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The central spin model has a wide applicability, it is ideally suited to describe a small quantum
system, for instance a quantum bit, in contact to a bath of spins, e.g., nuclear spins, or other
small quantum systems in general. According to previous work [Röhrig et al., Phys. Rev. B 97,
165431 (2018)], a large bath of quantum spins can be described as a bath of quantum harmonic
oscillators. But the resulting quantum model is still far from being straightforward solvable. Hence
we consider a chain representation for the bosonic degrees of freedom to study how well a truncated
Wigner approximation of the effective model of harmonic oscillators works in comparison with other
approximate and exact methods. Numerically, we examine the effect of the number of bath spins
and of the truncation level, i.e., the chain length.

I. INTRODUCTION

The central spin model (CSM) is a well-known model
describing the interaction of a single “central” spin with
surrounding spins1,2, for instance, the interaction of the
spin of a localized electron with nuclear spins in quan-
tum dots3–5. In view of the intense search for physical
realizations of quantum bits6, a localized electron in a
quantum dot can be seen as a two-level system and thus
as a promising candidate for quantum bits7–9. The CSM
is a quantum many-body system and major progress has
been made to understand its properties in its applications
for phenomena in material science and quantum infor-
mation technology10–13. Polarization recovery in a longi-
tudinal field14,15, nuclei-induced frequency focusing16–18,
spin precession mode locking19,20, the effect of spin iner-
tia21,22, spin noise23–27, and many other effects belong to
the particularly rich physics of the CSM. Furthermore,
the CSM is also used to understand the dynamics of
quantum sensors28 which helps to reach high sensitivi-
ties.

For a finite, not too large number of bath spins29, it is
possible to use the Bethe ansatz1,30,31 to diagonalize the
CSM Hamiltonian and to analyze rigorous restrictions
of the central spin dynamics stemming from conserved
quantities32,33. If all couplings are equal the CSM re-
duces to the so called box model allowing one to compute
the spin dynamics for large spin baths essentially ana-
lytically34–36. However, the complexity of the CSM in
practical applications is related mainly to the electron
spin decoherence when interacting with an (almost) infi-
nite number of nuclei spins5,37–42. In this scenario, the
initial polarization and information on the spin state is
quickly and irreversibly lost.

To describe this decoherence of the central spin and
to conceive strategies against it, various approaches
have been conceived. Density-matrix renormalization
group (DMRG) deals with up to 1000 spins, but only
up to relatively short times43,44 due to the fast growth of
entanglement. The linked-cluster and cluster-correlation

expansions45–48 investigate the long-time spin decoher-
ence, but of finite, relatively small spin baths. More-
over, considering the nuclear-electric quadrupolar inter-
actions for a few spins, the spin-noise spectrum at various
timescales has been calculated using Chebyshev polyno-
mials27,49,50. Furthermore, a coherent interface between
electron and nuclear spins was recently developed51 with
the vision to realize long-lived quantum memory.

Although a classical description of CSM with a large-
enough number of nuclear spins can be justifed over a
long time, it neglects all quantum mechanical aspects43,44
which are vital for quantum bits. This originates from
the fact that the central spin is a truly quantum mechan-
ical object and its back-action on the bath spins is not
classical. The truncatedWigner approximation (TWA)52
is a general semi-classical approach in which quantum
fluctuations are partly taken into account through ran-
dom initial conditions for the classical equations of mo-
tion. Although the equations of motion themselves are
still purely classical, correlations and the probabilities
of quantum measurements can be simulated to a certain
degree. The TWA has often been used to simulate the
dynamics of the CSM10,53,54. The spins are taken as clas-
sical vectors precessing around local classical fields. We
abbreviate this semi-classical approach to spins sTWA.
It can be implemented for moderate numbers of spins
(N ≈ 200) if one has to simulate long times. Experimen-
tally, the bath sizes range from 104 to 106 still exceed-
ing numerical resources by far even though a hierarchi-
cal chain representation based on generalized Overhauser
fields helps to reconcile large spin baths and long-time
simulations54.

In this framework, a fully quantum mechanical ap-
proach55 based on iterated equations of motion (iEoM)
has been suggested for large spin baths. The asset of this
approach is that it is particularly suited to capture very
large or even infinitely large spin baths. The bath of spins
is mapped to a bath of hierarchically coupled bosons and
the central spin is mapped to a four-dimensional impu-
rity. But the fully quantum mechanical evaluation of the
dynamics of the effective bosonic model for long times
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represents still a tremendous challenge. Hence, it is in-
teresting to study approximate ways to treat this effective
bosonic model.

In this work, we study the application of the TWA
to the mapped effective bosonic model resulting from
iEoM55, i.e., to the harmonic oscillators. The impurity is
described by two spins with S = 1/2 which, in turn, are
treated as classical vectors. In order to distinguish this
TWA from the one resulting from the classical treatment
of the spins we call it bosonic TWA (bTWA). Clearly,
the bTWA would remove the restrictions on the maxi-
mum number of bosonic modes which can be simulated.
The immediate aim is to describe the experimental spin
noise spectra26,56,57. To benchmark the bTWA, we com-
pare our data to data from some of the above-mentioned
techniques under the same conditions.

This paper is organized as follows. In Sec. II, we review
the CSM and in Sec. III, we present its bosonic formu-
lation. In Sec. IV, we present our results and compare
them with results from other techniques. Finally, the
paper is summarized in Sec. V.

II. INITIAL MODEL

In this section, we briefly introduce the CSM. For
our proof-of-principle study, we restrict ourselves to the
paradigmatic isotropic version of the CSM. This implies
that we neglect dipole-dipole interaction38,58, quadrupo-
lar couplings49,59–62, and spin-orbit couplings63–67 of the
nuclear spins which usually become relevant on very long
timescales. We start with the CSM comprising a central
spin ~̂S0 with S = 1/2 interacting through the hyperfine

coupling with a bath of N spins ~̂Si. The Hamiltonian
reads

Ĥ =

N∑
i=1

Ji ~̂S0 · ~̂Si , (1)

where Ji denotes the hyperfine coupling of the i-th spin
in the bath. In electronic quantum dots, the coupling
constants Ji are proportional to the probability that the
electron is present at the site of the nucleus i38,58 which
is given by the modulus squared of the electronic wave
function. It is convenient to define a composite field for
the effect of the bath spins, ~̂B =

∑N
i=1 Ji

~̂Si, which is
called the Overhauser field. With its help, the Hamilto-
nian can simply be rewritten as Ĥ = ~̂S0 · ~̂B.

Let us consider an infinite spin bath (N →∞) with de-
creasing couplings. We consider the generic parametriza-
tion Ji = C exp(−iγ)16,30,31,33,54,68 with i ∈ [1, N ], where
the prefactor C sets the energy scale. For γ > 0, the ex-
ponential term is decreasing with i. The meaning of γ is
elucidated by the following argument. Even if N → ∞,
there is only a finite number of bath spins which is ap-
preciably coupled to the central spin. We denote this
number by Neff and define it by the ratio of the squared

sum of all couplings and the sum of all squared cou-

plings38,43,44,54,58,69, i.e., Neff :=
(∑N

i=1 Ji

)2

/J2
Q, where

J2
Q :=

∑N
i=1 J

2
i . Inserting our parametrization Ji into

Neff in the limit N →∞, we find for small values γ

Neff =
2

γ
+O(γ) . (2)

So γ is about twice the inverse number of effectively cou-
pled spins. The electron spin in quantum dots is coupled
to a very large number of bath spins38,58,70,71, Neff ≈ 104

to 106, so, γ ≈ 10−4 to 10−6 is a realistic estimate. More-
over, we set the energy scale for all simulations by requir-
ing JQ = 1. This results in C '

√
2γ ≈ 10−2 to 10−3,

which is a very small number implying that the contribu-
tion of an individual bath spin is negligible. Only suitable
sums over all spins have a sizable impact. In contrast,
for large γ, we deal with a small number of bath spins,
see Eq. (2), and the dynamics of the central spin can
be determined using fully quantum mechanical descrip-
tions27,48,49.

III. EFFECTIVE MODEL AND
SEMI-CLASSICAL APPROACH

In what follows, we sketch the mapping of the spin
bath on a bosonic bath (iEoM55). Then, we introduce
the semi-classical approach bTWA based on a hierarchi-
cal chain representation to describe the long-time spin
dynamics.

A. Objective

We begin with the application of the Heisenberg equa-
tion of motion to the CSM, ∂tÂ = i[Ĥ, Â] (throughout
the present work, ~ is set to unity), where Â are oper-
ators of the CSM forming a suitable operator basis for
the products of all components of spin operators at all
sites55. In the end, we are interested in the α component
of the spin-spin autocorrelation function of the central
spin at infinite temperature

Sα(t) = 〈Ŝα0 (t)Ŝα0 (0)〉 , (3)

for small values of the parameter γ corresponding to large
spin baths. In particular, the long-term behavior of Sz(t)
provides information about the fate of state with the cen-
tral spin aligned along the z-axis initially, i.e., at t = 0.
Assuming infinite temperature is well justified because
the thermal energy in the bath at temperatures of a few
Kelvin is at least one order of magnitude larger than the
individual couplings in a quantum dot72.

For motivation, we provide the autocorrelation if a con-
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stant external or internal magnetic field is applied38,43

~̂S0(t) = ~n
[
~n · ~̂S0(0)

]
+
{
~̂S0(0)− ~n

[
~n · ~̂S0(0)

]}
cos(Bt)

−
[
~n× ~̂S0(0)

]
sin(Bt) ,

(4)
where ~n points in the direction of the magnetic field.
This formula is identical to the classical one since ~B is a
classical vector and the equations of motion are linear in
the spin operators. Obviously, powers of B up to infinite
order occur so that a suitable operator basis needs oper-
ators including high powers of the Overhauser field if we
want to capture its intrinsic quantum character and the
ensuing dynamics.

If one neglects the dynamics of the Overhauser field
completely, the frozen Overhauser field approximation is
retrieved for which one averages over all random direc-
tions and random strengths of the Overhauser field38,43
yielding

Sα(t) =
1

12

[
2e−J

2
Qt

2/8(1− J2
Qt

2/4) + 1
]
. (5)

This analytic result is convenient as reference, see the
figures below.

B. Effective model with higher powers of the
Overhauser field

The orthogonal Hermite polynomials of the Over-
hauser field and similar composite weighted sums of the
bath spin have been introduced by Röhrig et al.55 as suit-
able operator basis. These polynomials are orthogonal
for a Gaussian weight function73, and can be applied to
different components of generalized Overhauser fields by
the recursive relation

GαjHn(G
α
j ) =

√
nHn−1(G

α
j ) +

√
n+ 1Hn+1(G

α
j ), (6)

where α = {x, y, z} and H0(G
α
j ) = 1 by definition. The

polynomials Hn(G
α
j ) are the Hermite polynomials of de-

gree n in the generalized Overhauser field vectors ~Gj .
These fields are defined by

Gαj := 2

N∑
i=1

Pj(Ji)Ŝαi , (7)

where the real orthogonal polynomials Pj(x) are de-
fined such that they comply with the orthogonality re-
lation54,55

δj,m =

N∑
i=1

Pj(Ji)Pm(Ji) . (8)

The polynomials Pj(Ji) describe the weight of each bath
spin ~Si. The established EoM for this basis of opera-
tors tells us that a single Hn(G

α
j ) is transformed into the

terms
√
nHn−1(G

α
j ) and

√
n+ 1Hn+1(G

α
j ). This is iden-

tical to the effect of an annihilation (â) and creation (â†)
bosonic operator, respectively, applied to the eigenstates
|n〉 of an harmonic oscillator.

Eventually, a quantum mechanical representation of
large spin baths by means of the iEoM for the gener-
alized Overhauser fields including an external magnetic
field has been obtained and developed, see Ref. 55 for
further details. It is shown that in the limit N →∞ the
isotropic CSM can be mapped onto a four-dimensional
impurity coupled to a non-interacting bosonic bath yield-
ing the effective Hamiltonian Ĥeff = ĤCS

eff + Ĥch
eff + ĤZ

eff
in the presence of an external Zeeman magnetic field h
along the z-direction. It is given by

ĤCS
eff =

1

2

3∑
α=1

K̂α

(
â†1,α + â1,α

)
, (9a)

Ĥch
eff =

i
2

Ntr∑
j=1

3∑
α,β,δ=1

εαβδM̂β

[
χj â
†
j,δâj,α

+ ηj(â
†
j+1,δâj,α − â

†
j,αâj+1,δ)

]
, (9b)

ĤZ
eff = − hK̂z , (9c)

where ĤCS
eff refers to the central spin located at the head of

a bosonic chain, whereas Ĥch
eff acts on a bosonic chain with

flavors α as depicted in Fig. 1. In the above equations,
εαβδ is the Levi-Civita tensor. The couplings ηj and χj
result from the recursion of the orthogonal polynomials
Pj which can be expressed in the matrix form

T̂ =


χ1 η1 0 0 · · ·
η1 χ2 η2 0 · · ·
0 η2 χ3 η3 · · ·
...

...
. . . . . . . . .

 , (10)

with JiPj(Ji) = T̂ Pj(Ji) using the vector of polynomials
Pj(Ji) = [P1(Ji),P2(Ji), · · · Pn(Ji)]>. By definition, we
have η0 = 0. While the chain is half-infinite for an infinite
bath, it is truncated at jmax in practical calculations54,55
so that we also have ηjmax = 0. (In Ref. 54, the truncation
level was denoted by Ntr = jmax.)

The commutation and anticommutation of the op-
erators of the central spin with σ̂α (Pauli matrices)
in the chain are expressed by the matrices K̂α and
M̂α, respectively, with matrix elements 〈〈n|K̂α|m〉〉 =
1
2 〈〈σ̂n|[σ̂α, σ̂m]〉〉 and 〈〈n|M̂α|m〉〉 = 1

2 〈〈σ̂n|{σ̂α, σ̂m}〉〉
for {m,n} ∈ {x, y, z}. The notation 〈〈. . . 〉〉 is used
for the scalar product of operators for which we use
〈〈Â|B̂〉〉 := 〈Â†B̂〉T=∞, i.e., the expectation value at in-
finite temperature. Straightforwardly, we find

K̂α = i

0 0 0 0
0 0 δα,z −δα,y
0 −δα,z 0 δα,x
0 δα,y −δα,x 0

 , (11a)
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FIG. 1. Sketch of the CSM described by Eqs. (9a) and (9b). The central spin and the bosons in the chain are shown by
the black and light gray solid spheres, respectively. The solid two-sided arrows inside the boxes illustrate the couplings χj/2
between bosons of different flavors at the same site of the chain, while the dotted ones indicate the couplings ηj/2 between
bosons on adjacent sites.

M̂α =

 0 δα,x δα,y δα,z
δα,x 0 0 0
δα,y 0 0 0
δα,z 0 0 0

 . (11b)

We emphasize that the chain Hamiltonian Ĥch
eff induces

only a slow dynamics because the coupling between the
head of the chain and its next site is JQ = 1, while the
coupling between different chain sites as well as the hop-
ping processes between different flavors at each site is of
order √γJQ ≈ 10−2 to 10−3. Therefore, the quantum
effects such as the dynamics in the bath and eventually
dephasing and relaxation of the polarization of the cen-
tral spin due to the presence of the bath of spins is slow.

Finally, we state that the autocorrelation expressed by
the derived effective model reads

Sα(t) =
1

4
〈eα,0|e−iĤeff |eα,0〉 , (12)

with eα = (0, δα,x, δα,y, δα,z)
> and 0 being the vacuum of

all bosons. The autocorrelation (12) can be reformulated
with the help of the matrix M̂α and e1 = (1, 0, 0, 0)>

Sα(t) =
1

4
〈e1,0|M̂αe

−iĤeffM̂α|e1,0〉 , (13a)

=
1

4
〈e1,0|eiĤeffM̂αe

−iĤeffM̂α|e1,0〉 , (13b)

=
1

4
〈e1,0|M̂α(t)M̂α(0)|e1,0〉 , (13c)

where we used the fact that Ĥeff |e1,0〉 = 0 since K̂αe1 =
0 and all bosonic terms in the chain part annihilate the
bosonic vacua.

C. The bosonic truncated Wigner approximation

In order to apply a TWA to the effective model de-
fined in the previous section we need to represent the
four-dimensional impurity by objects which have classi-
cal counterparts. Here we choose two spins with S = 1/2
which together span a four dimensional Hilbert space.
We denote their singlet state by |s〉 and their three triplet

states by |tα〉 for α ∈ {x, y, z}, identified with the four-
dimensional Cartesian vectors |s〉 =

(
1 0 0 0

)> and
|tα〉 =

(
0 δαx δαy δαz

)>. Elementary linear algebra74
yields the action of the spin operators on these states

Ŝν,α |s〉 = −
(−1)ν

2

∑
β

δαβ |tβ〉 , (14a)

Ŝν,α |tβ〉 = −
1

2

[
2(−1)νδαβ |s〉 − i

∑
δ

εαβδ |tδ〉
]
, (14b)

where ν = {1, 2} labels the spin Ŝ1 and Ŝ2, respec-
tively. With these definitions, the matrices K̂ and M̂ in
Eqs. (11a) and (11b) can be expressed in terms of these
spin operators

K̂α = − (Ŝ1,α + Ŝ2,α) , (15a)

M̂α = Ŝ1,α − Ŝ2,α . (15b)

The annihilation and creation operators of the har-
monic oscillators can be expressed by position and mo-
mentum operators in the standard way

r̂j,α =
1√
2
(â†j,α + âj,α) , (16a)

p̂j,α =
i√
2
(â†j,α − âj,α) . (16b)

With these relations, the Hamiltonian in Eq. (9) can be
rewritten into

ĤCS
eff =− 1√

2
( ~̂S1 + ~̂S2) · ~̂r1 , (17a)

Ĥch
eff =

1

2

Ntr∑
j=1

( ~̂S2 − ~̂S1)·[(χj~̂rj+ ηj−1~̂rj−1+ ηj~̂rj+1)× ~̂pj ],

(17b)

ĤZ
eff =h( ~̂S1,z + ~̂S2,z) . (17c)

The ensuing time evolution of the operators ~̂r, ~̂p, ~̂S1, and
~̂S2 according to the Heisenberg equation of motion reads

d

dt
~̂r1 =

χ1

2
( ~̂S2 − ~̂S1)× ~̂r1 +

η1

2
( ~̂S2 − ~̂S1)× ~̂r2 , (18a)
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d

dt
~̂p1 =

χ1

2
( ~̂S2 − ~̂S1)× ~̂p1 +

η1

2
( ~̂S2 − ~̂S1)× ~̂p2

+
1√
2
( ~̂S2 + ~̂S1) , (18b)

for j = 1 while for general j > 1 we obtain

d

dt
~̂rj =

χj
2
( ~̂S2 − ~̂S1)× ~̂rj +

ηj
2
( ~̂S2 − ~̂S1)× ~̂rj+1

+
ηj−1

2
( ~̂S2 − ~̂S1)× ~̂rj−1 , (19a)

d

dt
~̂pj =

χj
2
( ~̂S2 − ~̂S1)× ~̂pj +

ηj
2
( ~̂S2 − ~̂S1)× ~̂pj+1

+
ηj−1

2
( ~̂S2 − ~̂S1)× ~̂pj−1 , (19b)

d

dt
~̂Sν =

1√
2
~̂Sν × ~̂r1 +

3− 2ν

2
~̂Sν ×

Ntr∑
j=1

[
χj(~̂rj × ~̂pj)

+ ηj(~̂rj+1 × ~̂pj) + ηj−1(~̂rj−1 × ~̂pj)
]
− h~̂Sν × ~z ,

(19c)

where we use ~z =
(
0 0 1

)> in the last term of Eq. (19c).
The sought autocorrelation (3) has been expressed for the
effective model in (13c) which implies

Sα(t) =
1

4
〈(Ŝα1 (t)− Ŝα2 (t))(Ŝα1 (0)− Ŝα2 (0))〉 , (20)

where the expectation value is taken with respect to the
singlet state of spin 1 and 2 and the bosonic vacua.

Applying the standard TWA52, the leading quantum
corrections are recovered by averaging classical trajecto-
ries over distributions of initial conditions. The equations
of motions (18) and (19) are viewed as differential equa-
tions for classical vectors starting from random initial
conditions. For this purpose, normal distributions have
turned out to be particularly suitable for the initial con-
ditions. Their asset is that only the mean value and the
variance are needed to determine the distribution fully.
We choose a normal distribution for spin ~S1 with van-
ishing mean value and variance 1/4 for each component
because (Ŝα)2 = 1/4 for S = 1/253. Since we mimic a
singlet state ~S2 is always chosen to be −~S1 initially.

The position and momentum components are also
drawn from a normal distribution with vanishing means.
The variances are straightforwardly computed consider-
ing (16) yielding 〈r̂2

j,α〉 = 1/2 = 〈p̂2
j,α〉. In practice, the

time-evolution of the central spin Sα(t) in Eq. (20) is
calculated for configuration average overM classical tra-
jectories withM being of the order of 106 − 107 to keep
statistical errors low.

IV. NUMERICAL RESULTS

Here we show results of the two TWAs which are the
protagonists of this study. The sTWA relies on the classi-
cal equations of motion for the spin operators of original

CSM. Either each spin is tracked individually or a hierar-
chical chain representation is used. This does not make
any discernible difference. In contrast, the bTWA solves
the classical equations of motion for the effective model
obtained by mapping the large spin bath to a bath of
bosons.

Since JQ is the energy unit in the numerical calcula-
tions, all times are measured in units of 1/JQ having set ~
to unity. The equations of motion have no lower or upper
validity cutoff in time and, thus, can be applied to dis-
cuss the spin-spin correlation from t = 0 to t→∞. The
effective number of coupled spins Neff can also be chosen
arbitrarily, but we keep in mind that the mapping to the
effective model becomes exact in the limit of large spin
baths. Further details of the effect of Neff = 2/γ in the
bTWA are provided in App. A.

Figure 2 shows the autocorrelation of the central spin
in absence of external magnetic fields. This is the cen-
tral result of this paper. Clearly, we see that both ap-
proaches, sTWA and bTWA, are converged with respect
to the truncation level jmax (for further details of the
effect of jmax in the bTWA, see App. B). The curves
for jmax = 16 do not differ discernibly from those for
jmax = 32. In the inset, we focus on the behavior on
short to moderate times. Here the agreement between
both approaches is very good. Since we know from pre-
vious studies44 that the sTWA represents the quantum
mechanical result very well we deduce that the bTWA
also works well in this temporal regime.

In the main panel of Fig. 2 we discern a significant dis-
crepancy between the sTWA and the bTWA. This is quite
surprising in view of the nice agreement up to t ≈ 30/JQ.
The convincing results obtained previously with sTWA44

agrees with rigorous bounds32,33 indicating a very slow
decay of the autocorrelation. Thus, the conclusion is in-
dicated that the bTWA does not approximate the long-
time behavior of the CSM well. Still, it is (i) desirable to

0 200 400 600 800 1000
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0 10 20 30
0

0.1

0.2

0.3

FIG. 2. Comparison of Sz(t) obtained by sTWA and by
bTWA for the truncation levels jmax = 16 and 32, fixed num-
ber of bath spins N = 1000, γ = 0.01 (Neff = 200), and zero
external magnetic field.
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FIG. 3. Comparison of Sz(t) from various approaches (BA,
sTWA, DMRG, and iEoM) for fixed number of bath spins
N = 36 and two different (a) γ = 1/18 (Neff = N = 36) and
(b) γ = 1/12 (Neff = 24), see App. A for further details of the
effect of γ in the bTWA. The analytic data for random static
(frozen) Overhauser field (fOver) from Eq. (5) is included for
comparison as well. In both iEoM and the TWAs, we use the
truncation level jmax = 3, see App. B for further details of
the effect of jmax in the bTWA.

corroborate this conclusion further and (ii) important to
understand whether the mapping to the effective bosonic
model introduces the observed difference or whether it
is the TWA applied to the bosonic model which induces
this discrepancy.

Among the other approaches we employ the Bethe
ansatz (BA) from which we use the data published in
Ref. 33. The BA works perfectly for long times, but only
for a moderate number of bath spins. Second, in sys-
tematically controlled numerical DMRG calculations we
consider 4096 states43 with a threshold of 0.001 for the
accumulated discarded weight with second-order Trotter-
Suzuki decomposition. The DMRG is not able to follow
the dynamics for long times due to the rapid growth of en-
tanglement. But up to t ≈ 50/JQ it is reliable. The quan-
tum mechanical evaluation of the iEoM up to jmax = 3
with {181,8,1} number of bosons, respectively, yields re-
liable data as well up to t ≈ 50/JQ

55. Data from these
methods are depicted in Fig. 3 for two different sets of
N and Neff . The results from BA and DMRG agree very

nicely for all times except for a tiny discrepancy at the
minimum which we attribute to numerical inaccuracies.
Note that the BA is evaluated based on Monte Carlo
importance sampling implying small statistical fluctua-
tions30,31.

The iEoM approach, i.e., the quantum mechanical
evaluation of the effective bosonic model also agrees well
with the BA and DMRG data, in particular for the slow
decay beyond t ≈ 6/JQ. Only the wiggles at t ≈ 50/JQ

indicate that the evaluation with the limited number of
bosons is at the verge of its validitiy at this time. The
discrepancies of the iEoM data to BA and DMRG data
can be attributed to the fact that the mapping to the
effective model is valid for large spin baths only, see the
discussion in Ref. 55. The sTWA data does not capture
the minimum particularly well, but it agrees with the
other approaches (BA, DMRG, iEoM) for longer times.
The frozen Overhauser data from Eq. (5) is character-
ized by the constant plateau for long times because no
dynamics of the Overhauser field is included.

What is the behavior of the data from bTWA? As we
have already seen in Fig. 2 for short and moderate times
the agreement with sTWA and thus with the other data
is good. In view of the long-time discrepancy observed
in Fig. 2 we focus on the longer times beyond 20/JQ.
We discern that the data from bTWA clearly lies below
the other data which coincide very well (except for the
frozen Overhauser curve). This observation corroborates
our finding in Fig. 2 that the TWA applied to the effec-
tive bosonic model does not approximate the long-time
behavior reliably. In addition, we learn that the iEoM
data, i.e., the quantum mechanical evaluation of the ef-
fective bosonic model, works fine at these times. Hence,
Fig. 3 provides evidence that it is not the mapping to
the effective bosonic bath which is responsible for the
discrepancy, but the bTWA. Hence, the two questions
posed above are answered.

This raises the question why the TWA is not as ef-
ficient as it is when applied directly to the spins. We
do not yet have a concluding answer but the hypothesis
suggesting itself is that the conserved quantities of the
quantum effective bosonic model and its classical coun-
terparts are not the same. In the CSM, the conserved
quantities of the quantum and of the classical model are
the same which makes their dynamics very similar44.

Finally, we address the CSM in a finite magnetic
field which has been well investigated both theoretically
and experimentally75,76. Data from DMRG, iEoM, and
bTWA is depicted in Fig. 4 for a magnetic field in z-
direction. In the main panel, all data sets agree very
well. All of them show the clear signature of Larmor pre-
cession with a period TL = 2π/

√
h2 + J2

Q/2 ≈ 0.63/JQ,
cf. Refs. 27 and 44. The envelope function of the Larmor
precession is given by Senv. func.(t) =

1
4 exp

(
−J2

Qt
2/8
)
38.

If we zoom far into the behavior at longer times after
the signal has dephased, only minor discrepancies occur.
This behavior is not unexpected since we learned already
in the previous figures that the bTWA works well for
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FIG. 4. Comparison of the x-component of the spin-spin au-
tocorrelation obtained from DMRG, iEoM, and the bTWA at
finite magnetic field h/JQ = 10 along the z-direction. The pa-
rameters are N = 500, jmax = 3 and Neff = 200. The period
of the Larmor precession is given by TL = 2π/

√
h2 + J2

Q/2 ≈
0.63/JQ. The envelope function shown as black line is given
by Senv. func.(t) =

1
4
exp
(
−J2

Qt
2/8
)
. For the effect of h as well

as the z-component of the spin-spin autocorrelation obtained
from the bTWA, see App. C.

times below 30/JQ. Hence the Larmor precessions and
the Gaussian dephasing as shown by the black envelope
function are retrieved reliably. Only the small discrepan-
cies at later times indicate that the approximate treat-
ment is not perfect at long times. But in a magnetic
field the signal has essentially vanished anyway in the
long-time regime.

V. SUMMARY AND DISCUSSION

In this article, we theoretically studied the spin dynam-
ics of the central spin in the central spin model (CSM).
The CSM describes a so-called central spin coupled to
spins in its environment in a star-like topology, i.e., with-
out coupling between pairs of bath spins. This model is
relevant for a plethora of physical systems where a small
quantum system is coupled to a bath of other small quan-
tum systems. A particularly interesting framework is the
realization of quantum bits and their decoherence mech-
anisms due to their interaction with spin baths.

For many phenomena the long-time dynamics of large
spin baths needs to be described reliably which poses an
insurmountable challenge to brute force numerical ap-
proaches because of the exponential growth of the quan-
tum Hilbert space. Hence, accurate, systematically con-
trolled approximative approaches are needed. One of
them is the mapping of the CSM with a large spin bath
to a bath of bosons, i.e., to an effective bosonic model,
including a four-dimensional impurity at the head of the
chain. The bosonic degrees of freedom can be represented
in a star topology or in a chain topology55. The latter

has the advantage that one can add site by site of the
chain in order to reach a reliable description up to longer
and longer times. Thus, we employed this representation
here. Still, the quantum mechanical evaluation of the
resulting central spin dynamics is a great numerical chal-
lenge. For this reason, we studied in the present article
how well a truncated Wigner approximation (TWA) for
the bosonic effective model, dubbed bTWA, captures the
sought dynamics. This kind of approximation averages
correlations of classical trajectories over distributions of
initial conditions and describes leading quantum correla-
tions in this way52.

We found that the bTWA works very nicely for short
and moderate times if the spin bath is large. This con-
dition on the size of the spin bath does not result from
the TWA, but from the mapping of the CSM to the ef-
fective bosonic model. Only a few bosonic sites in the
chain representation of the bosonic bath are necessary.

Much to our surprise, however, we found a qualita-
tive discrepancy of the bTWA results compared to other
approaches at long times. In this regime, the bTWA
results display a significantly faster decay than the re-
sults by a direct application of the TWA to the CSM,
dubbed sTWA. This discrepancy does not stem from the
sTWA, but from the bTWA. Inspecting and comparing
the behavior at moderate times where results from other
approaches such as Bethe ansatz and DMRG are avail-
able indicates clearly that the correlations from bTWA
are the deviating ones which are decaying too fast. Al-
though the origin of this unexpected discrepancy is still
unclear, we presume that the classical effective bosonic
model, from which the trajectories are derived, that are
averaged in bTWA over initial conditions, has different,
probably less, conserved quantities than the quantum ef-
fective bosonic model or the original CSM. Note that the
quantum and the classical CSM share the same conserved
quantities32,33,44 so that their very similar behavior is
plausible.

But clearly, further studies are called for to (i) identify
unambiguously the origin of the discrepancy and (ii) to
conceive reliable and efficient evaluation techniques for
the effective bosonic model. One idea suggesting itself
is to use numerical renormalization group techniques to
evaluate its dynamics. Surely, this will enhance our un-
derstanding of decoherence and relaxation of small quan-
tum systems suitable for realizing quantum bits or quan-
tum sensors.
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Appendix A: Effect of the effective number of bath
spins Neff in the bTWA

The effective number of bath spins Neff is one of the
parameters influencing the minimum autocorrelation at
intermediate time scales as well as the decoherence rates
at long time scales. So, in the bTWA, it is important to
investigate a range ofNeff for fixed jmax = 3 andN = 500
as depicted in Fig. A.1, namely Neff = 200, 100, 40, 25,
and 20, respectively, corresponding to γ = 0.01, 0.02,
0.05, 0.08, and 0.10. We obtain a square root behavior of
Szmin(tmin) as shown in the inset of Fig. A.1 for increasing
γ (decreasing Neff). The coefficients a = 0.285 ± 0.005

and b = Szmin(tminJQ =
√
12) in the fitting function

f(γ) = a
√
γ + b depend on the set of the other parame-

ters. The spin-spin autocorrelation for γ = 0 equals the
one for the frozen Overhauser field with Szmin(tminJQ =√
12) ' 0.009 as a benchmark, see Eq. (5). This fact

stems from the hyperfine coupling to the i-th bath that
is proportional to the square root of γ.

For larger values of γ beyond ' 0.08 we observe that
the further changes of γ do not change the curves any-
more at least up to moderate times. This observation

10 50

10
-2

10
-1 0.01 0.02 0.05 0.08 0.10

0 0.05 0.1

0

0.05

0.1

FIG. A.1. The effect of the effective number of bath spins
characterized by γ = 2/Neff in the bTWA on the spin-spin
correlation at fixed jmax = 3 and N = 500. The dotted fitting
function in the inset is f(γ) = a

√
γ+b with a = 0.285±0.005

and b = Sz
min(tminJQ =

√
12), which confirms the square root

proportionality of the minimum value of the correlation on γ.
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0FIG. B.1. The effect of truncation level characterized by jmax

in the bTWA on the spin-spin autocorrelation at fixed N =
500 and γ = 0.01 (Neff = 200).

agrees with what was found by sTWA54.

Appendix B: Effect of the truncation level jmax in
the bTWA

Here we study the effect of the maximum number of
bosonic modes jmax in the bTWA, see Fig. B.1, at fixed
number of bath spins N = 500 and γ = 0.01 (corre-
sponding to Neff = 200). The curve for jmax = 0 shows
the result for the frozen Overhauser field in Eq. (5). The
curve for jmax = 1 induces only a very small tempo-
ral evolution of the Overhauser bath because the central
spin is coupled only to a single harmonic oscillator which
has a small effect on the position of the minimum. But
the long-time plateau value of the autocorrelation stays
close to the frozen Overhauser field one for the studied
times.

Taking into account a larger number of bosonic modes
jmax ≥ 2, the difference between the static, frozen Over-
hauser result and the dynamic autocorrelations further
increases. The frozen Overhauser curve (dashed line)
is always below the other curves at short timescales.
Clearly, the decay of the autocorrelation sets in only for
t > τ after a specific time τ ' 10/JQ which is almost in-
dependent of the set of parameters. For the shown time
interval, the curves do not change significantly anymore
for jmax ≥ 3 in accordance with previous results55.

Appendix C: Effect of the external magnetic field on
the spin-spin autocorrelation in the bTWA

In this appendix, we address the role of a longitudi-
nal magnetic field in the bTWA with the parameters
jmax = 3, N = 500, and γ = 0.01 (Neff = 200) in
Fig. C.1. In this case, the solution of Eq. (19c) dis-
plays the precession of the central spin about the effective
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FIG. C.1. The effect of the external longitudinal magnetic
field on the (a) z-component and (b) x-component of the
spin-spin autocorrelation at fixed jmax = 3, N = 500, and
γ = 0.01. The longitudinal central spin polarization is stabi-
lized with the external longitudinal field and the amplitude
of the oscillations is damped for increasing h such that at
strong enough magnetic fields an almost time-independent
autocorrelation function Sz(t) → 1/4 results. In contrast,
the transversal spin-spin autocorrelation displays prominent
Larmor precession which quickly dephase due to the random
Overhauser field.

magnetic field, i.e., the Overhauser field plus the exter-
nal magnetic field. Depending on the considered spin
component the Zeeman effect implies different behavior.
For the z-autocorrelation of the central spin, Fig. C.1(a),
one finds that the decoherence rate is strongly suppressed
by the magnetic field in a way that it approaches zero at
strong fields where the spin-spin autocorrelation becomes
almost time-independent and tends to take the initial
value of 1/4. This implies that the central spin polariza-
tion parallel to the external magnetic field is stabilized
for h� JQ.

Upon increasing magnetic field, the minimum of the
longitudinal autocorrelation occurs earlier and earlier
before it is reduced to small oscillations and eventually
to an almost constant plateau. In contrast to the lon-
gitudinal dynamics of the central spin, the transversal
dynamics, Fig. C.1(b), displays pronounced Larmor
precessions with fast decreasing amplitude due to the
dephasing induced by the fluctuations of the Overhauser
field.
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