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ON FINITE PARTS OF DIVERGENT COMPLEX GEOMETRIC INTEGRALS

AND THEIR DEPENDENCE ON A CHOICE OF HERMITIAN METRIC

LUDVIG SVENSSON

Abstract. Let X be a reduced complex space of pure dimension. We consider
divergent integrals of certain forms on X that are singular along a subvariety
defined by the zero set of a holomorphic section of some holomorphic vector bundle
E → X. Given a choice of Hermitian metric on E we define a finite part of the
divergent integral. Our main result is an explicit formula for the dependence on
the choice of metric of the finite part.

1. Introduction

Let X be a reduced complex analytic space of pure dimension n and let V ⊂ X
be an analytic subvariety. Consider an (n, n)-form ω which is smooth in X \ V
with singularities along V and such that suppω is compact in X. We are interested
in studying finite parts of the divergent integral

∫
X ω, inspired by the process of

regularization and renormalization in perturbative quantum field theory. In general,
the finite part of a given divergent integral is not uniquely defined, rather, it depends
on the choice of regularization data. It is a fundamental problem to describe this
dependence.

In this paper we consider the setting when the variety V is the vanishing locus of
a global holomorphic section s : X → E of some holomorphic vector bundle E → X.
Given a (smooth) Hermitian metric ‖ · ‖ on E we consider the space As,‖·‖(X) of
smooth differential forms ω on X \V such that for each compact subset K ⊂ X there
exists some integer N ≥ 0 such that ‖s‖2Nω extends to a smooth form across V ∩K.
Let As(X) be the union over metrics of all such As,‖·‖(X). Note that if s defines a

Cartier divisor, then |s|2/‖s‖2 is smooth and non-vanishing for any two metrics ‖ · ‖
and | · | on E. Thus, in that case we have that As,‖·‖(X) = As,|·|(X) = As(X). In the

general case |s|2/‖s‖2 is only locally bounded and there may be different conformal
classes As,‖·‖(X) ⊂ As(X).

Any ω ∈ Ap,q
s (X) defines a current on X \V , that is, a continuous linear functional

on the space Dn−p,n−q(X \V ) of test forms on X \V of complementary bidegree, by

ξ 7→

∫

X

ω ∧ ξ.

To find a current extension of ω across V , following a classical idea, we consider the
function

(1.1) Γ‖·‖(λ) =

∫

X

‖s‖2λω ∧ ξ,
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2 LUDVIG SVENSSON

defined for Reλ sufficiently large. Differentiation under the integral sign shows that
Γ‖·‖(λ) is holomorphic for Reλ ≫ 0. It is clear that if there exists a metric ‖ · ‖ on

E such that ‖s‖2Nω is smooth for some N ≥ 0, then for any other metric | · | on E,
|s|2Nω is locally bounded. Thus (1.1) is defined and holomorphic for any ω ∈ Ap,q

s (X)
and any choice of Hermitian metric on E if Reλ≫ 0. It is well known that (1.1) has
a meromorphic continuation to C, see, e.g., [2] and [8]. The Laurent series of Γ‖·‖(λ)
about the origin is of the form

Γ‖·‖(λ) =

κ∑

j=0

1

λj
〈µj(ω), ξ〉+O(λ),

where 0 ≤ κ ≤ n and µj(ω) are currents on X. Moreover, suppµj(ω) ⊆ V for j ≥ 1.
See Theorem 4.1 below for details. It follows that µ0(ω) = ω as currents on X \ V .
Thus µ0(ω) is a current extension of ω across V . For ω of top degree, and with
suppω ⊂⊂ X, it is therefore natural to define the finite part of

∫
X ω as

(1.2) fp

∫

X

ω := 〈µ0(ω), 1〉.

This definition depends on the choice of metric on E, as well as on the choice of
section s defining V . In this paper our focus is the metric dependence, keeping the
section fixed. In some situations, however, a change of sections can be realized a
change of metrics, see Example 5.1 below. The following theorem is the main result
of this article. It describes the metric dependence of µj(ω) for each j = 0, . . . , κ.

Theorem 1.1. Let ω ∈ Ap,q
s (X). For any two Hermitian metrics ‖ · ‖ and | · | on E,

let µ
‖·‖
j (ω) and µ

|·|
j (ω) denote the currents defined by the coefficient of the −jth order

term in the Laurent series expansion around 0 of Γ‖·‖ and Γ|·|, respectively. We have
that

(1.3) µ
|·|
j (ω) =

n−j∑

ℓ=0

1

ℓ!

(
log

|s|2

‖s‖2

)ℓ
µ
‖·‖
j+ℓ(ω).

A version of this theorem, in the special case when X and V are smooth, is a
central result in [12, 13, 14], see Example 1.3 below and the paragraph preceding it.
There are also partial results in [12, 13, 14] in the case when V is a normal crossings
divisor. The key idea of the proof is to consider a particular function of two complex
parameters, see (3.1), and use it to interpolate between the functions Γ‖·‖ and Γ|·|.

Note that the factor log |s|2

‖s‖2
appearing in (1.3) is locally integrable, but not smooth

in general. This means that the products on the right-hand side of (1.3) are not
canonically defined. However, the proof of Theorem 1.1 shows that these products

have a natural meaning. In the special case where s defines a Cartier divisor, log |s|2

‖s‖2

is smooth and the products on the right hand side of (1.3) are canonically defined.
An immediate consequence of this is the following result, which generalizes some
results in [13, 14].

Corollary 1.2. Assume that s defines a Cartier divisor, and let κ be the order of the

pole of Γ‖·‖(λ) at 0. Then κ and µ
‖·‖
κ (ω) are independent on the choice of metric.

There is another standard way to regularize divergent integrals, such as
∫
X ω,

which is to introduce a cut-off parameter ǫ > 0, integrate ω over the locus {‖s‖2 ≥ ǫ}
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and then study the asymptotic behavior of the integral as ǫ → 0. For ω ∈ Ap,q
s (X),

ξ ∈ Dn−p,n−q(X), and any smooth Hermitian metric ‖ · ‖ on E, we let

(1.4) I‖·‖(ǫ) =

∫

‖s‖2≥ǫ

ω ∧ ξ.

The functions I‖·‖(ǫ) and Γ‖·‖(λ) are related via the Mellin transform. If the limit
of I‖·‖(ǫ) as ǫ→ 0 exists, we find that

lim
ǫ→0

I‖·‖(ǫ) = 〈µ
‖·‖
0 (ω), ξ〉.

On the other hand, if limǫ→0 I‖·‖(ǫ) does not exist, then, using standard techniques
we find that

(1.5) I‖·‖(ǫ) = 〈µ
‖·‖
0 (ω), ξ〉+

| log ǫ |q

ǫp
φ(ǫ) +O(ǫδ),

for some δ > 0, p, q ∈ N and φ ∈ C 0([0,∞)) such that φ(0) 6= 0. Clearly φ depends
on ω and ξ, see Proposition 6.1 below for a more precise formula.

For ω of top degree with suppω ⊂⊂ X we have defined a finite part of
∫
X ω in

(1.2). Another natural definition of a finite part of
∫
X ω is as the limit as ǫ → 0

of I‖·‖(ǫ) (with ξ = 1) after having subtracted possible divergent terms. In view of
(1.2) and (1.5) we find that they are the same, that is,

(1.6) lim
ǫ→0

(
I‖·‖(ǫ)−

| log ǫ |q

ǫp
φ(ǫ)

)
= fp

∫

X

ω.

Since the finite part extracted from I‖·‖(ǫ) is the same as the one coming from
Γ‖·‖(λ), the metric dependence of the former thus is given by Theorem 1.1. Proving
this metric dependence directly, without considering Γ‖·‖(λ), seems, to the author,
more involved.

1.1. Relations to previous results. This work is inspired by work by Felder–Kazhdan
in [12, 13], where the authors investigate finite parts of divergent integrals of differ-
ential forms with singularities along a submanifold Y in the real setting. The singu-
larities considered are determined by a conformal class of non-negative Morse–Bott
functions. These are smooth non-negative functions vanishing precisely on Y with
non-degenerate Hessian in the normal directions of Y . They consider regularizations
of

∫
X ω that closely resemble our Γ‖·‖ and I‖·‖ and they investigate the dependence on

the representative Morse–Bott function within a given conformal class. This is simi-
lar to the way we consider the spaces As,‖·‖(X) and describe the metric dependence
given a section s.

Example 1.3. Let X be a (complex) manifold, V a (complex) submanifold and sup-
pose that s defines the radical ideal of V . Then κ ≤ 1 and

µ
|·|
0 (ω)− µ

‖·‖
0 (ω) = log

|s|2

‖s‖2
µ1(ω),

which is a version of a main result in [12, 13, 14]. Note that µ1(ω) here is independent
of the choice of metric.

The formula for µ
|·|
0 (ω)−µ

‖·‖
0 (ω) follows directly from Theorem 1.1 and Corollary 1.2

if κ ≤ 1. The fact that κ ≤ 1 follows from Theorem 4.1 (i) below, since Vsing = ∅ =
Xsing.
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Example 1.4. Suppose X is a compact complex manifold and let ω = α∧ β̄, where α
and β are meromorphic forms of bidegree (n, 0), that is, locally of the form α = fα/gα
and β = fβ/gβ where fα and fβ are holomorphic (n, 0)-forms and where gα and gβ
are holomorphic functions. Then ω ∈ As(X), where V = {gαgβ = 0} locally. The
problem of extracting a finite part of

∫
X ω arises in perturbative superstring theory,

see [17, Section 7.6]. This problem is considered in [12] in the case where V is a
smooth hypersurface and in [13] when V has normal crossings singularities.

Meromorphic functions of the form (1.1) also appear in a number theoretic context
in [10, Section 4]. More precisely, in [10, Section 4] it is assumed that E is a line
bundle and ω is of the form ‖s‖−2cdV , for a volume form dV on X, where c is the
corresponding integrability threshold. An explicit expression for the corresponding
measure µκ(ω) is given in [10, Proposition 4.3], when the divisor D cut out by s has
simple normal crossings, expressed in terms of the Clemens complex of D.

2. Preliminaries

2.1. Smooth forms on reduced complex analytic spaces. We will briefly mention how
one defines smooth forms on spaces with singularities, specifically reduced analytic
spaces. Recall that an analytic subspace (Z,OZ), or simply Z when there is no
risk of confusion, of a domain Ω ⊆ Cn, is a ringed space where Z is given by the
common vanishing locus of a collection of holomorphic functions f1, . . . , fk : Ω → C

and where the structure sheaf OZ = OΩ/JZ , where JZ is the ideal sheaf generated
by f1, . . . , fk. The space (Z,OZ) is reduced if JZ is radical. For Z reduced, Zreg

is the set of points z such that Z is a manifold in a neighborhood of z, and Zreg is
dense in Z. When Z is reduced, we define the sheaf EZ of smooth forms on Z as the
quotient sheaf EΩ/NZ,Ω, where EΩ is the sheaf of smooth forms on Ω, and NZ,Ω ⊆ EΩ

is the subsheaf of forms whose pullback to Zreg vanishes.
A reduced analytic space (X,OX ) is a ringed space such that for any point x ∈

X there exists a local model consisting of an open neighborhood U of x and an
isomorphism of ringed spaces U → Z where Z ⊂ Ω ⊆ Cn is a reduced analytic
subspace. The sheaf of smooth forms EU on U , as defined above, is independent of
the choice of local model. For a reduced analytic space X, the sheaf of smooth forms
EX is defined as the sheaf obtained from gluing the sheaves of smooth forms on the
local models of X. For a more substantial treatment, see, e.g., [9, 11].

2.2. Currents. On a smooth manifoldM of real dimension n, a current ν of degree k
is a continuous linear functional ξ 7→ 〈ν, ξ〉 on the space Dn−k(M) of smooth (n−k)-
forms with compact support. We define the current dν, where d is the exterior
derivative, by duality; for ξ ∈ Dn−k−1(M) we let

(2.1) 〈dν, ξ〉 := (−1)k+1〈ν,dξ〉.

Thus d takes k-currents to (k + 1)-currents.
If M is a complex manifold the complex structure induces a decomposition of

the spaces of smooth differential k-forms into bigraded (p, q)-forms, and the exterior
derivative decomposes as d = ∂+ ∂̄. By duality, the space of k-currents have a similar
decomposition into bigraded objects: A current of bidegree (p, q) on M acts trivially

on the space Dn−p′,n−q′(M) of compactly supported forms of bidegree (n−p′, n− q′)
when (p′, q′) 6= (p, q). For a (p, q)-current ν, we define the (p + 1, q) and (p, q + 1)
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currents ∂ν and ∂̄ν by

〈∂ν, ξ〉 := (−1)p+q+1〈ν, ∂ξ〉 and 〈∂̄ν, ξ〉 := (−1)p+q+1〈ν, ∂̄ξ〉,

respectively.
We define the support supp ν of a (p, q)-current ν as the smallest closed subset

U ⊂M such that 〈ν, ξ〉 = 0 for each ξ ∈ Dn−p,n−q(M \ U).
For a (p, q)-current ν and a smooth (p′, q′)-form β, we define the (p + p′, q + q′)-

current ν ∧ β by

(2.2) 〈ν ∧ β, ξ〉 := 〈ν, β ∧ ξ〉,

for ξ ∈ Dn−p−p′,n−q−q′(M). We let β ∧ ν := (−1)(p+q)(p
′+q′)ν ∧ β.

IfX is a reduced analytic space, a current onX is a continuous linear functional on
the space D(X) of smooth forms with compact support. The properties of currents
presented above all generalize to this setting. For a modification f : Y → X of X,
and a current ν on Y , we define the push-forward f∗ν of ν by

(2.3) 〈f∗ν, ξ〉 := 〈ν, f∗ξ〉,

for ξ ∈ D(X). The push-forward operator is continuous and commutes with ∂ and
∂̄. If β is a smooth form on X we have that

(2.4) β ∧ f∗ν = f∗(f
∗β ∧ ν).

We can generalize this product as follows: Suppose that β is generically smooth
on X with f∗β smooth on Y . Moreover, let µ be a current on X such that µ = f∗ν
for some current ν on Y . Then we define

(2.5) β ∧f,ν µ := f∗(π
∗β ∧ ν).

Note that, if β is smooth, β ∧f,ν µ = β ∧ µ by (2.4). Also note that the product
in (2.5) is ill-defined in general since it depends on the choice of modification f and
current ν. As hinted at in the introduction, products of the type (2.5) appear when
we look at the metric dependence of the currents µj(ω), cf. Theorem 1.1 and the
subsequent comments. However, as it turns out, there are canonical choices of f and
ν in this case, see the proof of Theorem 1.1 below.

The following example shows that β ∧f,ν µ may be non-zero even though µ = 0.

Example 2.1. Consider the blowup of C2 at the origin, π : Bl0C
2 → C2, where

(2.6) Bl0C
2 =

{
(z1, z2, [w0 : w1]) ∈ C2

z × P1
[w] : z1w1 − z2w0 = 0

}
,

and π is the restriction of the natural projection Π : C2 × P1 → C2 to Bl0C
2. Let

β =
i

2π
∂∂̄ log(|z1|

2 + |z2|
2).

Then β̃ = π∗β = ωFS(w)|Bl0C2 , that is, the Fubini–Study form on P1
[w], extended to

C2
z × P1

[w] and restricted to Bl0C
2.

One way to see this is as follows: Away from the origin, π is a biholomorphism,

so β and β̃ are related via a holomorphic change of coordinates. The Fubini–Study
form on P1 with homogeneous coordinates [w0 : w1] is given by

ωFS =
i

2π
∂∂̄ log(|w0|

2 + |w1|
2).
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Away from z1 = 0 and [w0 : w1] = [0 : 1] we see from (2.6) that
z2
z1

=
w1

w0
.

Since ∂∂̄ log |g|2 = 0 if g is holomorphic and non-vanishing it follows that

ωFS =
i

2π
∂∂̄ log(|w0|

2 + |w1|
2) =

i

2π
∂∂̄ log(|z1|

2 + |z2|
2).

By a symmetrical argument, ωFS = i
2π∂∂̄ log(|z1|

2 + |z2|
2) away from z2 = 0 and

[w0 : w1] = [1 : 0].
Now, let ν = [E] be the integration current for the exceptional divisor E = π−1(0)

on Bl0C
2. Then, e.g., by the dimension principle, µ := π∗ν = 0. However, for

ξ ∈ D0,0(C2), we have by (2.3) and (2.5) that

〈β ∧π,ν µ, ξ〉 = 〈β̃ ∧ [E], π∗ξ〉 =

∫

E

ωFS π
∗ξ = ξ(0)

∫

E

ωFS = ξ(0).

Thus, we conclude that ϕ ∧π,ν µ = δ0, where δ0 is the Dirac distribution.

3. Meromorphic continuation

In this section we show the existence of meromorphic continuations of functions,
closely related to (1.1), which we will make use of in the proof of Theorem 1.1. Recall
that X is a reduced analytic space, E → X is a holomorphic vector bundle, and s is
a holomorphic section of E with V = {s = 0}.

Proposition 3.1. Let ω ∈ An,n
s (X) with suppω ⊂⊂ X, and let | · | and ‖ · ‖ be two

Hermitian metrics on E. Then the function

(3.1) (λ, τ) 7→

∫

X

‖s‖2λ
(

|s|

‖s‖

)2τ
ω,

a priori defined and holomorphic for Reλ ≫ 0, has a meromorphic continuation to
C2, and there is a discrete subset P ⊂ Q ∩ (−∞, N ], for some N ≥ 0, such that the
polar locus ⊆ P × Cτ .

One can show Proposition 3.1 using Berstein–Sato theory in a standard way, see,
e.g., [6, 7, 8]. We choose here instead to use Hironaka’s theorem to reduce the proof
to an elementary calculation. This approach is common in residue calculus, see, e.g.,
[1].

Note that |s|2/‖s‖2 is not only locally bounded but everywhere positive. Thus we
can find constants C1, C2 > 0 such that C1 < |s|2/‖s‖2 < C2 on suppω. This implies
that (3.1) is defined and holomorphic for any τ ∈ C provided that Reλ≫ 0.

Our proof of Proposition 3.1 relies on the following lemma.

Lemma 3.2. Let Ψ be a smooth compactly supported function on Cnz , let v and w be
smooth positive functions defined in a neighborhood of suppΨ, let 1 ≤ κ ≤ n and let
m1, . . . ,mκ be positive integers. Then, for any non-negative integer N , the function

Γ(τ, λ) =

∫

Cn

|zm1

1 · · · zmκ
κ |2(λ−N)vλwτΨdz ∧ dz̄,

where dz ∧ dz̄ = dz1 ∧ z̄1 ∧ · · · ∧ dzn ∧ dz̄n, is holomorphic for Reλ ≫ 0, and
has a meromorphic continuation to C2. Moreover, there is a discrete subset P ⊂
Q ∩ (−∞, N ] such that the polar locus is contained in P × Cτ , ∀Ψ, v, w.
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A computation similar to the following proof can be found in [14]. We provide our
adapted version for future reference.

Proof of Lemma 3.2. For Reλ≫ 0, we have that

∂2

∂z1∂z̄1
|zm1

1 |2λ = m2
1λ

2 |z
m1

1 |2λ

|z1|2
.

By an induction argument it follows that

(3.2) |zm1

1 · · · zmκ
κ |2(λ−N) =

h(λ)

λ2κ
∂2N

∑κ
j=1mj

∂zNm1

1 ∂z̄Nm1

1 · · · ∂zNmκ
κ ∂z̄Nmκ

κ

|zm1

1 · · · zmκ
κ |2λ,

where

(3.3) h(λ) =

κ∏

i=1

1

m2
i

Nmi−1∏

j=1

1

(miλ− j)2
.

By writing

∂2N
∑κ

i=1
mi

∂zNm1

1 ∂z̄Nm1

1 · · · ∂zNmκ
κ ∂z̄Nmκ

κ

= PP̄ where P =
∂N

∑κ
i=1

mi

∂zNm1

1 · · · ∂zNmκ
κ

,

(3.2) then becomes

(3.4) |zm1

1 · · · zmκ
κ |2(λ−N) =

h(λ)

λ2κ
PP̄ |zm1

1 · · · zmκ
κ |2λ.

Using (3.4) and integration by parts, and the fact that (PP̄ )∗ = PP̄ , we find that

(3.5) Γ(λ, τ) =
h(λ)

λ2κ

∫

Cn

|zm1

1 · · · zmκ
κ |2λPP̄ (vλwτΨ)dz ∧ dz̄,

for Reλ ≫ 0. The integral on the right-hand side of (3.5) is an analytic function of
(λ, τ) for Reλ > −ǫ for a small enough ǫ > 0, and h(λ) is a meromorphic function
on Cλ with poles at

λ =
1

mi
,
2

mi
, · · · ,

Nmi − 1

mi
, i = 1, . . . , κ.

It follows that Γ(λ, τ) can be meromorphically continued to {Reλ > −ǫ} × Cτ .
For any integer M ≥ 0 and Reλ≫ 0, it follows from (3.2) by changing λ to λ+M

and N to N +M that

(3.6) |zm1

1 · · · zmκ
κ |2(λ−N) =

hM (λ)

λ2κ
PM P̄M |zm1

1 · · · zmκ
κ |2(λ+M),

where

(3.7) hM (λ) =

κ∏

i=1

1

m2
i

(N+M)mi−1∏

j=1

1

(mi(λ+M)− j)2
,

and

PM =
∂(N+M)

∑κ
i=1

mi

∂z
(N+M)m1

1 · · · ∂z
(N+M)mκ
κ

.

Analogously to (3.5) we then have that

(3.8) Γ(λ, τ) =
hM (λ)

λ2κ

∫

Cn

|zm1

1 · · · zmκ
κ |2(λ+M)PM P̄M (vλwτΨ)dz ∧ dz̄,
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for Reλ ≫ 0. The integral on the right-hand side of (3.8) is an analytic function of
(λ, τ), now for Reλ > −M − ǫ, and hM (λ) is a meromorphic function on Cλ with
poles at

λ =
1

mi
−M,

2

mi
−M, . . . ,

(N +M)mi − 1

mi
−M, i = 1, . . . , κ.

Since M is arbitrary, it follows that Γ(λ, τ) has a meromorphic continuation to C2.
We also see that there is a discrete subset P ⊆ Q ∩ (−∞, N ], such that the polar
locus of Γ(λ, τ) is contained in P × Cτ , independent of v,w and Ψ. �

Proof of Proposition 3.1. We note that we can find constants C1, C2 > 0 such that
C1 < |s|2/‖s‖2 < C2 on suppω, and that (3.1) is analytic for Reλ sufficiently large.

Let π : X̃ → X be a modification such that X̃ is smooth and π∗s defines a normal
crossings divisor on X̃ . Since π is a biholomorphism outside a set of measure 0 we
have, for Reλ≫ 0,

(3.9)

∫

X

‖s‖2λ
(

|s|

‖s‖

)2τ
ω =

∫

X̃

‖π∗s‖2λ
(

|π∗s|

‖π∗s‖

)2τ
π∗ω.

We can find an open cover {Uj} such that, in each Uj, there are local holomorphic
coordinates z = (z1, . . . , zn) such that either π∗ω is smooth or there is some 1 ≤
κ ≤ n such that ‖π∗s‖2 = |zm1

1 · · · zmκ
κ |2e−φ and |π∗s|2 = |zm1

1 · · · zmκ
κ |2e−ψ for some

m1, . . . ,mκ ≥ 1 and φ,ψ ∈ C∞(Uj ,R). It follows that ‖π∗s‖2λπ∗ω is smooth for
Reλ sufficiently large. Thus, we can find an integer N ≥ 0 such that

(3.10) π∗ω =
Ψdz ∧ dz̄

|zm1

1 · · · zmκ
κ |2N

,

where Ψ is a smooth function. By introducing a partition of unity (ρj) subordinate
to {Uj} we find that the right-hand side of (3.9) is a finite sum of terms of the form

∫

Cn

|zm1

1 · · · zmκ
κ |2(λ−N)e−λφe−τ(ψ−φ)ρjΨdz ∧ dz̄.

Note that the constants κ,m1, . . . ,mκ depend on the local chart Uj , although we have
suppressed this dependence in the notation. The proof now follows by Lemma 3.2,
with v = e−φ and w = e−(ψ−φ). By the uniqueness of meromorphic continuation, it
is independent of the particular choice of modification. �

4. The currents µj(ω) associated with Γ‖·‖

In this section we prove the following theorem, which is a collection of know results
together with applications of classical ideas, see, e.g., [2, 3, 6, 7, 8, 12, 13, 14], and
also, e.g., [1, 5, 15, 16] and references therein for analogous results in residue theory.
We supply details of the proof for completeness, and to gather and organize these
results and techniques in our setting.

Theorem 4.1. Let ω ∈ Ap,q
s (X), ξ ∈ Dn−p,n−q(X) and let ‖ · ‖ be a Hermitian metric

on E.

(i) The function

Γ‖·‖(λ) =

∫

X

‖s‖2λω ∧ ξ,
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a priori defined and holomorphic for Reλ ≫ 0, extends to a meromorphic
function on C with polar set contained in Q. Moreover, there exists a κ ≤ n
such that the Laurent series expansion of Γ‖·‖ in a neighborhood of 0 is given
by

(4.1)
κ∑

j=0

1

λj
〈µj(ω), ξ〉 +O(λ),

where µj(ω) are currents on X satisfying suppµκ(ω) ⊆ suppµκ−1(ω) ⊆ · · · ⊆
suppµ1(ω) ⊆ suppµ0(ω) = suppω. Moreover, suppµ1(ω) ⊆ V and if s
defines the radical ideal of V then suppµj(ω) ⊆ Vsing ∪ (Xsing ∩V ) for j ≥ 2.

(ii) Suppose that ω ∈ As,‖·‖(X). Then we have that dω, d‖s‖
2

‖s‖2 ∧ ω ∈ As,‖·‖(X),

and, for any j,

(4.2) dµj(ω) = µj(dω) + µj+1

(
d‖s‖2

‖s‖2
∧ ω

)
.

4.1. Proof of Theorem 4.1 (i). To begin with we consider the case where ω is of top
degree and s defines a normal crossings divisor. We have the following lemma.

Lemma 4.2. Suppose that X is a manifold and that s defines a normal crossings
divisor with support V = {s = 0}. Let ω ∈ An,n

s (X) and ‖ · ‖ be any Hermitian
metric on E. For any test function ξ ∈ D0,0(X) we let

Γ‖·‖(λ) =

∫

X

‖s‖2λωξ,

for Reλ≫ 0. Then Γ‖·‖ has a meromorphic continuation to Cλ with polar set given
by a discrete subset P ⊂ Q ∩ (−∞, N ] for some N ≥ 0 independent of ‖ · ‖ and ξ.
Moreover, there exists a 0 ≤ κ ≤ n such that the Laurent series expansion of Γ‖·‖

around 0 is given by

Γ‖·‖(λ) =

κ∑

j=0

1

λj
〈µj(ω), ξ〉 +O(λ),

where µj(ω), for j = 0, . . . , κ, are (n, n)-currents on X satisfying suppµκ(ω) ⊆
suppµκ−1(ω) ⊆ · · · ⊆ suppµ1(ω) ⊆ suppµ0(ω) = suppω, suppµ1(ω) ⊆ V and
suppµj(ω) ⊆ Vsing for j ≥ 2.

Proof. The statement that Γ‖·‖ has a meromorphic continuation with the prescribed
polar set follows immediately from Proposition 3.1 by setting τ = 0. Now, consider
the Laurent series expansion of Γ‖·‖(λ) around λ = 0,

Γ‖·‖(λ) =

N0∑

j=0

1

λj
cj +O(λ),

where cj ∈ C, for some N0 ≥ 0. Since being a current is a local property, we may
assume that ξ has support in some neighborhood where we can find local holomorphic
coordinates z = (z1, . . . , zn) such that ‖s‖2 = |zm1

1 · · · zmκ
κ |2e−φ for some 1 ≤ κ ≤ n

and φ ∈ C∞(supp ξ,R). Since ‖s‖2λω is smooth for Reλ sufficiently large, we can
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find an integer N ≥ 0 and a smooth function Ψ such that ω is given by the right-
hand side of (3.10). Thus, in a neighborhood of λ = 0 we know from the proof of
Lemma 3.2, cf. (3.5), that we may write

Γ‖·‖(λ) =
h(λ)

λ2κ
I(λ),

where h(λ) is given by (3.3), and where

(4.3) I(λ) =

∫

X

|zm1

1 · · · zmκ
κ |2λPP̄

(
e−λφΨξ

)
dz ∧ dz̄,

with P as in the proof of Lemma 3.2. In particular, both h, and I are holomorphic
in a neighborhood of 0. We have that

cj = Res
λ=0

{
λj−1Γ‖·‖(λ)

}
= Res

λ=0

{
1

λ2κ−j+1
h(λ)I(λ)

}

=
1

(2κ− j)!

d2κ−j

dλ2κ−j
(
h(λ)I(λ)

)∣∣∣
λ=0

=
1

(2κ− j)!

2κ−j∑

ℓ=0

(
2κ − j

ℓ

)
h(ℓ)(0)I(2κ−j−ℓ)(0).(4.4)

Let k = 2κ− j − ℓ, and consider I(k)(0). A standard computation with Leibniz rule
gives that

I(k)(0) =
dk

dλk
I(λ)

∣∣
λ=0

=
k∑

r=0

(
k

r

)
(−1)r

∫

Cn

(
log |zm1

1 · · · zmκ
κ |2

)k−r
PP̄

(
φrΨξ

)
dz ∧ dz̄

=

k∑

r=0

(
k

r

)
(−1)r

∫

Cn

(
log |zm1

1 |2 + · · ·+ log |zmκ
κ |2

)k−r
PP̄

(
φrΨξ

)
dz ∧ dz̄.

By the multinomial theorem we have that

(
log |zm1

1 |2 + · · ·+ log |zmκ
κ |2

)k−r
=

∑

α∈Zκ
≥0

|α|=k−r

(k − r)!

α1! · · ·ακ!

κ∏

t=1

(
log |zmt

t |2
)αt .

We see that if k−r < κ, each multi-index α will contain at least one 0 entry. Suppose,
for simplicity, that α1 = 0 for a given term. Then we clearly have that

∂

∂z1

κ∏

t=1

(
log |zmt

t |2
)αt =

∂

∂z1

κ∏

t=2

(
log |zmt

t |2
)αt = 0.

If k − r < κ, it follows that
∫

Cn

(
log |zm1

1 |2 + · · ·+ log |zmκ
κ |2

)k−r
PP̄

(
φrΨξ

)
dz ∧ dz̄ = 0
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by integration by parts; thus, I(k)(0) = 0 if k < κ. From (4.4) it follows that cj = 0
if 2κ− j < κ, that is, for j > κ. Thus, we have that

Γ‖·‖(λ) =
κ∑

j=1

1

λj
cj +O(λ).

We see from (4.4) and the expansion of I(k)(0) that cj , for each j = 0, . . . , κ, consists
of a finite sum of integrals of the form

∫

Cn

(
log |zm1

1 |2 + · · · + log |zmκ
κ |2

)k−r
PP̄

(
φrΨξ

)
dz ∧ dz̄.

Since (log |zm1

1 |2 + · · · + log |zmκ
κ |2)k−r is locally integrable in Cn, it follows by the

product rule that cj consists of a finite sum of integrals, where the integrands consist
of derivatives on the test function ξ multiplied by L1

loc-functions. This immediately
implies that cj defines the action of a (n, n)-current on ξ, which we denote by cj =
〈µj(ω), ξ〉.

In [14] it is shown that suppµj(ω) ⊆ suppµj−1(ω) for each j = 1, . . . , κ. For
convenience we sketch an argument. Let

(4.5) Ik,r =
∑

α∈Zκ
≥0

|α|=k−r

(k − r)!

α1! · · ·ακ!

∫

Cn

κ∏

t=1

(
log |zmt

t |2
)αtPP̄

(
φrΨξ

)
dz ∧ dz̄.

Then

(4.6) I(k)(0) =

k∑

r=0

(
k

r

)
(−1)rIk,r.

By the above, we know that Ik,r = 0 if k−r < κ. If k−r = κ, then partial integration
shows that each term in the right-hand side of (4.5) except for the α = (1, . . . , 1)
term vanishes. It follows that

Ik,r = κ!

∫

Cn

κ∏

t=1

mt
∂2

∂zt∂z̄t

(
log |zt|

2
) ∂2N

∑κ
i=1

mi−2κ

∂zNm1−1
1 · · · ∂z̄Nmκ−1

κ

(
φrΨξ

)
dz ∧ dz̄,

where ∂2

∂zt∂z̄t
log |zt|

2 is to be regarded as a distribution. Thus, if k − r = κ, by
repeated use of the Poincaré–Lelong formula,

∂∂̄ log |zj |
2 = −2πi[zj = 0],

for j = 1, . . . , κ, we have that

Ik,r = κ!(−2πi)κ
κ∏

t=1

mt

∫

{z1=···=zκ=0}

∂2N
∑κ

i=1
mi−2κ

∂zNm1−1
1 · · · ∂z̄Nmκ−1

κ

(
φrΨξ

)
dz′ ∧ dz̄′,

where dz′ ∧ dz̄′ = dzκ+1 ∧ dz̄κ+1 ∧ · · · ∧ dzn ∧ dz̄n. By (4.4) and (4.6) it follows that

cκ = h(0)Iκ,0,

whence suppµκ(ω) ⊆ {z1 = · · · = zκ = 0} ∩ suppΨ. Similarly, by (4.4) and (4.6) it
follows that

cκ−1 =
1

(κ+ 1)!
h(0)Iκ+1,0 −

1

κ!
h(0)Iκ+1,1 +

1

κ!
h′(0)Iκ,0.
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From (4.5), setting k = κ+1 and r = 1, we find that only the term with α = (1, . . . , 1)
gives a non-zero contribution to Iκ+1,1. Thus, by the same argument as above, Iκ+1,1

is an integral over the locus {z1 = · · · = zκ = 0}. Looking at the expression for Iκ+1,0,
we find that the only terms that contribute are α = (2, 1, . . . , 1), (1, 2, 1, . . . , 1), . . . ,
(1, . . . , 1, 2). Consider for example the term with α = (2, 1, . . . , 1),

(Iκ+1,0)α =
(κ+ 1)!

2!

∫

Cn

(
log |zm1

1 |2
)2 κ∏

t=2

log |zmt
t |2

∂2N
∑κ

i=1
mi

∂zNm1

1 · · · ∂z̄Nmκ
κ

(
Ψξ

)
dz ∧ dz̄

=
(κ+ 1)!

2!

∫

Cn

(
log |zm1

1 |2
)2 κ∏

t=2

∂2

∂zt∂z̄t

(
log |zmt

t |2
)
×

×
∂2N

∑κ
i=1mi−2(κ−1)

∂zNm1

1 ∂z̄Nm1

1 ∂zNm2−1
2 · · · ∂z̄Nmκ−1

κ

(
Ψξ

)
dz ∧ dz̄

=
(κ+ 1)!

2!
(−2πi)κ−1

κ∏

t=1

mt

∫

{z2=···=zκ=0}

(
log |z1|

2
)2
×

×
∂2N

∑κ
i=1mi−2(κ−1)

∂zNm1

1 ∂z̄Nm1

1 ∂zNm2−1
2 · · · ∂z̄Nmκ−1

κ

(
Ψξ

)
dz′ ∧ dz̄′,

where dz′ ∧ dz̄′ = dz1 ∧ dz̄1 ∧ dzκ+1 ∧ dz̄κ+1 ∧ · · · ∧ dzn ∧ dz̄n. Thus, (Iκ+1,0)α is an
integral over the locus {z2 = · · · = zκ = 0}. By symmetry, it follows that Iκ+1,0 is
an integral over the locus

κ⋃

i=1

⋂

j 6=i

{zj = 0},

whence

suppµκ−1(ω) ⊆

κ⋃

i=1

⋂

j 6=i

{zj = 0} ∩ suppΨ.

Furthermore, since the integral Iκ,0 appears in both the expression for cκ and cκ−1,
we have that

suppµκ(ω) ⊆ suppµκ−1(ω)

By analogous arguments for k − r = κ+ 2, . . . , 2κ we find that

suppµj(ω) ⊆

κ⋃

ℓ1,...,ℓj=1
ℓ1<···<ℓj

{zℓ1 = · · · = zℓj = 0},

and that suppµj(ω) ⊆ suppµj−1(ω) for each j = 1, . . . , κ.
It is clear that Γ‖·‖ is holomorphic if supp ξ ⊆ X \ V . Thus, suppµj(ω) ⊆ V for

j = 1, . . . , κ. It follows that µ0(ω) is a current extension of ω across V , and we have
that suppµ0(ω) = suppω. It is shown in [14] that if V is smooth and s defines the
radical ideal of V then κ ≤ 1. Thus, if supp ξ ⊆ X \ Vsing, Γ‖·‖ has at most a pole of
order 1 at λ = 0. This implies that suppµj(ω) ⊆ Vsing for j ≥ 2. �

Now we generalize Lemma 4.2 to ω ∈ Ap,q
s (X). In this setting, we note that

ω ∧ ξ ∈ An,n
s (X) for any ξ ∈ Dn−p,n−q(X). Lemma 4.2 then implies that there is
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some 0 ≤ κ ≤ n and currents µj(ω ∧ ξ) with compact support, for 0 ≤ j ≤ κ, which
depend on ω (a priori on ω ∧ ξ) such that

Γ‖·‖(λ) =
κ∑

j=0

1

λj
〈µj(ω ∧ ξ), 1〉 +O(λ).

For ω ∈ Ap,q
s (X) we then define

(4.7) 〈µj(ω), ξ〉 := 〈µj(ω ∧ ξ), 1〉.

It is clear from the definition of µj(ω ∧ ξ) that (4.7) defines a linear functional on
Dn−p,n−q(X). Furthermore, if ω ∈ An,n

s (X), it follows by Lemma 4.2 that, if ξ is a
test function, µj(ωξ) = ξµj(ω), which agrees with (4.7).

To see that (4.7) defines a (p, q)-current µj(ω), it remains to check continuity.
Since being a current is a local statement, we may assume that ξ has support in a
small neighborhood with local coordinates z = (z1, . . . , zn) and that

ξ =
∑

J,K

ξJKdzJ ∧ dz̄K ,

where the sum is over all multi-indices J ,K consisting of ordered subsets of {1, . . . , n}
of size n − p and n − q, respectively. Since µj(ω) is a linear functional, we can fix
some indices (J,K) and consider 〈µj(ω), ξJKdzJ ∧ dz̄K〉. By (4.7), we have

〈µj(ω), ξJKdzJ ∧ dz̄K〉 = 〈µj(ω ∧ ξJKdzJ ∧ dz̄K), 1〉

= 〈ξJKµj(ω ∧ dzJ ∧ dz̄K), 1〉

= 〈µj(ω ∧ dzJ ∧ dz̄K), ξJK〉,

where we used that µj(ωξ) = ξµj(ω) for ω ∈ An,n
s (X) and ξ ∈ D0,0(X). Since we

know that µj(ω ∧ dzJ ∧ dz̄K) is a continuous linear functional on D0,0(X), it follows
that µj(ω) is a continuous linear functional on Dn−p,n−q(X).

Thus, Lemma 4.2 holds for ω ∈ Ap,q
s (X) with µj(ω) defined as in (4.7). We have

the following formula.

Lemma 4.3. Let ω ∈ Ap,q
s (X). For each j = 0, . . . , κ, µj(ω) satisfies

(4.8) µj(ω) ∧ ξ = µj(ω ∧ ξ),

for any smooth (p′, q′)-form ξ.

Proof. Let η ∈ Dn−p−p′,n−q−q′(X). Since µj(ω) is a (p, q)-current, by (2.2) we have
that

〈µj(ω) ∧ ξ, η〉 = 〈µj(ω), ξ ∧ η〉.

By (4.7) we have

〈µj(ω), ξ ∧ η〉 = 〈µj(ω ∧ ξ ∧ η), 1〉.

Since ω ∧ ξ ∈ Ap+p′,q+q′

V (X), again by (4.7), we have that

〈µj(ω ∧ ξ ∧ η), 1〉 = 〈µj(ω ∧ ξ), η〉.

Thus, 〈µj(ω) ∧ ξ, η〉 = 〈µj(ω ∧ ξ), η〉 for all η which proves the lemma. �
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Proof of Theorem 4.1 (i). Let π : X̃ → X be a modification such that X̃ is smooth

and π∗s : X̃ → π∗E defines a normal crossings divisor. As in the proof of Proposition 3.1,
with τ = 0, we have, for Reλ≫ 0,

Γ‖·‖(λ) =

∫

X

‖s‖2λω ∧ ξ =

∫

X̃

‖π∗s‖2λπ∗ω ∧ π∗ξ.

Since π∗ω ∧ π∗ξ ∈ An,n
π∗s(X̃), by Lemma 4.2 Γ‖·‖(λ) has a meromorphic continuation

to Cλ, with polar set given by a discrete subset P ⊂ Q ∩ (−∞, N ] for some N ≥ 0.
Moreover, there is some 0 ≤ κ ≤ n such that, in a neighborhood of λ = 0,

Γ‖·‖(λ) =
κ∑

j=1

1

λj
〈µj(π

∗ω ∧ π∗ξ), 1〉 +O(λ),

where µj(π
∗ω ∧ π∗ξ) define (n, n)-currents on X̃ . By (4.7) we may write

Γ‖·‖(λ) =
κ∑

j=1

1

λj
〈µj(π

∗ω), π∗ξ〉+O(λ),

where µj(π
∗ω) are (p, q)-currents on X̃. Since π is proper, by (2.3) we have that

〈µj(π
∗ω), π∗ξ〉 = 〈µj(ω), ξ〉,

where

(4.9) µj(ω) := π∗µj(π
∗ω)

is a current on X, for each j = 0, . . . , κ.
By Lemma 4.2 we have that suppµ0(π

∗ω) = suppπ∗ω, suppµ1(π
∗ω) ⊆ π−1V ,

and suppµκ(π
∗ω) ⊆ · · · ⊆ suppµ2(π

∗ω) ⊆ (π−1V )sing. Furthermore, it follows
immediately by taking direct images that suppµ0(ω) = suppπ∗µ0(π

∗ω) = suppω,
and suppµκ(ω) ⊆ · · · ⊆ suppµ0(ω).

It is shown in [14] that if X is smooth, and V is a submanifold, then Γ‖·‖(λ) has
a pole of order at most 1 at the origin. Thus, it follows that suppµ1(ω) ⊂ V and
suppµj(ω) ⊆ Vsing ∪ (Xsing ∩ V ) for each j ≥ 2.

�

A priori Lemma 4.3 holds in the case when X is smooth and s defines a normal
crossings divisor. The corresponding statement in the general setting follows by
Lemma 4.3 and (2.4).

4.2. Proof of Theorem 4.1 (ii).

Lemma 4.4. For ω ∈ As,‖·‖(X) we have that dω, d‖s‖2

‖s‖2 ∧ ω ∈ As,‖·‖(X).

Proof. Since ω ∈ As,‖·‖(X), for each compact K ⊂ X we can find an integer N ≥ 0

such that ‖s‖2Nω extends smoothly across V ∩K. Thus, we may write

ω =
ω̃

‖s‖2N
,

where ω̃ is smooth across K ∩ V . On X \ V we have that

dω = d
ω̃

‖s‖2N
=

dω̃

‖s‖2N
−N

d‖s‖2

‖s‖2
∧

ω̃

‖s‖2N
.
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Since dω̃ and d‖s‖2 are smooth across V ∩K, it is clear that

‖s‖2(N+1)dω = ‖s‖2dω̃ −Nd‖s‖2 ∧ ω̃

extends smoothly across V ∩ K. It is also clear that ‖s‖2(N+1) d‖s‖
2

‖s‖2
∧ ω extends

smoothly across V ∩K. �

Remark 4.5. For ω ∈ As,‖·‖(X) and | · | some different metric on E, it is not true in

general that d|s|2

|s|2 ∧ ω ∈ As(X). However, we can always find an integer N ≥ 0 such

that |s|2N d|s|2

|s|2 ∧ ω extends to a locally bounded form on X, and for a modification

π : X̃ → X such that π∗s defines a divisor, the pullback of |s|2N d|s|2

|s|2 ∧ ω is smooth

for large N , that is, π∗
(
d|s|2

|s|2
∧ ω

)
∈ Aπ∗s(X̃).

Proof of Theorem 4.1 (ii). Let ξ ∈ Dn−p,n−q(X). Then ∃N ≥ 0 such that ‖s‖2Nω
extends smoothly across V ∩ supp ξ. Using integration by parts and Stokes’ theorem,
we have, for Reλ≫ 0,
∫

X

‖s‖2λω ∧ dξ = (−1)p+q+1

∫

X

d(‖s‖2λω) ∧ ξ

= (−1)p+q+1λ

∫

X

‖s‖2λ
d‖s‖2

‖s‖2
∧ ω ∧ ξ + (−1)p+q+1

∫

X

‖s‖2λdω ∧ ξ.

By Lemma 4.4, dω, d‖s‖
2

‖s‖2 ∧ ω ∈ As(X). Thus, by Theorem 4.1 (i), and by unique-

ness of meromorphic continuation, we obtain the following equality of Laurent series
expansions about 0,

κ∑

j=0

1

λj
〈dµj(ω), ξ〉 =

κ′∑

j=1

1

λj−1
〈µj

(
d‖s‖2

‖s‖2
∧ ω

)
, ξ〉+

κ′′∑

j=0

1

λj
〈µj(dω), ξ〉+O(λ),

where we have used (2.1) on the left-hand side. Collecting the terms by order in λ,
we obtain the equality (4.2) for each j. �

5. Proof of Theorem 1.1

In this section we give the proof of our main result, Theorem 1.1.

Proof of Theorem 1.1. Recall that ω ∈ As(X) and that ‖ · ‖ and | · | are two smooth
Hermitian metrics on E. Let ξ be a test form of complementary bidegree to ω and
consider

Γ(λ, τ) =

∫

X

‖s‖2λ
(

|s|

‖s‖

)2τ
ω ∧ ξ.

By Proposition 3.1, Γ(λ, τ) is holomorphic if Reλ≫ 0 and extends to a meromorphic
function on C2. Furthermore, there is a discrete subset P ⊂ Q ∩ (−∞, N ], for some
N ≥ 0 such that the polar locus of Γ(λ, τ) lies in P × Cτ .

Suppose first that X is smooth and that s defines a normal crossings divisor.
Then |s|2/‖s‖2 is a smooth positive function on X. By Theorem 4.1 (i), for each
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fixed τ ∈ C and Reλ≫ 0, there is some κ′ ≤ n such that

(5.1)

∫

X

‖s‖2λ
(

|s|2

‖s‖2

)τ
ω ∧ ξ =

κ′∑

j=0

1

λj
〈µ

‖·‖
j

((
|s|2

‖s‖2

)τ
ω

)
, ξ〉+ F (λ, τ),

where λ 7→ F (λ, τ) is meromorphic in Cλ, holomorphic for λ near 0 and F (0, τ) = 0.
By Lemma 4.3 we have that

(5.2)

κ′∑

j=0

1

λj
〈µ

‖·‖
j

((
|s|2

‖s‖2

)τ
ω

)
, ξ〉+F (λ, τ) =

κ′∑

j=0

1

λj
〈

(
|s|2

‖s‖2

)τ
µ
‖·‖
j (ω), ξ〉+F (λ, τ).

The left hand side of (5.1) is meromorphic by Proposition 3.1 with polar set P ×Cτ .
Each term in the sum in the right hand side of (5.2) is meromorphic in C2 with
polar set {0} × Cτ . It follows that F (λ, τ) is meromorphic in C2 with polar set
(P \ {0}) × Cτ . On the line τ = λ in C2 we obtain an equality of meromorphic
functions

∫

X

|s|2λω ∧ ξ =
κ′∑

j=0

1

λj
〈

(
|s|2

‖s‖2

)λ
µ
‖·‖
j (ω), ξ〉+ F (λ, λ),

where F (0, 0) = 0, and F (λ, λ) is holomorphic for λ near 0. Thus, the sum on the
right hand side contains the principal part of the Laurent series expansion of the left
hand side around λ = 0. But, by Theorem 4.1 (i), the Laurent series expansion of
the left hand side is given by

κ∑

j=0

1

λj
〈µ

|·|
j (ω), ξ〉 +O(λ),

for some κ ≤ n. Thus, since

(
|s|2

‖s‖2

)λ
=

∞∑

ℓ=0

λℓ

ℓ!

(
log

|s|2

‖s‖2

)ℓ
,

by uniqueness of Laurent series expansions we have that

(5.3) µ
|·|
j (ω) =

κ′−j∑

ℓ=0

1

ℓ!

(
log

|s|2

‖s‖2

)ℓ
µ
‖·‖
j+ℓ(ω).

It immediately follows that κ′ = κ, that is, κ is independent of the metric when s

defines a divisor, and, as a consequence µκ(ω) := µ
|·|
κ (ω) is independent of the choice

of metric.

Now, for the general case: Let π : X̃ → X be a modification such that X̃ is smooth
and π∗s defines a normal crossings divisor. Then (5.3) holds with ω and s replaced

by π∗ω and π∗s, respectively. In view of (4.9), we have that µ
|·|
j (ω) = π∗µ

|·|
j (π

∗ω)

for j = 0, . . . , κ and µ
‖·‖
j (ω) = π∗µ

‖·‖
j (π∗ω) for j = 0, . . . , κ′. It follows that, for each

j = 0, . . . , κ,

(5.4) µ
|·|
j (ω) = π∗

κ′−j∑

ℓ=0

1

ℓ!

(
log

|π∗s|2

‖π∗s‖2

)ℓ
µ
‖·‖
j+ℓ(π

∗ω) =

κ′−j∑

ℓ=0

1

ℓ!

(
log

|s|2

‖s‖2

)ℓ
µ
‖·‖
j+ℓ(ω),
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where (
log

|s|2

‖s‖2

)ℓ
µ
‖·‖
j+ℓ(ω) := π∗

((
log

|π∗s|2

‖π∗s‖2

)ℓ
µ
‖·‖
j+ℓ(π

∗ω)

)

according to (2.5).
�

Note that if κ > κ′, even though µ
‖·‖
j+ℓ(ω) = 0 for ℓ > κ′ − j, this does not

immediately imply that (
log

|s|2

‖s‖2

)ℓ
µ
‖·‖
j+ℓ(ω) = 0,

for κ′ − j < ℓ ≤ κ − j, cf. Example 2.1. Thus, it is not clear in general whether
κ(≤ n) is independent of the choice of metric, unless V = {s = 0} is a hypersurface,

in which case log |s|2

‖s‖2 is smooth.

The dependence of the currents µj(ω) on the choice of section defining V is, in
fact, essentially described by Theorem 1.1, in a sense which we try to illustrate with
the following example.

Example 5.1. Suppose that V is a hypersurface and that there are (holomorphic) line
bundles E and F and (holomorphic) sections s : X → E and σ : X → F such that
V = {s = 0} = {σ = 0} and such that σ and s⊗k define the same divisor, for some
k ∈ N. Moreover, let | · |E and | · |F be Hermitian metrics on E and F , respectively,
and suppose that ω ∈ As(X) = Aσ(X).

The metric | · |E naturally induces a metric | · |E⊗k on E⊗k satisfying |s⊗k|2
E⊗k =

|s|2kE . Thus, since σ and s⊗k define the same divisor, we have that

|σ|2F
|s⊗k|E⊗k

=
|σ|2F
|s|2kE

is a smooth positive function on X. Thus, we can define a new metric ‖ · ‖E on E by

‖v‖2E := |v|2E
|σ|

2/k
F

|s|2E
,

for v ∈ H0(X,E). For Reλ≫ 0, we then have that
∫

X

|σ|2λF ω ∧ ξ =

∫

X

|s⊗k|2λE⊗k

(
|σ|2F

|s⊗k|2
E⊗k

)λ
ω ∧ ξ

=

∫

X

|s|2kλE

(
|σ|2F
|s|2kE

)λ
ω ∧ ξ =

∫

X

‖s‖2kλE ω ∧ ξ.

Thus, we see that the change of sections, from s to σ, can be realized as a change in
metrics on E, keeping the section s fixed, after a possible rescaling of λ.

6. Asymptotic expansion of I‖·‖(ǫ)

Recall that I‖·‖(ǫ) is given by (1.4), where ω ∈ As(X), ξ ∈ D(X), s is a holomor-
phic section of E such that {s = 0} = V and ‖ · ‖ is a smooth Hermitian metric on
E. In this section we relate the asymptotic expansion of I‖·‖(ǫ) to the Laurent series
expansion (4.1) of Γ‖·‖(λ).



18 LUDVIG SVENSSON

Proposition 6.1. Let P ⊂ Q denote the polar set of Γ‖·‖(λ) and let P+ = P ∩{Reλ >
0}. We have that
(6.1)

I‖·‖(ǫ) = 〈µ
‖·‖
0 (ω), ξ〉+

κ∑

j=1

1

j!

(
log ǫ−1

)j
〈µ

‖·‖
j (ω), ξ〉+

∑

p∈P+

Res
λ=p

{
ǫ−λλ−1Γ‖·‖(λ)

}
+O(ǫδ),

for some δ > 0.

As we show below,

Res
λ=p

{
ǫ−λλ−1Γ‖·‖(λ)

}
= ǫ−p

2ℓp−1∑

j=0

1

j!

(
log ǫ−1

)j
c2ℓp−1−j

where ℓp ∈ N and where the c2ℓp−1−j are independent of ǫ. If V is a hypersurface, the
existence of an asymptotic expansion of I‖·‖(ǫ) of this form follows from [3, Theorem
4.3.1]. The proof of that theorem is based on [4] and the existence of Bernstein–
Sato polynomials. It is reasonable to expect that Proposition 6.1 can be proven in
a similar way. We have instead chosen to use the fact that I‖·‖(ǫ) and Γ‖·‖(λ) are
related via the Mellin transform.

The first observation is that Γ‖·‖(λ) satisfies a certain growth condition.

Lemma 6.2. The function Γ‖·‖(λ) is rapidly decreasing in Imλ, in the sense that

the product λℓΓ‖·‖(λ), for any ℓ ∈ N, is a bounded function when λ = α + iβ and
|β| → ∞, locally uniformly in α.

The following proof is an adaptation of the proof of Lemma 6.1 in [1].

Proof. Let π : X̃ → X be a modification such that X̃ is smooth and π∗s defines a
normal crossings divisor. Recall that then

Γ‖·‖(λ) =

∫

X̃

‖π∗s‖2λπ∗ω ∧ π∗ξ.

Locally in X̃ we can choose coordinates such that ‖π∗s‖2λ = |zm1

1 , . . . , zmκ
κ |2λe−λφ,

for some 1 ≤ κ ≤ n, m1, . . . ,mκ ≥ 1, and φ a local weight associated to ‖ · ‖, and

π∗ω =
Ψdz ∧ dz̄

|zm1

1 , . . . , zmκ
κ |2N

,

for some smooth function Ψ and some integer N ≥ 0. By introducing a partition of

unity {ρj} on X̃, Γ‖·‖(λ) can be written as a finite sum of terms of the form
∫

Cn

|zm1

1 · · · zmκ
κ |2(λ−N)e−λφΨπ∗ξρj dz ∧ dz̄.

Notice that κ, m1, . . . ,mκ, N , φ and Ψ all depend on j.
Consider the (non-holmorphic) change of variables, σ1 = e−φ/2m1z1, σℓ = zℓ for

2 ≤ ℓ ≤ n. We have that dσℓ = dzℓ for 2 ≤ ℓ ≤ n, and

dσ1 = e−φ/2m1dz1 −
1

2m1
e−φ/2m1z1

n∑

ℓ=1

(
∂φ

∂zℓ
dzℓ +

∂φ

∂z̄ℓ
dz̄ℓ

)
.
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It follows that

dσ ∧ dσ̄ = e−φ/m1

(
1−

1

m1
Re z1

∂φ

∂z1

)
dz ∧ dz̄.

We can take ρj to be such that dσ ∧ dσ̄ 6= 0 on supp ρj. We then have that
∫

Cn

|zm1

1 · · · zmκ
κ |2(λ−N)e−λφΨπ∗ξρj dz ∧ dz̄ =

∫

Cn

|σm1

1 · · · σmκ
κ |2(λ−N)Ψ̃π∗ξρj dσ ∧ dσ̄,

where

Ψ̃ =

(
1−

1

m1
Re z1

∂φ

∂z1

)−1

e−(N−1/m1)φΨ,

is smooth on supp ρj. Following the steps in the proof of Lemma 3.2, for any positive
integer M we have by (3.6) that

∫

Cn

|σm1

1 · · · σmκ
κ |2(λ−N)Ψ̃π∗ξρj dσ ∧ dσ̄ =

hM (λ)

λ2κ

∫

Cn

|σm1

1 · · · σmκ
κ |2(λ+M)×

× PM P̄M
(
Ψ̃π∗ξρj

)
dσ ∧ dσ̄,

where

PM P̄M =
∂2(N+M)

∑κ
i=1

mi

∂σ
(N+M)m1

1 · · · ∂σ̄
(N+M)mκ
κ

,

and where hM (λ) is given by (3.7). Notice that

|hM (λ)|

|λ|2κ
= O

(
|λ|−2(N+M)

∑κ
i=1mi

)
,

for |λ| ≫ 0. For λ = α+ iβ with α > −M , the integral
∫

Cn

|σm1

1 · · · σmκ
κ |2(λ+M)PM P̄M

(
Ψ̃π∗ξρj

)
dσ ∧ dσ̄

is finite, and it clearly remains finite if we let |β| → ∞, locally uniformly in α. Thus,

for |β| ≫ 0, |Γ‖·‖(α + iβ)| = O(|β|−2(N+M)
∑κ

i=1
mi). As M was chosen arbitrarily,

it follows that (α + iβ)ℓΓ‖·‖(α + iβ) is a bounded function when |β| → ∞ for any
ℓ ∈ N. �

As mentioned, the functions Γ‖·‖(λ) and I‖·‖(ǫ) are related via the Mellin trans-
form. The Mellin transform of a function f defined on R+ is given by

{Mf}(λ) =

∞∫

0

ǫλ−1f(ǫ)dǫ.

Notice that if |f(ǫ)| . ǫ−N for some N ≥ 0 as ǫ → 0 and f(ǫ) = 0 if ǫ ≫ 0, then
{Mf}(λ) is holomorphic for Reλ≫ 0.

If a function ϕ : C → C is holomorphic in the strip a < Reλ < b, and if it tends to
zero uniformly as |Im λ| → ∞, for Reλ = c, where c ∈ (a, b), such that its integral
along such a line is absolutely convergent, then ϕ has an inverse Mellin transform,
given by

{M−1ϕ}(ǫ) =
1

2πi

c+i∞∫

c−i∞

ǫ−λϕ(λ)dλ.
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Lemma 6.3. We can find an integer N ≥ 0 such that |I‖·‖(ǫ)| . ǫ−2N as ǫ → 0;
additionally we have that I‖·‖(ǫ) = 0 for ǫ≫ 0. For Reλ≫ 0, we have that

{MI‖·‖}(λ) =
1

λ
Γ‖·‖(λ).

This relation between the two regularization methods considered is well known.
It frequently appears in the context of residue theory, see [1, 15, 16], but it has also
been recognized in the context of divergent integrals, see, e.g., [3, 13].

Proof. Since ω ∈ As(X) we can find an integer N ≥ 0 such that ω = ω̃/‖s‖2N where
ω̃ is bounded on supp ξ. Thus,

|I‖·‖(ǫ)| ≤

∫

‖s‖2≥ǫ

|ω̃ ∧ ξ|

‖s‖2N
.

1

ǫ2N
.

Since ω̃ ∧ ξ has compact support, I‖·‖(ǫ) = 0 for ǫ≫ 0.
By Fubini’s theorem

{MI‖·‖}(λ) =

∞∫

0

ǫλ−1

∫

‖s‖2≥ǫ

ω ∧ ξ dǫ

=

∫

X

‖s‖2∫

0

ǫλ−1dǫ ω ∧ ξ =
1

λ

∫

X

‖s‖2λω ∧ ξ =
1

λ
Γ‖·‖(λ),

for Reλ≫ 0. �

By Lemmas 6.2 and 6.3 it follows that I‖·‖(ǫ) can be recovered from Γ‖·‖(λ) via
the inverse Mellin transform as follows,

(6.2) I‖·‖(ǫ) =
{
M−1λ−1Γ‖·‖(λ)

}
(ǫ) =

1

2πi

∫ c+i∞

c−i∞
ǫ−λλ−1Γ‖·‖(λ)dλ,

for c≫ 0. With (6.2), we are ready to prove Proposition 6.1.

Proof of Proposition 6.1. It follows from Theorem 4.1 (i) that ǫ−λλ−1Γ‖·‖(λ) defines
a meromorphic function with polar set P contained in Q∩ (−∞, N ] for some N ≥ 0.
Let δ > 0 such that Γ‖·‖(λ) has no poles in the interval [−δ, 0) and let c≫ 1 such that
(6.2) holds. Let B = {−δ < Reλ < c} ⊂ C and let ∂B be the positively oriented
boundary of B. By the Residue theorem and Lemma 6.2 we have that

(6.3)
1

2πi

∮

∂B

ǫ−λλ−1Γ‖·‖(λ)dλ =
∑

p∈P∩B

Res
λ=p

{
ǫ−λλ−1Γ‖·‖(λ)

}
.

By a straightforward computation

1

2πi

∮

∂B

ǫ−λλ−1Γ‖·‖(λ)dλ =
1

2πi

c+i∞∫

c−i∞

ǫ−λλ−1Γ‖·‖(λ)dλ+O(ǫδ).

Thus, by (6.2) and (6.3), it follows that

(6.4) I‖·‖(ǫ) =
∑

p∈P∩B

Res
λ=p

{
ǫ−λλ−1Γ‖·‖(λ)

}
+O(ǫδ).
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Let P+ = P ∩ {Re λ > 0}; we write
∑

p∈P∩B

Res
λ=p

{
ǫ−λλ−1Γ‖·‖(λ)

}
= Res

λ=0

{
ǫ−λλ−1Γ‖·‖(λ)

}
+

∑

p∈P+

Res
λ=p

{
ǫ−λλ−1Γ‖·‖(λ)

}
,

where, by Theorem 4.1 (i), we have that

Res
λ=0

{
ǫ−λλ−1Γ‖·‖(λ)

}
= Res

λ=0

{
∞∑

ℓ=0

1

ℓ!
λℓ−1

(
log ǫ−1

)ℓ
( κ∑

j=0

λ−j〈µ
‖·‖
j (ω), ξ〉+O(λ)

)}

= Res
λ=0

{
κ∑

j=0

〈µ
‖·‖
j (ω), ξ〉

j∑

ℓ=0

1

ℓ!
λℓ−j−1

(
log ǫ−1

)ℓ
+O(1)

}

=

κ∑

j=0

1

j!

(
log ǫ−1

)j
〈µ

‖·‖
j (ω), ξ〉.

Proposition 6.1 now follows in view of (6.4). �

We can look more closely at the residues

Res
λ=p

{
ǫ−λλ−1Γ‖·‖(λ)

}
,

for p ∈ P+. Following the proof of Lemma 4.2 and Theorem 4.1, let π : X̃ → X be a

modification such that X̃ is smooth and π∗s defines a normal crossings divisor. By
introducing a partition of unity, Γ‖·‖(λ) can be written as a finite sum of terms of
the form

h(λ)

λ2κ
I(λ),

where h(λ) is given by (3.3) and I(λ) by (4.3). Since I(λ)/λ2κ is holomorphic on
Reλ > 0, by inspection of (3.3), we find that (λ − p)2ℓpΓ‖·‖(λ) is holomorphic in a
neighborhood of p, where

ℓp = #
{
(i, j) : i ∈ {1, . . . , κ}, j ∈ {1, . . . , Nmi − 1},

j

mi
= p

}
≥ 1 for p ∈ P+.

Thus, we have that

Res
λ=p

{
ǫ−λλ−1Γ‖·‖(λ)

}
= Res

λ=p

{
ǫ−p

∞∑

j=0

1

j!

(
log ǫ−1

)j
(λ− p)j−2ℓp

(λ− p)2ℓpΓ‖·‖(λ)

λ

}

= Res
λ=p

{
ǫ−p

∞∑

j=0

1

j!

(
log ǫ−1

)j
(λ− p)j−2ℓp

∞∑

k=0

ck(λ− p)k

}
,

where

ck =
1

k!

dk

dλk

(
(λ− p)2ℓpΓ‖·‖(λ)

λ

)∣∣∣∣
λ=p

.

We obtain

Res
λ=p

{
ǫ−λλ−1Γ‖·‖(λ)

}
= ǫ−p

2ℓp−1∑

j=0

1

j!

(
log ǫ−1

)j
c2ℓp−1−j.

The coefficients c2ℓp−1−j can be interpreted as the action of currents similar to µ
‖·‖
j (ω)

on ξ.
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