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Abstract 

Recent advancement in laser technology has opened the path toward the manipulation of 

functionalities in quantum materials by intense coherent light. Here, we study three-dimensional 

(3D) Dirac electrons driven by circularly polarized light (CPL), when the photon energy lies within 

the Dirac bands. As an experimental realization of this setup, we irradiate a thin film sample of 

elemental bismuth, which is a well-known semimetal hosting 3D Dirac electrons, with mid-infrared 

CPL. We successfully observe the emergence of the anomalous Hall effect (AHE) via terahertz 

Faraday rotation that is both pump-helicity-dependent and instantaneous. We compare our 

experimental findings with the results of Floquet theory, which is a powerful framework for 

analyzing the electronic band structure driven by coherent light. The contribution from the band 

structures near the one-photon resonant positions to the AHE shows a field-strength dependence 

consistent with our experimental results. The effective Hamiltonian on which we base our model 

calculations also implies that a pair of “double Weyl points” emerge due to the CPL-induced 

hybridization between the occupied and unoccupied 3D Dirac bands. Our findings shed light on 

ultrafast control of material properties in nonlinear topological optics.  

 

Main text 

I. Introduction 

Optical manipulation of quantum materials by intense coherent laser light has gained growing 

interest as a unique tool to realize new quantum phases with no equilibrium counterpart. Of various 

protocols, Floquet engineering, which views light as a time-periodic driving field, has developed as a 

powerful scheme to directly modulate the Hamiltonian determining the electron/spin states within 

solid state systems as well as atomic systems [1,2]. Floquet theory claims that when a quantum 

system is exposed to time-periodic driving, new sets of eigenstates emerge that are separated from 

each other by integer multiples of ℏΩ, where Ω is the driving angular frequency. These are the 

so-called Floquet-Bloch bands and have been observed for topological insulator surface states [3,4].  

Floquet engineering is unique in that it provides a handle to tune the Hamiltonian itself, 

and therefore offers a way to control the topological properties of quantum systems, as is evident in 



the concept of “Floquet topological insulators” [5]. One example of this is two-dimensional (2D) 

honeycomb lattice systems, which are known to host Dirac fermions, under circular driving. Floquet 

analysis shows that circular driving opens a gap in the otherwise gapless linear dispersion, which is 

equivalent to the results of the Haldane model [6]. The gap opening is accompanied by the retrieval 

of a non-zero Chern number (the topological invariant), meaning the system has become 

topologically nontrivial [7–9]. This concept was first experimentally demonstrated in cold atom 

systems under circular lattice modulation [10], and soon after in graphene under circularly polarized 

light (CPL) irradiation [11]. In both cases, the induced topological state was determined through its 

nonzero Berry curvature (BC), which in the latter case appears in the anomalous Hall effect (AHE). 

This is because the dc-anomalous Hall conductivity (AHC) is closely related to the BC as [7,8,12]  

𝜎𝑥𝑦 =
𝑒2

ℏ
∫

d𝑑𝐩

(2𝜋)𝑑
∑ℱ𝑧

𝑛(𝐩) × 𝑤𝑛(𝐩)

𝑛

, (1) 

where 𝜎𝑥𝑦, 𝑑, ℱ𝑧
𝑛, and 𝑤𝑛 are the AHC, dimension (𝑑 = 2 for graphene), BC’s z-component for 

the n-th band, and the occupancy of the n-th band, respectively. 

 In the case of 2D systems, the lack of band dispersion along the light propagation direction 

caused one to only see a gap opening at the Dirac point. This is not the case for three-dimensional 

(3D) Dirac materials, which result in a completely different landscape. The CPL-driven state of 3D 

Dirac electrons has been extensively studied theoretically, especially under the assumption that the 

driving photon energy is larger than the system’s energy scale (the “high-frequency limit”), due to its 

simplicity. Within this regime, the CPL induces a chiral gauge field that splits the Dirac cone into 

two Weyl cones aligned in the light-propagation direction, and the nodes of such cones are called 

“Floquet Weyl points (FWPs).” [13–15]. The CPL-induced chiral gauge field was recently 

demonstrated experimentally in the massive 3D Dirac phase of Co3Sn2S2 [16]. On the contrary, the 

effects of resonant driving, i.e., the case where the photon energy lies within the 3D Dirac bands as 

depicted in Fig.1 (a), is much less investigated despite its unique physics. The emergent topological 

nodes are not limited to the FWPs, nor are the Chern numbers associated with them limited to ±1, 

and different nodes can even show annihilation with each other depending on the driving 

strength [17,18]. Topological nodes can also be seen in regions far from the Fermi energy, especially 

where the interband transition is resonant with the driving frequency [19,20]. However, the 

experimental realization of such topological nodes as well as their effect on quantum geometric 

responses such as the AHE are highly-nontrivial and unexplored problems.  

 In this letter, we aim to determine whether or not these topological nodes are achievable in 

realistic materials/driving schemes and to investigate how they affect the AHE. As a realization of 

3D Dirac material, we focus on the elemental bismuth, which is a group V semimetal. The band 

structure of bismuth based on tight-binding calculations [21] and its Brillouin zone is shown in Fig.1 

(b) and (c). The Fermi surface consists of one hole pocket at the T-point and three electron pockets at 



the L-points. The electrons are well-described by a massive 3D Dirac Hamiltonian, and its Dirac-like 

nature is crucial in understanding the colossal diamagnetism and spin Hall effect, two of the many 

exotic properties the semimetal is known for [22–25].  

 

II. Method 

To measure the AHE induced by CPL-driving in 3D Dirac materials, we prepared a thin film sample 

of bismuth and conducted mid-infrared (MIR)-pump terahertz (THz) Faraday-probe measurements. 

A schematic of the experimental setup is shown in Fig.2 (a) (See also appendix A for details). The 

sample we used was a 30-nm-thick thin film deposited onto a sapphire substrate via radio frequency 

magnetron sputtering. X-ray diffraction measurements against the sample show that the thin film is 

polycrystalline with grains oriented along the (003) and (012) directions. The sample was kept in a 

liquid helium cryostat at 11 K. The pump photon energy was 0.31 eV, which is resonant with the 

electron-like Dirac bands at the L-points but is smaller than the band gap of the hole-like T-point. 

The polarization of the pump pulse was controlled by a liquid crystal retarder so that it is either left 

or right CPL. The THz Faraday spectroscopy is an efficient probe for the low-frequency responses, 

which gives us insight into the dc-AHC while also being time-resolved. The polarization of the 

probe THz pulse is adjusted by a wire grid polarizer before being focused onto the sample (the x-axis 

is defined by this polarization). We measure both the 𝐸𝑥- and 𝐸𝑦-components of the transmitted 

THz pulse, and combine the two measurements to obtain the Faraday rotation, which will only be 

finite under finite AHC. The non-contact nature of this all-optical measurement scheme allows us to 

measure the CPL-induced AHC while avoiding unintentional symmetry-breaking due to electric 

contacts. Note that the spot size of the pump pulse (0.23 mm×0.21 mm, 1/e radius in terms of the 

intensity) was comparable to that of the probe pulse (0.24 mm×0.31 mm for 1.0 THz, 1/e radius in 

terms of the electric-field). This results in better pump-probe spatial overlap for higher frequency 

components of the probe pulse.  

 

III. Results 

In Fig.2 (b), we show the dynamics of transient Faraday rotation (𝜃F
peak

). This quantity is defined as 

𝜃F
peak

= (𝐸𝑦,L
peak

− 𝐸𝑦,R
peak

) (𝐸𝑥,L
peak

+ 𝐸𝑥,R
peak

)⁄ , where L/R specifies the pump helicity and “peak” 

represents the fact that it is measured at the peak position of the probe THz pulse. Since the 

𝐸𝑥-component of the transmitted THz pulse do not show pump-helicity dependence (see Appendix 

B), 𝜃F
peak

 provides a measure of the pump-helicity dependent THz Faraday rotation. The top panel 

in Fig.2 (b) shows the envelope of the pump pulse intensity (solid line) and the electric field (dashed 

line), respectively. The full width at half maximum (FWHM) of the CPL-induced Faraday rotation is 

~300 fs, which is longer than that of the envelope of the pump pulse intensity (~220 fs) and is 



comparable to that of the envelope of the electric field (~310 fs). This is due to the sublinear 

intensity dependence of the CPL-induced AHE, which we will address later. The 

pump-helicity-dependent Faraday rotation is both finite and instantaneous to the pump pulse, which 

is a feature expected from Floquet-mediated AHE.  

 To further understand the instantaneous Faraday rotation, we measured the Faraday 

rotation spectrum at its peak. The complex Faraday rotation Θ̃F(𝜔) is defined by 

Θ̃F(𝜔) = 𝜃F(𝜔) + i𝜂F(𝜔) =
�̃�𝑦(𝜔)

�̃�𝑥(𝜔)
, (2) 

where 𝜔 is the angular frequency of the probe and �̃�𝑥(𝜔), �̃�𝑦(𝜔) are the Fourier components of 

the probe THz pulse polarized in the x, y-direction, respectively. Since we are interested in 

pump-helicity-dependent Faraday rotation, we take �̃�𝑦(𝜔) = [�̃�𝑦,𝐿(𝜔) − �̃�𝑦,𝑅(𝜔)] 2⁄  and 

�̃�𝑥(𝜔) = [�̃�𝑥,𝐿(𝜔) + �̃�𝑥,𝑅(𝜔)] 2⁄ . 𝜃F(𝜔)  and 𝜂F(𝜔)  are the real and imaginary parts of the 

complex Faraday rotation, which represent the polarization rotation and ellipticity of the transmitted 

probe THz pulse, respectively. The results are displayed in Fig.3 (a) and (b).  

 From the Faraday rotation spectrum, one can further obtain the AHC spectrum 𝜎𝑥𝑦(𝜔). 

Assuming that the sample film is optically thin, the two quantities are related to each other by [26] 

Θ̃F(𝜔) =
𝑍0𝜎𝑥𝑦(𝜔)𝑑film

1 + 𝑛subst. + 𝑍0𝜎𝑥𝑥(𝜔)𝑑film
, (3) 

where 𝑍0, 𝑛subst., 𝜎𝑥𝑥(𝜔), and 𝑑film is the vacuum impedance, the substrate’s refractive index, the 

longitudinal optical conductivity, and the film thickness, respectively. As shown in Fig.3 (c) and (d), 

the AHC is dominated by the real part and the imaginary part is almost negligible. The spectra of 

Re[𝜎𝑥𝑦] show a slight increase along with the probe photon energy, which is attributed to the 

improving pump-probe spatial overlap toward higher probe photon energies. Otherwise the spectra 

of Re[𝜎𝑥𝑦] is mostly featureless and flat (see Appendix E also). Therefore, we take the average of 

Re[𝜎𝑥𝑦] between 2.9 – 9.6 meV as a measure of the CPL-induced AHC.  

 We plot the AHC as a function of the pump pulse’s peak electric field in the sample (𝐸MIR) 

in Fig.3 (e). Surprisingly, the experimental data show a linear field-strength dependence for the AHC. 

This cannot be explained by contributions from FWPs, which should yield 𝜎𝑥𝑦 ∝ 𝐸MIR
2  (see section 

IV for further discussion), thus raising the demand to consider the contribution from other 

topological nodes.  

 

IV. Discussion 

1. Effective model for the Floquet states of 3D Dirac electrons 

To discuss the role of topological nodes other than the FWPs, we first overview the Floquet band 

structure under resonant driving, which is shown in Fig.4 (a) and (b). Here the CPL is assumed to 

propagate along the z-axis. This complicated band structure can be understood as replicas of the 



original Dirac band with the interval of ℏΩ overlaid onto each other, along with gap openings 

where the bands intersect. The colors in Fig.4 (a) and (b) represent the BC’s z-component (ℱ𝑧
𝑛) and 

the occupancy based on what is called the sudden-approximation (𝑤𝑛, this quantity will be discussed 

more in detail in the next section) [8], respectively. One can see that there are two types of nodes in 

the Floquet band structure; the pair of linear dispersions near the Dirac point and the touching near 

𝑣F𝑝𝑧 = ±ℏΩ 2⁄ , i.e., the zone edge of the Floquet bands along the quasi-energy direction. The 

former nodes are the aforementioned FWPs, which carry the Chern number of unity and act as 

sources/sinks of BC. While the FWPs are located at BC hotspots, the latter nodes are also located 

where the BC is concentrated, implying their relevance in the CPL-induced AHC.  

 To gain a clearer picture of these nodes arising from resonances, we use the following 

effective Hamiltonian (see appendix C for derivation)  

𝐻eff
± (𝐤) = −

Ω

2
∓ 𝑘𝑧𝜎𝑧 −

1

𝐴2 + Ω2
(
Ω|𝑘|2 ±𝐴𝑘2

±𝐴𝑘∗2 −Ω|𝑘|2
) , (4) 

where Ω and 𝐴 are the driving angular frequency and the vector potential’s amplitude, respectively 

(𝑘 = 𝑘𝑥 + i𝑘𝑦). We chose the unit system ℏ = 𝑒 = 𝑣F = 1. ± specifies the position of the node 

(𝐻eff
±  describes the node near 𝑝𝑧 = ±ℏΩ 2⁄ ) and the wavevector 𝐤 is measured from it. Note that 

applying this effective Hamiltonian implicitly neglects the mass and anisotropy of the 3D Dirac 

bands, which are both present in bismuth [21,27]. The energy dispersion based on 𝐻eff
+  is displayed 

in Fig.4 (c) and (d), along with the results of Floquet theory. The band structure obtained from the 

effective Hamiltonian shows good agreement with that obtained from Floquet theory, showing both 

linear and quadratic dispersions in the 𝑘𝑧-direction and 𝑘𝑥 , 𝑘𝑦-direction, respectively. This is a 

feature commonly seen at “double Weyl points,” which are topological nodes carrying the Chern 

number of two. These exotic topological nodes are also discussed in non-driven systems [28–31], 

though the concept lacks experimental realization. Figures 4 (e) and (f) show the distribution of BC 

(𝓕) and normalized BC (𝓕 |𝓕|⁄ ) around the node at 𝑝𝑧 = ℏΩ 2⁄ . We can see that the BC shows a 

diverging structure around 𝐤 = 𝟎 , indicating the node is topological. By integrating the 

surface-normal component of the BC over a closed sphere surrounding 𝐤 = 𝟎, we can obtain the 

Chern number, which is indeed ±2. We can therefore say that the nodes due to one-photon 

resonances can be regarded as double Weyl points, and we shall refer to these nodes hereafter as 

“Floquet double Weyl points (FDWPs).” 

 

2. Anomalous Hall effect from Floquet double-Weyl points 

Having established the topological properties of the FDWPs, we proceed in calculating the AHC 

stemming from these nodes. For this, one must calculate the BC and occupancy near the FDWPs. 

The former is obtained straightforwardly [32,33], while the latter requires some assumption, as it 

depends on the interactions present in the system [34,35]. We assumed the CPL shifts the 



Hamiltonian drastically so that the occupancy is determined by the projection from the non-driven 

state (consistent with Fig.4 (b), see Appendix D also). Under this assumption, we numerically 

integrate Eq. (1) to obtain the AHC, which is shown by the red line in Fig.4 (g) (see Appendix E for 

details). Note that the AHC is measured in units of 𝑒2 ℏ𝐿⁄ , where 𝐿 ≡ 𝑣F Ω⁄ ≃ 7.4 × 10−8 cm is 

the unit length of a unit system where we additionally set Ω = 1. The AHC grows linearly with the 

field-strength for weaker driving and saturates toward stronger driving. We show the field-strength 

range corresponding to Fig.3 (e) by the vertical dashed line in Fig.4 (g). In this region, the model 

suggests a linear field-strength dependence, which is consistent with our experimental observations. 

The results of model calculations are also plotted along the experimental results as the red line in 

Fig.3 (e). We can see that the model calculation matches our experimental results not only 

qualitatively but also quantitatively, disagreeing with only a factor of ~0.22, of which origins we 

discuss later. 

 We also compare the contribution from FDWPs with that of FWPs, which are shown by 

the blue lines in Fig.4 (g) (see Appendix F for details). For the FWPs we use two different 

assumptions for the occupancy. One is consistent with the assumption made for FDWPs (denoted as 

SA which stands for “sudden-approximation”, dashed line) and the other is that the Fermi-Dirac 

distribution is formed after the creation of FWPs (denoted as FD which stands for “Fermi-Dirac”, 

solid line). The latter assumption is inconsistent with our calculation for FDWPs, but we have 

included it nonetheless since it is the common assumption utilized in many theoretical 

predictions [36,37]. The results for FWPs depend on the Fermi energy which we have set to be 30 

meV based on the Fermi energy of bismuth [21]. We plot the same results against 𝛽 = 𝐴2 Ω⁄  in the 

inset of Fig.4 (g). 𝛽 is the parameter representing the effect of CPL driving at the FWPs [14,15]. 

The contribution from FWPs is almost negligible for the sudden-approximation while it shows a 

𝛽-linear dependence if the Fermi-Dirac distribution is assumed. In either case, contributions from 

FDWPs are dominant within experimentally achievable field strengths, and neither can explain the 

linear field-strength dependence observed in experiments.  

Strictly speaking, the parameter 𝛽 must exceed the size of the mass term Δ to form 

FWPs in the case of massive 3D Dirac bands (see Appendix F also). For 𝛽 < Δ , the 

doubly-degenerate Dirac bands show splitting without any linear band crossings, while still 

exhibiting finite BC and thus finite AHE. We note that the strongest driving field achieved in our 

experiments yields 𝛽 ≃ 8.9 meV, which is larger than the mass term of bismuth Δ ≃ 7.5 meV [27]. 

Therefore, our results indicate that the FDWPs dominate the AHC, even when the Floquet-Weyl 

semimetal state is achieved.  

 Finally, we discuss possible factors that may cause the discrepancy between experimental 

results and model calculations. These include laser-induced heating, carrier scattering [38] (see 

Appendix E and G also), finite pump pulse width, and spatial pump-probe overlap, which are all 



likely to reduce the measured AHC. We have also neglected the anisotropy and mass of the Dirac 

bands, which may lead to corrections to our model calculations. We also note that we have neglected 

the effect of uneven population formation within the Dirac band induced by the probe THz field, 

which for graphene happens to be comparable to or exceed that of BC in terms of the AHE [39]. The 

AHC induced by this mechanism tends to show an intensity-linear power dependence for weak 

excitation followed by saturation for stronger excitations. The pump-induced carrier density change 

of bismuth also shows both intensity-linear and saturating behaviors in our experimental range (see 

Appendix B also), while the CPL-induced AHE shows a linear field-strength dependence across the 

whole field-strength range investigated in our experiments. We therefore argue that the observed 

CPL-induced AHE is likely to have an origin distinct from population formation within the Dirac 

bands. Further research involving microscopic calculations would give a more comprehensive 

picture of the CPL-induced AHE, which we leave as an open issue for the future.  

 

V. Conclusion 

In conclusion, we conducted MIR-pump THz Faraday-probe measurements of a thin film sample of 

bismuth, a typical 3D Dirac material. We observed THz Faraday signals that are both 

helicity-dependent and instantaneous, which are features expected for Floquet-mediated AHE. The 

power dependence of the AHC along with model calculations suggests that the CPL-induced AHE 

originates from new topological nodes that emerge when the driving frequency lies within the Dirac 

bands, which we call FDWPs based on our analysis of their topological properties. Our results not 

only serve as the first suggestion and the experimental demonstration of FDWPs but can also be 

regarded as the first realization of any sort of double Weyl state in solid-state systems. We emphasize 

that FDWPs are not specific to bismuth, but should be a robust and general feature for all 3D Dirac 

materials whenever they are driven by resonant light. Our results highlight the importance of the 

frequently overlooked topological aspect of Floquet systems and demonstrate the potential of 

Floquet systems as platforms to explore exotic topological phenomena, including that of the 

demonstrated double Weyl state.  
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Appendix A: Experimental details 

Here we give a more detailed explanation of the experimental setup. A schematic of the experimental 



setup is shown in Fig.5.  

We used a Yb: KGW-based regenerative amplifier as our light source (center wavelength: 

1030 nm, pulse energy: 2mJ, repetition rate: 3 kHz, pulse duration: 170 fs). The near-infrared (NIR) 

output pulse was split into three pulses using beam splitters which were used for MIR pulse 

generation, THz pulse generation, and THz pulse detection, respectively.  

 The first pulse was converted into a MIR pulse (center wavelength: 4 μm, pulse energy: 

6.7 μJ) by an optical parametric amplifier. The MIR pulse went through two ZnSe wire grid 

polarizers (WGPs) for pulse power adjustment. The polarization of the MIR pulse was controlled by 

a liquid crystal retarder and the MIR pulse was focused onto the thin film sample by a CaF2 lens. An 

optical chopper was inserted in the path of the MIR pulse to enable differential measurement, which 

enhances the signal-to-noise ratio of the pump-induced signal. The pulse duration of the MIR pulse 

was measured at the sample position by cross-correlation measurements with the NIR pulse using a 

thin GaSe film. The cross-correlation traces are shown in Fig.2 (b), and by deconvoluting the pulse 

width of the NIR pulse, one obtains the pulse width of the MIR pulse as 83 fs. The spot size was also 

measured at the sample position by the knife-edge method, which results were 0.23 mm×0.21 mm 

(1/e radius). The maximum fluence at the sample surface (after the cryostat window) was 1.90 

mJ/cm2.  

The latter two NIR pulses were used for THz pulse generation and detection. The probe 

THz was generated by shining the first NIR pulse onto a 380 μm-thick GaP crystal. The generated 

THz pulse goes through a WGP before being focused onto the sample, which fixes the polarization 

of the incident THz pulse and defines the x-direction necessary for THz Faraday measurements. The 

transmitted THz pulse goes through two additional WGPs before being focused onto another 380 

μm-thick GaP crystal where the electro-optic sampling method was used for THz detection. The 

WGPs inserted on the detection side have two possible configurations, one for measuring the 

x-component of the transmitted THz pulse and the other for measuring the y-component. For the 

former/latter configuration, the first WGP is set so that it transmits THz pulses that are parallel 

with/perpendicular to the incident THz polarization. The second WGP is set at a 45°angle between 

the two configurations of the first WGP. This enables measurements of 𝐸𝑥 and 𝐸𝑦 that are directly 

comparable to each other without any additional corrections due to the polarization dependence of 

the EO-sampling method. The spot size of the THz probe pulse was also measured at the sample 

position using the knife-edge method, which results were 0.24 mm×0.31 mm, 0.19 mm×0.24 mm, 

and 0.14 mm×0.20 mm for 1.0 THz, 1.5 THz, and 2.0 THz, respectively (1/e radius, electric-field). 

Note that this is comparable with that of the pump-pulse, which would result in better spatial 

pump-probe overlap for higher THz probe frequencies.  

 

Appendix B: Pump-induced change in the longitudinal conductivity 



Here we address the CPL-induced change in the longitudinal conductivity, which appears in the 

CPL-induced change of the 𝐸𝑥-component of the transmitted THz pulse. Note that for the results of 

this appendix, we have slightly widened the spot size of the pump pulse (0.52 mm×0.53 mm, 1/e 

radius) to obtain a more meaningful spectrum. The exact results may be slightly affected by this 

condition change, though the overall behavior of the power dependence should not be altered 

significantly.  

 In Fig.6 (a) we display the transient amplitude transmittance measured at the THz peak. 

For this, we show two different quantities, (Δ𝐸𝑥,L
peak

+ Δ𝐸𝑥,R
peak

) 2𝐸𝑥,NP
peak

⁄  and 

(Δ𝐸𝑥,L
peak

− Δ𝐸𝑥,R
peak

) 2𝐸𝑥,NP
peak

⁄ , where Δ𝐸 is the pump-induced change in the transmitted THz pulse 

and “NP” (which stands for “no pump”) is the transmitted THz electric field when the pump pulse is 

absent, respectively. The former/latter quantity represents the pump-helicity independent/dependent 

transmittance change induced by CPL irradiation and is shown in Fig.6 (a) as the red/black line. The 

helicity-dependent transmittance change is almost negligible since bismuth has no intrinsic 

time-reversal symmetry breaking. On the contrary, the helicity-independent transmittance change is 

surprisingly large, approaching almost 30 %.  

 To understand this drastic change in the THz transmittance, we measured the optical 

conductivity spectrum at tpp = 2 ps. The real part of the optical conductivity spectrum is shown in 

Fig.6 (b) by the red dots, along with that obtained without the pump (black circles). For the excited 

state, the data show a reduction in lower probing energies, which is attributed to the imperfect spatial 

overlap between the pump and probe. The MIR pumping drastically increases the optical 

conductivity which indicates efficient carrier population formation. To get a more quantitative 

picture of this, we fit the higher energy region of the optical conductivity spectrum with the Drude 

model  

𝜎𝑥𝑥(𝜔) =
𝜀0𝜔p

2𝜏

1 − i𝜔𝜏
(B. 1) 

where 𝜀0, 𝜔p, 𝜔, 𝜏 is the vacuum permittivity, the plasma frequency, the probe angular frequency, 

and the scattering time, respectively. The fitting results are shown along the experimental data by the 

red and black lines. Since 𝜔p
2 is proportional to the carrier density we plot the pump-induced 

change of 𝜔p
2 in Fig.6 (c) as a function of excitation fluence. The change of 𝜔p

2 and thus the 

change in carrier density shows an intensity-linear power dependence for weaker excitation while 

showing saturation somewhere above 0.2 mJ/cm2. The data shown in Fig.3 (e) represents the AHC 

both above and below the fluence of 0.2 mJ/cm2 (corresponding to ~0.23 MV/cm) and shows a 

consistent electric-field linear behavior in both regimes. The fact that the population formation 

shows both intensity-linear and saturating behaviors while the AHC shows a simple field-linear 



power dependence indicates that the latter has an origin distinct from population effects.  

 

Appendix C: Derivation of effective Hamiltonian 

Here we derive the effective Hamiltonian for the FDWPs that we have used for model calculations. 

We start with the massive 3D Dirac Hamiltonian [14,24] 

ℋ0(𝐩) = 𝛾
0[Δ + 𝑣F

𝑥𝛾𝑥𝑝𝑥 + 𝑣F
𝑦
𝛾𝑦𝑝𝑦 + 𝑣F

𝑧𝛾𝑧𝑝𝑧], (C. 1) 

where 𝐩, Δ, 𝑣F
𝑥,𝑦,𝑧

 and 𝛾0,𝑥,𝑦,𝑧 are the momentum measured from the Dirac point, the mass term, 

the Fermi velocity in the x, y, z-direction, and the gamma matrices, respectively. Though the electron 

pockets of bismuth are highly anisotropic, we approximate all the Fermi velocities with their 

geometric average 𝑣F = (𝑣F
𝑥𝑣F

𝑦
𝑣F
𝑧)
1 3⁄

≃ 3.5 × 105 m/s [40], and adjust our unit system so that 

𝑣F = 1. For the sake of simplicity, we also adjust our unit system so that 𝑒 = ℏ = 1, which is 

consistent with the main text. Applying CPL-driving to this system will turn this Hamiltonian 

time-dependent, which takes the form of  

ℋ(𝐩, 𝑡) = ℋ0[𝐩 + 𝐀(𝑡)] = 𝛾
0[𝛥 + 𝛄 ⋅ 𝐩] + 𝛾0𝛄 ⋅ 𝐀(𝑡), (C. 2) 

where 𝐀(𝑡)  is the time-dependent vector potential. The effect of CPL-driving is taken into 

consideration via the Peierls substitution. For CPL with one helicity, the explicit form of the vector 

potential is given as 𝐀(𝑡) = (𝐴 cosΩ𝑡 𝐴 sinΩ𝑡 0).  

 Floquet formalism requires us to calculate the Fourier transform of the time-dependent 

Hamiltonian, as they are the block matrices with which the Floquet Hamiltonian is constructed. The 

explicit form of this turns out to be  

𝐻𝑛,𝑚 =

{
 
 

 
 
𝛾0[Δ + 𝛄 ⋅ 𝐩] + 𝑛Ω (𝑛 = 𝑚)
1

2
𝐴𝛾0(𝛾𝑥 + i𝛾𝑦) (𝑛 = 𝑚 + 1)

1

2
𝐴𝛾0(𝛾𝑥 − i𝛾𝑦) (𝑛 = 𝑚 − 1)

0 (otherwise)

 . (C. 3) 

The Floquet formalism converts the time-dependent eigenproblem into an infinite-dimension 

time-independent eigenproblem by using a Hamiltonian that is constructed by an infinite number of 

such four-by-four matrices. To focus on the one-photon resonant part of the Floquet Hamiltonian, we 

reduce the Floquet Hamiltonian as follows 

ℋreduc. = (
𝐻0,0 𝐻0,−1
𝐻−1,0 𝐻−1,−1

) . (C. 4) 

This reduced Hamiltonian contains the zero-photon states (𝐻0,0), the one-photon emitted states 

(𝐻−1,−1), and the coupling between such states (𝐻0,−1, 𝐻−1,0). By choosing the Weyl representation 

this can be explicitly written down as  



ℋreduc. = (

−𝐩 ⋅ 𝛔 Δ −𝐴𝜎+ 0
Δ 𝐩 ⋅ 𝛔 0 𝐴𝜎+

−𝐴𝜎− 0 −𝐩 ⋅ 𝛔 − Ω Δ
0 𝐴𝜎− Δ 𝐩 ⋅ 𝛔 − Ω

) , (C. 5) 

where 𝜎± =
1

2
(𝜎𝑥 ± i𝜎𝑦). If one neglects the mass term (Δ → 0), this Hamiltonian can be further 

disentangled into two four-by-four Hamiltonians; one of them being  

ℋ4×4
+ = (

𝑝𝑧 𝑝∗ 0 𝐴
𝑝 −𝑝𝑧 0 0
0 0 𝑝𝑧 − Ω 𝑝∗

𝐴 0 𝑝 −𝑝𝑧 − Ω

) , (C. 6) 

where 𝑝 = 𝑝𝑥 + i𝑝𝑦. The inner portion of ℋ4×4
+  implies that there is some band crossing at 𝑝𝑧 =

Ω 2⁄  (This means we will obtain 𝐻eff
+  as our effective Hamiltonian, see main text for its definition). 

We therefore redefine the wavevector so that is measured from (𝑝𝑥 𝑝𝑦 𝑝𝑧) = (0 0 Ω 2⁄ ). 

This results in  

ℋ4×4
+ = (

𝑘𝑧 + Ω 2⁄ 𝑘∗ 0 𝐴

𝑘 −𝑘𝑧 − Ω 2⁄ 0 0

0 0 𝑘𝑧 − Ω 2⁄ 𝑘∗

𝐴 0 𝑘 −𝑘𝑧 − 3Ω 2⁄

) , (C. 7) 

where 𝐤 is the redefined wavevector and 𝑘 = 𝑘𝑥 + i𝑘𝑦. For 𝐤 = 𝟎, the Hamiltonian gives the 

following eigenenergies and eigenvectors  

𝐸𝑚=1 = −Ω 2⁄ , |𝑚 = 1⟩ = (0 1 0 0)T (C. 8) 

𝐸𝑚=2 = −Ω 2⁄ , |𝑚 = 2⟩ = (0 0 1 0)T (C. 9) 

𝐸𝑙=1 = −Ω 2⁄ + √Ω2 + 𝐴2, |𝑙 = 1⟩ = (cos
𝜃

2
0 0 sin

𝜃

2
)
T

(C. 10) 

𝐸𝑙=2 = −Ω 2⁄ −√Ω2 + 𝐴2, |𝑙 = 2⟩ = (sin
𝜃

2
0 0 −cos

𝜃

2
)
T

. (C. 11) 

The parameter 𝜃 is defined by cos𝜃 =
Ω

√𝐴2+Ω2
. Of the four eigenstates, the ones labeled with m are 

particularly important since they coincide with that of the FDWP when 𝐤 = 𝟎. The other two 

eigenstates labeled with l correspond to the two quasi-energies above and below the FDWP which 

can be seen in Fig.4 (a)(b).  

To construct the effective Hamiltonian, we use the results of perturbation theory, which 

reads  

(𝐻eff)𝑚𝑛(𝑥𝜇) = ⟨𝑚|ℋ4×4|𝑛⟩ + ⟨𝑚|𝜕𝜇ℋ4×4|𝑛⟩𝑥𝜇

+
1

2
∑ (

⟨𝑚|𝜕𝜇ℋ4×4|𝑙⟩⟨𝑙|𝜕𝜈ℋ4×4|𝑛⟩

𝐸𝑚 − 𝐸𝑙
+
⟨𝑚|𝜕𝜈ℋ4×4|𝑙⟩⟨𝑙|𝜕𝜇ℋ4×4|𝑛⟩

𝐸𝑛 − 𝐸𝑙
)

𝑙=1,2

𝑥𝜇𝑥𝜈 , (C. 12)
 

where 𝑥𝜇 is the parameter set used for perturbation expansion. Here, indices m and n are either 1 or 

2, which correspond to either one of the two eigenstates we have previously labeled with m. The sum 

in the last term is only conducted for the two eigenstates which we have previously labeled with l. 



Since we want to expand our Hamiltonian in terms of the wavevector, we choose 𝑥𝜇 to be 𝑘𝑧, 𝑘 or 

𝑘∗. Below we list the matrix elements used to carry out this perturbation expansion.  

⟨𝑚|ℋ4×4|𝑛⟩ = {
−Ω 2⁄  (𝑚 = 𝑛)

0 (𝑚 ≠ 𝑛)
(C. 13) 

⟨𝑚|𝜕𝑘𝑧ℋ4×4|𝑛⟩ = {
−1 (𝑚 = 𝑛 = 1)

1 (𝑚 = 𝑛 = 2)

0 (𝑚 ≠ 𝑛)
(C. 14) 

⟨𝑚|𝜕𝑘ℋ4×4|𝑛⟩ = ⟨𝑚|𝜕𝑘∗ℋ4×4|𝑛⟩ = 0 (C. 15) 

⟨𝑚|𝜕𝑘ℋ4×4|𝑙⟩ = {
0 (𝑚 = 1)

sin(𝜃 2⁄ ) (𝑚 = 2, 𝑙 = 1)

− cos(𝜃 2⁄ ) (𝑚 = 2, 𝑙 = 2)
(C. 16) 

⟨𝑚|𝜕𝑘∗ℋ4×4|𝑙⟩ = {
0 (𝑚 = 2)

cos(𝜃 2⁄ ) (𝑚 = 1, 𝑙 = 1)

sin(𝜃 2⁄ ) (𝑚 = 1, 𝑙 = 2)
(C. 17) 

⟨𝑙|𝜕𝑘ℋ4×4|𝑚⟩ = {
0 (𝑚 = 2)

cos(𝜃 2⁄ ) (𝑚 = 1, 𝑙 = 1)

sin(𝜃 2⁄ ) (𝑚 = 1, 𝑙 = 2)
(C. 18) 

⟨𝑙|𝜕𝑘∗ℋ4×4|𝑚⟩ = {
0 (𝑚 = 1)

sin(𝜃 2⁄ ) (𝑚 = 2, 𝑙 = 1)

− cos(𝜃 2⁄ ) (𝑚 = 2, 𝑙 = 2)
(C. 19) 

By plugging in Eq. (C.13) – (C.19) to Eq. (C.12), one can calculate the effective Hamiltonian which 

is identical to 𝐻eff
+ . If we go back to Eq. (C.5) and take the other four-by-four Hamiltonian:  

ℋ4×4
− = (

−𝑝𝑧 −𝑝∗ 0 −𝐴
−𝑝 𝑝𝑧 0 0
0 0 −𝑝𝑧 − Ω −𝑝∗

−𝐴 0 −𝑝 𝑝𝑧 − Ω

) , (C. 20) 

one can carry out completely parallel calculations to obtain the effective Hamiltonian for the FDWP 

at 𝑝
𝑧
= −Ω 2⁄ , which results are also shown in the main text.  

 Since the effective Hamiltonian is in a two-by-two form, it can be expanded in terms of the 

Pauli matrices. If one expands it as  

𝐻eff
± = 𝑏0𝜎0 + 𝐛

± ⋅ 𝛔, (C. 21) 

the explicit form of 𝑏0 and 𝐛± are the following  

𝑏0 = −
Ω

2
, 𝑏𝑥
± = ∓

𝐴(𝑘𝑥
2 − 𝑘𝑦

2)

𝐴2 + Ω2
, 𝑏𝑦
± = ∓

2𝐴𝑘𝑥𝑘𝑦

𝐴2 +Ω2
, 𝑏𝑧
± = ∓𝑘𝑧 −

Ω(𝑘𝑥
2 + 𝑘𝑦

2)

𝐴2 +Ω2
. (C. 22) 

These will be used in the calculation of BC and occupancy, which is explained in Appendix D.  

 

Appendix D: Calculation of BC and occupancy 



Here we give results regarding the BC’s z-component and the occupancy around the FDWPs based 

on our effective Hamiltonian. Within this two-band model, we shall refer to the band with 

higher/lower energy as “upper/lower bands.”  

 The BC is [32] 

𝓕±(𝐤) = −
1

2(𝐸±)3
[𝑏𝑧
±(𝛁𝐤𝑏𝑥

± × 𝛁𝐤𝑏𝑦
±) + 𝑏𝑥

±(𝛁𝐤𝑏𝑦
± × 𝛁𝐤𝑏𝑧

±) + 𝑏𝑦
±(𝛁𝐤𝑏𝑧

± × 𝛁𝐤𝑏𝑥
±)] (D. 1) 

where we have defined 𝐸± = √(𝑏𝑥
±)2 + (𝑏𝑦

±)
2
+ (𝑏𝑧

±)2. This expression gives the BC for the 

upper band of the two-band model, and that of the lower band is identical but inverted. Plugging in 

Eq. (C.22) to Eq. (D.1) yields  

ℱ𝑥,𝑦
± (𝐤) = ∓

𝑘𝑥,𝑦
(𝐸±)3

𝐴2(𝑘𝑥
2 + 𝑘𝑦

2)

(𝐴2 +Ω2)2
, ℱ𝑧

±(𝐤) = ∓
2𝑘𝑧
(𝐸±)3

𝐴2(𝑘𝑥
2 + 𝑘𝑦

2)

(𝐴2 + Ω2)2
. (D. 2) 

The BC distribution is depicted in Fig.4 (e) and (f) for 𝐴 = 0.2 × ℏΩ.  

The calculation of the occupancy is much more non-trivial since their details would be 

strongly affected by the various interactions (electrons, phonons, bath, etc.). Here, we assume that 

the occupancy of the Floquet band is well represented by the projection from its non-driven 

counterpart. The physics underlying this assumption is that the strong light pulse causes the 

Hamiltonian to shift drastically, which is why it is referred to as the “sudden-approximation” in some 

literature [8]. This assumption also implies that the occupancy distribution is solely determined by 

the occupancy in the non-driven state, and is not affected by any scattering mechanisms. Analytically, 

the results of the sudden-approximation can be written down for the FDWP at 𝑝𝑧 = Ω 2⁄  as  

𝑤u l⁄
+ = ∑ |⟨𝜓u l⁄

+ |𝜓0,𝑖
+ ⟩|

2
×𝑤0,𝑖

+

𝑖=1,2

, (D. 3) 

where 𝑤u l⁄
+ , 𝑤0,𝑖

+ , |𝜓u l⁄
+ ⟩, and |𝜓0,𝑖

+ ⟩ are the occupancy of the upper/lower band in the driven state, 

the occupancy of the i-th band in the non-driven state, the eigenstate of the upper/lower band in the 

driven state, and the eigenstate of the i-th band in the non-driven state. It is worth noting that this 

formalism of occupancy is time-independent, and should be considered as a time-averaged result 

rather than a sudden projection from non-driven to driven eigenstates at one certain time. A similar 

issue was discussed by Dehghani et al., who argued that some scattering mechanism (in their case, 

electron-phonon scattering) is necessary for such an averaging effect [34]. Without scattering 

mechanisms the occupancy would become time-dependent, or in more experimental terminology, 

carrier-envelope phase-dependent. Though our formalism of occupancy seems to contradict itself 

(because we are using a time-averaged formalism while also assuming various scattering 

mechanisms are negligible), we argue that since the carrier-envelope phase of our pump pulse is 

random, the time-averaging can occur during data accumulation regardless of what happens within 

the sample.  



The eigenstate for the driven state |𝜓u l⁄
+ ⟩ can be analytically written down as  

|𝜓u l⁄
+ ⟩ =

1

√2𝐸+(𝐸+ ∓ 𝑏𝑧
+)
(
𝑏𝑥
+ − i𝑏𝑦

+

±𝐸+ − 𝑏𝑧
+) . (D. 4) 

For eigenstates of the non-driven state, we chose |𝜓0,𝑖=1
+ ⟩ = (1 0)T and |𝜓0,𝑖=2

+ ⟩ = (0 1)T. 

These are not energy eigenstates but are a natural choice of eigenstates nonetheless since the former 

represents the non-driven valence band and the latter represents the non-driven conduction band 

shifted by the energy of ℏΩ. The associated occupancies of these eigenstates are 𝑤0,𝑖=1
+ = 1 and 

𝑤0,𝑖=2
+ = 0, since we are working in a regime where the Fermi energy and thermal broadening are 

sufficiently smaller than the photon energy. Plugging this in with Eq. (D.3) gives us  

𝑤u l⁄
+ =

1

2
(1 ±

𝑏𝑧
+

𝐸+
) . (D. 5) 

An identical expression holds for the FDWP located near 𝑝𝑧 = −Ω 2⁄ .  

 

Appendix E: Details on the numerical calculation of the AHC 

Here we explain details regarding the numerical calculations of the AHC. As explained in the main 

text, we calculate the AHC based on a formula similar to Eq. (1). For our numerical calculations, we 

additionally set our unit system so that Ω = 1. We start by calculating the contribution of one of the 

FDWPs, which is described by 𝐻eff
+ . We denote this by 𝜎𝑥𝑦

+ , which can be written down as  

𝜎𝑥𝑦
+ =

𝑒2

ℏ𝐿
∫

d3𝐤

(2𝜋)3
ℱ𝑧
+(𝑤u

+ −𝑤l
+) , (E. 1) 

where 𝐿 ≡ 𝑣F Ω⁄ ≃ 7.4 × 10−8 cm is the unit length defined by our choice of unit system. The 

other FDWP gives an identical contribution. Therefore, the total AHC turns out to be 𝜎𝑥𝑦 =

3 × 2 × 𝜎𝑥𝑦
+ , where factors three and two account for the number of electron pockets and the number 

of FDWP per electron pocket, respectively. We numerically integrate the above expression within 

−1 2⁄ ≤ 𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧 ≤ 1 2⁄ , where the effective model reasonably reproduces the Floquet bands. 

Since 𝐸+ = 0 at 𝐤 = 𝟎, the integrand diverges at the FDWP. We assume the integrand is zero at 

𝐤 = 𝟎 to avoid the whole expression being ill-defined.  

 We can also extend this calculation to finite frequencies and include effects of finite 

scattering as well based on the Kubo formula,  

𝜎𝑥𝑦
+ (𝜔) =

𝑒2

ℏ𝐿
∫

d3𝐤

(2𝜋)3
𝑤u
+ −𝑤l

+

2𝐸+
× [
⟨𝜓u

+|𝑣𝑥|𝜓l
+⟩⟨𝜓l

+|𝑣𝑦|𝜓u
−⟩

−2𝐸+ +𝜔 + i𝛾
+
⟨𝜓l

+|𝑣𝑥|𝜓u
+⟩⟨𝜓u

+|𝑣𝑦|𝜓l
−⟩

2𝐸+ +𝜔 + i𝛾
] (E. 2) 

where 𝜔 and 𝛾 are the probing angular frequency and the scattering rate, respectively. 𝑣𝑥,𝑦 is the 

velocity operator in the x, y-direction, which is defined as 𝑣𝑥,𝑦 ≡ 𝜕𝐻eff 𝜕𝑘𝑥,𝑦⁄ . Explicit calculation 

using Eq. (C.22), (D.2), and (D.4) shows that Eq. (E.2) can further be simplified as  

𝜎𝑥𝑦
+ (𝜔) =

𝑒2

ℏ𝐿
∫

d3𝐤

(2𝜋)3
(2𝐸)2

(2𝐸)2 − (𝜔 + i𝛾)2
 ℱ𝑧

+(𝑤u
+ −𝑤l

+). (E. 3) 



The FDWP at 𝑝𝑧 = −Ω 2⁄  also gives an identical contribution. Note that Eq. (E.3) indeed reduces 

to Eq. (E.1) if one takes the limit of 𝜔, 𝛾 → 0. We again numerically integrate Eq. (E.3) within 

−1 2⁄ ≤ 𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧 ≤ 1 2⁄  to obtain 𝜎𝑥𝑦
+ (𝜔), and multiply it by six to obtain the total AHC.  

The results are shown in Fig. 7 for various scattering rates and driving field strengths. The 

Drude model fit of the equilibrium optical conductivity yields 𝛾 ≃ 29 THz (see Appendix G also) 

which corresponds to ~0.06 Ω, but we note that the scattering rate of carriers in the Floquet bands 

may deviate from this value. The spectral range of the probe (0.7 – 2.3 THz, or 2.9 – 9.6 meV) 

corresponds to 0.009 ≤ 𝜔 ≤ 0.031, which is indicated by the black vertical dashed lines. Within 

the measurable spectral range, all the AHC spectra show common characteristics such as the real part 

being featureless and the imaginary part being smaller compared to the real part, regardless of the 

scattering rate or the field strength. These features are consistent with the experimental results shown 

in Figs.3 (c) and 3 (d).  

We note that the scattering rate can affect the AHC even in the dc-limit (𝜔 → 0). This is 

not because the finite scattering makes the Floquet formalism less valid [38], but a consequence that 

is purely derivable from the Kubo formula. Reduction of AHC due to finite scattering may also be 

one of the factors causing the experimental results to appear smaller than our model calculations. For 

Fig.4 (g) we show the results of calculations based on Eq. (E.1) which assumes 𝜔, 𝛾 → 0 to 

examine the upper bound value of the light-induced AHC. Using the results of Eq. (E.1) as a 

measure of the CPL-induced AHE enables us to compare contributions from FDWPs and FWPs 

without additional assumptions of carrier scattering rates, which we discuss in Appendix F.  

 

Appendix F: Comparison between contributions from FWPs and FDWPs 

In the main text, we have discussed that the observed CPL-induced AHE has an FDWP origin. Here 

we also calculate the contributions from FWPs and compare them with the results shown in Fig.4 

(e).  

 We start by reviewing the derivation of the effective Hamiltonian that describes the 

FWPs [13–15]. The derivation is based on the assumption that the driving frequency is sufficiently 

larger than the energy scale we are focusing on. This neglects the photon absorbed/emitted states of 

the Floquet Hamiltonian, and the only effect the Floquet formalism gives is the perturbation of the 

non-driven Hamiltonian via the off-diagonal blocks of the Floquet Hamiltonian. The effective 

Hamiltonian thus reads  

𝐻eff(𝐩) = ℋ0(𝐩) +
1

Ω
[𝐻−1,0, 𝐻0,−1] = ℋ0(𝐩) −

𝐴2

Ω
𝛾0𝛾𝑧𝛾5 ≡ ℋ0(𝐩) − 𝛽𝛾

0𝛾𝑧𝛾5. (F. 1) 

The notations are consistent with the main text and previous appendices. The CPL-induced term is 

equivalent to that representing the application of a chiral gauge field in the 𝑝𝑧-direction. By 

choosing the Weyl representation, the four-by-four matrix form of this Hamiltonian is given as:  



𝐻eff(𝐩) = (

−𝑝𝑧 − 𝛽 −𝑝∗ Δ 0
−𝑝 𝑝𝑧 + 𝛽 0 Δ
Δ 0 𝑝𝑧 − 𝛽 𝑝∗

0 Δ 𝑝 −𝑝𝑧 + 𝛽

) . (F. 2) 

The resulting quasi-energies from this Hamiltonian are ±𝜀±(𝐩), where  

𝜀±(𝐩) = √𝑝𝑥
2 + 𝑝𝑦

2 + (√𝑝𝑧
2 + Δ2 ± 𝛽)

2
 . (F. 3) 

The CPL-induced term makes the Dirac bands split, and if 𝛽 > Δ, FWPs will emerge at 𝑝𝑧 =

±√𝛽2 − Δ2. Strictly speaking, FWPs only appear under this condition, and otherwise we would 

have split massive Dirac bands that all possess finite BC. We use the term FWP rather loosely in the 

main text and refer to contributions from these bands as “FWP contributions” as well since they have 

the same physical origin.  

 We proceed in calculating the AHC arising from this effective Hamiltonian. Instead of 

conducting analytical calculations, we apply the Fukui-Suzuki-Hatsugai method [41] and calculate 

the BC numerically. The occupancy is calculated based on two different assumptions. One is that the 

Fermi-Dirac distribution is formed with some Fermi energy after the Floquet bands are formed, and 

the other is that the occupancy is determined by the projection from the non-driven state 

(“sudden-approximation”). The latter is consistent with model calculations regarding the FDWPs. 

The former contradicts the assumption we have made for FDWP model calculations, but we have 

included it here as a reference. We note that it may be justifiable to use different assumptions for 

different portions of the Floquet spectrum since the interactions that driven electrons would be 

subject to may vary, but further research is necessary for the exact determination of the 

nonequilibrium distribution.  

 The AHC arising from the FWPs is calculated based on Eq. (1). We numerically integrate 

the expression in the range of −Ω 2⁄ ≤ 𝑝𝑥, 𝑝𝑦, 𝑝𝑧 ≤ Ω 2⁄  after setting Ω = 1. We have limited the 

calculations for FWPs within the range of 0 ≤ A ≤ 1 2⁄ , since going beyond this range would result 

in the annihilation of FWPs [17], making the four-band model irrelevant. As additional parameters, 

we added the mass term Δ ≃ 7.5  meV, the Fermi energy 𝐸F ≃ 30  meV [21,27], and the 

temperature of the initial Fermi-Dirac distribution ~20 K. We note that the AHC from FDWPs does 

not require any assumption of the Fermi energy since our photon energy is much larger than the 

Fermi energy. In units of ℏΩ, the mass term is Δ ≃ 0.024, and the corresponding threshold for FWP 

generation would be 𝛽 = 0.024 or 𝐴 = 0.16. We notice no discontinuity across this threshold in 

terms of the AHC and therefore refer to contributions from the four-band model as “FWP 

contributions,” regardless of whether or not 𝛽 > Δ holds.  

 

Appendix G: Effect of carrier scattering  

Here we address the effect of carrier scattering within our thin film sample. In Fig.8 we show the 



optical conductivity spectrum measured at 25 K. The relatively flat spectrum indicates that the 

scattering rate of carriers within bismuth is higher than the spectral range available for our THz 

detection setup (0.5 – 2.5 THz, or 2.1 – 10.3 meV). The accurate determination of the scattering rate 

is difficult in this situation, but we fit the optical conductivity spectrum by the Drude model (Eq. 

(B.1)), which results are plotted along with the experimental data. The extracted scattering time is 

𝜏 ≃ 34 fs, which corresponds to the scattering rate of 𝛾 = 𝜏−1 ≃ 29 THz. Given that the driving 

frequency of the MIR pulse was 75 THz, we can expect the carriers to be driven a few cycles per one 

scattering event. Therefore, the scattering is expected to reduce Floquet-originated signals, but not 

suppress them entirely.  
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Figures 

Fig. 1 

 

(a) Schematic of massive 3D Dirac bands. Occupied states are colored in purple, which can also be 

seen in the conduction band due to finite Fermi energy. CPL with the photon energy that is within the 

3D Dirac bands is applied to this system. (b), (c) Band structure near the Fermi level and Brillouin 

zone of elemental bismuth. The bands forming the electron/hole pockets are highlighted in red. The 

Dirac bands are located in the electron-like L-points.   



Fig. 2 

 

(a) Schematic of the experimental setup. A circularly polarized MIR pulse (orange) and a linearly 

(x-) polarized THz pulse (red) are irradiated onto the bismuth thin film sample. The arrival time 

difference between the two pulses defines the pump-probe delay time tpp. (b) Dynamics of the 

transient Faraday rotation. The solid/dashed gray traces are the envelope of the pump pulse in terms 

of intensity 𝐼(𝑡)/electric field [𝐼(𝑡)]1 2⁄ , respectively.   



Fig. 3 

 

(a), (b) Real and imaginary parts of the Faraday rotation spectrum measured at tpp = 0 ps. (c), (d) 

Real and imaginary parts of the AHC measured at tpp = 0 ps. The colors represent various pump 

fluences. (e) Power dependence of the CPL-induced AHE. The squares are the average of the real 

part of the AHC spectra in the range of 2.6 – 9.6 meV. The red line is the result of model calculations 

scaled by the factor of 0.22. See the main text for details of the model calculation.  

  



Fig. 4 

 

(a), (b) Floquet bands of the 3D Dirac bands. The color scales in (a) and (b) represent BC’s 

z-component and occupancy, respectively. Two different types of nodes are present (FWPs and 

FDWPs), both located in BC hotspots. (c), (d) Band structure obtained from the effective 

Hamiltonian (red line). The results of Floquet theory (black dashed lines) are shown for comparison. 

(e), (f) BC distribution around the FDWP at 𝑝𝑧 = ℏΩ 2⁄ . The size of the arrows in (e) represents the 

intensity of BC, and its normalized version is shown in (f). The FDWP acts as sources/sinks of BC, 

carrying the Chern number of two. (g) Field-strength dependence of the absolute value of AHC 

based on numerical calculations. The AHC is measured in units of 𝑒2 ℏ𝐿⁄  and the field strength 𝐴 

is measured in units of Ω. The red line shows the results for the FDWPs while the blue lines show 

the results for the FWPs. The black dashed line shows the field-strength region corresponding to that 

shown in Fig.3 (e). The inset shows the same results plotted against 𝛽 = 𝐴2 Ω⁄ .  

  



Fig. 5 

 

Fig.5. Schematic of the experimental setup. OC: optical chopper, DS: delay stage, WGP: wire grid 

polarizer, LCR: liquid crystal retarder.  

  



Fig. 6 

 

(a) Dynamics of the amplitude transmittance induced by the MIR pump. The definition of tpp is 

consistent with the main text. The pump-helicity-dependent component is negligible while the 

pump-helicity-independent component shows a drastic decrease. See Appendix B for definitions of 

the two quantities. (b) Real part of the optical conductivity w/ (red) and w/o (black) MIR pumping. 

The symbols are the experimental data while the lines are the results of fitting based on the Drude 

model. The low energy region of the excited state shows reduction due to imperfect spatial overlap 

between the pump and probe. (c) Pump-induced change of 𝜔p
2, where 𝜔p is the plasma frequency. 

The red line shows the result of a linear fit of the data from weaker regions.  

  



Fig. 7 

 

Real and imaginary parts of the AHC spectrum based on the effective Hamiltonian for various field 

strengths ((a), (b)) and scattering rates ((c), (d)). The probe angular frequency (𝜔), the field strength 

(𝐴), and the scattering rate (𝛾) are all measured in units of Ω and the AHC is measured in units of 

𝑒2 ℏ𝐿⁄ . The black dashed lines indicate the spectral range corresponding to that of Figs.3 (c) and 3 

(d). The purple dashed line in (c) indicates the AHC obtained by taking the limit of 𝜔, 𝛾 → 0, i.e., 

that obtained based on Eq. (E.1).  

  



Fig. 8 

 

The real and imaginary parts (red and blue, respectively) of the equilibrium optical conductivity of 

bismuth. The symbols show the experimental data and the traces show the results of fitting based on 

the Drude model.  


