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The quantum anomalous Hall effect is characterized by a quantized Hall resistance with a vanishing
longitudinal resistance. Many experiments reported the quantization of the Hall resistance, which
is always accompanied by a non-vanishing longitudinal resistance that is several kΩ. Meanwhile,
the non-vanishing longitudinal resistance exhibits a universal exponential decay with the increase
in magnetic field. We propose that the coupling of chiral edge states, which has not been properly
evaluated in the previous theories, can give rise to the non-vanishing longitudinal resistance. The
coupling between the chiral edges states along the opposite boundaries can be assisted by magnetic
domains or defects inside the sample bulk, which has been already identified in recent experiments.
Our theory provides a potential mechanism to understand the experimental result in both magnetic
topological insulator and moiré superlattice systems.

PACS numbers: 73.43.-f, 73.50.–h, 85.75.-d

I. INTRODUCTION

In the last decade, the quantum anomalous Hall effect
has attracted great attention due to not only its funda-
mental physics interest, but also its potential applica-
tions for designing low-power consumption electronic de-
vices [1–34]. In many recent experiments [1, 35–38], the
Hall resistance manifests the quantization, which is ac-
companied by a significant longitudinal resistance rang-
ing from 0.00013 h/e2 [39] to even 0.5 h/e2 [35, 40], even
at very low temperatures. Such a scenario obviously con-
tradicts the common belief that the quantized Hall insu-
lator is characterized by the quantized Hall resistance
and a vanishing longitudinal resistance. In the subse-
quent studies, the non-vanishing longitudinal resistance
is interpreted as a consequence of the quasihelical edge
modes [41], dissipative edge states [42], charge puddles
in the gapped surface states [43] or the bulk-dominated
dissipation [44–47], yet without consensus on its nature.
Furthermore, the previous theoretical explanations for
this phenomenon only apply to a rather small longitu-
dinal resistance within several percents of h/e2 [41, 48].
In the regime of quantized Hall resistance, an explana-
tion for the occurrence of the large longitudinal resistance
about 0.5 h/e2 [35] is still absent. Moreover, the expo-
nential decay of the longitudinal resistance with the in-
crease in magnetic field is not well explained [1, 35–38]. A
comprehensive understanding of the non-vanishing lon-
gitudinal resistance is important for designing perfect
transport of the quantum anomalous Hall effect.

In this work, based on a low-energy effective model
describing magnetic topological insulator films, we study
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the quantum transport of the quantum anomalous Hall
effect [Fig. 1(a)]. We demonstrate that the coupling of
the chiral edge states will naturally lead to a nonzero lon-
gitudinal resistance even up to several h/e2, but still re-
mains the quantization of the Hall resistance [Fig. 1(b)].
Meanwhile, the exponential decay of the longitudinal re-
sistance with the increase in magnetic field can be well
understood. At last, relevance to the recent experiments
of the quantum anomalous effect is discussed.

Moreover, we reveal that the coupling of the edge
states on the opposite sides can be enhanced in two
ways: (i) The chiral edge states become much extended
near the coercive field due to the vanishing of the mag-
netic gap [49–64]. As a result, the longitudinal resis-
tance should exhibit an exponential decay as a function
of not only the sample size but also the strength of the
external magnetic field. The former relationship is well
recognized but still difficult to be observed experimen-
tally. However, the latter one has already been observed
in experiments [35, 38], yet without explanation. (ii) The
localized states inside the bulk can provide a route that
bridges the edge states on the opposite sides [Fig. 1(c)].
Such a mechanism induced coupling of chiral edge states
has been reported in very recent experiments with the
sample width up to 5 µm [65–67].

II. EFFECTIVE MODEL AND METHODS

As a prototype example of the quantum anomalous
Hall insulator, we consider confined quantum states
around the Γ point (kx = ky = 0) in a magnetic topolog-
ical insulator thin film, which gives rise to a low-energy
effective model [3, 54, 68–70]

H = H0 +
m

2
τ0 ⊗ σz, (1)
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FIG. 1. Illustrations of the six-terminal Hall-bar setup with
the propagation pattern of the chiral currents in the quantum
anomalous Hall insulator. (a) The chiral current flows when
there is no coupling between edge states. (b) The chiral cur-
rent flows when there is a significant coupling between edge
states. (c) The chiral edge current and the localized current
inside the bulk when there exist magnetic domains, defects or
disorders. Though the chiral edge states couple together, in
the cases of (b) and (c), the transport is characterized by a
quantized Hall resistance but accompanied by a non-vanishing
longitudinal resistance.

where m is the exchange field from magnetic dopants or
intrinsic magnetic orderings, which can be tuned by the
external magnetic field. τ0 is a 2× 2 identity matrix. σz
is the z component of the Pauli matrix. H0 describes the
topological insulator thin film without magnetization

H0 =


∆
2 −Bk

2 iγk− V 0
−iγk+ −∆

2 +Bk2 0 V
V 0 −∆

2 +Bk2 iγk−
0 V −iγk+

∆
2 −Bk

2

 ,

(2)
with the basis being |+ ↑〉, |− ↓〉, |− ↑〉, |+ ↓〉 [3, 71],

where |± ↑〉 = (|t ↑〉 ± |b ↑〉)/
√

2, |± ↓〉 = (|t ↓〉 ± |b ↓
〉)/
√

2, t, b represent the surface states sitting on the top
and bottom surfaces, and ↑, ↓ represent the spin up and
down states. Here k = (kx, ky) is the two-dimensional
wave vector, and k2 = k2

x + k2
y. The model parameters

B and ∆ are determined by the film thickness. ∆ is the
hybridization of the top and bottom surface states of the
thin film, which becomes irrelevant for thick films, e.g.,
Bi2Se3 thicker than 5 nm. γ = v~, with v the effective ve-
locity. V corresponds to the potential distribution along

the film growth direction and measures the structural in-
version asymmetry between the top and bottom surfaces
of the thin film. In the following calculations, we take
γ = 300 meV·nm, V = 0 meV, B = −300 meV·nm2, and
∆ = 0 meV, which is adopted from the effective parame-
ters describing a magnetic topological insulator Cr-doped
(Bi,Sb)2Te3 [68]. In Sec. SII of [72], we provide more cal-
culations when non-zero V and ∆ are considered. The
system depicts a quantum anomalous Hall phase with
Chern number C = 1 for m > 0 and C = −1 for m < 0,
respectively. In the numerical calculations of the quan-
tum transport, we discretize the effective Hamiltonian
on a simple square lattice and set the lattice constant as
a = 1 nm. The Fermi energy is taken as EF = 3 meV.

We consider a standard six-terminal Hall-bar as de-
picted in Fig. 1. We investigate the transport properties
of the system by using the Landauer-Büttiker-Fisher-
Lee formula [73–75] and the recursive Green’s function
method [76, 77]. The current flowing into terminal p is

given by Ip = e2

h

∑
q 6=p Tpq (EF) (Vp − Vq) [73, 74], where

Tpq depicts the transmission coefficient from electrode p
to q, and Vi corresponds to the voltage of lead i shown
in Fig. 2(a). The longitudinal and Hall resistances are
given by Rxx = (V3 − V2) /I and Rxy = (V6 − V2) /I,
respectively (see Sec. SI of [72] for more details). The
linear conductance can be obtained by the transmis-
sion coefficient Tpq from terminal p to terminal q, where
Tpq = Tr[ΓpGrΓqGa] (p, q = 1, 2, . . . , 6 and p 6= q). The
linewidth function is defined as Γp(µ) = i

[
Σrp − Σap

]
with

Σ
r/a
p being the retarded/advanced self-energy at the ter-

minal p, and the Green’s functions Gr/a are calculated

from Gr = (Ga)
†

=
[
EF −HC −

∑
p Σrp

]−1

, where EF is

the Fermi energy and HC is the Hamiltonian matrix of
the central scattering region. To calculate the local cur-
rent distribution, a small external bias Vs is applied be-
tween the s-th terminal and all the other terminals. The
nonequilibrium local current distribution between sites i
and j can be obtained from the following formula [78]

Jsi→j =
2e2

h
Im

∑
α,β

HC
iα,jβG

n,s
jβ,iα

Vs, (3)

where Gn,s = GrΓsGa is the electron correlation func-
tion.

III. SIZE AND MAGNETISM DEPENDENT
CHIRAL EDGE STATE COUPLING

To gain insight into the coupling of chiral edge states,
we consider a varying exchange field m and calculate the
Hall and longitudinal resistance for various system sizes,
which are shown in Figs. 2(a) and 2(b). When |m| is
large enough (the light blue region), we observe a perfect
quantum anomalous Hall effect with the quantized Hall
resistance and vanishing longitudinal resistance, which is
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FIG. 2. (a) The Hall resistance Rxy/R0, (b) longitudinal resistance Rxx/R0, and (c) ln(Rxx/R0) as functions of the exchange
field m, respectively. R0 = h/e2 is the von Klitzing constant. The different colored curves represent different system sizes with
a fixed length-width ratio as Lx : Ly = 5 : 1. (d)-(f) and (g)-(i) show the nonequilibrium local current distributions injected
from s-th terminal for m = 60 meV and m = 30 meV, respectively. The color of the arrows indicate the current strength
marked in the color bar.

not sensitive to the sizes we consider. As |m| decreases
(the light cyan region), an interesting phenomenon oc-
curs. Though Rxy remains the quantized value of h/e2,
Rxx dramatically increases with the decrease in the sam-
ple size, as shown in the light cyan shaded regime. By fur-
ther reducing |m| (the white region), Rxy deviates from
the quantized plateau.

For about m = 60 meV (the light blue region) with
the system size being Lx × Ly = 300× 60 nm2, the cor-
responding transmission matrix is given by

T =


0.000 1.000 0.000 0.000 0.000 0.000
0.000 0.000 1.000 0.000 0.000 0.000
0.000 0.000 0.000 1.000 0.000 0.000
0.000 0.000 0.000 0.000 1.000 0.000
0.000 0.000 0.000 0.000 0.000 1.000
1.000 0.000 0.000 0.000 0.000 0.000

 . (4)

The above transmission matrix depicts the well-defined
quantum anomalous Hall effect with a dissipationless
chiral current propagating along the system boundary.
From the above transmission matrix, we have Rxy =
1.000 h/e2 and Rxx = 0.000 h/e2. The scenario is il-
lustrated more clearly by calculating the current distri-
bution shown in Figs. 2(d)-2(f), where the localization
length is smaller compared to the system size.

For about m = 30 meV (the light cyan region) with
the same sample size, the transmission matrix has the
form

T =


0.000 0.888 0.001 0.000 0.000 0.002
0.002 0.000 0.910 0.001 0.002 0.088
0.000 0.000 0.000 0.888 0.113 0.002
0.000 0.000 0.002 0.000 0.888 0.001
0.001 0.002 0.088 0.002 0.000 0.910
0.888 0.113 0.002 0.000 0.000 0.000

 . (5)

Though each element of the above transmission matrix
deviates from integer values, but it still gives rise to a

nearly quantized Hall resistance Rxy = 0.994 h/e2 and
a significant longitudinal resistance Rxx = 0.101 h/e2.
It is noted that the summation of each column of the
transmission matrix may slightly exceed one by a small
amount (on the order of 0.001 for m = 30 meV), which is
attributed to the band broadening effect in the numerical
calculations.

To explain this, let us first neglect the small matrix
elements and rewrite the above transmission matrices in
the following form

T ≈


0 nA 0 0 0 0
0 0 nB 0 0 n′B
0 0 0 nA n′A 0
0 0 0 0 nA 0
0 0 n′B 0 0 nB
nA n′A 0 0 0 0

 . (6)

Note we have nA + n′A = 1.001 and nB + n′B = 0.998 for
m = 30 meV. We observe that nA+n′A ≈ nB+n′B ≈ 1 is
satisfied as long as m falls in the light cyan region shown

in Fig. 2. Note there is a slight difference between n
(′)
A

and n
(′)
B , which is attributed to the distinct propagating

patterns when electrons are injected from different ter-
minals [see Fig. 1(b) and Figs. 2(g)-2(i)]. Moreover, the
difference is negligible in large systems due to the van-
ishing of the coupling between the chiral edge states on
opposite boundaries. Accordingly, the Hall and longitu-
dinal resistances are given by

Rxy =
1

nA + n′A
, Rxx =

n′B
nB(nA + n′A)

. (7)

Near m = 30 meV, the localization length of the edge
states is comparable to the system size, and the edge
states on the opposite sides couple together. Therefore
nA, n′A, nB , and n′B deviate from the integer values 1
and 0, respectively. The well-quantized Hall resistance
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FIG. 3. (a) Illustration of the six-terminal Hall bar with a rectangle domain. The color depicts the local density of states
defined as ρi = − 1

π
ImGrii. (b) The Hall resistance Rxy/R0 and (c) longitudinal resistance Rxx/R0 as a function of m for

different domain size Ldx : Ldy = 5 : 1, respectively. The system size is Lx × Ly = 300 × 60 nm2. (d)-(f) The nonequilibrium

local current distributions injected from s-th terminal (colored by blue) for Ldx × Ldy = 60 × 12 nm2 and Lx × Ly = 300 × 60
nm2 with m = 60 meV.

is mainly contributed from the edge channel, but accom-
panied by a non-zero Rxx. Further decreasing m, the
localization length of the chiral edge states grows, result-
ing in a large longitudinal resistance.

Above, we reveal that the emergency of the non-
vanishing longitudinal resistance is attributed to the ex-
change field dependent localization length of chiral edge
states. When the localization length is comparable to the
sample size, the coupling of the edge states is captured by
a finite-size gap Eg, which is proportional to e−mLy/2γ ,
where Ly is the sample width (see Sec. SII of [72] for
more details). This conclusion is confirmed in Fig. 2(c),
which shows a linear relationship ln(Rxx/R0) ∼ m. On
the other hand, the formula indicates that the coupling
of edge states is significantly enhanced near the coercive
filed where the exchange field gap m is vanishing. We
would like to point out that the exponential behavior
of the longitudinal resistance with the external magnetic
field ln(Rxx/R0) ∼ Bz had been observed in various ex-
periments [1, 35, 38, 67, 79–82], where Bz is the strength
of the external perpendicular magnetic field. These ob-
servations agree well with our result as m is proportional
to the strength of Bz.

IV. DOMAIN ENHANCED CHIRAL EDGE
STATE COUPLING

In this part, we combine the effect of domain walls
into our theory since domains are pretty common in mag-
netic topological insulators. To simulate this, we consider
a hollow geometry as shown in Fig. 3(a), which gener-
ates clockwise chiral currents near the outside boundary,
and anti-clockwise chiral currents inside the bulk. Fig-

ures 3(b)-3(c) show Hall resistance and longitudinal re-
sistances as a function of m for different domain size.
In the light cyan regime, the Hall resistance remains
quantized, while the longitudinal resistance grows rapidly
with increasing the domain size. To understand this, we
plot the nonequilibrium local current distribution Jsi→j

in Figs. 3(d)-3(f) for a domain of 60 × 12 nm2. Here,
the current is injected from the s-th terminal. Clearly,
the existence of the domain could induce the substantial
coupling of edge states. Actually, in a recent experiment
on a magnetic topological insulator [65], the edge state
coupling is mediated by the domain walls, which results
in a large resistance fluctuations near the coercive field.
We also would like to point out that defects or impuri-
ties in the bulk can cause the coupling of edge states (see
Sec. SII of [72] for more details).

V. CONCLUSIONS AND DISCUSSIONS.

In summary, we reveal how the coupling of edge states
determines the transport properties of quantum anoma-
lous Hall insulators. We find that the coupling of the
chiral edge states is responsible for the emergence of the
quantized Hall resistance. Moreover, in the quantized
Hall resistance regime, we also show that the longitudi-
nal resistance decays exponentially with the increase in
magnetic field can be well explained by the chiral edge
state coupling theory. In addition, the mechanism in
this work is distinct from a prior work [83], which also
explored the non-zero longitudinal resistance induced by
domain walls in the regime of quantized Hall resistance.

Our findings are universal and can be applied to vari-
ous quantum anomalous Hall insulators in experiments.
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FIG. 4. Experimental data of Rxy/R0 and ln(Rxx/R0). (a,
c) are adopted from Ref. [35] and (b, d) are adopted from
Ref. [38]. The blue dashed lines in (c) and (d) are the fitting
curves with the form ln(Rxx/R0) = a + bBz, with a and b
being the fitting parameters.

In Fig. 4, we present a comparison between experimental
data and the fitting curves obtained by the formula we
found. Most saliently, although the experimental data
is from two different systems: one is the magnetically
doped topological insulator [35] and the other is transi-
tion metal dichalcogenide moiré heterobilayers [38], the
fitting curves agree well with it.

Moreover, in Secs. SII E-F of [72], we show that the
above conclusions are robust when non-zero V and ∆ are
considered. We confirm that the longitudinal resistance

is more significant in thick films with a small ∆, which
had been reported in the previous experiments [36]. We
also consider different shapes of domain with different
locations and all the cases show that the longitudinal re-
sistance is further enhanced (see Sec. SII B of [72]). We
adopt a percolation-type random lattice to show that
sample defects can also enhance the longitudinal resis-
tance in the quantized Hall regime (see Sec. SII C of [72]).
Furthermore, we show that the quantized Hall resistance
is robust against weak disorder, though accompanied by
a non-vanishing longitudinal resistance (see Sec. SII G
of [72]).
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