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Effects of quantum recoil forces in resistive switching in memristors

Oleg G. Kharlanov
Faculty of Physics, Lomonosov Moscow State University, 1/2 Leninskie Gory, 119991 Moscow, Russia

Memristive devices, whose resistance can be controlled by applying a voltage and further retained,
are attractive as possible circuit elements for neuromorphic computing. This new type of devices
poses a number of both technological and theoretical challenges. Even the physics of the key
process of resistive switching, usually associated with formation or breakage of conductive filaments
in the memristor, is not completely understood yet. This work proposes a new resistive switching
mechanism, which should be important in the thin-filament regime and take place due to the back
reaction, or recoil, of quantum charge carriers—independently of the conventional electrostatically-
driven ion migration. Since thinnest conductive filaments are in question, which are only several
atoms thick and allow for a quasi-ballistic, quantized conductance, we use a mean-field theory and
the framework of nonequilibrium Green’s functions to discuss the electron recoil effect for a quantum
current through a nanofilament on its geometry and compare it with the transmission probability
of charge carriers. Namely, we first study an analytically tractable toy model of a 1D atomic chain,
to qualitatively demonstrate the importance of the charge-carrier recoil, and further proceed with
a realistic molecular-dynamics simulation of the recoil-driven ion migration along a copper filament
and the resulting resistive switching. The results obtained are expected to add to the understanding
of resistive switching mechanisms at the nanoscale and to help downscale high-retention memristive
devices.

PACS numbers: 05.60.Gg, 73.63.-b, 73.63.Rt

1. Introduction. Memristors—electric devices whose
resistance “remembers” the history of the previously
passed current [1]—have attracted a lot of theoretical
and experimental attention over the past decade, notably
since the first working memristive device was manufac-
tured in 2008 [2]. Memristors are particularly appealing
in the context of their possible use for in-memory com-
puting and hardware neural networks, as opposed to the
von Neumann architecture [3]. Current-controlled resis-
tive switching in such devices typically occurs due to ion
migration in a dielectric layer between the anode and
the cathode resulting in the growth or rupture of con-
ductive filaments [4]. Interestingly, despite considerable
progress made on the technological side, there are still
gaps in the understanding of the physical processes un-
derlying resistive switching and retention of the resistive
states in memristors. The reason is the stochasticity of
the filament dynamics and possible interplay of various
scales and effects, such as Joule heating, surface diffu-
sion, strong electric fields, etc. [5, 6] An improved theory
or simulation frameworks are particularly desirable when
one descends to the nanoscale: the constrictions, i.e., the
thinnest segments of the conductive filaments in the cor-
responding devices, allow for ballistic (quantum) charge
transport and exhibit quantized conductance at room
temperature, with the quantization being an attractive
property to encode discrete states of the memristor [7–
11]. At the same time, interaction of quantum currents
with the classical filament and its molecular environment
constitutes a challenging task to describe, limiting ratio-
nal design of such memristors.
In this letter, by no means aiming at a complete de-

scription of the dynamics of quantized-conductance fila-
ments, we analyze a possible role of electron-induced, “re-
coil” forces acting on the ions [12, 13] in these dynamics,

which is also potentially related to the extended lifetimes
of filaments with well-quantized conductance values. The
point is that conductance quantization in quasi-1D sys-
tems in the units of G0 = e20/π~ ≈ 77.5 µS (e0 is the el-
ementary charge, ~ is the Planck’s constant) is not quite
fundamental, being typical of “smooth”, adiabatic fila-
ments [14, 15]; in principle, it does not have to hold for
irregular filaments forming in memristors. However, the
back reaction of quantum electrons passing through the
filament could push it toward smoother shapes consis-
tent with minimum recoil, integer electron transmission
probability (transmittance), and thus quantized conduc-
tance. Indeed, in our recent study [11], we identified that
recoil forces should be large enough at voltages V ∼ 1 V
and conductances near G0 to compete with the inter-
atomic forces, potentially affecting the evolution of the
filament. Together with that, our experiments showed
that the thinnest filaments with the conductance G = G0

and even G0/2, where the quantum recoil forces should
be most pronounced, demonstrated the longest renen-
tion, i.e., stability with time [11]. However, Ref. [11]
described conduction electrons using a semi-quantitative
continuous free-electron model and lacked a dynamical
simulation of the filament stochastic evolution, aiming
at an order-of-magnitude estimation of the effects. More-
over, interatomic interactions in the filament were simply
reduced to the latter having a certain amount of surface
energy, like a liquid drop. In fact, since ion migration in
memristors, e.g., surface diffusion, proceeds as a sequence
of hops [6], the lack of the dynamics strongly limits the
model used in Ref. [11], especially when it comes to sim-
ulate an actual resistive switching event. In contrast,
in the present work we develop an atomistic quantum
theory of electron recoil forces and incorporate it into a
molecular-dynamics (MD) framework with realistic inter-
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atomic potentials to observe a quantum analogue of elec-
tromigration [16] triggering a resistive switching. The
theory and simulations, described in the following sec-
tions, demonstrate that if the conditions for the quan-
tized conductance are not satisfied, resistive switching
can be facilitated by the growing recoil forces. This
new resistive switching mechanism, which is important
for memristors with atomic-scale filaments and high cur-
rent densities, represents the main novelty of the present
work, providing an alternative to the conventional mech-
anism due to ion migration in the electrostatic field be-
tween the cathode and the anode [5–7]. Our results thus
indicate that quantum recoil should be taken into ac-
count when describing memristive nanodevices and could
potentially be used to achieve better retention character-
istics of their quantized-conductance states.
2. The model. Similarly to earlier studies [12, 13]

of current-induced forces, we use a semiclassical, Born–
Oppenheimer (adiabatic) description of the nanocon-
striction supporting a quantum current: the positions
of the ions are treated classically, while the conduction
electrons are described within the framework of nonequi-
librium Green’s functions (NEGFs) applied to the tight-
binding model [17]. Namely, the Hamiltonian of the sys-
tem reads:

Ĥ = Ĥ(el) +

N
∑

i=1

P2
i

2Mi
+ U(X), (1)

Ĥ(el) =
∑

σ

∫

ψ̂†
σ(x)

[

−~
2∇2

2m
+ u(x;X)

]

ψ̂σ(x)d
3x

=
∑

i,j,σ

tij(X)ĉ†iσ ĉjσ, (2)

where ~ and m are the Planck constant and the elec-
tron mass, X = (X1, . . . ,XN ) and Pi = MiẊi are the
coordinates and the momenta of the ions, respectively,
U(X) is the “bare” ion-ion potential, and u(x;X) is the
effective (Kohn–Sham) potential. For simplicity, we as-
sume one orbital per atom, so that the electron field op-
erator with spin projection σ = ±1/2 is expanded as

ψ̂σ(x) ≈ ∑

i ĉiσei(x − Xi) over an atomic-orbital ba-
sis set {ei(x)}, with the coefficients ĉiσ being the elec-
tron annihilation operators. The transfer integrals and
on-site energies for these orbitals form the tij matrix.
The Ehrenfest equations for the atomic coordinates give

Ṗi ≈ −∇iU(X) + F
(el)
i (X), where the force acting on

atom i due to electrons equals:

F
(el)
i = −

∑

σ

∫

∇iu(x;X) · 〈ψ̂†
σ(x)ψ̂σ(x)〉d3x

≈
∑

j,k,σ

f ijk〈ĉ†jσ ĉkσ〉, ∇i ≡ ∂/∂Xi, (3)

with the coefficients f ijk = −
∫

e∗j (x)∇iu(x;X)ek(x)d
3x.

Note that the total forces acting between the atoms con-
tain the term coming from conduction electrons both in

the presence and in the absence of the current through
the system. The coefficients f ijk(X), albeit not express-

ible in terms of tij(X), can be estimated under reason-
able assumptions. Namely, let us assume that (i) the
Kohn–Sham potential can be represented as a sum of
even contributions ui(x − Xi) from individual atoms,
(ii) the basis orbitals, in turn, possess a definite parity,
and (iii) ui decays with a characteristic spatial scale 1/ζ
between atom i and its neighbors. Then ∇iu(x;X) ∼
ζui(x − Xi) · x−Xi

|x−Xi|
, and f iii vanishes identically due

to parity. The nonnegligible coefficients that remain
are f ijj = −∇itjj(X) ∼ f iij = f i∗ji ∼ −ζnijtij , where

nij ≡ Xj−Xi

|Xj−Xi|
, for the nearest neighbors j of site i (de-

noted below as j ∈ NN(i)). The ζ parameter is naturally
expected to be around the inverse atomic radius. The
resulting rough estimation of the force thus reads:

F
(el)
i ∼ −ζ

∑

j∈NN(i);σ

nijtij〈ĉ†jσ ĉjσ + ĉ†iσ ĉjσ + ĉ†jσ ĉiσ〉. (4)

The expectation values in Eqs. (3), (4) are taken over
a nonequilibrium many-body state describing a current
of conduction electrons. In order to describe it us-
ing NEGFs, we introduce a customary partition of the
atomic sites into two “leads” L, R and the filament F
connecting them:

Ĥ(el) =
∑

S=L,R,F

ĉ†SHS ĉS +
∑

S=L,R

ĉ†SVS ĉF, (5)

so that ĉL,R,F denote columns with all annihilation oper-
ators in the leads or the filament, HL,R,F are the Hamilto-
nian matrices of these three subsystems, and VL,R couple
the filament to the two leads. The retarded NEGF of the
filament is introduced in a standard way,

GF(E) = (E −HF − ΣL(E)− ΣR(E) + iη)−1, (6)

where the self-energies ΣL,R = V †
L,RgL,RVL,R stem from

isolated-lead Green’s functions gL,R(E) = (E − HL,R +
iη)−1, and η → +0. The transmission probability in the
form of Caroli is [18]:

T (E) = tr{G†
F(E)ΓL(E)GF(E)ΓR(E)}, (7)

with the broadening operators ΓL,R = i(ΣL,R − Σ†
L,R) =

2πV †
L,RρL,RVL,R, where ρL,R(E) are the spectral func-

tions of the isolated leads.
Now, to find the expectation value in Eq. (3), we

introduce “incident” wave functions ϕ
(n)
L,R in the iso-

lated left or right leads, with energies En, so that
the scattering state ψ(n) of the whole system is given
by NEGFs: e.g., for the waves coming from the left

lead, ψ(n) ≡
(

ψ
(n)
F , ψ

(n)
L , ψ

(n)
R

)

=
(

GFV
†
Lϕ

(n)
L , (1 +

gLVLGFV
†
L )ϕ

(n)
L , gRVRGFV

†
Lϕ

(n)
L

)

. The rest of the cal-
culation is straightforward and takes its simplest form if
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both atoms belong to the filament, j, k ∈ F:

〈ĉ†jσ ĉkσ〉 =
∑

S=L,R;n

f(En − µS)ψ
(n)
kσ ψ

(n)∗
jσ

=
∑

S=L,R;n

∫

f(E − µS)dE
[

GF(E)V †
S (E)

·{ϕ(n)
S ⊗ϕ(n)†

S δ(E − En)}VS(E)G†
F(E)

]

kj
,(8)

where f(E − µ) is the Fermi–Dirac distribution in the
lead with chemical potential µ. Observing that the term
in braces gives nothing but the spectral function ρS(E),
we readily yield:

〈ĉ†jσ ĉkσ〉 =
∑

S=L,R

∫

f(E − µS)dE

2π

[

GFΓSG
†
F(E)

]

kj
. (9)

Used together with expression (3), this yields the
electron-induced, “recoil” force:

F
(el)
i (V ) =

∑

j,k

f ijk

∑

S=L,R

∫ µS

E0

dE

π

[

GFΓSG
†
F(E)

]

kj
, (10)

where µL = EF − (1 − β)e0V and µR = EF + βe0V
are the chemical potentials of the leads, V is the applied
bias, E0 and EF are the conduction band bottom and
the Fermi level, respectively. The β parameter controls
a possible asymmetric voltage drop in the leads attached
to the constriction [7]; in what follows, we will assume
the symmetric case β = 1/2 unless otherwise specified.
Note that the energy integral in Eq. (10) extends to the
whole conduction band, unlike the case of the Landauer–
Büttiker formula for the conductance [14, 15]:

G =
G0

e0V

∫ µR

µL

T (E)dE. (11)

However, as we noted above, the zero-current interatomic
interaction (e.g., the force field used in MD simulations)
should include both the bare term −∇iU and the one
given by Eq. (10) integrated over [E0, EF]. Therefore,

the extra, “renormalized” force F
(el)
i (V ) − F

(el)
i (0) act-

ing on the atoms at a nonzero bias originates from the
electronic states with E ∈ [µL, µR], similarly to the Lan-
dauer formula.
It should also be noted that the mere momentum

conservation law (which can be derived from the field-
theoretic expression (3)) gives the total force acting on
the constriction aligned with a certain axis z:

F (el)
z ≡

∑

i

F
(el)
i,z =

2

π

∑

S=L,R

∫ µS

E0

dE ẑS

×
∑

n: kS
n(E)∈R

(1− Tn(E))kSn (E), (12)

with the sum running through open channels in the leads
with directions ẑL,R = ∓1, wave numbers kL,Rn (E), and

transmittances Tn(E). This force vanishes for a perfectly
ballistic conductance (Tn = 1); moreover, for identical
leads, the integral cancels out except the [µL, µR] seg-
ment, analogously to the Landauer formula:

F (el)
z =

2

π

∫ µR

µL

dE
∑

n: kR
n (E)∈R

(1− Tn(E))kRn (E). (13)

For a single open channel at the Fermi surface and a

small bias, F
(el)
z ≈ 2

πe0V kF(1 − G/G0), where kF is the
Fermi momentum, which suggests that forces measured
in tenths of eV/Å can act on the thinnest filaments with
their transmittances not close to unity.
Intuitively, it appears that similarly to the total

force (13), the recoil forces (10) acting on individual
atoms should also be suppressed in the ballistic regime
with the transmittance T (E) close to an integer, which,
according to Eq. (11), is characterized with a quantized
conductance. To test this physical intuition, below we
consider an analytically solvable case of a 1D chain of
atoms, followed by an MD simulation of a nanofilament
with realistic interatomic interactions and the quantum
recoil on top of them. While the former system is meant
to serve as an idealized “toy model”, letting us estimate
the magnitude of the forces, their dependence on the bias,
and correlation with the transmittance, the latter sim-
ulation will give a definitive answer on how the recoil
forces can affect the evolution of a conducting filament
and drive a resistive switching in a memristor.
3. A quantum point contact in a 1D atomic

chain. Let us number the atoms of such a chain,
schematically shown in Fig. 1(b), with j = ±1,±2, . . .
(right/left leads, respectively) and j = 0 (the single cen-
tral atom comprising the “filament”), so that at zero
bias, the equilibrium positions of the atoms are pro-
portional to the lattice parameter a, Xj = jaez, along
the z axis. The nearest-neighbor transfer integrals in-
volving the central atom are t0,±1 = vR,L ∈ R, while
all the other tj,j±1 = t < 0; let us also take the on-
site energies tjj = ǫδj,0. As mentioned, within such a
toy model, we are interested in estimating the electron-
induced force acting on the central atom, treating all
the other, lead atoms as fixed, and the electron trans-
mittance of the chain. Now, working within the NEGF
formalism described above, it is straightforward to find

the “incident-wave” states, ϕ
(k)
L,R;j =

√

2a/π sin jka,

Ek = 2t cos ka, 0 < k < π/a, and the self-energies

ΣL,R(E) = v2L,R
∫ π/a

0 dk φ
(k)
R;1φ

(k)∗
R;1 /(E − Ek + iη) =

(v2L,R/2t
2)(E − i

√
4t2 − E2). After that, the filament

Green’s function (a 1 × 1 matrix in our case) reads
GF(E) = (E− ǫ−ΣL−ΣR+iη)−1, together with Eq. (7)
giving a closed-form expression for the transmittance:

T (E) =

[

((E − ǫ)t2/vLvR − χE)2

4t2 − E2
+ χ2

]−1

, (14)

where χ ≡ (v2L + v2R)/2vLvR. The conductance at small
biases, i.e., near the Fermi surface E ≈ EF = 0, is G =
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G0T (EF) = G0/(ǫ
2t2/4v2Lv

2
R+χ2). Careful evaluation of

the total force acting on the central atom (j = 0) gives
an expression:

F
(el)
0,z (V ) ≈ −2ζ

∫ 5
∑

p=−1

CpΦ
(p)(E)dE, (15)

Φ(p) ≡ (vpRf(E − µR)− vpLf(E − µL))×
− Im g1,1R (E)

π
,

C−1 = −v3Lv3RC5, C0 = −v2Lv2REC5, C4 = EC5,

C1 = 1, C2 = 2ReGF, C3 = 2Re(g1,1R GF),

C5 = |GF|2/t2,

where g1,1R (E) = (E − i
√
4t2 − E2)/2t2 and the approx-

imation (4) is used. One immediately observes that at
zero bias, the force contains a prefactor of vR − vL com-
ing from Φ(p) and thus vanishes for a symmetric chain,
vL,R = t. Below we quote the leading order of the zero-
bias force in vR − vL → 0 (the on-site energy ǫ does not
contribute within the linear order):

F
(el)
0,z (0) ≈ 2ζ(vL − vR)

πt2

∫ EF

E0

E2 + 2Et− t2√
4t2 − E2

dE

= (1 + 8/π)ζ(vL − vR), (16)

where we have made use of the fact that for our chain
at half-filling, E0 = 2t < 0 and EF = 0. At a finite
but small bias, assuming that vL,R = (1 ± γ)t, γ → 0
(which could be a result, e.g., of a deviation of the central
atom from the origin along the z axis), one can find the
“renormalized” force:

F
(el)
0,z (V )−F (el)

0,z (0) ≈ ζe0V

πt

[(

β− 1

2

)

(vL−vR)−ǫ
]

. (17)

In fact, it is the reflection symmetry mapping the single-

atom “filament” onto itself and resulting in F
(el)
0,z →

−F (el)
0,z , V → −V , β → 1−β, vL,R → vR,L, which forbids

the contribution proportional to V (vL − vR) for a sym-
metric voltage drop (β = 1/2). In the next section, we
will see that for larger filaments with their different ends
coupled to different leads, this cancelation does not oc-
cur, leading to pronounced finite-bias recoil effects even
for symmetric geometries. An estimation with the inter-
atomic distance a ∼ 2.5 Å, ζ ∼ 1/a, V ∼ 1 V, t ∼ −2 eV,
and vL − vR, ǫ ∼ 0.5 eV gives the zero-bias force of
about 0.7 eV/Å and the finite-bias contributions around
0.02–0.03 eV/Å. While the latter figure is quite small,
the former one is considerably large at the scale of inter-
atomic interactions and agrees with our above expecta-
tions of the total recoil force (13).
It is also interesting to note the effect of the applied

bias on the stability of the position Z0 of the central
atom. Indeed, assuming that the transfer integrals in-
volving this atom are vL,R ∼ te∓ζZ0 and ǫ = 0, one
has the equilibrium position Z0 = 0 with both the elec-

tronic force F
(el)
0,z (V ) and the ionic contribution−∂U/∂Z0

vanishing (due to vL = vR and the symmetry, respec-
tively). If the central atom infinitesimally deviates from
Z0 = 0, the total force acting on it becomes F0,z(V ;Z0) ≈
−2ζ2tZ0

[

1 + 8/π + (β − 1/2)e0V/πt
]

− (∂2U/∂Z2
0)Z0.

Now, taking the ion-ion term in the form of a screened
Coulomb interaction with the nearest neighbors, U =
q2eff

(

|Z0+a|−1+ |Z0−a|−1
)

+(terms independent of Z0),
where qeff is the screened ion charge, we arrive at the
following hessian:

∂F0,z(V ;Z0)

∂Z0
= −4q2eff

a3
− 2ζ2t

[

1 +
8

π
+

(β − 1/2)e0V

πt

]

.

(18)
While we assume that ∂F0,z/∂Z0 < 0 at zero bias to en-
sure the stability of the chain before applying the voltage,
the latter can make it unstable if sgnV = sgn(1/2 − β),
above the critical value:

|V | > Vcrit =
π|t|

e0|1/2− β|

[

2q2eff
ζ2a3|t| − 1− 8/π

]

. (19)

In particular, estimations show that the destabilizing
zero-bias term in brackets 1 + 8/π ≈ 3.5 can well com-
pete with the stabilizing Coulomb one 2q2eff/ζ

2a3|t| ≈
5.7(qeff/e0)

2 for partially screened charges. For exam-
ple, for qeff = 0.8e0 and β = 0, application of a voltage
above Vcrit ≈ 1.7 V results in a localized counterpart of
the Peierls instability affecting the central atom’s posi-
tion [19]. In fact, this voltage-induced instability could
become even more pronounced for more complex filament
geometries, in particular, not exhibiting a reflection sym-
metry.
To complement the discussed analytical estimations,

Fig. 1(a) demonstrates the total recoil force in a chain
with ǫ = 0 versus the conductance (i.e., transmittance),
while Fig. 1(b) resolves the force and the charges at differ-
ent atoms around the quantum point contact. Note that
according to Eq. (3), the recoil forces arise from interac-
tions of the ions with Friedel oscillations of the electron
density [20], thus, these forces should decay into the bulk
together with the density oscillations. The amplitude of
the forces, as we observe in Fig. 1(b), is large enough to
perturb the geometry of the contact and either push it to-
ward a configuration with a transmittance close to unity
(when the recoil is negligible), or to facilitate ion migra-
tion. In this regard, it is worth noting that even for a
constriction ∼ 10 Å (four atoms) long, the conventional,
electrostatic force driving ion migration in memrsitors
should roughly be ∼ 0.1 eV/Å at the voltage of 1 V—
compared with ∼ 1 eV/Å in Fig. 1(b)— which highlights
the potentially important role of the recoil forces in the
evolution of thinnest conductive filaments in memristive
devices. Note in this connection that, although we have
mentioned above that the recoil force should be renor-
malized in some way to avoid double counting upon its
addition to the “bare”, classical ion-ion interaction U(X),
the oscillations in Fig. 1(b) reflect the quantum nature of
the force and cannot be renormalized out after subtrac-
tion of the interference-free, classical term. Let us now
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(a) (b)

L RF

FIG. 1: (a) Conductance and total recoil force acting on a 1D atomic chain with a point contact with vL,R = (1 ± γ)t at a
bias V = 1 V; (b) Forces acting on individual atoms and their partial charges in the same chain at V = 0 and 1 V (solid and
dashed lines, respectively), for γ = 0.4 corresponding to transmittance T (EF) ≈ 0.5. In both panels, t = −1.8 eV, ǫ = 0, the
interatomic distance a = 2.5 Å, and ζ = 1/a. Note also that at zero bias, the total force in panel (a) vanishes.

switch to a more realistic numerical simulation of the
effect of the recoil forces, to complement the outcomes
of the present paragraph (in particular, to observe the
renormalized recoil forces exceeding 0.1 eV/Å).

4. Simulation of a Cu filament with realistic

interatomic forces. Of course, the filaments actually
forming in memristors are neither one atom wide, as in
Fig. 1(a), nor centrosymmetric: they result from stochas-
tic ion migration, e.g., during the so-called electroforming
of the memristor, which precedes its normal operation [5].
Therefore, the effect of the recoil forces on such, general
filaments at room temperature may be beyond the con-
clusions drawn from the above 1D toy model at T = 0.
To simulate the dynamics and study the recoil-driven
ion migration along such filaments, we developed a cus-
tom MD code implementing the embedded-atom model
(EAM) of the interatomic Cu-Cu forces [21] and used a
pre-generated typical initial geometry of a conductive fil-
ament between two ideal fcc electrodes [Fig. 2(a)], further
warmed up to room temperature to obtain a more repre-
sentative configuration. Following the adiabatic approx-
imation, the recoil forces were calculated for instanta-
neous ion positions using Eq. (10) and then renormalized
by subtracting their zero-bias values. Approximation (4)
was used for the force coefficients f ijk with ζ = 1/a,

where a = 2.54 Å is the nearest-neighbor distance in the
bulk fcc copper. When parameterizing the tight-binding
model (2), the differences between the on-site energies
of the atoms were neglected, while the transfer integrals
were evaluated as tij = −1.8 eV × e−ζ|Xi−Xj |, approx-
imating the corresponding DFT results for 4s states in
Cu dimers. As for the Green’s functions gL,R of the semi-
infinite leads, explicit Fourier-series expressions in the
nearest-neighbor approximation were used for them, al-
lowing one to avoid known poor conditioning issues [22].
Following a typical MD simulation methodology, we first
minimized the energy of the system at absolute zero, then
warmed it up to T = 300 K, and finally ran a 150 ps

production MD, using the Langevin thermostat. Being
quite time-consuming, evaluation of the recoil forces was
done each 0.1 ps of the simulation, while the Langevin
equation was integrated with a 1 fs timestep.

The recoil forces calculated for the initial geometry
[Fig. 2(a)] exhibit a strong asymmetry, despite the atomic
positions for this configuration were intentionally chosen
at the sites of an ideal fcc crystal. The asymmetry is
caused by the bias V = +1 V applied to the anode (the
right electrode in the figure): in agreement with Eq. (3),
the forces point toward the cathode, which has a higher
electron density due to the excess electron waves arriving
there from the lead. The forces are measured in several
tenths of eV/Å, as in the case of the 1D atomic chain.
As finite temperature is switched on, the conductance,
initially being very close to 3G0, develops fluctuations
around its quasisteady state and further features a sharp
resistive switching around t = 110 ps [Fig. 2(b)]. Dur-
ing all this time, the total recoil force remains directed
toward the cathode, facilitating ion migration in this di-
rection; in agreement with our above analysis, the force
drops down when new conduction channels open. The
result of the ion migration is seen in the initial and the
final states of the filament presented in Fig. 2(b): a whole
atomic layer near the anode gets rarified, with the atoms
adding to the central part of the filament and thus en-
hancing the overall conductance. Note that, though the
migration has the same direction as that of Cu+ ions
driven by the electric field, the latter is absent in our
simulations, and the ion transport occurs solely due to
momentum transfer from conduction electrons we (per-
haps somewhat misleadingly) refer to as the “recoil” here.
Thus, we conclude that a specific type of ion electromi-
gration occurring due to a nonequilibrium quantum cur-
rent of charge carriers can drive resistive switching in the
atomic-scale-filaments regime.

5. Discussion. Finally, a couple of words should
be said on the applicability of the approximations used
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FIG. 2: Effect of the electron recoil forces on the statics and
dynamics of the Cu filament: (a) a pre-generated symmetric
filament with a pure fcc geometry and the forces acting on its
atoms at V = 1 V; (b) recoil and total (recoil+EAM) forces
acting on the filament (above), and its conductance (below)
during the filament evolution at T = 300 K. The arrow on
the left in panel (a) shows the scale corresponding to a force
1 eV/Å; the voltage drop is symmetric (β = 1/2).

above. First, the tight-binding model is a useful, eas-
ily parameterizable framework, but is more suitable for
describing semiconductors, rather than metals. At the
same time, in atomic-thickness filaments, the screening
effect may be weaker than that in the bulk metal, with
the real physics lying between the tight-binding model
and the free-electron one considered recently in Ref. [11].
Second, in the context of these two models, a nontrivial
thing to be noted regards the contributions of individual
atoms to the total Kohn–Sham potential u(x;X): the
additive representation of the latter used in the present
work clearly deserves further study and generalization.
Third, in the above, we treated electron-current-induced
forces in the mean-field fashion: this approximation rests
on the fact that at the voltage of 1 V, around 5 × 1014

electrons per second pass through a filament with con-
ductance G0, so that the time it takes a copper atom
to shift by 0.1 Å is enough for around 15, i.e., quite a

lot of electrons to pass through the filament. Finally, for
transition metals, including copper, localized d orbitals
are important, so that to achieve a better numerical ac-
curacy, a multiscale ab initio+MD methodology appears
more appropriate. For these further steps, however, the
calculations within our simplified model may serve as a
proof-of-principle study.

Last but not least, we would like to outline the novelty
of the presented study. The main result is the quan-
tum recoil-driven resistive switching mechanism demon-
strated above, which works independently of the conven-
tional ion migration in the electrostatic field. Namely,
the forces acting on the ions and mediated by electrons
get imbalanced due to the difference in the chemical po-
tentials of the two leads, providing an additional driving
force for ion migration. Note that unlike the continuous-
medium approach applied in Ref. [11] to atomic-thickness
filaments, the use of the more realistic atomistic poten-
tials does not lead to the transversal capillary-bridge in-
stability of the filament due to surface tension forces [23];
instead, the ion migration proceeds along the filament.
Clearly, further simulations with larger and/or asym-
metric filaments could reveal more interesting results,
however, we leave them beyond the present work be-
cause of their higher computational demand. Also,
though the very tools we have used for describing the
quantum recoil forces—the NEGF formalism and the
tight-binding model—are quite conventional and well-
established [12, 13, 17, 18], the forces are, to the best
of our knowledge, included in a dynamical description of
the conducting filament for the first time.

6. Conclusion. To summarize, we have studied the
effect of the “recoil” forces between the conduction elec-
trons and the ions comprising a conductive filament on
the geometry of the latter. As both analytical estima-
tions and the MD simulation have revealed, the effect of
the recoil should be quite pronounced for conductive fil-
aments several atoms wide, like those formed in memris-
tors exhibiting the conductance quantization effect. Un-
like the classical volume and surface forces acting on the
filament, the quantum recoil is intrinsically related to
the transmittance and additionally destabilizes the fila-
ments with the non-integer conductance. Our study thus
provides a framework and highlights the importance of
taking into account the charge-carrier recoil in the ratio-
nal design of current and next generations of memristive
nanodevices.
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