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The Hatano-Nelson model is one of the most prototypical non-Hermitian models that exhibit
the intrinsic non-Hermitian topological phases and the concomitant skin effect. These phenomena
unique to non-Hermitian topological systems originate from the Galilean transformation. Here,
we extend such an idea to a broader range of systems based on an imaginary boost deformation
and identify the corresponding energy-twisted boundary conditions. This imaginary boost defor-
mation complexifies spectral parameters of integrable models and can be implemented by the co-
ordinate Bethe ansatz. We apply the imaginary boost deformation to several typical integrable
models, including free fermions, the Calogero-Sutherland model, and the XXZ model. We find the
complex-spectral winding in free fermion models under the periodic boundary conditions and the
non-Hermitian skin effect under the open boundary conditions. The interaction effect is also shown
in the two-particle spectrum of the XXZ model.
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I. INTRODUCTION

Recently, non-Hermitian physics has attracted exten-
sive interest as it describes open systems interacting with
the environment [1–3]. As the energy spectrum becomes
complex in non-Hermitian systems, interesting physics
that cannot be seen in traditional Hermitian systems
emerges. As a prime example, non-Hermitian systems
can support two types of complex-energy gaps, line gap
and point gap [4–6]. Specifically, point-gapped non-
Hermitian systems can host topological phases that have
no analogs in Hermitian systems. Such intrinsic non-
Hermitian topological phases also lead to a new type of
bulk-boundary correspondence called non-Hermitian skin
effect [7–14], in which an extensive number of eigenstates
are localized at the boundaries.
The Hatano-Nelson model [15, 16] is one of the most

fundamental non-Hermitian models as it provides inter-
esting physics in a fairly simple fashion. Originally, it
was introduced to describe the movements of the vor-
tex lines in superconductors, while similar non-Hermitian
models were recently realized in single photons [17] and
ultracold atoms [18], as well as a variety of open classi-
cal systems [19–23]. In the Hatano-Nelson model, non-
Hermiticity is implemented as an imaginary-valued gauge
field that makes the hopping amplitudes nonreciprocal.
This model is solvable using a similarity transformation
that reduces the wave functions to the Hermitian coun-
terparts, which captures the skin effect and Anderson
transition induced by non-Hermiticity. Even in the pres-
ence of many-body interactions, the skin effect still sur-
vives [24–33]. Interestingly, Hatano and Nelson also ar-
gue that the imaginary gauge field can be understood as
a boost of Galilean transformation. However, such a rela-
tionship between non-Hermiticity and the Galilean boost
has been discussed only for simple free fermionic models,
and the general implications of this approach have been
unclear.
For an integrable system, there is a set of integrable
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deformations that keeps the infinitely many commuting
conserved charges (quantities), such as boost deforma-
tion [34, 35]. With boost deformation, the boost param-
eter associated with conserved charges is generated by
the boost operator. Interestingly, the boost deformation
modifies the spectrum but keeps the energy spectrum
real. Previously, such a boost transformation, as well
as the concomitant energy-twisted boundary conditions,
was applied to thermal quantum transport [36].

In this work, by generalizing the boost parameter to
an imaginary parameter, we obtain a complex energy
spectrum with such a boost deformation and study non-
Hermitian physics. Put differently, we seek an analog
to the Hatano-Nelson approach and extend the idea of
Galilean transformation to a broader context that is ap-
plicable to more generic models. While the original dis-
cussion by Hatano and Nelson focused on noninteracting
models, our approach can be applied to many-body in-
teracting models. We consider transformation of a Her-
mitian Hamiltonian that rescales coordinates and leads
to a non-Hermitian Hamiltonian. Such a rescale trans-
formation can also be understood as putting the system
in a boosted reference frame in spacetime coordinates.
For lattice systems, especially integrable systems, the
boost transformation can be implemented as an imag-
inary boost deformation of conserved charges. In the
language of the algebraic Bethe ansatz (i.e., algebraic
formulation of the Bethe ansatz based on transfer ma-
trices), such a boost deformation complexifies spectral
parameters as it generates an imaginary component for
each conserved charge. To seek a boundary condition
description of such a bulk deformation, we consider the
U(1) gauge field as it can also be formulated as a phase
twisted boundary condition. Similarly, for the bulk imag-
inary boost deformation, the boundary transformation
can be formulated as what we call the energy-twisted
boundary condition [36].

With such a transformation, an originally Hermitian
Hamiltonian becomes a non-Hermitian Hamiltonian with
a complex spectrum. We show that the imaginary boost
deformation induces the topological properties unique to
non-Hermitian systems and the concomitant skin effect.
With the tools of the Bethe ansatz for integrable models,
we study not only free fermions but also interacting mod-
els where the interplay between many-body interactions
and the boost deformation is worth investigating.

The rest of this work is formulated as follows. In
Sec. II, we formulate the energy-twisted boundary condi-
tions of a chiral Dirac fermion and calculate its deformed
spectrum. We also introduce the rescale transformation
that leads to a non-Hermitian Hamiltonian. In Sec. III,
we discuss the algebraic Bethe ansatz formalism and im-
plement the imaginary boost deformation. In Sec. IV,
we study the boost deformation of free fermions and ob-
tain their complex spectra. We confirm the complex-
spectral winding under the periodic boundary conditions
and the consequent skin effect under the open boundary
conditions. We also present the results of two-particle

energy spectra and their winding numbers. In Sec. V, we
study the imaginary boost deformation of the Calogero-
Sutherland model as a prototypical example of interact-
ing integrable models. In Sec. VI, we investigate the
imaginary boost deformed XXZ model. Finally, we con-
clude in Sec. VII and discuss further directions.

II. DIRAC FERMION

The boost deformation for integrable lattice systems is
defined in terms of the flow equation [34, 35],

dH(κ)

dκ
= i[B[H(κ)], H(κ)], (1)

where κ ∈ R is the boost parameter, and B[H(κ)] =∑
x xhx, is the boost operator with H =

∑
x hx. Such a

deformation keeps the Hamiltonian Hermitian and inte-
grable. In this work, we generalize the boost deformation
from real to imaginary as

dH(κ)

dκ
= [B[H(κ)], H(κ)]. (2)

The boost operator is well-defined for an infinitely long
system. We will later comment on the boost deformation
for finite systems.
As a warm-up, we consider a (1+1)D chiral Dirac

fermion on an infinitely long system,

H =

∫
dxψ†Hψ, H = −iv∂x, (3)

where ψ(x) is a fermion field operator and v is the Fermi
velocity. In this system,

H(κ) =

∫
dxψ†H(κ)ψ, (4)

B[H(κ)] =

∫
dxψ†xH(κ)ψ, (5)

are the deformed Hamiltonian and the boost operator,
respectively. The solution under the initial condition in
Eq. (3) is

H(κ) =

∫
dxψ† −iv∂x

1− ivκ
ψ. (6)

For a finite system of length L, the system is consid-
ered to be subject to the periodic boundary conditions
ψ (x+ L) = ψ (x), and the single-particle wave func-

tions are given as fk (x) = eikx/
√
L with k = 2πn/L

(n ∈ Z). The corresponding single-particle eigenenergies
are εk = vk/(1− ivκ).
The same spectral deformation can be obtained by im-

posing a boundary condition twisted by the energy [36],

ψ(x+ L) = eκLHψ(x)e−κLH , (7)

which is referred to as the energy-twisted boundary con-
dition, while the Hamiltonian remains unchanged. For
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the imaginary boost deformation, the energy-twisted
boundary conditions read,

fk(x+ L) = eikLfk(x) = e−κεkLfk(x). (8)

Then, the momentum is solved by

(k − iκεk)L = 2πn, i.e., k =
2πn

L

1

1− ivκ
(9)

with n ∈ Z. The energy twisted boundary condition is
equivalent to the imaginary boost deformation as the mo-
mentum quantization is the same. The bulk deformation
gives non-Hermitian Hamiltonians, which correspond to
the nonunitary boundary twist operator eκLH .
The thermal (imaginary-time) partition function of the

(1+1)D chiral Dirac fermion on a torus reads,

Z = Tr e−βH = Tr qL0−c/24 (10)

with q := e2πiτ and modular parameter τ := iβv/L. Un-
der the energy-twisted boundary conditions, the modular
parameter is modified to

τ → iβv

L

1

1− ivκ
. (11)

The mode expansion of the fermion operator is given
by ψ(x) =

∑
k bke

ikx. To make a connection to the
energy-twisted boundary conditions, we consider a new
reference frame that rescales the original frame such that

x′ =
x

1− ivκ
. (12)

Then, in the new x′ reference frame, the mode expansion
becomes

ψ(x′) =
∑
k

bke
ikx′(1−ivκ). (13)

If we require the periodic boundary conditions in the
x′ reference frame, i.e., ψ(x′) = ψ(x′ + L), we get
Eq. (9). Therefore, in the new reference frame, the
Hamiltonian is non-Hermitian because of the complex
momentum. In this sense, the energy-twisted bound-
ary conditions can be understood as a generalization
of the imaginary gauge transformation introduced by
Hatano and Nelson [15, 16]. There, the Galilean boost
x′ = x−vt = x+igt/m for a free particle ε = p2/2m leads
to the non-Hermitian Hamiltonian ε = (p+ig)2/2m. No-
tably, the Hatano-Nelson model is a prototypical model
that exhibits the complex-spectral winding [4–6] and the
concomitant skin effect [7–14], both of which are topo-
logical phenomena inherent in non-Hermitian systems.
Similarly, we find that the imaginary boost deformation
leads to a wide variety of complex-spectral winding and
skin effect, as shown in the following for several mod-
els. In contrast to the original Hatano-Nelson model, the
boost deformation gives rise to energy-dependent gauge
fields and longer-range hoppings, which make properties
of integrable models richer.

III. BOOST DEFORMATION OF INTEGRABLE
MODELS

Before investigating several models, we here review the
boost deformation of integrable models and demonstrate
that our imaginary boost deformation is generally equiv-
alent to complexifying spectral parameters of integrable
models. For a one-dimensional integrable model on a lat-
tice, there exist Lax operators Lan(λ) where a labels the
auxiliary vector space, n labels the local Hilbert space,
and λ is the spectral parameter associated with the aux-
iliary vector space. The monodromy matrix is defined
as

Ta(λ) = LaN (λ)LaN−1(λ) · · ·La1(λ) (14)

with the RTT relation

R12(λ1 − λ2)T1(λ1)T2(λ2) = T2(λ2)T1(λ1)R12(λ1 − λ2),
(15)

where R12(λ1 − λ2) is the R matrix of the integrable
model. The transfer matrix is defined as

T (λ) = TraTa(λ). (16)

With the transfer matrix, the conserved operators are
generated as

In(λ) = (−i)n+1 d
n

dλn
log T (λ). (17)

Here, I1 is the Hamiltonian H = I1(λ = 0), and eigen-
values of I0 are momenta. Following Refs. [37–39], we
define the boost operator

B =
∑
x

xhx, (18)

where hx is the local Hamiltonian satisfying H =
∑

x hx.
Such a boost operator generates the Lorentz boost in the
sense that it boosts the rapidity of the transfer matrix
by

dT (λ)

dλ
= [B, T (λ)]. (19)

Then, with this boost operator, we generate higher-order
conserved charges by

[B, In] = iIn+1. (20)

Generalizing the Hermitian deformation, we consider
the non-Hermitian boost deformation as

dIκn(λ)

dκ
= [B, Iκn(λ)] = iIκn+1(λ), (21)

with n > 0 and the boost parameter κ. We notice here
that the boost operators generate non-Hermitian higher-
order charges such as the Hamiltonian. In this sense,
the spectral parameter of the transfer matrix is complex-
ified by the deformation λ → λ(κ). As such, we call
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such a deformation generated by Eq. (21) the imaginary
boost deformation, and the Hamiltonian becomes non-
Hermitian after this deformation. In comparison with
Eq. (9), this can be identified as a bulk description of a
boundary twist similar to the case of the phase twisted
boundary condition that represents the bulk U(1) gauge
field.

As shown in Ref. [35], if the state is deformed as

d|ψκ
a ⟩

dκ
= B|ψκ

a ⟩, (22)

the eigenvalues of the conserved operators Iκn |ψκ⟩ =
qκn|ψκ⟩ are unchanged, i.e.,

dqκn
dκ

= 0 (n > 0) . (23)

In this case, the momentum Pκ and energy Eκ, which
are respectively the eigenvalues of Iκ0 and Iκ1 , are related
by

Pκ = Pκ=0 + iκEκ=0. (24)

For each quasiparticle, we have Pκ =
∑

j p
κ
j and pκj =

pκ=0 + iκεκ=0
j . With this formalism, the momentum

quantization of quasiparticles is solved using the coor-
dinate Bethe ansatz as

ei(p
κ(vj)−iκεj)L =

∏
k(̸=j)

S(vj − vk), (25)

where vj is the rapidity of the quasiparticle j and S(vj −
vk) is the scattering phase between quasiparticles.
As an example, we consider the XXX Heisenberg

model [40, 41]

H =

L∑
i=1

[
σx
i σ

x
i+1 + σy

i σ
y
i+1 + (σz

i σ
z
i+1 − 1)

]
. (26)

The Lax operator of this model is

L(λ) =

1 0 0 0
0 b(λ) c(λ) 0
0 c(λ) b(λ) 0
0 0 0 1

 (27)

with b(λ) =
λ− i

2

λ+ i
2

and c(λ) = i
λ+ i

2

. The momentum of

each particle is given by e−ip = b(λ). For the imaginary
boost deformation, the spectral parameter is changed to
λ0 → λ(κ), and the momentum is changed to pκ = pκ=0+
iκεκ=0

p . Therefore, we write the boosted momentum as

e−ipκ

=
λ(κ)− i

2

λ(κ) + i
2

= e−i(p0+iκε0p). (28)

With the identification e−ipκ=0

= b(λ0) and εκ=0
p =

b(λ0) + 1/b(λ0)− 2, we get

λ(κ) =
i

2

(2iλ0 − 1)e−4κε0p + (2iλ0 + 1)

(2iλ0 − 1)e−4κε0p − (2iλ0 + 1)

=− i

2

2iλ0 cosh (2κε0p) + sinh (2κε0p)

2iλ0 sinh (2κε0p) + cosh (2κε0p)
, (29)

κ = 0.5i

εk
+

εk
-
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FIG. 1. Complex energy spectrum of free fermion εk = k2

for (left) real boost κ = 0.5i and (right) imaginary boost
κ = −0.5. The orange and blue dots are for k0 = 0. The
arrows on the curves indicate the flow directions of momentum
from k0 = −∞ to k0 = ∞. The complex-spectral winding
number is denoted by W .

which indicates that the spectral parameter is complexi-
fied under the imaginary boost deformation.

IV. FREE FERMION

A. Free fermion in free space

1. Periodic boundary conditions

We consider the free fermion in free space with the
quadratic dispersion

εk = k2. (30)

Under the periodic boundary conditions f (0) = f (L),
the momentum satisfies k0 = 2πn/L with n ∈ Z. Under
the energy-twisted boundary conditions, momentum k
and energy εk satisfy

k − iκεk = k0 (31)

with the boost parameter κ. When the non-Hermitian
term is a constant, the model reduces to the Hatano-
Nelson model [15, 16]. In our boosted model, however,
the non-Hermitian term iκεk is no longer a constant and
depends on energy. Combining Eqs. (30) and (31), we
have

εk = k2 = (k0 + iκεk)
2, (32)

leading to

ε±k = − 1

2κ2
(1− 2ik0κ±

√
1− 4ik0κ). (33)

Notably, the two branches of energy appear in the pres-
ence of the boost deformation, leading to the rich be-
havior of complex spectra even for free fermion. In the
zero-boost limit κ→ 0, we have

ε+k ≃ − 1

κ2
→ ±∞, ε−k → k20. (34)
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For k0 = 0, we have

ε+k = − 1

κ2
, ε−k = 0. (35)

We consider both real and imaginary boost parame-
ters, as shown in Fig. 1. The energy spectrum is com-
plex even for a real boost iκ ∈ R. The real spectrum
changes into the complex spectrum at ik0κ = 1/4, around
which the complex spectrum exhibits the square-root sin-
gularity similarly to exceptional points [42]. We find that
the complex spectrum under the real boost winds in the
complex-energy plane. Then, we calculate the complex-
spectral winding number W defined as

W := −
∫ k0=+∞

k0=−∞

dk0
2πi

d

dk
log det [Hk − ε] (36)

with a reference energy ε ∈ C. This complex-spectral
winding number W gives a topological invariant unique
to non-Hermitian systems [4–6]. Note that this topolog-
ical invariant is always trivial for the real spectrum and
can be nontrivial only for the complex spectrum. Our
complex spectrum is divided into three regions, two of
which we find are characterized by the nontrivial wind-
ing number W = ±1 (see Fig. 1). The nontrivial wind-
ing number implies a current [15, 16, 43] and also the
skin effect under the open boundary conditions [7–14]. It
should be noted that even the real boost makes the spec-
trum complex although the boosted Hamiltonian always
preserves Hermiticity. This originates from the nonlin-
ear nature of the eigenvalue equation (32) and may be
considered as a manifestation of spontaneous breaking of
Hermiticity.

For an imaginary boost, the complex spectrum ex-
hibits different behavior (Fig. 1). As the imaginary boost
is turned on, the original spectrum ε−k becomes com-
plex, and a point gap is open [see the orange curve in
Fig. 1 (right)]. On the other hand, the other branch ε+k
of energy emerges from negative infinity and gets closer
to the original branch ε−k as the boost parameter in-
creases. In contrast to the real boost, the two branches
never touch each other. We also calculate the complex-
spectral winding number W in Eq. (36), as shown in
Fig. 1. The imaginary boost also leads to the nontriv-
ial winding number, which implies the skin effect under
the open boundary conditions; we indeed find the corre-
sponding skin effect under the open boundary conditions,
as discussed below.

2. Open boundary conditions

Next, we consider the free fermion with the imaginary
boost under the open boundary conditions. Similarly to
the previous case, the single-particle eigenequation reads

(−i∂x − iκε)
2
f (x) = εf (x) (37)

with the boost parameter κ ∈ R. Instead of the periodic
boundary conditions f (L) = f (0), we impose the open
boundary conditions

f (0) = f (L) = 0. (38)

These boundary conditions indeed correspond to the
open boundary conditions for the corresponding lattice
model.

The Hatano-Nelson model with open boundaries is
solvable via a similarity transformation [15, 16]. Even
though the imaginary gauge field effectively depends on
energy ε in our boosted system, we show that we can still
introduce the imaginary gauge transformation and then
solve our boosted model. In fact, let us introduce

f̃ε (x) := eκεxf (x) , (39)

which now depends on energy ε [see Appendix A for a
derivation from Eq. (22)]. Then, Eq. (37) reduces to

(−i∂x)2 f̃ε (x) = εf̃ε (x) (40)

with the open boundary conditions

f̃ε (0) = f̃ε (L) = 0. (41)

For arbitrary ε, this eigenvalue problem is readily solved
as

ε = k2, f̃ε (x) ∝ sin (kx) (42)

with momenta k = nπ/L (n ∈ N). Hence, the original
eigenvalue problem in Eq. (37) is solved as

ε = k2, f (x) ∝ e−κk2x sin (kx) . (43)

Thus, the spectrum is entirely real, and no point gap is
open, which contrasts with the complex spectrum under
the periodic boundary conditions. All the eigenstates ex-
cept for the zero modes with ε = 0 are localized at the left
(right) edge in the presence of the imaginary boost κ > 0
(κ < 0)—non-Hermitian skin effect. This is compatible
with the complex-spectral winding number under the pe-
riodic boundary conditions (see Fig. 1). The localization
length of the skin modes is

ξ =
1

|κε|
=

1

|κ| k2
. (44)

Notably, the complex spectrum under the periodic
boundary conditions includes an additional contribution
from infinity [see the blue curve in Fig. 1 (right)], which
also exhibits the complex-spectral winding. The above
skin modes do not correspond to this additional complex-
spectral winding number but that arising from the orig-
inal spectrum [see the orange curve in Fig. 1 (right)].
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B. Free fermion on lattice

1. Periodic boundary conditions

Next, we consider a translation-invariant free fermion
on a lattice and the corresponding boost operator,

H(κ) =
∑
xz

tz(κ)c
†
xcx+z, (45)

B[H(κ)] =
∑
xz

(
x+

z

2

)
tz(κ)c

†
xcx+z. (46)

The boost deformation generally keeps quadratic
fermionic Hamiltonians quadratic. The imaginary boost
deformation, i.e.,

dH(κ)

dκ
= [B[H(κ)], H(κ)], (47)

reduces to

dtz(κ)

dκ
= −z

2

∑
w

tw(κ)tz−w(κ). (48)

This equation is solved with an initial condition tz(κ =
0) = −eiαδz,1 − e−iαδz,−1. We introduce the generating
function

ε(κ, k) =
∑
z

eizktz(κ), (49)

where the energy dispersion of the original lattice fermion
model is ε(κ = 0, k) = −2 cos(k+α). Then, the equation
reduces to the inviscid Burgers equation

i
∂ε

∂κ
+ f

∂ε

∂k
= 0, (50)

which has a formal solution

ε (κ, k) = ε (κ = 0, k + iκε (κ, k))

= −2 cos (k + α+ iκε (κ, k)) . (51)

Strictly speaking, the boost deformation is applicable
only to infinite systems, where the boost operator is de-
fined unambiguously. Here, we try to relax this con-
dition and consider a lattice fermion model under the
periodic boundary conditions by assigning k = 2πn/L
(n = 0, 1, 2, · · · , L − 1). We assume that the boost de-
formation is still described by Eq. (51). This energy
dispersion can be effectively considered as that of the
Hatano-Nelson model with the energy-dependent imagi-
nary gauge field κε.
We numerically obtain the complex energy spectrum of

a lattice fermion with the imaginary boost, as shown in
Fig. 2. For a small boost, the complex spectrum forms an
eight shape. This eight-shaped complex spectrum can be
obtained perturbatively for small energy ε and boost κ.
In fact, expanding the boost equation (51) for |ε| ≪ |κ|−1

and α = 0, we have

ε = −2 cos k − 2iκ sin 2k +O
(
κ2

)
, (52)

which reproduces the eight-shaped complex spectrum nu-
merically obtained in Fig. 2. The complex-spectral wind-
ing number W =W (ε) is also obtained as

W (ε) =


sgn (κ) (ε is inside the left loop) ;

−sgn (κ) (ε is inside the right loop) ;

0 (otherwise) .

(53)

Notably, this result is valid even for the arbitrary boost
κ as long as the energy ε is small (i.e., |ε| ≪ |κ|−1

).
As we increase the boost parameter κ, the other pieces

of the complex spectra approach the eight-shaped spec-
trum from infinity. This situation is similar to the com-
plex spectrum for free fermions in free space, as dis-
cussed in Sec. IVA. For κ ≳ 0.33, we see that the eight-
shaped spectrum touches the spectrum coming from in-
finity and forms a cross-shaped spectrum [see Fig. 2 (bot-
tom)]. This spectral phase transition is unlikely to oc-
cur in usual non-Hermitian lattice models and originates
from the nonlinear nature of the boost equation. Ac-
cording to our numerical calculations, this spectral phase
transition occurs on the real axis in the complex-energy
plane. Thus, the spectral transition points for Re ε > 0
(Re ε < 0) corresponds to k = π (k = 0). For k = π and
ε ∈ R, the boost equation (51) reduces to

ε = 2 coshκε. (54)

For the existence of a solution to this equation, ε is re-
quired to satisfy ε > 2. In this case, we have

κ =
arccosh (ε/2)

ε
, (55)

which has two (no) solutions if κ is less (larger) than
its maximum value. The spectral transition point
corresponds to the maximum value of κ = κ (ε) =
arccosh (ε/2) /ε, i.e.,

κc = 0.331372 · · · , (56)

which is compatible with the numerical results in Fig. 2.

2. Open boundary conditions

We also apply the imaginary boost deformation to a
lattice fermion under the open boundary conditions. In
this case, lattice translation invariance no longer exists
and we need to solve the evolution of the hopping ampli-
tude in the matrix form as

dtxy(κ)

dκ
=
x− y

2

L∑
a=1

txa(κ)tay(κ). (57)

Assuming the analyticity of the evolution, we expand the
hopping amplitude by κ as

txy(κ) =

∞∑
n=0

κn

n!

dntxy(κ)

dκn

∣∣∣∣
κ=0

. (58)
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FIG. 2. Complex energy spectrum of a free fermion on
a lattice under the imaginary boost deformation for (top
left) κ = 0.2, (top right) κ = 0.32, (bottom left) κ = 0.34, and
(bottom right) κ = 0.6, respectively. The dark-grey points are
energies of k = 0 and the connected lines with the same color
are those of k ∈ [0, π), while the light-grey points are of k = π
and connected lines are of k ∈ [π, 2π).

Here, the higher derivatives of the hopping amplitude are
evaluated successively via

dn+1txy(κ)

dκn+1
=
x− y

2

L∑
a=1

n∑
j=0

(
n
j

)
dn−jtxa(κ)

dκn−j

djtay(κ)

dκj
.

(59)

We calculate the hopping amplitude up to the order of
300 for the system size L = 40.
We obtain the inverse participation ratio (IPR)∑
x |fx|4 of all the eigenstates [Fig. 3 (top)], which scales

as O (1/L) and O (1) for the extended and localized
states, respectively. While the energy spectrum is almost
unchanged during the boost deformation, the IPR shows
the localization of all the states on the edges except for
zero-energy states. The edges at which localized states
are bound are consistent with the winding number W in
Eq. (53). We also show the energy spectrum under the
open boundary conditions in Fig. 3 (bottom). The color
of the spectrum indicates a weighted probability density

−
∑

x<(L+1)/2

|fx|2 +
∑

x>(L+1)/2

|fx|2, (60)

which is close to −1 (+1) when an eigenstate is mostly
on the left (right) half of the system. Clearly, eigen-
states with ε > 0 (ε < 0) are localized at the right (left)
edge, which is consistent with Eq. (53). Eigenstates un-
der the open boundary conditions having the winding
number W = ±1 typically behave as fx ∝ eκεx, similarly
to Eq. (43).

The similarity transformation of the lattice fermion is
not as simple as the continuum case (see Appendix A2).
In the continuum case, a local Hamiltonian remains local,
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κ=0.3

FIG. 3. (Top) Inverse participation ratio (IPR) of all eigen-
states as a function of the imaginary boost deformation pa-
rameter κ for L = 40. (Bottom) Complex energy spectrum
of a lattice fermion under the open boundary conditions for
κ = 0.3. The grey solid line is the spectrum under the pe-
riodic boundary conditions for reference. The color of the
open-boundary eigenenergies indicates a weighted probability
density in Eq. (60) quantifying at which side the eigenstates
are localized.

at least for the linear and quadratic fermionic models
studied in Secs. II and IVA. In the lattice case, the boost
deformation generates longer-range hoppings, which lead
to the highly nonlocal Hamiltonian.

C. Two particles

We also study the spectrum in the subspace of two
particles for the lattice free fermion under the imaginary
boost deformation. The single-particle boosted spectrum
is given by

ε(k) = −2 cos
(2π
L
n+

ϕ

L
+ iκε(k)

)
, (61)

where we introduce the magnetic flux ϕ to compute the
complex-spectral winding number [33]. Taking two dif-
ferent single-particle energies ε1 and ε2 from this single-
particle boosted dispersion, we calculate the two-particle
spectrum E = ε1 + ε2, as shown in Fig. 4. In numerical
calculations, it is difficult to capture the complex spec-
trum coming from infinity. Here, we only pick the en-
ergy branch around the origin and focus on the complex
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spectrum around there. For κ < 0.33, the two-particle
energy spectrum forms multiple loops. For κ > 0.33, on
the other hand, the loops expand and open up to lines
and do not close. This spectral transition coincides with
the transition point κc ≃ 0.33 in Eq. (56) for the single-
particle energy spectrum. For κ = 0.1 [see Fig. 4 (top)],
most loops are smooth but there is one loop C∗ close to
the real axis that is narrow and crosses itself. The loops
enclosing C∗ are from the energy of two particles with
each particle on the same side of the eight-shaped single-
particle loop shown in Fig. 2. The loops not enclosing
C∗ are the sum of two energies from different sides of
the eight-shaped single-particle loops. For κ = 0.6 [see
Fig. 4 (bottom)], the two straight lines crossing the origin
are from two particles on the same branch of the cross-
shaped single-particle spectrum. On the other hand, the
vertical short lines are from two particles on different
branches of the cross-shaped single-particle spectrum in
Fig. 2.

We also calculate the winding number from the two-
particle spectrum, as shown in the right panels of Fig. 4.
For κ = 0.1 and ReE > 0, the loop that encloses the red
reference point in Fig. 4 (top) has the winding number
W = −1, and the loops that enclose the blue and or-
ange reference points have the winding numberW = +1.
In addition, the purple reference point is enclosed by
three outer loops, and therefore the winding number is
W = −3; the pink reference point is enclosed by four
outer loops and two inner loops and therefore the winding
number is W = −2. The loops for ReE < 0 are char-
acterized by the opposite-sign winding numbers. Con-
sistently, the two-particle loops enclosing C∗ are from
the single-particle spectral loop with the winding num-
ber W = −1. We notice that the presence of the point
gap for the two-particle spectrum is the finite-size effect;
in the infinite-size limit L → ∞, an infinite number of
loops appear and the complex-spectral winding number
is no longer well-defined. For κ = 0.6, the loop structure
breaks up, and the winding numbers are more compli-
cated. When the spectral loops break at the transition
point κc, the winding number consists of the contribu-
tions from all the loops that enclose the reference energy
point. Therefore, for reference points on the right side
of the cross-shaped lines, we have W < 0; for reference
points on the upper part of the cross-shaped lines, the
winding number can be positive or negative depending
on the choice of the reference point.

V. CALOGERO-SUTHERLAND MODEL

As a prototypical example of interacting integrable
models, we consider the Calogero-Sutherland (CS)
model [44–46] for M non-relativistic particles on a cir-
cle of length L,

H = −
M∑
i=1

∂2xi
+
(π
L

)2 M∑
i<j

β(β − 1)

sin2 π
L (xi − xj)

, (62)
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FIG. 4. Two-particle complex spectrum and winding number
of the free fermion model on a lattice of L = 20 with the
imaginary boost deformation. The boost parameters are κ =
0.1 (top) and κ = 0.6 (bottom). The colored dots on the left
plots label the reference energy chosen for the calculations of
the winding numbers on the right plot with the same color.

where β describes the strength of the interactions. The
CS model is integrable and solvable using the Bethe
ansatz [47–50]. The Bethe ansatz equation reads

kjL+
∑
l

Θ(kj , kl) = 2πIj , (63)

with Θ(kj , kl) := π(β−1)sign(kj−kl) and, for the ground
state, Ij := j − M+1

2 . If we assume k1 < · · · < kM , we
get

M∑
l=1

Θ(kj , kl) =

M∑
l=1

π(β − 1)sign(kj − kl)

= −π(β − 1)(2j −M − 1). (64)

From Refs. [51–53], the momentum of excited states of
the CS model is given by

kj =
2π

L

(
nj + β

(
j − M + 1

2

))
, (65)

where nj ’s are non-negative integers with nj ≤ nj+1. We
consider the Bethe ansatz equation [54] with the boost
deformation. The energy of the j th particle satisfies

εκj =
(
kj + iκεκj

)2
(66)

For κ = 0, we recover the nondeformed energy spec-
trum. For β = 0, the system is bosonic and we recover the
same spectrum as the noninteracting system in Sec. IVA.
For β = 1, the system is fermionic and we get the differ-
ent energies for two particles for the nj = 0 sector. We
see that for κ = 0,

εκ=0
j = k2j =

[
2π

L

(
−nj + β

(
M + 1

2
− j

))]2
, (67)
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FIG. 5. Complex two-particle energy spectrum of the
Calogero-Sutherland (CS) model with β = 0 (top) and
β = 0.5 (bottom) for the (left) real boost κ = 0.5i and
(right) imaginary boost κ = −0.5.

which is the particle of bare momentum β
(
M+1

2 − j
)

with −nj partition.

With the boost deformation, the situation is different.
Solving Eq. (66), we calculate the single-particle energy
of nj ∈ Z as

εκ±j (kj) = − 1

2κ2

[
1− 2iκkj ±

√
1− 4iκkj

]
, (68)

and the two-particle energy as Et(k1, k2) = ε1(k1) +
ε2(k2) with εj(kj) ∈ ε+j (kj) ∪ ε−j (kj). Figure 5 shows
the two-particle energy spectrum for the real and imag-
inary boosts. The real-boosted two-particle spectrum
with κ = 0.5i (see the left plots of Fig. 5) forms a v-
shaped spectrum pointing towards the positive x direc-
tion. On the basis of the single-particle spectrum for the
noninteracting case, Fig. 1 for β = 0, the wings of the v-
shape spectrum are from the summation of two particles
on each single-particle branch. The states clustered be-
tween the wings are from two particles on different single-
particle branches. More states show up in the presence
of the interaction (see the left bottom panel of Fig. 5 for
β = 0.5).

In comparison with the two-particle spectrum for the
noninteracting case in Fig. 4, the two-particle spectrum
of the CS model with the imaginary boost κ = −0.5 does
not show loop structures but rather forms three clusters
of states. On the basis of the single-particle spectrum
in Fig. 1, the three clusters from the left to the right are
from the summation of single-particle energies of the left-
left, left-right, and right-right branches. In the presence
of the interaction, more states show up and the spectrum
gets denser, but no dramatic change is observed.

VI. XXZ MODEL

We consider the non-Hermitian boost deformation for
the XXZ model

H =

L∑
i=1

[cosh γ
2

(1+σz
i σ

z
i+1)−σ+

i σ
−
i+1−σ

−
i σ

+
i+1

]
, (69)

where σz
i ’s and σ

±
i ’s are Pauli operators, and γ is the pa-

rameter that controls the many-body interactions. The
Bethe ansatz equation is given by [55, 56][
sinh(γ2 + iαk

2 )

sinh(γ2 − iαk

2 )

]L

= (−1)N+1
N∏
l=1

sinh(γ + i
2 (αk − αl))

sinh(γ − i
2 (αk − αl))

,

(70)
where αk labels the rapidity of particle k, and the ground
state energy is given by

E = L cosh γ −
N∑

k=1

2 sinh2 γ

cosh γ − cosαk
. (71)

To simplify calculations, we define a new variable

zk :=
sinh(γ2 + iαk

2 )

sinh(γ2 − iαk

2 )
, (72)

and then the Bethe ansatz equation reduces to

zLk = (−1)N
N∏
l=1

1 + zkzl + 2 cosh γzk
1 + zkzl + 2 cosh γzl

. (73)

In particular, the energy of each particle is

εk = − 2 sinh2 γ

cosh γ − cosαk
= −(zk + z−1

k + 2 cosh γ). (74)

For the imaginary boost deformation, following
Eq. (24), we introduce

pk → pk − iκεk (75)

with the identification zk = eipk from Ref. [55]. The
deformed Bethe ansatz equation reads

zLk e
−Lκ(zk+z−1

k +2 cosh γ)

= (−1)N
N∏
l=1

1 + zkzl + 2 cosh γzk
1 + zkzl + 2 cosh γzl

. (76)

To emulate a large system size, we also consider the
model with a U(1) phase twist with twist angle ϕ, re-
sulting in the Bethe ansatz equation

zLk e
−Lκ(zk+z−1

k +2 cosh γ)

= e−iϕ(−1)N
N∏
l=1

1 + zkzl + 2 cosh γzk
1 + zkzl + 2 cosh γzl

. (77)
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We numerically solve the Bethe ansatz equation for N =
2 and obtain the two-particle complex spectrum for the
weak and strong interacting cases of γ = iπ/3 and γ =
1.5, as shown in Fig. 6. Similarly to the free-fermion
case in Sec. IVC, we focus only on some regions of the
complex spectrum where the Bethe ansatz equation is
solved consistently.

For the weakly interacting cases, the spectrum is sim-
ilar to the free fermion case in Fig. 4. In fact, there are
multiple loops, and some of them cross themselves for
small κ; the loops break up into some pieces of arcs as
κ increases. Short vertical curves are also observed as
in the case of free fermion. The weak interaction results
in only half of the cross-shaped structure appearing in
the free fermion case due to interaction. The v-shaped
curves are formed by quasiparticles on the same branch
of single-particle energy, as is shown in Fig. 2. The ver-
tical lines are formed by two quasiparticles on different
branches.

For strongly interacting cases, the complex spectrum
forms multiple loops and there is a small cluster of states
away from the main loops for small κ < 0.1, and the
loops are pushed to the Re E direction and break up
into arcs as κ increases (see the bottom panels of Fig. 6).
This behavior is similar to the interacting Hatano-Nelson
model [32, 33]. The small cluster of states that is not
observed for the weakly interacting cases should be due to
the strong interaction effect. In comparison with the two-
particle spectrum of non-interacting fermions in Fig. 4,
the transition from the closed loops to the open curves
happens earlier for the interacting XXZ model and the
transition is earlier as the interaction is stronger. After
the transition, the small cluster of states gets closer to
the main cluster of states.

VII. CONCLUSION

In this work, we extended the original idea of Hatano
and Nelson [15, 16] to a new class of non-Hermitian
Hamiltonians using the imaginary boost deformation for
integrable systems. The imaginary boost deformation
can be viewed as a scale transformation that generates
non-Hermitian Hamiltonians as an analog of the Galilean
transformation used in the Hatano-Nelson model. For in-
tegrable systems, the imaginary boost deformation com-
plexifies the spectral parameter. We identified that such
an imaginary boost deformation can be formulated as an
energy-twisted boundary condition using a chiral Dirac
fermion.
We studied our imaginary boost deformation for sev-

eral integrable models with and without many-body in-
teractions. We implemented the imaginary boost defor-
mation in free fermion systems in the continuum and
on a lattice. We observed unique complex spectra with
non-trivial winding numbers. The two branches of com-
plex spectra emerge from infinity as soon as the defor-
mation is turned on. The similarity transformation was
performed in the open boundary conditions to reveal the
non-Hermitian skin effect. We showed the two-particle
spectrum of the Calogero-Sutherland model and the XXZ
model and observed the non-Hermitian many-body inter-
action effect even for a small boost parameter. The spec-
trum breaks into arcs at large boost parameters similar to
the non-interacting models. Our results mathematically
provide a nontrivial manner to generate non-Hermitian
integrable systems and physically provide a new perspec-
tive on spacetime transformations. Additionally, our ap-
proach should be relevant to a large class of integrable
open quantum systems.
The origin of the energy emergent from infinity needs

further study and characterization. Extending the imag-
inary boost deformation to quantum many-body systems
in higher dimensions would be interesting to study. It is
also worthwhile to study transport properties due to the
imaginary boost deformation in a similar manner to the
thermal Drude weight for the real boost deformation [36].
In fact, the imaginary gauge field in the Hatano-Nelson
model is closely related to the current and the delocal-
ization of wave functions [15, 16]. Another direction to
pursue is to generalize the imaginary boost parameter
to other sorts of deformations such as bilinear deforma-
tions [34]. The dynamical properties including the spec-
tral form factor of non-Hermitian deformations are also
investigated in the recent work [57]. Similarly, the dy-
namical properties of the imaginary boosted systems are
also worth studying in future works.
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Appendix A: Boost deformation and similarity
transformation

In this section, we show how the boost deformation
in Eq. (2) is related to the similarity transformation in
Eq. (39) via Eq. (22). We also discuss the similarity
transformation for a lattice free fermion.

1. Continuum free fermion

To derive the similarity transformation from Eq. (22),
we need to know the boost operator and hence the de-
formed Hamiltonian. Let us derive the boost deforma-
tion of the continuum free fermion in Sec. IVA. As we
see from the definition in Eq. (2), the boost deformation
generates higher derivatives. Hence, we use an ansatz

H(κ) =
∑
n=0

An(κ)∂
n
x (A1)

and solve equations order by order in κ with the initial
condition H(κ = 0) = −∂2x. Substituting Eq. (A1) into
Eq. (2), we obtain a series of equations as

dA0

dκ
= −A0A1, (A2)

dA1

dκ
= −A1A1 − 2A0A2, (A3)

dA2

dκ
= −A1A2 − 2A1A2 − 3A3A0, (A4)

and so on. As the boost deformation generates higher
derivatives than quadratic, we assume A0(κ) = A1(κ) =
0. With the initial condition An(κ = 0) = −δn,2, the
solution is

H(κ) = (−i∂x)2 + 2iκ(−i∂x)3 − 5κ2(−i∂x)4 + · · · ,
(A5)

which is equivalent to the series expansion of ε−k in
Eq. (33) by replacing k0 by −i∂x.
Then, we solve Eq. (22), which reads

dψ(x;κ)

dκ
= −

1− 2iκ(−i∂x)−
√

1− 4iκ(−i∂x)
2κ2

ψ(x;κ).

(A6)

We use an ansatz ψ(κ) = eif(κ)x. The equation for f(κ)
reduces to

df

dκ
=
i(1− 2iκf −

√
1− 4iκf)

2κ2
. (A7)

By introducing F := (1−4iκf)1/2, the equation becomes
dF/dκ = (F−1)/κ and the solution is F = aκ+1 (a ∈ C).
When the initial state is eif(κ=0)x = eik0x, the deformed
state is

ψ(x;κ) = exp
(
ik0x+ κk20x

)
, (A8)

which is consistent with the similarity transformation in
Eq. (39).
Notice that by leaving the wave function eik0x un-

changed, the eigenenergy is deformed as ε−k in Eq. (33),
while by deforming the wave function as Eq. (A8), the
eigenenergy ε = k20 is unchanged as was also shown in
Sec. III. The fact that the initial wave function is still an
eigenfunction of the deformed Hamiltonian seems to be a
coincidence unique to the continuum free fermion model.

2. Lattice free fermion

Let us consider the similarity transformation for the
lattice free fermion under the open boundary conditions
studied in Sec. IVB2. The imaginary boost deformation
in Eq. (57) is written in the matrix form as

dT

dκ
=

1

2
[X,T 2], (A9)

where [T (κ)]xy = txy(κ) is the Hamiltonian matrix and
(X)xy = xδxy. We introduce the similarity transforma-
tion T (κ) = U(κ)T0U

−1(κ) to make a connection be-
tween the deformed and original Hamiltonian matrices,
with T0 = T (κ = 0). The imaginary boost deformation
becomes[

U−1 dU

dκ
, T0

]
=

1

2

[{
U−1XU, T0

}
, T0

]
, (A10)

which is satisfied for

U−1 dU

dκ
=

1

2

{
U−1XU, T0

}
. (A11)

We solve this equation order by order in κ by using an
expansion U(κ) =

∑
n=0 κ

nUn/n!. The solution is

U(κ) = I +
κ

2
{X,T0}+

κ2

8

(
{X,T0}2 + [X2, T 2

0 ]
)
+O(κ3).

(A12)

For the initial condition (T0)xy = δx,y+1 + δx,y−1, the
eigenfunction without the boost deformation is ψk(x) ∝
sin kx (x = πn/(L + 1), n ∈ [1, L]), which satisfies the
boundary conditions ψn(0) = ψn(L + 1) = 0, and the
corresponding eigenenergy is εk = 2 cos k.
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FIG. 7. Derivative of eigenfunctions of the lattice free fermion
of length L = 40 with respect to the boost parameter κ evalu-
ated by numerical (dots) and analytical (solid lines) methods
for k = 35π/41 (left) and k = 20π/41 (right).

Since we have

1

2
{X,T0} =


0 3/2 0
3/2 0 5/2
0 5/2 0

. . .

 , (A13)

the deformed eigenfunction up to linear in κ is

Uψk ≃


(1 + 2κ cos k) sin k + κ cos k sin k
(1 + 4κ cos k) sin 2k + κ cos 2k sin k
(1 + 6κ cos k) sin 3k + κ cos 3k sin k

...

 . (A14)

For k ≃ 0 or π, the first term in each row is domi-
nant and the similarity transformation is consistent with
ψk(x) ≃ eκεkx sin kx for the continuum free fermion in
Eq. (39). On the other hand, for k ≃ π/2, Eq. (A14) im-
plies that the similarity transformation cannot be written
as Eq. (39).

In Fig. 7, we compare the derivative of the eigenfunc-
tion evaluated numerically for the deformed Hamiltonian
in Eq. (58) with that obtained from the analytical expres-
sion in Eq. (A14). We see that these two agree quite well.

Notice that, in the analytical expression, the first order
term in Eq. (A13) is shifted by −(L + 1)T0/2 since this
is an ambiguity in deriving Eq. (A11). For k ≃ 0 or π,
the first term of Eq. (A14) dominates and the derivative
is roughly proportional to −(L+ 1)/2 + x [Fig. 7 (left)],
while such a feature cannot be seen for k ≃ π/2 [Fig. 7
(right)].

3. Numerical instability

According to the similarity transformation, the energy
spectrum of the lattice free fermion in Eq. (57) under the
open boundary conditions is unchanged and remains real-
valued by the imaginary boost deformation. However,
the numerically evaluated Hamiltonian matrix can have
a complex spectrum when the imaginary boost parameter
becomes larger because of the instability of the numeri-
cal calculations. The critical parameter from which the
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FIG. 8. Imaginary boost parameter at which the spectrum of
the lattice free fermion deviates from the real axis.

spectrum becomes complex is numerically evaluated in
Fig. 8. We see that the numerical instability becomes
more serious as the system size is larger. Notice that
the numerical instability is not relevant to the spectral
transition point in Eq. (56) under the periodic boundary
conditions.
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and T. Neupert, Symmetry breaking and spectral struc-
ture of the interacting Hatano-Nelson model, Phys. Rev.
B 106, L121102 (2022).

[33] K. Kawabata, K. Shiozaki, and S. Ryu, Many-body
topology of non-Hermitian systems, Phys. Rev. B 105,
165137 (2022).

[34] T. Bargheer, N. Beisert, and F. Loebbert, Long-range
deformations for integrable spin chains, J. Phys. A 42,
285205 (2009).

[35] B. Pozsgay, Current operators in integrable spin chains:
lessons from long range deformations, SciPost Phys. 8,
016 (2020).

[36] R. Nakai, T. Guo, and S. Ryu, Energy-twisted bound-
ary condition and response in one-dimensional quantum
many-body systems, Phys. Rev. B 106, 155128 (2022).

[37] H. Thacker, Corner transfer matrices and Lorentz invari-
ance on a lattice, Physica D 18, 348 (1986).

[38] M. G. Tetel’man, Lorentz group for two-dimensional in-
tegrable lattice systems, Soviet Journal of Experimental
and Theoretical Physics 55, 306 (1982).

[39] K. Sogo and M. Wadati, Boost Operator and Its Ap-
plication to Quantum Gelfand-Levitan Equation for
Heisenberg-Ising Chain with Spin One-Half, Prog. Theor.
Phys. 69, 431 (1983).

[40] H. Katsura and I. Maruyama, Derivation of the matrix
product ansatz for the Heisenberg chain from the alge-
braic Bethe ansatz, J. Phys. A 43, 175003 (2010).

[41] V. Murg, V. E. Korepin, and F. Verstraete, Algebraic
Bethe ansatz and tensor networks, Phys. Rev. B 86,
045125 (2012).

[42] W. D. Heiss, The physics of exceptional points, J. Phys.
A 45, 444016 (2012).

[43] K. Kawabata, K. Shiozaki, and S. Ryu, Topological Field
Theory of Non-Hermitian Systems, Phys. Rev. Lett. 126,
216405 (2021).

[44] F. Calogero, Solution of a Three-Body Problem in One
Dimension, J. Math. Phys. 10, 2191 (1969).

[45] F. Calogero, Solution of the One-Dimensional N-Body
Problems with Quadratic and/or Inversely Quadratic
Pair Potentials, J. Math. Phys. 12, 419 (1971).

[46] V. Pasquier, A lecture on the Calogero-Sutherland mod-
els, in Integrable Models and Strings, edited by A. Alek-
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