2t20 for t ≥ t1, t ∈ H.

Then for t ≥ t1, t ∈ H we have, using the second relation of (66),
∣

∣

∣

∣

∣

∣

t
∫

−t

xdFC(x)

∣

∣

∣

∣

∣

∣

≤ 2t20 +

∫

t0≤|x|≤t

|x|dFC(x)

≤ 2t20 +







∫

|x|≥t0

dFC(x)







1/2





∫

|x|≤t

x2dFC(x)







1/2

≤ 2t20 +
1

4







∫

|x|≤t

x2dFC(x)







1/2

≤ 1

2







∫

|x|≤t

x2dFC(x)







1/2

,

and thus we proved that for any C ⊂ Ω with P (c) > 0 we have

(67)

t
∫

−t

x2dFC(x) − 2





t
∫

−t

xdFC(x)





2

≥ 1

2
Kt, t ≥ t1, t ∈ H.

Since (Xn)n≥1 is bounded in probability, there exists a function ψ(x) ր ∞ such
that

(68) sup
n
Eψ(Xn) ≤ 1

(see [9]). Let (ak)k≥1 be a sequence of integers tending to +∞ so slowly that ak ≤
log k and

(69) δk := ak/ψ(k1/4) → 0.

Let further (εn)n≥1 tend to 0 so rapidly that εak ≤ 2−k. By Theorem D there exists
a subsequence (Xmk

)k≥1 and a sequence (Yk)k≥1 of discrete random variables such
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that (41) holds and for each k > 1 the atoms of the finite σ-field σ{Y1, . . . , Yak} can
be divided into two classes Γ1 and Γ2 such that

(70)
∑

B∈Γ1

P (B) ≤ εak ≤ 2−k

and for each B ∈ Γ2 there exist i.i.d. random variables Z
(B)
ak+1, . . . , Z

(B)
k on B with

distribution FB such that

(71) PB

(

|Yj − Z
(B)
j | ≥ 2−k

)

≤ 2−k, j = ak + 1, . . . , k.

We show that

(72) P











N
∑

k=1

Xmk

Y
√
N

< t











→ Φ(t) for all t

cannot hold; this will complete our indirect proof of (A) =⇒ (C). Set

S
(B)
ak,k

=

k
∑

j=ak+1

Z
(B)
j , B ∈ Γ2,

Sak,k =
∑

B∈Γ2

S
(B)
ak,k

1B,

where 1B denotes the indicator function of B. By (71),

PB

(∣

∣

∣

∣

∣

k
∑

j=ak+1

Yj −
k
∑

j=ak+1

Z
(B)
j

∣

∣

∣

∣

∣

≥ 1

)

≤ 2−ak , B ∈ Γ2,

and thus using (70) we get

(73) P

(∣

∣

∣

∣

∣

k
∑

j=ak+1

Yj − Sak ,k

∣

∣

∣

∣

∣

≥ 1

)

≤ 2 · 2−k.

By (68), (69) and the Markov inequality we have

P

(∣

∣

∣

∣

∣

ak
∑

j=1

Xmj

∣

∣

∣

∣

∣

≥ akk
1/4

)

≤ ak sup
1≤j≤ak

P
(

|xmj
| ≥ k1/4

)

≤ akψ(k1/4)−1

= δk,

which, together with (73) and (41), yields

(74) P

(∣

∣

∣

∣

∣

k
∑

j=1

Xmj
− Sak,k

∣

∣

∣

∣

∣

≥ 2akk
1/4

)

≤ 3 · 2−ak + δk.
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Applying Lemma 3 to the i.i.d. sequence {Z(B)
j , ak + 1 ≤ j ≤ k} and using (67) we

get

PB

(∣

∣

∣

∣

∣

S
(B)
ak ,k√
k

∣

∣

∣

∣

∣

≤ 1

)

≤ PB

(

S
(B)
ak ,k√
k − ak

≤ 2

)

≤ const.K
−1/2√
k
,

where the constant is absolute. Thus using (70) and Y ≤ K it follows that

(75) P

(∣

∣

∣

∣

Sak,k

Y
√
k

∣

∣

∣

∣

≤ 1

K

)

≤ const.K
−1/2√
k

+ 2−k.

If (72) were true then by (74) and ak ≤ log k we would also have

Sk,ak/Y
√
k

D−→ N(0, 1),

which clearly contradicts (75) for large k, since the right-hand side tends to zero.
This completes the proof of (A) =⇒ (C).

The remaining implications (C) =⇒ (D) and (D) =⇒ (B) of Theorem 1 are easy.
Assume first that (C) holds, then for any ε > 0 there exists a set A ⊂ Ω with
P (A) ≥ 1 − ε and a constant K = Kε such that

+∞
∫

−∞

x2dF•(x) ≤ K on A.

Integrating the last relation on A and using Lemma 5 we get (52), i.e. (D) holds.
Assume now that (D) holds, i.e. for any ε > 0 there exists a set A ⊂ Ω with
P (A) ≥ 1 − ε such that (52) is valid. Applying Lemma 4 for (Xn)n≥1 on the set
A it follows that there exists a subsequence (Xnk

)k≥1 and random variables Yk and
τk, k = 1, 2, . . . , defined on A such that Xnk

= Yk + τk, k = 1, 2, . . . , and such that
the random variables Yk have distribution FA on A and τk → 0 a.s. on A. Choose
a set B ⊂ A with P (B) ≥ 1 − 2ε such that τk → 0 uniformly on B. Then clearly
(τn)n≥1 is uniformly bounded on B, and further

∫

B

Y 2
k dP ≤

∫

A

Y 2
k dP

= P (A)

+∞
∫

−∞

x2dFA(x)

≤
+∞
∫

−∞

x2dFA(x) < +∞

for each k ≥ 1 by the identical distribution of the Yk’s and (52). Thus on B the
sequences (Yk)k≥1 and (τk)k≥1 have bounded L2 norms and thus the same holds for
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Xmk
= Yk + τk, i.e.

sup
k

∫

B

X2
mk
dP < +∞.

In view of P (B) ≥ 1 − 2ε this shows that (Xn)n≥1 satisfies statement (B). This
completes the proof of Theorem 1.

Proof of Theorem 2. Theorem 2 follows from Theorem 1 and a slightly sharper form
of Theorems H and J which was proved in [147]. We already mentioned the fact that
in Theorem H the random variables X, Y appearing in (50) actually satisfy X ∈ L2,
Y ∈ L1/2. Moreover, if instead of (47) we make the slightly stronger assumption
that the sequence (X2

n)n≥1 is uniformly integrable then by the weak compactness
criteria in L1 and L2 it follows that there exists a subsequence (Xnk

) and random
variables X ∈ L2, Y ∈ L1/2 such that

(76) Xnk
→ X weakly in L2, (Xnk

−X)2 → Y 2 weakly in L1.

As is shown in [163], in this case (50) holds with the random variables X, Y de-
termined by (76). We turn now to the proof of Theorem 2. As in the case of
Theorem 1, it suffices to prove the equivalence of statements (A), (B), (C) in the
case when (Xn)n≥1 is determining. Also, since replacing Xn by Xn + τn where
∑

|τn| < +∞ a.s. does not affect the validity of (50), the conclusion (B) =⇒ (A)
of Theorem (2) is contained in the stronger form of Theorem H mentioned above.
Thus it suffices to verify the implications (A) =⇒ (C) and (C) =⇒ (B). To prove
(A) =⇒ (C) let us assume that (Xn)n≥1 is determining with limit distribution F , and
that there exist a subsequence (Xnk

)k≥1 and random variables X ∈ L2, Y ∈ L1/2,
Y > 0, such that for all subsequences (Xmk

)k≥1 of (Xnk
)k≥1 and any set A ⊂ Ω with

P (A) > 0 equation (50) holds. We show
+∞
∫

−∞
x2dF (x) < +∞. Clearly we can assume

without loss of generality that (Xnk
)k≥1 < (Xk)k≥1. Fix ε > 0. By the implication

(A) =⇒ (B) =⇒ (D) of Theorem 1 there is a set A ⊂ Ω with P (A) ≥ 1 − ε and a
subsequence (Xnk

)k≥1 such that

(77) sup
k

∫

A

X2
nk
dP < +∞ and

∫

A

x2dFA(x) < +∞,

where FA is the limit distribution of (Xn)n≥1 on A. Applying Lemma 4 for (Xnk
)k≥1

on A it follows that there exists a subsequence (Xmk
)k≥1 of (Xnk

)k≥1 admitting the
decomposition

(78) Xmk
= Yk + τk on A,

where the Yk are identically distributed on A with distribution function FA and
∑

|τk| < +∞ a.s. on A. Being an identically distributed sequence with finite expec-
tation, the sequence (Y 2

k )k≥1 is uniformly integrable on A, and thus by the sharper
form of Theorem H mentioned above it follows that there exists a subsequence
(Ypk)k≥1 of (Yk)k≥1 such that

Ypk → U weakly in L2(A), (Ypk − U)2 → V 2 weakly in L1(A),
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and for any B ⊂ A with P (B) > 0 we have

PB

(

∑N
k=1(Ypk − U)

V
√
N

< t

)

→ Φ(t) for all t,

where U , V are random variables such that U ∈ L2(A), V ∈ L1/2(A), V > 0. Thus
by (78) and

∑ |τk| < +∞ a.s. on A we get

PB

(

∑N
k=1(Xmpk

− U)

V
√
N

< t

)

→ Φ(t) for all t

for any B ⊂ A with P (B) > 0. Comparing with (50) and using Lemma 2 we get
U = X , V = Y a.s. on A, and thus we proved that

Ypk → X weakly in L2(A), (Ypk −X)2 → Y 2 weakly in L1(A).

Hence

EAY
2 = lim

k→∞
EA(Ypk −X)2 = lim

k→∞
(EAY

2
pk

− 2EAYpkX + EAX
2)

= lim
k→∞

EAY
2
pk
− EAX

2 =

+∞
∫

−∞

x2dFA(x) − EAX
2,(79)

where in the last step we used the fact that the Yk’s have distribution FA on A.
Hence

(80) P (A)−1

∫

A

Y 2dP =

+∞
∫

−∞

x2dFA(x) − P (A)−1

∫

A

X2dP.

Since X ∈ L2(Ω), Y 2 ∈ L1(Ω), the left-hand side of (80) and the second term on

the right-hand side approach finite limits as P (A) → 1 and thus
∫ +∞
−∞ x2dFA(x) also

converges to a finite limit. On the other hand, FA → F as P (A) → 1 and thus
Fatou’s lemma implies

+∞
∫

−∞

x2dF (x) ≤ lim inf
P (A)→1

+∞
∫

−∞

x2dFA(x) < +∞,

proving the implication (A) =⇒ (C). Now if (C) holds then by Lemma 4 there exists
a subsequence (Xnk

)k≥1 permitting the decomposition (55) where
∑

|τk| < +∞ a.s.
and Yk are identically distributed with distribution F ; since F has finite variance
by (C), the first relation of (56) holds. Thus (Xn)n≥1 satisfies (B) and the proof of
Theorem 2 is completed.
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[109] F. Filip and J. Šustek. Normal numbers and Cantor expansions. Unif. Distrib. Theory
9(2):93–101, 2014.

[110] L. Flatto, J. C. Lagarias, and A. D. Pollington. On the range of fractional parts {ξ(p/q)n}.
Acta Arith. 70(2):125–147, 1995.

[111] L. Frühwirth, M. Juhos, and J. Prochno. The large deviation behavior of lacunary sums.
Monatsh. Math. 199(1):113-133, 2022.

[112] K. Fukuyama. The central limit theorem for Riesz-Raikov sums. Probab. Theory Related
Fields 100(1):57–75, 1994.

[113] K. Fukuyama. The law of the iterated logarithm for discrepancies of {θnx}. Acta Math.
Hungar. 118(1-2):155–170, 2008.

[114] K. Fukuyama. The law of the iterated logarithm for the discrepancies of a permutation of
{nkx}. Acta Math. Hungar. 123(1-2):121–125, 2009.

[115] K. Fukuyama. A central limit theorem and metric discrepancy result for sequences with
bounded gaps. Dependence in Probability, Analysis and Number Theory, pp. 233–246.
Kendrick Press 2010.

[116] K. Fukuyama. A central limit theorem to trigonometric series with bounded gaps. Probab.
Theory Related Fields 149(1-2):139–148, 2011.

[117] K. Fukuyama. Pure Gaussian limit distributions of trigonometric series with bounded gaps.
Acta Math. Hungar. 129(4):303–313, 2010.

[118] K. Fukuyama. A metric discrepancy result for a lacunary sequence with small gaps. Monatsh.
Math. 162(3):277–288, 2011.

[119] K. Fukuyama. Metric discrepancy results for alternating geometric progressions. Monatsh.
Math. 171(1):33–63, 2013.

[120] K. Fukuyama. The central limit theorem for Riesz-Raikov sums II. Trans. Amer. Math. Soc.
372(2):1193–1211, 2019.

[121] K. Fukuyama and N. Hiroshima. Metric discrepancy results for subsequences of {θkx}.
Monatsh. Math. 165(2):199–215, 2012.

[122] K. Fukuyama and S. Miyamoto. Metric discrepancy results for Erdös-Fortet sequence. Studia
Sci. Math. Hungar. 49(1):52–78, 2012.

[123] K. Fukuyama and K. Nakata. A metric discrepancy result for the Hardy-Littlewood-Pólya
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solument normaux et détermination effective d’une tel nombre. Bull. Soc. Math. France
45:125–132, 1917.



58 C. AISTLEITNER, I. BERKES AND R. TICHY

[209] K. Soundararajan. Extreme values of zeta and L-functions. Math. Ann. 342(2):467–486, 2008.
[210] L. Spiegelhofer. Normality of the Thue-Morse sequence along Piatetski-Shapiro sequences.

Q. J. Math. 66(4):1127–1138, 2015.
[211] S. Takahashi. A gap sequence with gaps bigger than the Hadamards. Tohoku Math. J. (2),

13:105–111, 1961.
[212] S. Takahashi. An asymptotic property of a gap sequence. Proc. Japan Acad. 38:101–104,

1962.
[213] S. Takahashi. The law of the iterated logarithm for a gap sequence with infinite gaps. Tohoku

Math. J. (2), 15:281–288, 1963.
[214] S. Takahashi. On the law of the iterated logarithm for lacunary trigonometric series. Tohoku

Math. J. (2), 24:319–329, 1972.
[215] N. Technau and A. Zafeiropoulos. The discrepancy of (nkx)∞k=1

with respect to certain prob-
ability measures. Q. J. Math. 71(2):573–597, 2020.

[216] R. Tijdeman. On integers with many small prime factors. Compositio Math. 26:319–330,
1973.

[217] J. Vandehey. On the binary digits of
√

2. Integers 18:Paper No. A30, 7, 2018.
[218] S. Wagon. Is π normal? Math. Intelligencer 7(3):65–67, 1985.
[219] A. Walfisz. Ein metrischer Satz über diophantische Approximationen. Fund. Math. 16:361–

365, 1930.
[220] M. Weber. On systems of dilated functions. C. R. Math. Acad. Sci. Paris 349:1261–1263,

2011.
[221] M. Weiss. The law of the iterated logarithm for lacunary trigonometric series. Trans. Amer.

Math. Soc. 91:444–469, 1959.
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