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Abstract

We review the construction of the adiabatic expansion for Bose
and Fermi systems and show how it may be used to explore the chiral
and parity anomalies for Dirac fermions without the need to compute
Feynman diagrams.
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1 Introduction

Feynman diagrams are the standard tool for computing quantities in pertur-
bative quantum field theory. After one has learned the rules for converting
diagram to integral, and the often formidable techniques necessary for eval-
uating the resulting integral, their power is such they provide a magical
black box into which one inserts a problem and extracts an answer. What
is often lost in the process is a picture of what physics the mathematical
machinery is capturing. This is true even at the level of one-loop diagrams
whose mathematics can output non-obvious physical effects such as the ABJ
chiral anomaly [1, 2, 3], the parity-anomaly in odd space-time dimensions
[4, 5], and the related current inflow from higher dimensions that provides
the anomalous chiral charge [6].
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When using one-loop diagrams to evaluate the vacuum expectation of
operators such as currents, charges, and energy fluxes we are basically ex-
ploring the physics of systems whose hamiltonians are quadratic in annihi-
lation and creation operators and with coefficients that depend on whatever
perturbations are represented by the external legs on the diagram. These
perturbations can be electromagnetic fields coupling to the bilinear current
operator, or perhaps the gravitational effects of curved space that couple to
the energy-momentum tensor. In such a case the effects of slowly varying
external fields can be captured by a gradient or derivative expansion of the
one-loop effective action [7, 8, 9]. In particular, if the external fields depend
on only one space-time dimension a powerful tool is provided by the adia-
batic expansion of ordinary quantum mechanics, which does not require the
full machinery of quantum field theory. Indeed much of the work on field
theory in curved space uses exactly this tool [10, 11].

In this paper we will use versions of the adiabatic expansion to exhibit
special cases of the anomaly-related effects mentioned above, and in doing
so hope to achieve some insights that are denied in the diagram derivations.
We set the stage in section 2 by reviewing how time-varying parameters
in a harmonic oscillator causes the ground-state to evolve. We relate this
evolution to vacuum squeezing in both Bose and Fermi systems and establish
the basic recurrence relations that allow us to mechanically compute the
slow-squeeze adiabatic series to arbitrary order. Then, in section 3, we apply
what we have learned to field theory. We use the fermion version of the
adiabatic series in 1 + 1 spacetime dimensions to show how the standard
spectral-flow picture of the chiral anomaly for massless fermions is affected
by the inclusion of a fermion mass. Similar methods are then used to obtain
the related parity anomaly in 1 + 2 spacetime dimensions, and in 1 + 3
dimensions to compute the gradient expansion for the current induced by
an external spatially constant electric field. En passant we obtain the one-
loop beta function for QED. Finally we extend the chiral anomaly results
to four-dimensional spacetime. In the appendices we verify, when possible,
the output of our asymptotic expansions by comparing them with one-loop
results obtained by other methods.

We use units in which ~ = ǫ0 = µ0 = 1.
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2 Quantum Mechanics

2.1 Time-dependent harmonic oscillators

The quantum harmonic oscillator with Hamiltonian

H0 =
1

2
p̂2 +

1

2
Ω2x̂2 (1)

is considered in every introductory textbook — not only because it is easily
solved and therefore a pedagogically useful illustration, but also because
many real world systems are well approximated as harmonic oscillators. An
oscillator driven by a time-varying linear term

H(t) =
1

2
p̂2 +

1

2
Ω2x̂2 + F (t)x̂ (2)

is also useful and straightforward to solve (see appendix A) but when it is
the oscillator frequency Ω that is allowed to depend on time the problem is
more challenging, and the physical effects more exotic. A period of rapid
frequency change will leave the oscillator in a squeezed state — a superpo-
sition of excited states that has many applications in quantum optics [12],
and even in gravitational wave detection [13]. We will see, however, that
much can also be learned by tracking what happens during a slow frequency
change that leaves little permanent excitation.

2.2 Schrödinger-picture wavefunctions

The wavefunction ψ(x, t) of a variable-frequency harmonic oscillator obeys
the time-dependent Schrödinger equation

i
∂ψ

∂t
=

(

−1

2

∂2

∂x2
+

1

2
Ω2(t)x2

)

ψ, Ω(t) ∈ R. (3)

This equation has a Gaussian solution [14]

ψ(x, t) = χ−1/2(t) exp

{

−1

2
ω(t)x2

}

(4)

provided that χ(t), ω(t) obey the evolution equations

χ̇/χ = iω,

ω2 − iω̇ = Ω2(t). (5)
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Here the dot denotes a time derivative: ω̇ ≡ ∂tω. With ω = ωR + iωI , the
parameter-evolution equations imply that

∂t ln(|χ|) = −ωI ,

∂t ln(ωR) = +2ωI , (6)

and so ensure that the normalization ∝ |χ|ω1/2
R is preserved.

The equations (5) together with the Riccati identity

− (−∂t − iω)(∂t − iω) = ∂2tt + (ω2 − iω̇) (7)

show that
d2χ

dt2
+ Ω2(t)χ = 0, (8)

where

χ(t) = exp

{

i

∫ t

−∞

ω(τ) dτ

}

. (9)

We can rewrite (8) as

(

− d2

dt2
+ [Ω2

0 − Ω2(t)]

)

χ = Ω2
0χ, (10)

and if Ω2(t) → Ω2
0 as t → ±∞, regard it as a scattering problem with

the frequency excursion away from Ω2
0 providing the scattering potential.

Consider boundary conditions for which the asymptotic solution is of the
form

χ(t) →
{

TeiΩ0t, t→ −∞,

eiΩ0t +Re−iΩ0t, t→ +∞,
(11)

with |T |2 = 1 − |R|2. For t in the pre-excursion region the asymptotic form
for χ gives

ω(t) = −i
(

χ̇

χ

)

→Ω0 (12)

so the “transmission coefficient” T does not affect ω(t). For t in the post-
excursion asymptotic region we have

ω(t) = −i
(

χ̇

χ

)

→Ω0

(

1−Re−2iΩ0t

1 +Re−2iΩ0t

)

. (13)
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The oscillations in ω(t) reveal that the gaussian wavefunction is breathing in
and out — i.e. getting narrower and wider — at frequency 2Ω0.

Setting y = 0 and s = i
√
Re−iΩ0t in Mehler’s formula

∞
∑

n=0

snϕn(x)ϕn(y) =
1

√

π(1− s2)
exp

{

4xys− (x2 + y2)(1 + s2)

2(1− s2)

}

, 0 ≤ |s| < 1,

(14)
where

ϕn(x) ≡
1

√

2nn!
√
π
Hn(x)e

−x2/2 (15)

is the normalized Ω0 = 1 harmonic oscillator wavefunction, we find that

1

(πΩ0)1/4
χ−1/2(t) exp

{

−1

2
ω(t)x2

}

t→+∞
= π1/4

∞
∑

n=0

e−i(n+1/2)Ω0tϕn(0)(i
√
R)n

ϕn(
√
Ω0x)

(Ω0)1/4
.

(16)
Now ϕn(0) vanishes if n is odd, and

π1/4ϕ2n(0) =
1

√

4n(2n)!

(2n)!

n!
(−1)n. (17)

Comparing with the wavefunction for t→ −∞ we see that the amplitude for
being excited from the ground state to the 2n-th eigenstate is

A2n =
√
T (Re−2iΩ0t)n

1
√

4n(2n)!

(2n)!

n!
. (18)

As a check we may evaluate

∞
∑

n=0

|A2n|2 = |T |
∞
∑

n=0

|1
2
R|2n (2n)!

(n!)2
=

|T |
√

1− |R|2
= 1. (19)

The probabilities of excitation therefore sum to unity as they should.

2.3 Squeezed vacuum states

We can appreciate the formula for A2n by relating it to the generalized co-
herent states associated with the non-compact group SU(1, 1) ≃ Sp(2,R) or,
more accurately, with its metaplectic double cover MSp(2,R). In quantum
optics these coherent states are known as squeezed vacuum states.

6



Let â, â† be bosonic annihilation and creation operators with their usual
commutation relation [â, â†] = 1, and vacuum state |0〉 defined by â|0〉 = 0.

A unitary infinite-dimensional Fock-space representation of the Lie alge-
bra su(1, 1) ≃ sp(2,R) is then generated by the quadratic operators a2, a†

2

and â†â + 1
2
whose commutators are

[(â†)2, â2] = −4(â†â+ 1
2
),

[(â†â+ 1
2
), â2] = −2â2,

[(â†â + 1
2
), (â†)2] = +2(â†)2. (20)

By exponentiating these generators we construct a unitary squeezing operator
[15]

S(z)
def
= exp

{

1
2
(z(â†)2 − z∗â2)

}

, (21)

which implements the Bogoliubov-Valatin transformation

S†(z)

[

â
â†

]

S(z) =

[

cosh |z| eiθ sinh |z|
e−iθ sinh |z| cosh |z|

] [

â
â†

]

. (22)

Here the angle θ is defined by z = |z|eiθ.
There is also a faithful but non-unitary representation of sp(2,R) in terms

of the two-by-two Pauli matrices in which

a2 7→ 2iσ−,

(â†)2 7→ 2iσ+,

(â†â+ 1
2
) 7→ σ3. (23)

Because the representation is faithful, the resulting group-element map

exp
{

1
2
(z(â†)2 − z∗â2)

}

7→ exp {(izσ+ − iz∗σ−)} = exp

{(

0 iz
−iz∗ 0

)}

.

(24)
is an isomorphism. Consequently the Gauss-Bruhat factorization

exp

{(

0 iz
−iz∗ 0

)}

≡
(

cosh |z| ieiθ sinh |z|
−ie−iθ sinh |z| cosh |z|

)

,

=

(

1 ieiθ tanh |z|
0 1

)(

1/ cosh |z| 0
0 cosh |z|

)(

1 0
−ie−iθ tanh |z| 1

)

,

= exp{ieiθ tanh |z|σ+} exp{− ln(cosh |z|)σ3} exp{−ie−iθ tanh |z|σ−}
(25)
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of the two-by-two matrix establishes [16] the normal-ordered factorization of
the infinite-dimensional Fock-space operator

S(z) = exp
{

1
2
(z(â†)2 − z∗â2)

}

= exp
{

eiθ 1
2
tanh |z| (â†)2

}

exp
{

− ln cosh |z|(â†â+ 1
2
)
}

exp
{

−e−iθ 1
2
tanh |z| â2

}

.

(26)

The normal-ordering shows that

S(z)|0〉 =
1

√

cosh |z|

∞
∑

n=0

1

n!
(eiθ 1

2
tanh |z|)n(â†)2n|0〉

=
1

√

cosh |z|

∞
∑

n=0

1

n!
(eiθ 1

2
tanh |z|)n

√

(2n)!|2n〉

def
=

∞
∑

n=0

A2n|2n〉. (27)

After identifying |n〉 with the n-th eigenstate of our oscillator and eiθ tanh |z|
with Re−2iΩ0t we recognize the oscillator’s post-excursion excited state as a
squeezed vacuum state, and so understand the combinatoric origin of

∞
∑

n=0

|A2n|2 =
1

| cosh |z||

∞
∑

n=0

(1
2
tanh |z|)2n (2n)!

(n!)2

=
1

| cosh |z||
1

√

1− tanh2 |z|
= 1. (28)

2.4 Two-mode squeezed vacua

Given two frequency-Ω harmonic oscillators with ladder operators â and b̂
we can similarly construct an operator

S2(ξ) ≡ exp{ξ∗âb̂− ξâ†b̂†}
= exp{−eiθ tanh |ξ|â†b̂†} exp{− ln cosh |ξ|((â†â + 1

2
) + (b̂†b̂+ 1

2
))} exp{e−iθ tanh |ξ|âb̂}

(29)
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that creates a two-mode squeezed vacuum state

S2(ξ)|0〉 =
1

cosh |ξ| exp{−e
−iθ tanh |ξ|â†b̂†}|0〉

=
1

cosh |ξ|

∞
∑

n=0

1

n!
(−eiθ tanh |ξ|)n(â†b̂†)n|0〉

=
1

cosh |ξ|

∞
∑

n=0

(−eiθ tanh |ξ|)n|n, n〉. (30)

When we observe only the âmode, the probability of being in the n-th excited
state is

pn =
1

cosh2 |z|
(tanh2 |z|)n (31)

which is classical thermal Bose distribution with e−βΩ = tanh2 |z|. If we
observe both the â and b̂ modes together we will find, however, that they are
non-classically quantum entangled.

We introduced the two-mode operator (33) because we will later have
cause to refer to its fermionic cousin. When â, â†, b̂, b̂† obey the fermion
algebra

{â, â†} = {b̂, b̂†} = 1, {â, â} = {b̂, b̂} = {â, b̂} = {â, b̂†} = 0, (32)

we have â2 = (â†)2 = 0, so there is no fermion analogue of a single-mode
squeezing operator. We can, however, still construct a two-mode operator

U [z] = exp{zâ†b̂† − z∗b̂â}
= exp{(eiθ tan |z|)â†b̂†} exp{(ln cos |z|)[(â†â + 1

2
) + (b̂†b̂+ 1

2
)]} exp{(−e−iθ tan |z|)b̂â}

(33)

which also implements a Bogoliubov-Valatin transformation

U [z]âU †[z] = (cos |z|)â− (eiθ sin |z|)b̂†,
U [z]b̂U †[z] = (eiθ sin |z|)â† + (cos |z|)b̂. (34)

The right-hand-side of (34) is now a compact SU(2) rotation rather than a
non-compact SU(1, 1) transformation.
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The factored form shows that U [z] acts on the vacuum to create a squeezed
state of the form

U [z]|0〉 = cos |z| exp{(eiθ tan |z|)â†b̂†}|0〉
= cos |z|{1 + (eiθ tan |z|)â†b̂†}|0〉. (35)

If we ascribe an energy ǫ to the â mode and define a real number β so that

tan2 |z| = e−βǫ,

sin2 |z| =
e−βǫ

1 + e−βǫ
,

cos2 |z| =
1

1 + e−βǫ
, (36)

the probabilities of observing the â mode as being unoccupied or occupied
are respectively

p0 =
1

1 + e−βǫ
, p1 =

e−βǫ

1 + e−βǫ
. (37)

This is again a thermal distribution [17], but now a Fermi one. As before the
â and b̂ modes are quantum entangled.

2.5 Squeezing in the Heisenberg picture

The rhythmic in-and-out out breathing of the time-dependent Shrödinger
wavefunction gives a concrete physical picture of the effect of squeezing on
an oscillator ground state. For applications to field theories, however, it is
more convenient to work in the Heisenberg-picture language where the states
do not evolve but instead the Hermitian position and momentum operators
x̂, p̂ depend on time and obey both their classical equations of motion and
the quantum equal-time commutation relation

[x̂(t), p̂(t)] = i. (38)

For the variable-frequency harmonic oscillator with Hamiltonian

H =
1

2
p̂2 +

1

2
Ω2(t)x̂2 (39)

the classical equation of motion is

d2x̂

dt2
+ Ω2(t)x̂ = 0, (40)
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and p̂(t) ≡ ˙̂x(t) so the commutation relation is [x̂(t), ˙̂x(t)] = i.
The equation of motion is linear, so we can expand the Hermitian operator

x̂(t) as a sum
x̂(t) = f(t)â + f ∗(t)â†, (41)

where the constant coefficients â and â† are operators and the complex-valued
c-number function f obeys

f̈ + Ω2(t)f = 0. (42)

The condition [x̂(t), ˙̂x(t)] = i requires the coefficients â, â† to obey

〈f, f〉[â, â†] = 1, where 〈f, g〉 def
= i(f ∗∂tg − (∂tf

∗)g). (43)

Being proportional to the Wronskian, the non-positive-definite “inner prod-
uct” 〈f, g〉 is independent of t, so there is no contradiction with â and â†

being constants.
For constant Ω the appropriate choice for making [â, â†] = 1 is to take f

as the positive-frequency solution

f(t) =

√

1

2Ω
e−iΩt. (44)

With this choice
H = Ω(â†â + 1

2
), (45)

so the ground state |0〉 obeys â|0〉 = 0 and we have the Heisenberg-picture
expansions

x̂(t) =

√

1

2Ω
(â†eiΩt + âe−iΩt),

p̂(t) = i

√

Ω

2
(â†eiΩt − âe−iΩt), (46)

â e−iΩt =
1√
2

(√
Ω x̂(t) +

i√
Ω
p̂(t)

)

,

â†eiΩt =
1√
2

(√
Ω x̂(t)− i√

Ω
p̂(t)

)

. (47)

Now consider a frequency excursion with Ωin, Ωout as the initial and final
asymptotic values of Ω(t). If we start in the initial Heisenberg-picture ground
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state |0〉in neither the state nor the ain and a†in coefficients change but a c-
number solution that starts off as

f(t) =

√

1

2Ωin
e−iΩint (48)

in the distant past will evolve to

α

√

1

2Ωout

e−iΩoutt + β

√

1

2Ωout

eiΩoutt (49)

after the frequency has ceased to change. It is natural to define new expansion
coefficients âout and â

†
out by writing

x̂(t) = âin

(

α

√

1

2Ωout
e−iΩoutt + β

√

1

2Ωout
eiΩoutt

)

+â†in

(

α∗

√

1

2Ωout
eiΩoutt + β∗

√

1

2Ωout
e−iΩoutt

)

def
= âout

√

1

2Ωout
e−iΩoutt + â†out

√

1

2Ωout
eiΩoutt. (50)

Comparison of the last two lines shows that
[

âout
â†out

]

=

[

α β∗

β α∗

] [

âin
â†in

]

. (51)

The commutation relation for the “out” operators require that |α2|−|β|2 = 1,
which holds true because the Wronskian is constant. Using this we can solve
for inverse transformation

[

âin
â†in

]

=

[

α∗ −β∗

−β α

] [

âout
â†out

]

. (52)

The initial state |0〉in now appears as a squeezed version

|0〉in = exp
{

1
2
(z(â†out)

2 − z∗â2out)
}

|0〉out, (53)

of the Ωout ground state defined by âout|0〉out = 0. Here

α = cosh |z|,
β∗ = eiθ sinh |z|. (54)
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That the oscillator is not in the state |0〉out manifests itself through the
computation of the energy expectation

in〈0|12 ˙̂x
2 + 1

2
Ω2

outx̂
2|0〉

in
= 1

2
Ωout(|α|2 + |β|2)

= Ωout

(

|β|2 + 1
2

)

> 1
2
Ωout, (55)

and matrix elements such as

in〈0|x̂2|0〉in =

∣

∣

∣

∣

α

√

1

2Ωout
e−iΩoutt + β

√

1

2Ωout
eiΩoutt

∣

∣

∣

∣

2

=
1

2Ωout

{

|α|2 + |β|2 + (α∗βe2+ + αβ∗e2−)
}

, (56)

where
e±(t) = exp {±iΩoutt} . (57)

Similarly

in〈0| ˙̂x2|0〉in =
Ωout

2

{

|α|2 + |β|2 − (α∗βe2+ + αβ∗e2−)
}

,

in〈0|12(x̂ ˙̂x+ ˙̂xx̂)|0〉
in

=
i

2
(α∗βe2+ − αβ∗e2−). (58)

The expectation values therefore show the same 2Ωout pulsations as in the
wavefunction description and we can identify the transmission and reflection
coefficient from section 2.2 as T = 1/α and R = β/α.

At intermediate times one can seek a solution of the form

f(t) = α(t)
1

√

2Ω(t)
e−(t) + β(t)

1
√

2Ω(t)
e+(t) (59)

where

e±(t)
def
= exp

{

±i
∫ t

Ω(t′)dt′
}

, (60)

is a generalization of (57) to admit a variable frequency. Given such a solu-
tion we are invariably tempted to interpret the quantity |β(t)|2 as the average
occupation number of the excited states above the ground state of H(t). We
may, however, swap terms ∝ e2± between α(t) and β(t) and as a result the de-
composition of f(t) into positive and negative frequency terms is not unique.
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This non-uniqueness makes any physical interpretation of |β|2 unclear, and
complicates any interpretation of |0〉in as a squeezed ground state of H(t)
[18]. What is well defined at all times are the equal-time expectation values

in〈0| . . . |0〉in of functions of the Heisenberg-picture operators. These can be
extracted from the well-defined f(t) alone, and hence from the α(t) and β(t)
coefficients despite their individual ambiguity.

2.6 Hyperbolic Bloch equations

One of many ways of defining α and β coefficients during the evolution of
the system as Ω(t) varies is that of Zeldovich and Starobinskii (ZS) [19] who
use Lagrange’s method of variation of parameters to solve

χ̈ + Ω2(t)χ = 0. (61)

ZS start by assuming the ambiguous form (59)

χ(t) = α(t)
1√
2Ω

e−(t) + β(t)
1√
2Ω

e+(t), e±(t)
def
= exp

{

±i
∫ t

Ω(t′)dt′
}

,

(62)
but follow Lagrange by demanding that

χ̇(t) = −iΩ
(

α(t)
1√
2Ω

e− − β(t)
1√
2Ω

e+

)

. (63)

This expression is what we would obtain from differentiating χ(t) while taking
α, β, and Ω to be constants — but as these quantities vary with t the demand
imposes the condition

0 =

(

−1

2

Ω̇

Ω
α + α̇

)

e− +

(

−1

2

Ω̇

Ω
β + β̇

)

e+. (64)

This condition serves to uniquely specify α(t) and β(t) and hence to dis-
ambiguate the decomposition of χ(t) into positive and negative frequency
modes. In particular, the time independence of the Wronskian of χ and χ∗

constructed using (62) and (63) shows that |α|2 − |β|2 = 1 at all times.
Inserting the χ̇(t) defined by (63) into (61) gives

0 =

(

1

2

Ω̇

Ω
α + α̇

)

e− −
(

1

2

Ω̇

Ω
β + β̇

)

e+. (65)
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Adding and subtracting the two conditions (64) and (65) we find

α̇ =
1

2

Ω̇

Ω
βe2+,

β̇ =
1

2

Ω̇

Ω
αe2−. (66)

It is difficult to get a sense of what the equations (66) imply for the evolution
of α and β because of the rapidly varying phase factors e2±. To deal with this
ZS introduce the real quantities

σ(t) = |β|2,
τ(t) = i(αβ∗e2− − α∗βe2+),

υ(t) = (αβ∗e2− + α∗βe2+), (67)

which have already appeared in equations (56, 58). These combinations obey

(1 + 2σ)2 − τ 2 − υ2 = 1,

which is the equation for a hyperboloid of two sheets. Indeed the manifold
of squeezed vacuum states possesses an inherent hyperbolic geometry arising
from it being a coset K = Sp(2, R)/U(1) which can be identified as the
upper sheet of a two-dimensional hyperboloid embedded in 2+1 dimensional
Minkowski space – a classic model for Bolyai-Lobachevskii space. The map
(67) taking α, β to points on the coset is a hyperbolic version of the SU(2) →
S3 Hopf map.

The advantage of the quantities σ, τ , υ is that when α ≈ 1 and β is small
the rapidly varying phases e2±(t) almost cancel their rapid phase variation in
β(t) and β∗(t) and allow σ, τ , and υ be slowly varying.

Using the equations for α̇, β̇ shows that

σ̇ =
1

2

(

Ω̇

Ω

)

υ,

υ̇ =

(

Ω̇

Ω

)

(1 + 2σ)− 2Ωτ,

τ̇ = 2Ωυ. (68)

This set of three equations is a hyperbolic analogue of the Bloch equations
describing the interaction of a spin with a time dependent magnetic field.
The initial conditions α = 1, β = 0 corresponds to conditions on σ, τ, υ that
they are all zero in the distant past.
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2.7 Adiabatic expansion

Much of the effort in investigating the squeezed oscillator has focused on the
permanent excitation of the system after the frequency excursion. Such an
excitation is most efficiently achieved by a period in which Ω(t) oscillates at a
frequency near 2Ω0 (parametric resonance) or by relatively violent changes in
the frequency such as occur in Landau-Zener tunneling [20]. For applications
and a review of techniques see [21, 22]. In the rest of this paper, however,
we will focus on the behavior of systems during a relatively slow adiabatic

frequency excursion in which little or no permanent excitation occurs.
There are a number of methods for obtaining a systematic adiabatic ex-

pansion of the time evolution of χ(t), and hence for quantities such as σ(t).
A textbook route [10, 11] starts from a single-exponential WKB-like solution

χ(t) =
1

√

2W (t)
exp

{

−i
∫ t

W (τ)dτ

}

, (69)

and generates a series expansion for W (t). We will, however, continue with
the “two-exponential” method of [19] as it is computationally simpler.

We rearrange the evolution equations (68) as

σ =
1

2

∫ t

0

(Ω̇/Ω)υdt,

τ =
(Ω̇/Ω)(1 + 2σ)− υ̇

2Ω
,

υ =
τ̇

2Ω
, (70)

and expand in inverse powers of Ω(t) as

σ = σ{2} + σ{4} + . . .

τ = τ{1} + τ{3} + . . .

υ = υ{2} + υ{4} + . . . . (71)

Regarding (Ω̇/Ω) as being of O[Ω0], we obtain recursion relations

σ{n} =
1

2

∫ t

0

(Ω̇/Ω)υ{n}dt,

υ{n} = τ̇{n−1}/2Ω,

τ{n+1} =
2(Ω̇/Ω)σ{n} − υ̇{n}

2Ω
, (72)

16



with starting condition τ{1} = Ω̇/2Ω2.
By hand we find, for example,

σ{2} =

∫ t

0

Ω̇

4Ω2

d

dt

[

Ω̇

2Ω2

]

dt =
1

16

Ω̇2

Ω4
. (73)

Using Mathematica to automate the labour, we can compute higher order
terms

σ{4} =
Ω̈2

64Ω6
− 45Ω̇4

256Ω8
− Ω(3)Ω̇

32Ω6
+

5Ω̇2Ω̈

32Ω7
, (74)

σ{6} =
(Ω(3))2

256Ω8
+

7Ω̈3

128Ω9
+

4725Ω̇6

2048Ω12
+

Ω(5)Ω̇

128Ω8
− Ω(4)Ω̈

128Ω8
− 7Ω(4)Ω̇2

64Ω9

+
217Ω(3)Ω̇(x)3

256Ω10
− 945Ω̇4Ω̈

256Ω11
+

441Ω̇2Ω̈2

512Ω10
− 21Ω(3)Ω̇Ω̈

128Ω9
, (75)

and so on.
All terms in these expressions contain derivatives of Ω(t). Consequently

they revert to being zero when Ω ceases to change. In particular, despite the
appearance of the factor β(t) exp{+i

∫ t
Ω(t′)dt′} in χ(t), the recursion process

does not generate the “reflected” wave that indicates a permanent excitation
of the oscillator. Such a persistent excitation is a non-perturbative effect [23]
so the expansion is, at best, an asymptotic series. Furthermore because of
the rapid e−(t)

2 phase variation in β(t) the factor β(t) exp{+i
∫ t

Ω(t′)dt′}
is close in time evolution to α(t) exp{−i

∫ t
Ω(t′)dt′}. This means the “two-

exponential” expansion used by Zeldovich and Starobinskii [19] is consistent
with the “one-exponential” WKB expansion of [10, 11] and nicely illustrates
the ambiguity in the notion of positive or negative frequency.

The ambiguity means our asymptotic expressions for σ = |β|2 are not in
themselves physically meaningful — they depend on the choice we made when
we imposed Lagrange’s condition (64). However, when used as ingredients
for computing quantities such as (56),(58) and the expectation values of the
currents that will appear in section 3.1, the results are independent of this
choice.

We have been rather vague as to what exactly is the small parameter
in the adiabatic series. We can make it explicit by replacing Ω(t) by Ω(εt)
where ε is to be assumed small. Then σ{2n} is replaced by ε2nσ{2n} and ε
becomes the small parameter defining the resulting asymptotic expansion.
We prefer, though, to simply count the number of derivatives of Ω(t) in our
expressions as this amounts to the same thing.

17



3 Field Theory

3.1 Dirac fermions

Now we turn to the effect of changing oscillator frequencies in fermion sys-
tems. In particular we will apply the adiabatic expansion to Quantum elec-
trodynamics (QED), the theory of a spin-1/2 Dirac Fermi field coupled to
electromagnetism.

With the space-time signature (+,−,−,−) the four-vector gauge field
decomposes into time and space parts as Aµ = (φ,A) and Aµ = (φ,−A),
where A = (Ax, Ay, Az) is the usual three-vector potential in terms of which
B = ∇×A and E = −∇φ− ∂tA.

On its own, the Maxwell gauge field is described by the action functional

SMaxwell[A] = − 1

4e2

∫

FµνF
µνddx =

1

2e2

∫

(E2 −B2)ddx. (76)

After being integrated-out in a path-integral formalism, the Fermi field adds
to SMaxwell[A] the fermionic effective action

SF [A] = −i lnDet( 6D[A] +m), (77)

where 6D[A] = iγµ(∂µ + iAµ).
The effective action is a sophisticated object, being shorthand for an

infinite sum of one-loop Feynman diagrams with an arbitrary number of
γµAµ vertices. Even if we take the Aµ to be a non-fluctuating external field
SF [A] captures much interesting physics. For a static magnetic field SF [A] is
real number equal to minus the energy of the of the electrons in the field — a
relativistic analogue of the De Haas-Van Alphen effect. For a static electric
field 2SF [A] gains an imaginary part that gives the rate of electron-positron
pairs created per unit volume. For non-constant fields SF captures the 1-loop
renormalization effects and the non-linear effect of scattering of light by light.
With an extra γ5 vertex inserted, we also uncover the ABJ chiral anomaly
[1, 2, 3].

It is not easy to compute SF [A] for general space-time dependent Aµ,
but with some effort one can compute the first few terms in a systematic
expansion in powers of derivatives of Aµ [7, 8, 9]. When, however, we restrict
ourselves to Aµ fields that depend on only one space-time coordinate we can
— after some small changes to take into account that we are dealing with
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fermions rather than bosons — exploit the adiabatic expansion methods from
section 2.7 and calculate many terms with relative ease. As an illustration
we will consider the specific case of a spatially uniform, but time dependent,
electric field E(t) in one, two and three space dimensions.

3.2 One space dimension: chiral anomaly

To describe our uniform electric field we will use a gauge in which A0 = 0
and E = −∂tA. In the one-dimensional case the Hamiltonian form of the
Dirac equation in this field becomes

i∂tψ̂ = H(t)ψ̂ (78)

where
H(t) = −iσ3(∂x − iAx(t)) + σ1m (79)

is a differential operator involving the two-by-two Pauli matrices.
The field equations for the Heisenberg-picture operators ψ̂ and ψ̂† are

i∂tψ̂ = −iσ3(∂x − iAx)ψ̂ + σ1mψ̂,

−i∂tψ̂† = +i(∂x + iAx)ψ̂
†σ3 +mψ̂†σ1. (80)

The equations (80) are linear so, as for the harmonic oscillator, the operators
can be expanded linear combinations

ψ̂(x, t) =

∫ ∞

−∞

dp

2π

(

âpψ+(p, x, t) + b̂†−pψ−(p, x, t)
)

(81)

of two linearly-independent c-number solutions

ψ±(x, t) =

[

u±(x, t)
v±(x, t)

]

(82)

of the equation of motion

i∂t

[

u
v

]

=

[

−i(∂x − iAx(t)) m
m +i(∂x − iAx(t))

] [

u
v

]

. (83)

As we are considering only spatially uniform systems we have ψ±(p, x, t) =
ψ±(p, t)e

ipx. In the Heisenberg picture the operator-valued expansion coef-
ficients âp and b̂†−p are time-independent and obey the standard Fermi anti-
commutation relations {âp, â†q} = 2πδ(p− q), etc.
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By formal manipulation of the field equations (80) we obtain the particle-
number current conservation equation

∂t(ψ̂
†ψ̂) + ∂x(ψ̂

†σ3ψ̂) = 0, (84)

and, more interestingly, the chiral current (non)-conservation equation in the
form

∂t(ψ̂
†σ3ψ̂) + ∂x(ψ̂

†ψ̂)
?
= 2m(ψ̂†σ2ψ̂). (85)

The “?” is there because, while last equation is valid for any c-number

solution ψ(x, t) of the field equations, the actual equation obeyed by the
operator-valued chiral charge ψ̂†σ3ψ̂ should be

∂t(ψ̂
†σ3ψ̂) + ∂x(ψ̂

†ψ̂) = 2m(ψ̂†σ2ψ̂) +
1

π
E(t), (86)

where extra term E(t)/π is the 1+1 dimensional version of the chiral anomaly
[1, 2, 3].

To understand the source of the E/π term it helps to visualize the initial
many-body ground state as a filled Dirac sea in which all negative-energy
states are occupied and all positive-energy states vacant1. The antiparticle
creation operator b̂†−p is then to be thought of as an operator annihilating a
negative-energy positively charged particle that was occupying a momentum
+p mode and as a result creating a negatively-charged particle excitation
with positive energy

√

p2 +m2 and momentum −p.
When m = 0 and the field E time independent this view of the ground

state allows a simple physical picture [24, 25, 26] of the how the anomaly
arises. The Hamiltonian for the massless two component spinor is now diag-
onal and the equation of motion

i∂t

[

u
v

]

=

[

p+ Et 0
0 −(p + Et)

] [

u
v

]

(87)

can be interpreted as stating that the energy of a right-going mode which
possessed momentum p at t = 0 becomes p + Et. Similarly the energy of a

1The Dirac sea is rather out of fashion, but the principal objection to it — the associated
infinite vacuum charge — is rendered moot by the observation that each generation in the
standard model has a charge-neutral sea: there are three (for colour) up-type quarks each
with q = +2/3, three down-type quarks with q = −1/3 and one electron-like lepton with
q = −1. These charges sum to zero.
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left-going mode becomes p − Et. For positive E there is therefore a steady
flow of occupied right-going states into the positive energy continuum and
an equal flow of empty left-going states down into the negative continuum.
The latter leaves behind a growing number of holes and so, compared to the
ground state at t = 0, a negative left-going particle number. If the “volume”
of the system is L the density of momentum modes is dn/dp = L/2π so the
chiral particle number nR − nL is changing according to

1

L

d(nR − nL)

dt
= 2× E

2π
=
E

π
. (88)

Taking the chiral charge density operator to be ψ̂†
Rψ̂R − ψ̂†

Lψ̂L = ψ†σ3ψ̂ we
have a c-number version

d〈ψ̂†σ3ψ̂〉
dt

=
E

π
(89)

of Eq. (86).
This simple picture requires massless fermions. A mass term thwarts the

spectral flow: the negative energy right-going single-particle modes still rise
adiabatically in energy from deep in the sea but in the neighbourhood of the
mass gap they mix with, and mutate into, left-going modes which descend
again into the depths. When we ignore the possibility of Zener tunneling
across the gap, the negative energy states remain filled and the positive
energy ones empty, so d(nR − nL)/dt is zero. The corresponding c-number
version of the anomaly equation should therefore reduce to

2m〈ψ̂†σ2ψ̂〉+
E

π
= 0. (90)

We explore how this comes about, and how the equation is modified when
the electric field E depends on time.

3.3 Adiabatic expansion for Dirac fields

Despite much work on the adiabatic expansion for scalar Bose fields, the
construction of systematic adiabatic expansions for the time-dependent Dirac
equation appears to be relatively recent. Landete, Navarro-Salas and Torrenti
[28] developed techniques similar to those of [10, 11], but we will use the later
method due to Gosh [29] which is closer in spirit to [19] and appears to be
simpler and more efficient.
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The time independent “in” vacuum state |0〉 is defined by âp|0〉 = b̂p|0〉 =
0, and, for any fixed p and before the Ax(t) field appears, the corresponding
solutions ψ+(p, t), ψ−(p, t) are those that have time dependence

ψ+(p, t) = ψ+(p)e
−iǫt, ψ−(p, t) = ψ−(p)e

+iǫt, ǫ =
√

p2 +m2. (91)

The initial ψ±(p) therefore coincide with the positive and negative energy
eigenvectors χ±(p) of the hamiltonian matrix H with Ax = 0.

In the course of the time evolution caused by the field, an occupied
initially-negative-energy mode ψ−(p, t) = χ−(p)e

iǫt will acquire a positive
energy component and become

ψ−(p, t) = α(t)χ−(t)e+ + β(t)χ+(t)e−, (92)

where
e±(t) = e±i

∫
t

−∞
ǫ(τ)dτ . (93)

The χ±(t) are most conveniently chosen to be normalized positive and nega-
tive energy eigenvectors of the instantaneous Hamiltonian matrix H(t). The
linear independence of χ±(t) then uniquely defines α(t) and β(t).

The normalized instantaneous eigenvectors are

χ+ =
1√
2ǫ

[ √
ǫ+ p̃

sgn(m)
√
ǫ− p̃

]

, χ− =
1√
2ǫ

[ √
ǫ− p̃

−sgn(m)
√
ǫ+ p̃

]

(94)

where p̃(t) = p− Ax(t). They obey

H(t)χ± = ±ǫχ± (95)

with ǫ =
√

p̃2 +m2, and |χ±|2 = 1, χ†
+χ− = χ†

−χ+ = 0. The instantaneous
eigenvectors do not obey the time evolution equation, but they still depend
on t as a parameter. Because they are normalized and have real entries they
are orthogonal to their derivative with respect to t. We can therefore most
easily compute these derivatives by using the eigenstate perturbation formula

〈m|δn〉 = 〈m|δH|n〉
En −Em

(96)

to find the projection of χ̇± on the other eigenvector, and hence compute χ̇±
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itself. For example

〈χ+|χ̇−〉 = −〈χ+|Ḣ|χ−〉
2ǫ

,

= − 1

2ǫ
χT

+

[

E(t) 0
0 −E(t)

]

χ−,

= −|m|E(t)
2ǫ2

. (97)

The result is

d

dt
χ+ = +

(

E|m|
2ǫ2

)

χ−,
d

dt
χ− = −

(

E|m|
2ǫ2

)

χ+. (98)

Insert
ψ(t) = α(t)χ−e+ + β(t)χ+e− (99)

into the equation of motion (83) to get

0 = α̇χ−e+ + αχ̇−e+ + β̇χ+e− + βχ̇+e−

= α̇χ−e+ − α

(

E|m|
2ǫ2

)

χ+e+ + β̇χ+e− + β

(

E|m|
2ǫ2

)

χ−e−. (100)

From the coefficients of the of the linearly independent χ± we read off that

α̇ = −
(

E|m|
2ǫ2

)

βe2−, β̇ = +

(

E|m|
2ǫ2

)

αe2+. (101)

Except for the relative minus sign — due to preserving |α|2+ |β|2 = 1 instead
of |α|2 − |β|2 = 1 — this is of the same form as the Bose case (66).

When α ≈ 1 the β coefficient has a very rapid ∝ e2+ phase evolution so
that the time dependence of the adiabatically small β(t)χ+e− term is close
to that of the leading α(t)χ−e+ term — just as it is in the bosonic case.

The slowly varying quantities

σ = |β|2, τ = i(αβ∗e2+ − α∗βe2−), υ = (αβ∗e2+ + α∗βe2−), (102)

now label points on the Bloch sphere

(1− 2σ)2 + τ 2 + υ2 = 1 (103)
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and obey the spherical Bloch equations

σ̇ = Fυ,

τ̇ = −2ǫυ,

υ̇ = 2F (1− 2σ) + 2ǫτ, (104)

where F = E|m|/2ǫ2 = ˙̃p|m|/2ǫ2, and in the distant zero-field past σ = τ =
υ = 0.

Just as the bosonic squeezed states are parameterized by points on a hy-
perboloid, the 2-mode fermionic squeezed state of the form (35) correspond
to points on the Bloch sphere. The map (102) taking α, β to points on the
sphere is now the classic Hopf map SU(2) → S3. The equations (104) can
therefore be interpreted as ψ−(p, t) being a 2-mode (positive and negative en-
ergy) squeezed version of the ground state of one particle Hamiltonian H(t),
and |0〉in being a squeezed version of the ground state of the corresponding
instantaneous many-body Hamiltonian.

As we are interested in the low energy response to the external field,
we will focus on the case in which the time evolution of the hamiltonian is
relatively slow compared to the mass gap. To obtain an adiabatic expansion
we again rearrange the Bloch equations (104) as

σ =

∫ t

0

F [t′]υdt′

τ = −2F (1− 2σ)− υ̇

2ǫ

υ = − τ̇

2ǫ
, (105)

and expand in inverse powers of ǫ(t)

σ = σ{2} + σ{4} + . . .

τ = τ{1} + τ{3} + . . .

υ = υ{2} + υ{4} + . . . . (106)

Regarding F as being O[ǫ0] the recursion relations are

σ{n} =

∫ t

0

F [t′]υ{n}dt
′,

υ{n} = −τ̇{n−1}/2ǫ,

τ{n+1} =
4Fσ{n} + υ̇{n}

2ǫ
,
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with τ{1} = −F/ǫ.
From the matrix elements

χT
+σ1χ+ = −χT

−σ1χ− =
m

ǫ
χT

+σ2χ+ = χT
−σ2χ− = 0

χT
+σ3χ+ = −χT

−σ3χ− =
p̃

ǫ
. (107)

and

χT
+σ1χ− = χT

−σ1χ+ = − p̃
ǫ
,

χT
+σ2χ− = −χT

−σ2χ+ = i sgn(m),

χT
+σ3χ− = χT

−σ3χ+ =
|m|
ǫ

(108)

we find, for each p-mode,

ψ†σ2ψ = α∗βe2−χ−σ2χ+ + αβ∗e2+χ+σ2χ−

= −i sgn(m)(α∗βe2− − αβ∗e2+)

= sgn(m)τ(t)

= −mE
2ǫ3

+ higher order. (109)

To compute the expectation values of the field operators we need to sum
the contributions of the filled negative-energy sea by integrating over p. For
a time independent E field we only need the lowest order contribution to τ
and find that

2m〈0|ψ̂†σ2ψ̂|0〉 = −
∫ ∞

−∞

dp

2π

m2E

ǫ3

= −E
∫ ∞

−∞

dp

2π

m2

((p+ Et)2 +m2)3/2

= −E
π
. (110)

Thus we find the anticipated result that

2m〈0|ψ̂†σ2ψ̂|0〉+
1

π
E = 0, E constant. (111)
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Now consider a time-dependent E field. Using the equations above we
find that for any p mode the matrix elements are given in terms of σ, τ , υ as

ψ†σ1ψ = (2σ − 1)
m

ǫ
− υ

p̃

ǫ
ψ†σ2ψ = sgn(m)τ.

ψ†σ3ψ = (2σ − 1)
p̃

ǫ
+ υ

|m|
ǫ

(112)

So, using

F = |m| ˙̃p/2ǫ2

dǫ

dt
=

p̃ ˙̃p

ǫ
,

d

dt

1

ǫ
= − p̃

˙̃p

ǫ3
,

d

dt

p̃

ǫ
=

˙̃pm2

ǫ3
, (113)

and the Bloch equations (104) we find that the combination

A def
= ∂t(ψ

†σ3ψ)− 2mψ†σ2ψ, (114)

which is expected to give the contribution of the p mode to the anomaly,
actually evaluates to

A = ∂t

(

(2σ − 1)
p̃

ǫ
+ υ

|m|
ǫ

)

− 2|m|τ

= 2σ̇
p̃

ǫ
+ (2σ − 1)

˙̃pm2

ǫ3
+ υ̇

|m|
ǫ

− υ|m|
˙̃pp̃

ǫ3
− 2|m|τ

= 2Fυ
p̃

ǫ
+ (2σ − 1)2F

|m|
ǫ

+ (2F (1− 2σ) + 2ǫτ)
|m|
ǫ

− 2Fυ
p̃

ǫ
− 2|m|τ

= 0. (115)

That this expression is zero is inevitable. The Bloch equations encode the
original field equations and the c-number version of the chiral charge non-
conservation equation follows from these field equations. Consequently, when
considered mode-by-mode, the anomaly appears to be zero. The anomaly is
non-zero, however, because the operations of integration over p and taking
the time derivative do not necessarily commute.
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For the rest of this section we will assume that m > 0, so |m| = m and
sgn(m) = 1, and again expand2

j
def
= ψ†σ3ψ (116)

in inverse powers of ǫ

j = (2σ − 1)
p̃

ǫ
+ υ

m

ǫ
= j{1} + j{3} + j{5} + . . . (117)

As σ{0} = υ{0} = 0, we have

j{1} = − p̃
ǫ
. (118)

For n ≥ 2, we have

j{n+1}(p̃, t) = 2σ{n}(p̃, t)

(

p̃

ǫ

)

+ υ{n}(p̃, t)
(m

ǫ

)

. (119)

The corresponding contributions to the chiral charge are are given by
summing over the occupied p-modes as

J{n+1}(t)
def
=

∫ ∞

−∞

dp

2π
j{n+1}(p̃, t). (120)

For example the recurrence relations give

j{3}(p̃, t) = −5

8

m2p̃E2

(m2 + p̃2)7/2
+

1

4

m2Ė

(m2 + p̃2)5/2
(121)

The integral over p is sufficiently convergent at large p that we can shift
the integration variable p → p̃ = p − A(t) without altering the value of the
integral, and so find

J{3} =
Ė

6πm2
. (122)

We can similarly shift the integration variable and integrate

τ{3}(p̃) =
mË

8 (m2 + p̃2)5/2
− 5mpEĖ

4 (m2 + p̃2)7/2
− 3mE3

8 (m2 + p̃2)7/2
+

9mp̃2E3

4 (m2 + p̃2)9/2
+

m3E3

16 (m2 + p̃2)9/2

(123)

2We use the symbol j for for the per-mode chiral-charge density and J for the total
because in 1+1 dimensions the chiral-charge density coincides with the particle-number
current.
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to find

T{3}
def
=

∫ ∞

−∞

dp

2π
τ{3}(p̃) =

Ë

12πm3
. (124)

Consequently ∂tJ{3} = 2mT{3}.
The same is true of

T{5} =

∫ ∞

−∞

dp

2π
τ5(p) =

4E2Ë + 8EĖ2 −m2E(4)

60πm7
(125)

and

J{5} =
4E2Ė −m2E(3)

30πm6
, (126)

so ∂tJ{5} = 2mT{5}.
The interchange of derivative and integral is indeed legitimate for any

n > 1, but an issue occurs for j{1} and τ{1}. As we have already seen

T{1} = −
∫ ∞

−∞

dp

2π

Em

2(p2 +m2)3/2
= − E

2πm
. (127)

The problem is that the integral for the expectation of the chiral charge

J{1}
?
=

∫ ∞

∞

dp

2π
j1(p̃) = −

∫ ∞

−∞

dp

2π

p̃
√

p̃2 +m2
(128)

is convergent, but only conditionally convergent3. The value of the integral
depends on how we treat the large-p limits, and is therefore ambiguous. If we
elect to remove the ambiguity by choosing limits that are symmetric about
p = 0

∫ ∞

−∞

dp

2π
j1(p̃)

def
= lim

Λ→∞

{
∫ Λ

−Λ

dp

2π
j1(p̃)

}

= lim
Λ→∞

{

−
∫ Λ

−Λ

dp

2π

p̃
√

p̃2 +m2

}

(129)

then, for A(t) = 0,

lim
Λ→∞

{

−
∫ Λ

−Λ

dp

2π

p
√

p2 +m2

}

(130)

3The same is true in the diagram calculation. The associated Feynman integral is lin-
early divergent by power counting, but becomes conditionally convergent after evaluating
the gamma-matrix traces.
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is zero by the p ↔ −p symmetry. The A(t) 6= 0 integral, however, requires
shifting the integration variable p→ p̃ = p−A and leads to

lim
Λ→∞

{

−
∫ Λ

−Λ

dp

2π

(p− A)
√

(p−A)2 +m2

}

= lim
Λ→∞

{

−
∫ Λ−A

−Λ−A

dp′

2π

p′
√

p′2 +m2

}

=
A

π
.

(131)
If we accept this symmetric-cutoff definition of J{1} we end up with the
anomaly-free ∂tJ{1} = 2mT{1} — but the arbitrariness is unsatisfying. More
concerning is that a time-independent shift in Ax(t) is a gauge transforma-
tion. If we insist on preserving gauge invariance we must ensure that the
physical value of J{1} is unaffected when Ax is augmented by a constant. We
can arrange this gauge invariance by re-defining the physical chiral charge
operator to be

Ĵphys
def
= ψ̂†σ3ψ̂ − Ax

π
. (132)

This new definition must be used even when Ax becomes time dependent, so
making J{1} ≡ 0 and giving the anomalous 0 = ∂tJ{1} = 2mT{1} + E/π.

The necessary −Ax/π c-number subtraction in the definition of the phys-
ical current is the source of the difference between the mode-by-mode chiral-
charge evolution equation and the anomalous equation for the mode-summed
current. It is also this subtraction that allows the simple physical interpre-
tation of the energy levels that cross zero in the m = 0 case as being newly
created particles and holes — even though the occupation numbers of the
Heisenberg states, labeled by their initial “p” and counted by ψ̂†σ3ψ̂, remain
unchanged.

Understanding that the E/π comes only from the lowest order of the
adiabatic expansion reveals why the total charge created by the anomaly is
insensitive to how rapidly the time evolution occurs.

3.4 Two space dimensions: the parity anomaly

The interesting physics in 2+1 dimensions is the “parity anomaly” [4] which
arises from the fact that in odd spacetime dimensions a Dirac mass term
violates space-inversion symmetry. The result is a current at right angles
to the applied electric field with the direction of the current depending on
the sign of the mass term. This effect is usually derived by computing a
one-loop triangle diagram and extracting from it a Chern-Simons effective
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action [5, 30]. We can, however, also obtain it by a small modification of the
results from the previous section.

Keeping the electric field parallel to the x axis the 2+1 dimensional Dirac
hamiltonian is

H(t) = σ3(px − Ax) + pyσ2 +mσ1

=

[

px −Ax(t) m− ipy
m+ ipy −(px −Ax(t))

]

. (133)

We have

= σ3(px −Ax) +Mσ1e
iσ3φ

= σ3(px −Ax) +M(σ1 cosφ+ σ2 sin φ)

= e−iσ3φ/2(σ3(px − Ax) +Mσ1)e
iσ3φ/2 (134)

so if we define M =
√

p2y +m2 and an angle φ by setting M cosφ = m,
M sin φ = py, we find that the solutions to

i∂tψ = H(px, py, t)ψ (135)

are simply
ψ = e−iσ3φ/2ψ1d (136)

where ψ1d are the solutions for the one-dimensional case, but with the m
appearing there replaced by M =

√

p2y +m2.
For fixed px, py we have

jx = ψ†σ3ψ = ψ†
1dσ3ψ1d (137)

but the more interesting transverse component jy is given by

jy = ψ†σ2ψ = ψ†
1d

(

eiσ3θ/2σ2e
−iσ3θ/2

)

ψ1d

= cos φψ†
1dσ2ψ1d + sinφψ†

1dσ1ψ1d

=
m

√

p2y +m2
ψ

†
1dσ2ψ1d +

py
√

p2y +m2
ψ

†
1dσ1ψ1d

=
m

√

p2y +m2
sgn(M)τ(t) +

py
√

p2y +m2

(

(2σ(t)− 1)

√

p2y +m2

√

p̃2x + p2y +m2
− υ(t)

p̃x
√

p̃2x + p2y +m2

)

.

(138)
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To compute the parity anomaly current we simply substitute our results
from one dimension and perform the px, py integrals. The py integral of the

last term ψ
†
1dσ1ψ1d is zero, so we only need the τ term

m
√

p2y +m2
τ. (139)

In particular, at lowest order, we have

j{1}y (px, py) =
m

√

p2y +m2
τ1 =

m

M

(

− ExM

2(p2 +m2)3/2

)

(140)

so

J{1}
y =

∫

d2p

(2π)2
j{1}y (px, py),

= −mEx

4π

∫ ∞

0

p dp

(p2 +m2)3/2
,

= − mEx

4π|m| ,

= −sgn(m)
Ex

4π
, (141)

which is the correct coefficient.
Higher terms in the adiabatic expansion are all total derivatives

J{3}
y = sgn(m)

∂

∂t

(

1

48πm2
Ėx

)

,

J{5}
y = sgn(m)

∂

∂t

(

− 1

320πm4
E(3)

x +
1

96πm6
E2

xĖx

)

,

J{7}
y = sgn(m)

∂

∂t

(

1

1792πm6
E(5)

x − 1

768πm8
(5Ė3

x + 20ExĖxËx + 5E2
xE

(3)
x ) +

3

128πm10
E4

xĖx

)

,

(142)

and so on.
The parity anomaly provides the simplest illustration of the general Callan-

Harvey anomaly-inflow mechanism [6]. In 2+1 dimensions a domain wall
across which the fermion mass changes sign traps a 1+1 dimensional chiral
fermion which possesses a charge-conservation anomaly

∂tρwall =
E‖

2π
, (143)
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that is one-half of the E/π Dirac-particle chiral anomaly. Here E‖ is the
component of the two dimensional electric field parallel to the domain wall.
The charge ρwall is not appearing from nowhere, but is supplied by twice
(because the wall has two sides) the Hall-effect-like parity-anomaly current
(141) which is perpendicular to the wall. The change in sign of the fermion
mass across the wall means that the currents from the two sides are in op-
posite directions and therefore add. If the wall is parallel to the x axis, and
if Ex is zero at t = ±∞ then total charge per unit length that appears on
the domain wall is given by

∆ρ0wall =
1

2π

∫ ∞

−∞

Ex(t)dt. (144)

This expression for the accumulated charge is exact because the total deriva-
tives in the higher order contributions to Jy make no net contribution –
everything comes from the leading order term only.

3.5 Three dimensional vector currents and vacuum po-

larization

In 3+1 dimensions, and with the external electric field parallel to the z axis,
it turns out to convenient to change the spinor basis so that the 4-by-4 Dirac
Hamiltonian

H(t) = α1p1 + α2p2 + α3(p3 − Az(t)) + βm (145)

becomes

H(t) =

[

p3 −Az(t) M
M † −(p3 − Az(t))

]

, M =M † = p1σ1 + p2σ2 +mσ3.

(146)
The β ≡ γ0 matrix must be the coefficient of m and so

γ0 =

[

σ3
σ3

]

= σ1 ⊗ σ3. (147)

Similarly

α1 ≡ γ0γ1 = σ1 ⊗ σ1 ⇒ γ1 = I⊗ σ3σ1

α2 ≡ γ0γ2 = σ1 ⊗ σ2 ⇒ γ2 = I⊗ σ3σ2

α3 ≡ γ0γ3 = σ3 ⊗ I ⇒ γ3 = σ1σ3 ⊗ σ3. (148)
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We see that distinct γ’s mutually anticommute, and

(γ0)2 = 1, (γ1)2 = (γ2)2 = (γ3)2 = −1, (149)

so we have a valid, if non-standard, representation of the Dirac algebra.
The chiral symmetry operation should rotate m and so must be

[

e−iσ3θ

eiσ3θ

] [

p3 −Az(t) p1σ1 + p2σ2 +mσ3
p1σ1 + p2σ2 +mσ3 −(p3 −Az(t))

] [

eiσ3θ

e−iσ3θ

]

=

[

p3 − Az(t) p1σ1 + p2σ2 + (me−2iθ)σ3
p1σ1 + p2σ2 + (me2iθ)σ3 −(p3 − Az(t))

]

. (150)

Thus
[

eiσ3θ

e−iσ3θ

]

→ eiθγ
5

(151)

and

γ5 =

[

σ3
−σ3

]

= σ3 ⊗ σ3. (152)

We see that the γµ and γ5 anticommute as they should.
The p-mode contribution to the expectation of the vector current is then

jz = ψ
†(σ3 ⊗ I)ψ, (153)

and the chiral charge density and chiral current density are respectively

j50 = ψ†γ5ψ = ψ†(σ3 ⊗ σ3)ψ,

j53 = ψ†γ0γ3γ5ψ = ψ†(σ3 ⊗ I)(σ3 ⊗ σ3)ψ = ψ†(I⊗ σ3)ψ. (154)

Similarly, the bilinear that appears on the right-hand-side of the chiral charge
(non)-conservation law is

iψ̄γ5ψ = iψ†γ0γ5ψ = iψ†(σ1 ⊗ σ3)(σ3 ⊗ σ3)ψ = ψ†(σ2 ⊗ I)ψ. (155)

The advantage of the unconventional basis choice is that the t-parameterized
snapshot eigenfunctions of H(t) factorize. They are a tensor product of our
previous 2-spinor eigenstates with a second orthonormal set of 2-spinor eigen-
states λα, α = ±, of the two-by-two matrix M . These have eigenvalues
µ = ±q where

q =
√

m2 + p21 + p22 =
√

m2 + p2⊥. (156)
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We find that

χ+(t) =
1√
2ǫ

[ √
ǫ+ p̃λα

sgn(µ)
√
ǫ− p̃λα

]

=
1√
2ǫ

[ √
ǫ+ p̃

sgn(µ)
√
ǫ− p̃

]

⊗ λα

χ−(t) =
1√
2ǫ

[ √
ǫ− p̃λα

−sgn(µ)
√
ǫ+ p̃λα

]

=
1√
2ǫ

[ √
ǫ− p̃

−sgn(µ)
√
ǫ+ p̃

]

⊗ λα.

(157)

Here again p̃ = p3 − A(t), but now ǫ =
√

p̃3(t)2 + µ2.
Again we expand

ψ(t) = α(t)χ−(t)e+ + β(t)χ+e−. (158)

The evolution equations for α, β, σ, τ , υ are the same as in 1+1 dimensions
except that ǫ is the 3+1 energy, and |m| must be replaced by |µ|. Also the the
vector-current expectations need to be multiplied by 2 to take into account
both λ+ and λ−.

The vector current density is

jz = ψ†(σ3 ⊗ I)ψ,

= 2

(

(2σ − 1)
p̃

ǫ
+ υ

|µ|
ǫ

)

. (159)

We find that

j{3}z = 2

(

−5

8

µ2p3E
2

(µ2 + p23)
7/2

+
1

4

µ2Ė

(µ2 + p23)
5/2

)

. (160)

Because of the p3 in its numerator, the first term cancels in the momentum
integration. The second contributes

J{3}
z =

∫

d3p

(2π)3
j(3)

= Ė · 1
2

∫

d3p

(2π)3
p21 + p22 +m2

(p21 + p22 + p23 +m2)5/2

= Ė · 1
2

(

2

3

∫

d3p

(2π)3
p21 + p22 + p23

(p21 + p22 + p23 +m2)5/2
+

∫

d3p

(2π)3
m2

(p21 + p22 + p23 +m2)5/2

)

= Ė · 1

4π2

(

2

3

∫ ∞

0

p4 dp

(p2 +m2)5/2
+

∫ ∞

0

m2p2 dp

(p2 +m2)5/2

)

(161)
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The second integral in the parentheses in the last line of (161) is independent
of m and equal to 1/3. Scaling p → mp suggests that the first term is also
independent of m — but as the integral is logarithmically divergent this is
an unsafe conclusion. To get a meaningful result we should regulate J

{3}
z

by introducing a suitable high energy cutoff. The simplest Lorentz- and
gauge-invariant way to do this is to follow Pauli-Villars and subtract from
the integrand in (161) the same expression but with m2 everywhere replaced
by Λ2. Then

∫ ∞

0

p4 dp

(p2 +m2)5/2
→ I

def
=

∫ ∞

0

(

p4

(p2 +m2)5/2
− p4

(p2 + Λ2)5/2

)

dp. (162)

The new integrand falls off as 1/p2 at large p so the integral is convergent
and easily evaluated by Frullani’s method

I = lim
M→∞

{
∫ M

0

(

p4

(p2 +m2)5/2
− p4

(p2 + Λ2)5/2

)

dp

}

= lim
M→∞

{

∫ M/m

0

ρ4 dρ

(ρ2 + 1)5/2
−
∫ M/Λ

0

ρ4 dρ

(ρ2 + 1)5/2

}

= lim
M→∞

{

∫ M/m

M/Λ

ρ4 dp

(ρ2 + 1)5/2

}

= lim
M→∞

{

∫ 1/m

1/Λ

ρ4 dρ

(ρ2 +M−2)5/2

}

=

∫ 1/m

1/Λ

dρ

ρ

= ln (Λ/m) . (163)

The resulting cut-off-dependent current

J(Λ) ==
Ė

8π2

(

2

3
ln

(

Λ2

m2

))

(164)

can be interpreted as J(Λ) = Ṗ(Λ) where

P(Λ) =
E

8π2

(

2

3
ln

(

Λ2

m2

))

(165)
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is the polarization of the vacuum. The associated cut-off-dependent dielectric
constant is the source of charge renormalization (see appendix B for details).

Higher order terms in the adiabatic series are all finite — but more com-
plicated. For example

j{5}z (p) = 2

(

− µ2E(3)

16 (µ2 + p23)
7/2

+
21µ2p3Ė

2

32 (µ2 + p23)
9/2

+
7µ2p3EË

8 (µ2 + p23)
9/2

+
19µ2E2Ė

16 (µ2 + p23)
9/2

− 117µ2p23E
2Ė

16 (µ2 + p23)
11/2

− 3µ4E2Ė

32 (µ2 + p23)
11/2

− 57µ2p3E
4

16 (µ2 + p23)
11/2

+
303µ2p33E

4

32 (µ2 + p23)
13/2

+
57µ4p3E

4

128 (µ2 + p23)
13/2

)

.

(166)

The expression for j
{7}
z (p) contains 69 terms and j

{9}
z (p) nearly 5,000, but

the resulting expressions for the current

J{n}
z =

∫

d3p

(2π)3
j{n}(p) (167)

are relative compact:

J{5}
z =

1

2π2

(

1

15

E2Ė

m4
− 1

30

E(3)

m2

)

,

J{7}
z =

1

2π2

(

2

21

E4Ė

m8
− 2

63

(Ė)3

m6
− 8

63

EĖË

m6
− 2

63

E2E(3)

m6
+

1

280

E(5)

m4

)

,

J{9}
z =

1

2π2

(

− E(7)

1890m6
+
E(5)E2

84m8
− 8E(3)E4

75m10
+

16E6Ė

45m12
− 16E2(Ė)3

25m10
+
E(4)EĖ

14m8

+
5E(3)EË

42m8
+

2E(3)(Ė)2

21m8
− 64E3ĖË

75m10
+

11Ė(Ë)2

84m8

)

. (168)

The expressions in Eq. (168) contain contributions to the current that can
be verified by comparison with other methods. For example, if we retain only
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the terms linear in E and its derivatives E(n) ≡ dnE/dtn we find

j{5}z (p) = 2

(

− 1

16

µ2E(3)

(µ2 + p23)
7/2

+O(E2)

)

,

j{7}z (p) = 2

(

+
1

64

µ2E(5)

(µ2 + p23)
9/2

+O(E2)

)

,

j{9}z (p) = 2

(

− 1

256

µ2E(7)

(µ2 + p23)
11/2

+O(E2)

)

,

where the pattern of rational-number coefficients is clear. In the resulting
currents

J{5}
z =

∫

d3p

(2π)3
j{5}z = − 1

30

1

2π2
E(3) +O(E2),

J{7}
z =

∫

d3p

(2π)3
j{7}z = +

1

280

1

2π2
E(5) +O(E2),

J{9}
z =

∫

d3p

(2π)3
j{9}z = − 1

1890

1

2π2
E(7) +O(E2), (169)

the sequence of numerical fractions is more obscure, but, as we will show in
in appendix B, they are the coefficients occurring in the the series expansion
of the two-point vacuum polarization diagram in powers of the frequency.

Another set of terms that can be confirmed by other methods are those
containing an arbitrary power of E, one power of Ė, and no higher derivatives
of E.

For example the coefficient of E2Ė in j{5}(p) is

coef(E2Ė){5} = 2

(

19µ2

16 (µ2 + p23)
9/2

− 117µ2p23

16 (µ2 + p23)
11/2

− 3µ4

32 (µ2 + p23)
11/2

)

= 2

(

+
19(p2 sin2 θ +m2)

16 (p2 +m2)9/2
− 117(p2 sin2 θ +m2)p2 cos2 θ

16 (p2 +m2)11/2
− 3(p2 sin2 θ +m2)2

32 (p2 +m2)11/2

)

.

(170)

where θ is the angle between p and the z-axis. The integration measure
becomes

d3p

(2π)3
=

1

(2π)2
sin θdθp2dp (171)
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and gives

J{5}
z = Ė

1

2π2

1

15

E2

m4
+ . . . . (172)

The analogous calculation with j{7} gives a term

J{7}
z = Ė

1

2π2

2

21

E4

m8
+ . . . . (173)

Both these terms agree with those in the current calculated from the Euler-
Heisenberg-Schwinger one-loop effective action (see appendix B).

3.6 Three-dimensional chiral currents and their anomaly

In three space dimensions the uniform electric field version of the anomalous
chiral current (non)-conservation is expected be

∂t ψ̂
†(σ3 ⊗ σ3)ψ̂ = 2mψ̂†(σ2 ⊗ I)ψ̂ +

1

2π2
E ·B. (174)

In the absence of a magnetic field, the vacuum expectation of this equation
is satisfied by all three terms being zero. The expectation of the current on
the LHS is zero because, from (154), each p3 mode has a factor of

λ
†
+σ3λ+ + λ†

−σ3λ− (175)

where λ± are the normalized eigenvectors of

M = σ1p1 + σ2p2 + σ3m (176)

with eigenvalue µ = ±
√

|p⊥|2 +m2. This sum of expectations is zero because
sandwiching the identity

σ3M +Mσ3 = 2mI (177)

between the ± eigenvectors and subtracting gives

|µ|(λ†
+σ3λ+ + λ†

−σ3λ−) = 0. (178)

The expectation of the RHS is zero because, from (155) ,

ψ†(σ2 ⊗ I)ψ ∝ sgn(µ) (179)
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and we must sum over both signs of the eigenvalue µ when we include the
λ± factors.

To get a non-trivial result we must include a magnetic field. If we take
the vector potential to be

A(x, y) = (By/2,−Bx/2, 0) (180)

then B = (0, 0,−B) and a classical positively charged particle will orbit
anticlockwise about the z direction. It is well known [31, 32] that in such a
field the spectrum of the operatorM is highly degenerate, being an ensemble
of Landau levels in which each level eigenvalue µ has degeneracy |B|/2π per
unit area perpendicular to the magnetic field. One set of eigenfunctions of
M is

λl,± ∝
[

(µ+ |m|)r−1e−iθ

iB

]

rleilθ exp

{

−Br
2

4

}

, l > 0 (181)

with eigenvalues µ = ±
√
2lB +m2. These eigenfunctions correspond to the

positively charged particles circling the z axis at a distance 〈r〉 =
√

2l/B.
The other eigenstates in the same Landau level can be thought of as as
describing orbits of the same radius but with different centers. There are no
l < 0 modes because they would be singular at the origin.

The features that lead all terms in the chiral current to cancel still hold,
so the l > 0 eigenmodes make no contribution to the anomaly equation. The
l = 0 case is special, however. The µ = −|m| eigenvector

λ0 =
1√
2π

[

0
1

]

exp

{

−Br
2

4

}

(182)

is finite at r = 0 but the µ = +|m| is not because of the r−1 in the up-
per component. As only one of the µ = ±|m| pair is allowed, there is no
cancellation in the currents and we recover exactly the situation explored in
sections 3.2 and 3.3 — except that the RHS of the one-dimensional anomaly
equation (86) we must replace

Ez

π
→ E ·B

2π2
(183)

to take into account the B/2π per-unit-area Landau-level degeneracy. Note
that the fermions still have a mass-gap given by m and so the same interplay
between time derivative and 2m〈ψ̂†σ2ψ̂〉 occurs as in 3.3.
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4 Conclusion

We have shown that a simple quantum mechanics adiabatic expansion can
be used to capture the non-trivial physics of the chiral and parity anomalies
for massive fermions. Although similar in spirit to the well known spectral
flow interpretation of the chiral anomaly, the presence of a fermion mass
both thwarts the flow and at the same time controls the accuracy of the
expansion, so allowing us to see that in both cases the anomaly arises only
from the lowest term in the expansion.
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Appendices

A The driven oscillator

For completeness we include a brief discussion of the well-known coherent
state solution of the constant-frequency harmonic oscillator driven by a time-
dependent external force. The hamiltonian can be written in terms of â, â†

as
H(t) = Ωâ†â+ F (t)â† + F ∗(t)â. (184)

The associated unitary evolution operator U(t) = T exp{−i
∫ t

0
H(t)dt} obeys

the equation
i∂tU = {Ωâ†â+ F (t)â† + F ∗(t)â}U (185)

and we may seek a solution in the form

U = eiθe−
1
2
|z|2ezâ

†

e−z∗âe−iωâ†â,

U−1 = e−iθe+
1
2
|z|2eiωâ

†âez
∗âe−zâ† . (186)

Then, using

e−iϕâ†â

[

â
â†

]

eiϕâ
†â =

[

âe+iϕ

â†e−iϕ

]

,

e−λâ† â e+λâ† = â+ λ,

e+λ∗ââ†e−λ∗â = â† + λ∗, (187)

we find

iU−1∂tU = ieiωâ
†â

[

1

2
(−żz∗ − ż∗z) + ż(â† + z∗)− ż∗â− iω̇â†â + iθ̇

]

e−iωâ†â,

(188)
and

U−1{Ωâ†â+F (t)â†+F ∗(t)â}U = eiωâ
†â[Ω(â†+z∗)(â+z)+F (t)(â†+z∗)+F ∗(t)(â+z)]e−iωâ†â.

(189)
Comparing coefficients of â†â, â†, â and 1, we read off that [33]

ω̇ = Ω,

iż = Ωz + F,

−iż∗ = Ωz∗ + F ∗,

θ̇ = i
2
(żz∗ − ż∗z)− (Ωz∗z + Fz∗ + F ∗z). (190)
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The accumulating phase

θ(t) =

∫ t

0

{

i

2
(żz∗ − ż∗z)− (Ωz∗z + Fz∗ + F ∗z)

}

dt (191)

considered as a functional θ = S[z(t)] of the path z(t) is the classical action
whose variation gives the equations of motion for z and z∗ in (188). Thus
S[z(t)] for the actual trajectory is Hamilton’s principal function solution of
the Hamilton-Jacobi equation [34, 35].

The unitary displacement operator

D(z)
def
= ezâ

†−zâ = e−
1
2
|z|2ezâ

†

e−z∗â (192)

acts on the ground state to create a conventional (unsqueezed) coherent state

|z〉 = ezâ
†−z∗â|0〉 = e−

1
2
|z|2ezâ

† |0〉 (193)

that obeys â|z〉 = z|z〉. Under our time evolution

|0〉 7→ U [t]|0〉 = eiθ(t)|z(t)〉, (194)

so if we start in the ground state |0〉 the external driving force will always
leave the system in a coherent state. As

â =
1√
2

(√
Ω x̂+

i√
Ω
p̂

)

, (195)

and the coherent state maps â 7→ z, the real and imaginary parts of the
complex parameter z(t) track the classical motion in x, p phase space.

Note that allowing the parameter Ω appearing in (184) to become time
dependent does not have the same effect as the time dependence of the
frequency Ω(t) appearing in the original oscillator Hamiltonian (1). We need
to include additional a2 and (a†)2 terms in (184) to change the oscillator
frequency because changing the frequency while keeping the operators p̂ and
x̂ fixed redefines â and â†.

B Dirac effective action and renormalization

in 1+3 dimensions

Throughout the main text we have focussed on non-interacting fermions and
scaled the Aµ field so as to set the particle charge to unity. We do this
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because in a general non-abelian gauge theory the coefficient of Aµ becomes
the Lie-algebra matrix generator corresponding to the group representation
in which the fermion lives — and for the U(1) group of electromagnetism the
representations are labelled by integers. This rescaling has the effect that in
the QED path integral

Z =

∫

d[A]d[ψ̄]d[ψ] exp{iS[A]} (196)

the pure-gauge contribution to the action becomes

SMaxwell[A] = − 1

4e20

∫

d4xFµνF
µν =

1

2e20

∫

d4x
(

E2 −B2
)

. (197)

The (bare) coupling constant e20 now appears in its natural location where it
governs the magnitude of gauge-field fluctuations. The integration over ψ̄, ψ
adds to the pure-gauge action the fermionic effective action

SF = −i ln Det( 6D[A] +m). (198)

where 6D = iγµ(∂µ + iAµ), Aµ = (φ,−A).
One special case in which SF can be evaluated in closed form is when the

field strength Fµν = ∂µAν −∂νAµ is constant [36, 37]. For a constant electric
field we have

SF [E] = V T LF [E] (199)

where V and T are the volume and total time, respectively, and the effective
Lagrangian density is

LF[E] = − 1

8π2

∫ ∞

0

ds

s3
{sE cot(sE)}e−m2s

=
1

8π2

(

1

3
E2 ln

(

Λ2

m2

)

+
1

45

E4

m4
+

4

315

E6

m8
+

8

315

E8

m12
. . .

)

.(200)

In obtaining the second line we have expanded

(sE) cot(sE) = 1− (sE)2

3
− (sE)4

45
− 2(sE)6

945
− (sE)8

4725
+ . . . , (201)

and dropped the infinite negative Dirac sea contribution from the first term.
The second term has then been regulated4 using the Frullani integral

∫ ∞

0

e−m2s − e−Λ2s

s
ds = ln

(

Λ2

m2

)

. (202)

4Strictly we need three Pauli-Villars massive particles to gauge-invariantly regulate
both divergent terms.
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The remaining terms are all finite.
The cutoff dependent term is proportional to E2, and this would become

E2−B2 had we included a constant magnetic field. We can therefore combine
the cut-off dependent term with the free-field Maxwell action by replacing

1

2e20

∫

(E2 −B2)ddx→ 1

2e2R

∫

(E2 −B2)ddx (203)

where the renormalized coupling constant e2R is defined by

1

e2R
=

1

e20
+

1

8π2

2

3
ln

(

Λ2

m2

)

. (204)

This relation can be written as

e2R =
e20

1 +
e2
0

8π2

2
3
ln
(

Λ2

m2

)

, e20 =
e2R

1− e2
R

8π2

2
3
ln
(

Λ2

m2

)

. (205)

In terms of the fine-structure constant α ≡ e2R/4π and its bare value α0 =
e20/4π Eq. (204) becomes

α =
α0

1 + α0

3π
ln
(

Λ2

m2

) , (206)

which gives us the one-loop beta function for QED

βone−loop(α)
def
=

(

∂α

∂ lnm

)

Λ,α0

=
2

3

α2

π
. (207)

Although (200) was derived under the assumption that E is constant, we
can use Jz = δSF/δAz and

δ

∫

End4x =

∫

nEn−1(−∂tδAz)d
4x = n(n− 1)

∫

(En−2Ė)δAzd
4x (208)

to compute the current ∝ Ė induced by a slowly varying electric field. The
reason is that higher-order Ė corrections to (200) give rise in Jz to terms
proportional to Ë or (Ė)2 or higher. Exploiting this observation we find
from (200) the following contribution to the induced current

Jz =
Ė

2π2

(

2

12
ln

(

Λ2

m2

)

+
1

15

E2

m4
+

2

21

E4

m8
+

16

45

E6

m12
. . .

)

(209)
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which agrees with the corresponding terms in the adiabatic expansion in Eqs.
(172) and (173)

A second special case is the two-point diagram with arbitrary space-time
dependent Aµ(x, t) fields

SF2 ≡ 1

2

∫

d4xd4x′Aµ(x)Πµν(x, x
′)Aν(x

′). (210)

In momentum space the kernel Πµν is given by [38]

Πµν(k
2) = (gµνk

2 − kµkν)Ω(k
2, m,Λ), (211)

where Λ is a momentum-space cut-off and

Ω(k2, m,Λ) = − 1

2π2

∫ 1

0

dx x(1− x)

{

− ln
Λ2

m2
+ ln

(

1− x(1− x)
k2

m2

)}

.

(212)
For a time-dependent electric field ∝ eiωt we have kµ = (ω, 0, 0, 0) and gzzk

2 =
−ω2, and so in frequency space

LF2 =
1

4π2
Az(ω)Az(−ω)

∫ 1

0

dx x(1− x)

{

− ln
Λ2

m2
+ ln

(

1− x(1− x)
ω2

m2

)}

(213)
Recalling that Ez = −∂tAz we see that this gives rise to a current

Jz(ω) = Ėz(ω)
1

2π2

∫ 1

0

dx x(1−x)

{

ln
Λ2

m2
− ln

(

1− x(1− x)
ω2

m2

)}

. (214)

As
∫ 1

0

dx x(1− x) =
1

6
(215)

we have the cut-off dependent contribution to the vacuum polarization cur-
rent

Jz,divergent = Ṗ =
Ė

8π2

(

2

3
ln

(

Λ2

m2

)

+ . . .

)

(216)

that we obtained in Eq. (164) and (209).
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The non-divergent parts of LF2[E] come from

I

(

ω2

m2

)

= −
∫ 1

0

dx x(1− x) ln

(

1− x(1− x)
ω2

m2

)

=

∞
∑

n=1

(

ω2

m2

)n
1

n

∫ 1

0

dx xn+1(1− x)n+1

=

∞
∑

n=1

(

ω2

m2

)n
1

n

[(n + 1)!]2

(2n+ 3)!

=
1

30

(

ω2

m2

)

+
1

280

(

ω2

m2

)2

+
1

1890

(

ω2

m2

)3

+ . . . (217)

After one takes into account that each factor of ω2 corresponds to a −d2/dt2,
the sequence of rational coefficients agree with those found in Eq. (169). The
resulting series has radius of convergence ω2 = 4m2, which is determined
by a branch-point in the function Πµν(ω

2, m2). The discontinuity across the
branch cut for ω2 > 4m2 gives the cross-section for particle-hole pair creation
via parametric resonance.

C Vacuum polarization and energy density

In Euclidean signature a time-independent effective-action density has a
physical interpretation as the vacuum-energy density. In Minkowski signa-
ture the action density becomes a Lagrangian density whose interpretation
in terms of energy is not so clear. It is interesting, therefore, to relate the
constant-field effective Lagrangian density LF [E] in (200) to the vacuum
energy expressed as a function of the polarization.

Recall that in a Minkowski-signature action functional the coupling of the
gauge field to the current is given by

∫

A ·J ddx. Therefore, if SF =
∫

LFd
dx

then the space component of the current is given by the functional derivative

Jz(x, t) =
δSF

δAz(x, t)
. (218)

For spatially constant E

δSF [E] =

∫

ddxL′
F [E](−∂tδAz(t)) =

∫

ddxL′′
F [E]ĖδAz, (219)
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where the prime denotes a derivative with respect to E. The corresponding
current density is therefore

J = L′′
F (E)Ė. (220)

As the current is related to the vacuum polarization by J = Ṗ, Equation
(220) implies that the vacuum polarization is related to the action-density
LF [E] by P [E] = L′

F [E].
The associated vacuum energy-density E as function of P is found from

the work required for an external E field to adiabatically create the given
polarization density over a period of time τ . This work is

E =

∫ τ

0

JEdt

=

∫ τ

0

L′′
F (E)EĖdt

=

∫ E

0

L′′
F (ε)εdε

=

∫ E

0

(−L′
F [ε])dε+ [εL′

F [ε]]
E
0

= EL′
F [E]− LF [E]. (221)

In the last line we assumed that that LF is zero when E = 0. The result
(221) is a Legendre transformation, so E ≡ EL′

F −LF is naturally expressed
in terms of P = L′

F [E] as E [P ]. We may then recover the electric field from
the derivative

dE
dP

=
dE

dP
P + E − dLF

dP

=
dE

dP
P + E − dE

dP

dLF

dE

=
dE

dP
P + E − dE

dP
P

= E. (222)

These transformations are just a slightly disguised version of the standard
relation between the Lagrangian and Hamiltonian.

The stability of the vacuum requires that E [P ] be a convex function of P
and this is property assured by the signs of the terms in (200) and that the
Legendre transform of a convex function is convex.
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