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We theoretically study the transport signatures of unpaired Floquet Majorana bound states in
the Josephson current of weakly linked, periodically driven topological superconductors. We obtain
the occupation of the Floquet Majorana modes in the presence of weak coupling to thermal leads
analytically, and show that, similar to static superconductors, the Josephson current involving
Floquet Majorana bound states is also 4π-periodic in the phase difference across the junction, and
also depends linearly on the coupling between superconductors. Moreover, unlike the static case,
the amplitude of the Josephson current can be tuned by setting the unbiased chemical potential of
the driven superconductors at multiple harmonics of the drive frequency. As a result, we uncover a
Josephson Floquet sum rule for driven superconductors. We confirm our analytical expressions for
Josephson current, the occupation of Floquet bands, and a perturbative analysis of the quasienergies
with numerically exact results.

I. INTRODUCTION

Majorana fermions [1–3] are their own anti-particles
that appear in condensed matter systems as quasiparti-
cles with equal superposition of electrons and holes and
are of immense importance for possible applications in
fault-tolerant quantum information processing. Among
many possible candidates for hosting such states, Majo-
rana fermions as topologically protected edge states of
one-dimensional topological superconductors have been
studied extensively both theoretically [4–17] and experi-
mentally [18–25] in recent years. These Majorana bound
states have unique transport signatures: it is argued that
quantized zero-bias conductance [26–29] as well as un-
usual 4π-periodic Josephson effect [30–34] can identify
their existence, leading to extensive search for Majorana
modes in various solid-state systems.

More recently, periodically driven quantum systems
(often called Floquet systems) have been studied as
a promising platform for realizing topologically non-
trivial states by band-structure engineering [35–50] and
there has been a surge in experimental activities in the
search for topological states in solid state [51, 52], cold-
atom [53–57] and optical systems [58–60], which are
driven periodically. It is argued that a periodically driven
one-dimensional superconductors can host a number of
far-from equilibrium edge states, which have the same
character of static Majorana fermions [61–63]. These
‘Floquet’ Majorana fermions (FMFs) are the result of
non-trivial topological nature of the underlying periodi-
cally driven superconductor, where the periodic drive can
further tune the topological character of the state [64–
74]. Unlike their static counterparts, the FMFs appear in
two flavors (with different quasienergies) and their occu-
pations do not follow equilibrium distribution functions,
leading to a number of sum rules for quantized transport
signatures of such topological edge modes in periodically
driven systems [61]. In particular, it has been argued that
the total sum of conductances measured for a system with

FMFs, when chemical potentials is set to all even or odd
(depending on the flavor of the FMF) multiples of half
of the drive’s frequency, is quantized. This Floquet sum
rule is the generalization of the zero-bias conductance
peak of the static Majorana bound states [61].

In this paper, we study a Josephson junction of two
driven superconductors which host FMF as edge states.
Whereas similar setups have been studied in Ref. [75, 76],
it remains unclear whether they also give rise to 4π-
periodic Josephson signature, and, if they do, whether
this can be understood in terms of their steady-state oc-
cupation probabilities. In the case of static Majorana
edge states, the 4π-periodic nature is a result of two Ma-
jorana edge states at the junction becoming degenerate
and exchanging occupations from fully occupied to un-
occupied when the phase difference across the junction
is tuned through π [30–32]. In a setup where fermion
parity is not conserved, this results in a sharp jump of
Josephson current at π phase difference. As we describe
in the paper, we find that FMF can give rise to a sim-
ilar signature. We also investigate the conditions under
which a sharp jump of Josephson current at π phase dif-
ference is obtained, reflecting the non-equilibrium nature
of the system. Furthermore, we formulate the occupa-
tion of steady states in a Floquet system which is weakly
connected to a thermal environment. This leads to the
analytical understanding of the unusual Josephson sig-
nature of FMF in terms of their occupation. Using this
formalism, we uncover a general Josephson Floquet sum
rule, which extends the sum rules previously discussed
for transport in periodically driven systems. In case of
Josephson current, the sum rule is an exact counterpart
of the signature of static Majorana edge states. Finally,
we test the robustness of these unusual signatures of FMF
in presence of static random impurities in the system.
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FIG. 1. Quasienergy spectrum of a single driven Kitaev chain,
Eq. (7), with N = 200 sites. Here, ∆/w = 0.5, µ0/w = 3.75,
µ1/w = 1.25. For T = 1/w, there are two π-FMFs

II. STEADY-STATE FLOQUET JOSEPHSON
CURRENT

We consider a Josephson junction between two driven
superconductors hosting Floquet Majorana edge states
with a phase difference φ = φ1−φ2 and tunneling ampli-
tude wJ across the junction. Since the entire system is
driven periodically with a Hamiltonian h(t) = h(t + T ),
the solutions to the Schödinger equation are |ψα(t)〉 =
e−iεαt |uα(t)〉, where εα and |uα(t+ T )〉 = |uα(t)〉 are
quasienergies and Floquet states, respectively, satisfying
the eigenvalue equation [h(t)− i∂t] |uα(t)〉 = εα |uα(t)〉.
(We set ~ = 1.) We take the quasienergies to be in the
first Floquet zone |εα| ≤ π/T and identify quasiener-
gies ±π/T . Since the (mean-field) quasienergy spectrum
has the usual particle-hole symmetry, FMFs can exist at
quasienergies εb = b/T with b = 0, π, often referred to as
0 and π FMFs, respectively.

We are interested in Josephson current flowing across
the junction, J(t) = tr[ρ(t)∂φh(t)], where ρ(t) is the
steady-state density matrix. In order to calculate the
current, we assume the superconductors are weakly cou-
pled to thermal leads at temperature θr and uniform
chemical potential, µr, i.e. at zero bias. In this limit,
the steady-state density matrix is approximately diag-
onal and time-independent in the Floquet basis, i.e.
〈uα(t)| ρ(t) |uβ(t)〉 ≈ nα(µr)δαβ , with populations

nα(µr) =
∑
k∈Z

fr(εα + kΩ− µr) 〈u(k)
α |u(k)

α 〉 , (1)

where fr(x) = (1+ex/θr )−1 is the reservoir’s Fermi func-

tion, the Fourier modes |u(k)
α 〉 =

∫ T
0
eikΩt|uα(t)〉dt/T ,

and Ω = 2π/T is the drive frequency. We provide the
details of the derivation at Appendix B. Such as occupa-
tion distribution was also previously discussed in Ref. 77.
This is in fact true for the steady state of any periodi-
cally driven quantum system weakly coupled to a thermal
fermion reservoir and can be understood as the incoher-
ent mixture of Floquet sidebands indexed by k.

We proceed with the Josephson current, which is writ-

FIG. 2. Quasienergy splitting of FMFs at the junction be-
tween two driven Kitaev chains as a function of the length of
the chain (N number of sites in the single superconductor).

Here, wJ/w = 10−3 and w̃J = 2
∑
k |u

(k)
b |

2
JwJ is normalized

by the weight of the FMFs at the junction. The grayscale
shows the exponent p := d ln J̄/d lnwJ , where the numerical
computation of current is based on NEFG techniques (see the
main text), at zero temperature. T = 1/w and other param-
eters are the same as in Fig. 1

ten as J(t) =
∑
α nα(µr)

[
∂φεα+i∂t 〈uα(t)|∂φuα(t)〉

]
. Us-

ing the particle-hole symmetry in Eq. (1), we can write
the time-average

J̄(µr) =
1

T

∫ T

0

J(t)dt =
∑
εα<0

να(µr)∂φεα. (2)

Here να(µr) = nα(µr) − nᾱ(µr), where α, ᾱ states are
related by particle-hole operation, i.e, εᾱ = −εα. This
simplified expression, as we show below, captures the
Josephson current with high accuracy. This is our first
main result.

III. JOSEPHSON CURRENT SIGNATURES OF
FMFS

Let us first briefly recall the properties of the Josephson
current in the presence of static Majorana fermions. Pro-
jecting to the two-level system formed by the Majorana
bound states, the tunneling between the superconductors
splits the zero-energy states at the junction to ±EJ with
EJ(φ) =

√
w̃2
J cos2(φ/2) + E2

0 , where E0 is the energy
splitting of the Majorana bound states in the absence of
the junction (wJ = 0), for instance, due to finite size,
and w̃J ∝ wJ with a factor of the Majorana bound state
wave functions at the junction. Consequently, the current
J ≈ ∂φEJ = (w̃J/2)2 sinφ/EJ(φ). Thus, when wJ � E0,
the current J ∝ (w̃J/2E0)2 sinφ is 2π-periodic in φ. On
the other hand, when wJ � E0, e.g. for large system
sizes, the current J ∝ ηw̃J sin(φ/2) where η = ± is the
fermion parity determined by the occupation of the split
levels. The linear dependence on wJ and 4π-periodicity
in φ for conserved η or, alternatively, the finite jumps
associated with switching fermion parity η are telltale
signatures of Majorana bound states.
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FIG. 3. (a) Current-phase relationship for the Josephson junction between two driven Kitaev chains hosting π-FMFs for
µr=π = π/T . As the length of the chains, N , increases the time-averaged Josephson current J̄(Ω/2) crosses over from a
smooth w2

J sinφ form to ηwJ sin(φ/2) accompanied by jumps when the fermion parity η switches sign. The inset shows the
evolution of the exponent p := d ln J̄(Ω/2)/d lnwJ as a function of wJ . (b) The sum rule for J̄F (µb=π) =

∑
m∈Z J(µb + mΩ)

and its robustness in presence of static disorder characterized by disorder strength, D in units of ∆. The analytical calculation
(dashed), obtained using Eq. (6) agrees very well with the numerical calculation (solid), obtained using non-equilibrium Green’s
functions. The inset shows the contributions from different harmonics quantified as jm =

∮
|J̄(µb + mΩ)|dφ/

∮
|J̄F |dφ. The

biggest contribution comes from m = −1, 0. In both panels, T = 1/w and other parameters are the same as in Fig. 1.

Now, we note that when a single driven supercon-
ductor hosts FMFs at quasienergy εb, the coupled sys-
tem hosts four FMFs, two at faraway boundaries with
quasienergies ±(εb + eibδ) and the other two at the junc-
tion with quasienergies ±(εb + eibδJ). In particular, we

have δJ ≈
√
w̃2
J cos2(φ/2) + δ2

0 , where δ0 is the FMFs
quasienergy splitting without the junction (wJ = 0) and

w̃J ≈ 2
∑
k |u

(k)
b |2JwJ , with |u(k)

b |2J being the amplitude
of the kth Fourier mode of the FMFs at the junction site
(denoted by J).

Thus, using Eq. (2), we see that at sufficiently low
temperature and high frequency, the phenomenology of
the Josephson current is similar to the static case. The
Josephson current can be expressed as:

J̄ ∝ (ηwJ)p sin(pφ/2), (3)

shows a crossover at w̃J ∼ δ0, tunable by the system size,
from p = 2 for wJ � δ0 to p = 1 for wJ � δ0. Josephson

Floquet sum rule : A consequence of the above is a sum
rule for the Josephson current over values of the chemical
potential varied by the drive harmonics, i.e.

J̄F (µr) :=
∑
m∈Z

J̄(µr +mΩ) ≡ J̄F (µr + Ω). (4)

one can restrict |µr| < Ω/2. Now, even though the
summation is over all the negative quasi-energy states
in Eq. (2), as long as there occupation difference, νb, of
FMFs at the junction is finite, their contribution domi-
nates. In this limit one can show that, at small temper-
ature, such that Ωθr � 1 (for details, see Appendix B),

νF
b :=

∑
m∈Z

νb(µb +mΩ) ≈ eibtanh

(
δJ
2θr

)
− eib 2δJ

Ω
,

(5)

where µb = −b/T . At zero temperature and for large
system size the above reduces to νF

0/π = ±1, which is a

sum rule of the FMF occupation. With these consider-
ations, one arrives at a rather simple expression of the
summed current in the presence of FMFs,

J̄F (µb) ≈ νF
b

∂δJ
∂φ

, (6)

where is are all the b type FMFs modes, with µb is set
at b/T . This is our second main result.

IV. LATTICE MODEL AND NUMERICAL
SIMULATION

FMFs appear in the driven Kitaev chain [27, 75, 76,
78], a driven one-dimensional p-wave superconductor

with the Hamiltonian Ĥ(t) =
∑N
r,s=1 Ψ̂†rhrs(t)Ψ̂s, where

the Nambu spinor Ψ̂†r =
(
e−iφ/2ĉ†r, e

iφ/2ĉr
)

with ĉ†r the
fermion creation operator at site r, and

hrs(t) = δr±1,s(wτz ± i∆τy)− 2δr,sµ(t)τz. (7)

Here, Pauli matrices τx, τy, τz act on the Nambu space, µ
is the chemical potential, w is the nearest neighbor hop-
ping amplitude, and ∆ and φ are, respectively, the ampli-
tude and phase of the superconducting order parameter.
We impose open boundary conditions by dropping terms
with r, s < 1 and > N . We take a two-step periodic drive

µ(t) = µ(t+ T ) =

{
µ0 + µ1 0 < t ≤ T/2,
µ0 − µ1 T/2 < t ≤ T.

(8)

For a typical choice of parameters, the quasienergy
spectrum of an open driven Kitaev chain is shown in
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FIG. 4. Changes in the quasi-energies and occupation proba-
bilities of π−FMFs as a function of phase difference for system
sizes 25 in (a) and 65 in (b). In the second case for large sys-
tems, FMFs localized at the ends of two superconductors do
not contribute to the current and current changes sharply at
φ = π, which shows that it is 4π periodic. (µr = Ω/2)

Fig. 1, highlighting the FMFs at ε0 and επ. For a junction
between two chains, the Hamiltonian is h1(t)+h2(t)+hJ ,
where

hJ = wJτze
−iφτz/2, (9)

is the junction Hamiltonian. The quasienergy splittings
δ and δJ depend on system parameters, in particular the
length N of the chains and the phase difference φ = φ1−
φ2. For wJ � δ0, the spectra are largely unperturbed
and δ ≈ δJ ≈ δ0 ∝ e−N/ξ, with ξ a localization length.
On the other hand, for wJ & δ0, the composite system
essentially behaves as a single chain with length 2N , thus
δ ∝ e−2N/ξ and δJ =

√
w̃2
J cos2 φ+ δ2

0 depends strongly
on φ.

V. DISCUSSION

We calculate the current using both the analytical ex-
pression, Eq. (2), and numerically using Floquet Green’s
functions (for details, see Appendix C). In Fig. (2), we
show the FMFs quasienergy splitting, δ0, as well as the
power-law scaling of the time-averaged Josephson current
J̄(Ω/2) ∝ wpJ as a function of system size. This clearly
illustrates the crossover from quadratic (p = 2) to lin-
ear (p = 1) behavior at w̃J ∼ δ0. For sufficiently large
N , the quasienergy splittings can also be estimated using
Floquet perturbation theory (see Appendix D).

In Fig. (3) we show the current-phase relationship for
the Josephson current and its Floquet sum rule using nu-
merically calculated Floquet Green’s functions and com-
pare them to analytical calculations for a junction host-
ing π-FMFs. As illustrated in Fig. 3(a), the Josephson
current at chemical potential µr = Ω/2 crosses over,

with increasing size of the superconducting chains, from
a smooth quadratic form ∝ w2

J sinφ to a linear form
∝ ηwJ sin(φ/2) that exhibits jumps at φ = π associated
with switches in the fermion parity η of π-FMFs. The
same behavior is observed for all µr = mΩ/2, when m
is an odd integer. A similar phenomenology arises for
junctions hosting 0-FMFs and µr = mΩ/2, when m is an
even integer.

The crossover regime matches well the point at which
π-FMFs quasienergy splitting ratio δ0/wJ ∼ 1 (see
Fig. (2)). This behavior is captured very well by our sim-
ple analytical expressions of Josephson current, Eq. (2),
and its sum rule, Eq. (6). This is best seen in the Floquet
sum rule for Josephson current, illustrated in Fig. 3(b).
However, we note that, as shown in the inset of Fig. 3(b),
for the parameter we consider the primary contributions
to the sum rule come from µr = ±Ω/2.

We also observe that, for large N and small wJ , the
current is carried almost entirely by the FMFs and the
bulk contribution to the current is negligible. This can
be understood as yet another consequence of the lin-
ear dependence of FMFs contributions on wJ versus
the quadratic dependence of bulk contributions. This
observation extends the explanation of sharp jumps in
Josephson current from static to Floquet systems: when
δ0 � wJ , the two FMFs at the junction are exchanged at
the time-reversal symmetric point φ = π; when the two
FMFs at the junction have a difference in their popula-
tion, this exchange leads to a sharp change in Josephson
current. This is further explained in the Fig. (4), where
we consider a smaller and a larger system size, showing
notably different behaviors and occupation probabilities
of the FMFs. For a larger system size (in Fig. 4(b)), we
observe that the π-FMFs at the junction with quasiene-
gies ±Ω/2∓ δJ exchange their occupation probability at
φ = π and this results in a jump of the Josephson current.
In this respect, the chemical potential µr of the reservoirs
plays an important role: setting µr = mΩ + b/T for a
junction hosting b-FMFs gives rise to such a difference in
occupation and jumps in the current, which are otherwise
lost.

Due to their topological origin, one expects the
Josephson-current signatures of FMFs to be robust
against perturbations and disorder. We study this ro-
bustness in the presence of static disorder, modeled
by replacing the static chemical potential in the chains
µ0 → µ0 + δµi, where δµi are taken randomly from an
uncorrelated normal distribution of standard deviation
D, which characterizes the strength of the disorder. As
shown in Fig. 3(b), the sharp jump in the Floquet sum
rule is robust against weak disorder. However, the ana-
lytical expression, Eq. (6), remains valid across the entire
range of disorder strengths reported here.

Additional note: during preparation of the manuscript,
another work Ref. 79 has been posted which discusses oc-
cupation of Floquet states in agreement with our result,
Eq. (1) and Appendix B.
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[74] J. Cayssol, B. Dóra, F. Simon, and R. Moessner, Flo-
quet topological insulators, physica status solidi (RRL)
– Rapid Research Letters 7, 101.

[75] D. T. Liu, J. Shabani, and A. Mitra, Floquet majorana
zero and π modes in planar josephson junctions, Phys.
Rev. B 99, 094303 (2019).

[76] C. Peng, A. Haim, T. Karzig, Y. Peng, and G. Refael,
Floquet majorana bound states in voltage-biased pla-
nar josephson junctions, Physical Review Research 3,
10.1103/physrevresearch.3.023108 (2021).

[77] K. I. Seetharam, C.-E. Bardyn, N. H. Lindner, M. S.
Rudner, and G. Refael, Controlled population of floquet-
bloch states via coupling to bose and fermi baths, Phys.
Rev. X 5, 041050 (2015).

[78] Y. Li, A. Kundu, F. Zhong, and B. Seradjeh, Tunable
floquet majorana fermions in driven coupled quantum
dots, Phys. Rev. B 90, 121401 (2014).

[79] O. Matsyshyn, J. C. Song, I. S. Villadiego, and L.-k.
Shi, The fermi-dirac staircase occupation of floquet bands
and current rectification inside the optical gap of metals:
a rigorous perspective, arXiv preprint arXiv:2301.00811
(2023).

[80] M. Rodriguez-Vega, M. Lentz, and B. Seradjeh, Flo-
quet perturbation theory: formalism and application to
low-frequency limit, New Journal of Physics 20, 093022
(2018).

APPENDICES

A. Driven quantum systems

This section provides further details of the transport
simulation used in the main text, based on Floquet
Green’s function techniques. Let us consider the Hamil-

tonian of a generic periodically driven system that is con-
nected to reservoirs, written in the Bogolibov-de-Gennes
basis, as

HS =
1

2

∑
x,x′,η,η′

Ψ†xη(t)hSxη,x′η′(t)Ψx′η′(t), (S1)

Hλ =
1

2

∑
yλ,y′λ,η,η

′

Φ†λyλη(t)hλyη,y′λη′
(t)Φλy′η′(t). (S2)

The system and λ-th reservoir Hamiltonians are denoted
by HS and Hλ, respectively. Here, x, x′ and yλ, y

′
λ are

the site indices of the system and the reservoirs in the
same direction, respectively. η, η′ are particle and hole
degrees of freedom at a given site. N is the number of
sites in the system. Ψ†x = (a†x, ax)T , Φ†λy = (c†λyλ , c

λ
yλ

)T ,

where ax and cλyλ are electronic annihilation operators
at site x and y, respectively, for the system and the λ-
th reservoir. Tunneling Hamiltonians, which connect the
reservoirs with the system, are given by:

HSλ(t) =
∑

xη,yλη′

1

2

(
Ψ†xη(t)V λxη,yλη′Φ

λ
yλη′

(t) + Φ†λyλη′(t)

V λ∗xη,yλη′Ψxη(t)
)
. (S3)

V λ denotes the tunneling matrix that connects the sys-
tem to the λ-th reservoir. Using Heisenberg’s equation
for the evolution of operators, for the elements of Φλyλ(t),
one finds the equation of motion to be,

Φ̇λ(t) = −i
(
hλΦλ(t) + V λ†Ψ(t)

)
, (S4)

where we have written the above equation in its matrix-
valued form. The solution can be written as

Φλ(t) = igλ(t− t0)Φλ(t0) +

∫ t

t0

dt′gλ(t− t′)V †λΨ(t′).

(S5)

Here t0 is the switching time when the reservoir-to-
system connection is made, which we assume to be in
the distant past, i.e. t0 → −∞. Here, Green’s function
of the λth lead is given by

gλ(t, t′) = −ie−ih
λ(t−t′)θ(t− t′). (S6)

Similarly, the equation of motion for the system operators
can be written as(
iI
d

dt
− hS

)
Ψ(t)− i

∫ t

t0

dt′Γ(t− t′)Ψ(t′) =
∑
λ

V λξλ(t),

(S7)

where ξλ(t) = igλ(t− t0)Φλ(t0), and the coupling matrix

Γ(t− t′) = −i
∑
λ

V λ[gλ(t− t′)]V †λ. (S8)
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The Green’s function of the equation, Eq. (S7) satisfies,(
iI
d

dt
− hS

)
G(t, t′)− i

∫ ∞
0

dτΓ(τ)G(t− τ, t′) = δ(t− t′).

(S9)

In the flat-band limit, the Green’s function of the leads,
gλ(ω), is given by ρλ = − 1

π Im[gλ(ω)], which is indepen-

dent of ω, and Re[gλ(ω)] = 0. This implies Γ(τ) = Γδ(τ),
and we can write the Green’s function for the eq. (S7),

G(k)(ω) =

∫ T

0

dt

T
eikΩt

∫ ∞
0

eiωτG(t, t− τ).

=
∑
α,n

|u(n+k)
α 〉〈u(n)+

α |
ω − εα − nΩ + iγα

, (S10)

where Ω = 2π/T . The system operators are then solved
using

Ψ(t) =
∑
k,λ

∫
dω

2π
e−iωte−ikΩtG(k)(ω)V λξλ(ω). (S11)

In our numerical simulations, we have left and right
leads indexed by λ = L and R, respectively. In our
case, η represents the particle-hole basis. The explicit
non-vanishing elements of the tunneling matrices, in the
particle-hole basis, are then given by

V L1,1L = tL
(

1 0
0 −1

)
, V RN,1R = tR

(
1 0
0 −1

)
. (S12)

Here tλ are the tunneling parameters for the connections
to reservoirs, which we consider identical. The thermal
correlations among the reservoir operators is given by

〈ξλ†1λη
(ω)ξλ

′

1λ′η
′(ω′)〉 = (2π)2δλλ′δηη′δ(ω, ω

′)ρλfλ(ω, µλ, βλ),

(S13)

where for λ−th reservoir, fλ(ω, µλ, βλ) is the Fermi dis-
tribution function, β = 1/θλ, θλ is the temperature, and
µλ is the chemical potential (the reservoirs are identi-
cal in our case). The thermal average is taken over the
reservoirs’ states.

B. Occupations of Floquet states

In this section, we derive a simplified form of the occu-
pation probability of the Floquet states of a periodically
driven system in the limit of weak coupling to an exter-
nal reservoir. In this weak coupling limit, we write the
density matrix of the steady-state system in the basis of
the Floquet states of the isolated system as

ρ̂ =
1

T

∫ T

0

dt
∑
αβ

nαβ(t)|uα(t)〉〈uβ(t)|. (S14)

To compute the coefficients nαβ(t), we write the creation

operator in site basis as, Ψ†α(t) =
∑
i,η d

∗
αiη(t)

(
Ψ†i (t)

)
η
,

here i- is the site index and η is the particle-hole index.

Ψ†i (t) = (a†i (t), ai(t)) and dαiη = 〈uα(t)|i, η〉. The coeffi-
cients nαβ(t) can then be written as:

nαβ(t) =
〈

Ψ†α(t)Ψβ(t)
〉

Lead avg.

=
∑
ij,ηη′

dβjη(t)d∗αiη′(t)〈Ψ
†
iη′(t)Ψjη(t)〉.

=
∑

λ,ij,ηη′

d∗αiη′(t)dβjη(t)

∫ ∞
−∞

dωfλ(ω, µr, β)

∑
mn

∑
ξξ′

Gjη,mη̄(t, ω)Vλmη̄,nξ′G∗iη′,nξ′(t, ω). (S15)

Performing further simplifications, we obtain∑
jη

dβjη(t)Gjη,mη̄(t, ω1)

=
∑
p

(
eipΩ(t)〈u+ (p)

β |m, η̄〉
) 1

(−pΩ + ω − εβ + iγβ)
,

(S16)

and similarly,∑
iη′

d∗αiη′(t)G
∗
iη′,nξ′(t, ω)

=
∑
p

(
e−ipΩ(t)〈n, ξ′|u+ (p)

α 〉
) 1

(−pΩ + ω − εα − iγα)
.

(S17)

Using the above two equations, one obtains Fourier
modes of the coefficients,

n
(q)
αβ =

∑
λk

∫ ∞
−∞

〈u+ (k)
β |Vλ|u+ (k+q)

α 〉fλ(ω, µλ, βλ)dω

(ω − ε(k+q)
α − iγα)(ω − ε(k)

β + iγβ)
.

(S18)

here ε
(k)
α = εα+kΩ and fλ(ω, µλ, βλ) is the Fermi distri-

bution of the λ th reservoir. Interestingly, we find that
in the large system size and weak coupling to the bath
limit,

n
(q)
αβ ≈ nαδαβδq0 (S19)

which we demonstrate in Fig. S1. This can also be shown
in the following way. Expanding the Fermi distribution
function as:

f(ω, µλ, βλ) =
1

eβλ(ω−µλ)

= − 1

βλ

∑
n∈I

1

(ω − µλ)− (2n+1)iπ
βλ

+
1

2
, (S20)
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FIG. S1. Nature of the occupation probabilities of the Floquet states (Eq. (S21)). For different system sizes, we plot the
values of the off-diagonal Fourier components of the occupation number matrix as a function of the tunneling amplitude to
the reservoir. Left: The off-diagonal Fourier components of the occupation number matrix go to zero as the tunneling to the
leads vanishes. Middle: For various system sizes, the relative values of the off-diagonal Fourier components of the occupation
number matrix in comparison to the diagonal, static components of the occupation number matrix. Right: As a function of
the tunneling amplitude to the reservoir, the absolute difference between diagonal occupation and diagonal occupations with

limit ρL → 0. In the limit of small tunneling amplitudes to the reservoir, these results confirm that n
(q)
αβ ≈ nαδαβδq0.

FIG. S2. (a) Variation in Josephson current vs phase difference, for different values of reservoir temperature, Here system size
is N = 95 and chemical potential is summed. Inset : Comparison between numerically computed total occupation difference
(sum-rule current is computed using Eq. (S22)) with the analytical expression given by νFπ = tanh

(
δJ/2θr

)
− 2δJ/Ω reservoir

temperature (in units of δJ(φ = 0)) for the phase difference φ u .0.498π. (b) Variation in the difference of summed occupation
number νF (ε) vs phase difference, here quasi-energies ε are the quasienergies of π-modes Ω/2 − δJ ,−Ω/2 + δJ for different
reservoir temperatures. Here δJ(φ = 0) u 0.0034, wJ = .01

and performing the integrals, we obtain,

n
(q)
αβ =

∑
λ,k

〈u+ (k)
β |Vλ|u+ (k+q)

α 〉

ε
(k+q)
α − ε(k)

β − i(γα + γβ)

[
− iπ+

ΓD

(
1

2
+
βλ

2π
ξλ(k+q)
α

)
− ΓD

(
1

2
− βλr

2π
ξ
λ(k)
β

)]
,

(S21)

where ξ
λ(k)
α/β =

(
iε

(k)
α/β + γα/β − iµλ

)
and ΓD(·) is the

Digamma function.
For the sake of simplicity, suppose identical reservoirs

with chemical potential µr and temperature θr are con-
nected at every site of the superconductors with elec-
tronic tunneling amplitude wr, then in the limit wr → 0,

γα ≈ πρrw2
r

∑
k〈u

(k)
α |u(k)

α 〉, ρr being the density of states

of the reservoir. In this limit, n
(q)
αβ ≈ nαδαβδq0 + O(γ),

which can be written as:

nα(µr) =
∑
k

{
ΓD

[
1

2
+
βrξ

λ(k)
α

2π

]
− ΓD

[
1

2
− βrξ

λ(k)
α

2π

]

− iπ

}
i〈u(k)

α |u(k)
α 〉

2π
(S22)

=
∑
k

fr(εα + kΩ− µr)〈u(k)
α |u(k)

α 〉. (S23)

This allows us to calculate the average of the supercur-
rent operator within this density matrix. If HS(t) is the
Hamiltonian that contains both the driven superconduc-
tors (with a phase difference of φ), linked via tunneling
(except the connections to the reservoir), then the su-

percurrent operator is defined as ĴS = ∂φHS , and its
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average in the density matrix is then

〈ĴS〉(µr, t) =
∑
α

nα(µr)〈uα(t)|∂φHS |uα(t)〉. (S24)

Using the relation HS |uα(t)〉 = (εα + i∂t)|uα(t)〉, where
εα are the quasienergies of the full system, we observe

1

T

∫ T

0

dt〈uα(t)|(∂φHS)|uα(t)〉

=
1

T

∫ T

0

〈uα(t)|∂φ (HS |uα(t)〉)− 〈uα(t)|HS |∂φuα(t)〉

= ∂φεα. (S25)

The time-averaged expectation value of current operator
can then be written as:

J̄(µr) = 〈〈ĴS〉〉 =
1

T

∫ T

0

dt〈ĴS〉(µr, t) =
∑
α

nα(µr)∂φεα,

(S26)

where the occupation probabilities are given by the
Eq. (S23). Fig. S3 shows a comparison of using this
simplified current expression with the tight-binding com-
putation of current Sec. V, demonstrating a reasonable
match between the two methods.

Quantize difference in the occupation of FMF

Further simplification can be made for large system
sizes when the contribution to the supercurrent is pre-
dominantly from the Floquet Majorana bound state
(FMF) modes (see Fig: 4). The quasi-energy of FMFs lo-
calized at the junction is given by εα = (εb + eibδJ), εᾱ =
−εα, for zero FMF εb = 0, for π-FMF εb = Ω/2, In ei-
ther of these cases one writes the time averages current
(Eq. (S26)) as

J̄(µr) =

(
nεα(µr)

∂εα
∂φ

+ nεᾱ(µr)
∂εᾱ
∂φ

)
= (nεα(µr)− nεᾱ(µr))

∂εα
∂φ

≡ να(µr)
∂εα
∂φ

. (S27)

Here nεα(µr), nεᾱ(µr) are the occupations for εα, εᾱ
states respectively, at chemical potential µr. The
summed difference of occupation probability differences
between quasienergy levels εα and εᾱ, at finite tempera-

ture, is given by

νFα = lim
N→∞

N∑
k=−∞

(nεα(µr + kΩ)− nεᾱ(µr + kΩ))

=

∞∑
m=−∞

〈u(m)
α |u(m)

α 〉 lim
N→∞

N∑
k=−∞

[
fr(εα +mΩ− µr − kΩ)

− fr(−εα −mΩ− µr − kΩ)
]

=

∞∑
m=−∞

〈u(m)
α |u(m)

α 〉

{
N−m∑
k=−∞

[
fr(εα − µr − kΩ)

− fr(−εα − µr − kΩ)
]∣∣∣∣∣
N→∞

−
N+m∑

k=N−m+1

fr(−εα − µr − kΩ)

}

For sufficiently large N , each summand of the second
term is one. Thus, we have

νFα = −2

∞∑
m=−∞

m〈u(m)
α |u(m)

α 〉

+ lim
N→∞

N−m∑
k=−∞

[
fr(εα − µr − kΩ)− fr(−εα − µr − kΩ)

]
(S28)

The first term:

Dα =

∞∑
m=−∞

m〈u(m)
α |u(m)

α 〉 =
i

2π

∫ T

0

dt〈uα(t)|∂t|uα(t)〉.

(S29)

Using the particle-hole anti-symmetry, where an opera-
tor follows, {Γ, H(t) − i∂t} = 0 (the operator contains
a complex conjugation, i.e, ΓiΓ−1 = −i), one writes,

|uᾱ(t)〉 = Γ|uα(t)〉, implying, |u(k)
ᾱ 〉 = Γ|u(−k)

α 〉 (where
εᾱ = −εα), and

Dᾱ = −Dα. (S30)

Now, using Eq. (S42), we write,

Dα =
1

2π

∫ T

0

dt〈uα(t)|(H(t)− εα)|uα(t)〉

=
1

2π

∫ T

0

dt〈uα(t)|H(t)|uα(t)〉 − εα
Ω
. (S31)

So, the summed occupation difference now reads as

νFα =
2εα
Ω
− 1

π

∫ T

0

dt〈uα(t)|H(t)|uα(t)〉+ lim
N→∞

N−m∑
k=−∞

[
fr(εα − µr − kΩ)− fr(−εα − µr − kΩ)

]
.

(S32)
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FIG. S3. Josephson current calculated from the correla-
tion function (red) and the occupation of quasi-energy modes
(black), where the reservoir is connected to every site of each
superconductor (in this case, occupation is given by the θ−
function), vs. phase difference for system sizes 25 and 65.

For the FMFs, the middle term vanishes, which we can
show in the following section. In the limit of large sys-
tem size, the FMF states are simply superpositions of
two unpaired FMF states; these two FMF states are lo-
calized at the two ends of a single superconductor. These
particle-hole symmetric states |u1(t)〉 and |u2(t)〉, follows
|u1(t)〉 = Γ|u1(t)〉 and |u2(t)〉 = Γ|u2(t)〉. We construct
two orthogonal states as their linear combinations, as

|uα(t)〉 =
1√
2

(|u1(t)〉+ α|u2(t)〉)

|uᾱ(t)〉 =
1√
2

(|u1(t)〉+ α∗|u2(t)〉) (S33)

with the normalization conditions 〈uα(t)|uα(t)〉 = 1,
〈uᾱ(t)|uᾱ(t)〉 = 1 and 〈uα(t)|uᾱ(t)〉 = 0, for Floquet
modes one gets |α|2 = −1, implying α = ±i, with this
construction,

〈uα(t)|H(t)|uα(t)〉 = 〈u1(t)|H(t)|u1(t)〉
+ 〈u2(t)|H(t)|u2(t)〉+ 2Re[α〈u1(t)|H(t)|u2(t)〉]

(S34)

The first two terms are zero as the {H(t),Γ} = 0, and the
third term vanishes at large system sizes as the Hamilto-
nian is local and the two states are localized at the two
ends of the chain. So we arrive at

νFα = lim
N→∞

N−m∑
k=−∞

[
fr(εα − µr − kΩ)− fr(−εα − µr − kΩ)

]
+

2εα
Ω

(S35)

Now, at a small temperature θr � δJ , for the 0-FMFs,

εα = −δJ , µb = 0, Eq. (S35) can be written as:

νF0 = −2δJ
Ω

+ lim
N→∞

N−m∑
k=−∞

[
fr(−δJ − kΩ)− fr(δJ − kΩ)

]
= −2δJ

Ω
+
[
fr(−δJ)− fr(δJ)

]
= −2δJ

Ω
+ tanh

(
δJ
2θr

)
(S36)

Similarly for the π-FMFs, εα = −Ω/2 + δJ , µb = −Ω/2,
Eq. (S35) can be written as:

νFπ =
−Ω + 2δJ

Ω
+ lim
N→∞

N−m∑
k=−∞

[
fr(εα − µb − kΩ)

− fr(−εα − µb − (k + 1)Ω)
]

+ 1

=
2δJ
Ω

+
[
fr(δJ)− fr(−δJ)

]
=

2δJ
Ω
− tanh

(
δJ
2θr

)
. (S37)

C. Correlation and bond-current

We define the elements of the correlation matrix, be-
tween two sites x and x′, as

χxη,x′η′(t) =
〈

Ψ†xη(t)Ψx′η′(t)
〉

Lead average
,

where η, η′ are indices for the Nambu (particle-hole) ba-
sis. In terms of the Floquet Green’s functions from the
preceding section, we write the time-averaged correlation
as

χ̄xη,x′η′ =
1

T

∫ T

0

dt χxη,x′η′(t) (S38)

=
∑
λ,k

∫
dω
(
G(k)(ω)VλG†(k)(ω)

)
x′η′,xη

fλ(ω),

(S39)

where Vλ = V λ†ρλV λ. Using the form of the Floquet
Green’s functions, Eq. (S10), the correlation function can
be further simplified, at zero temperature limit, as

χ̄xη,x′η′ =
∑

λqαβkm

(
logZ

(m+q)
α − logZ

(m)
β

Z
(m+q)
α − Z(m)

β

)
〈x′, η′|u(q+k)

α 〉

〈u(k)
β |η, x〉〈u

(q+m)+

α |Vλ|u(m)+

β 〉.

Here Z
(k)
α = ε−α + kΩ− µL with ε±α = (εα ± iγα).

Now, we proceed to derive an expression of bond-
current that we use for numerical computation. If w is
the hopping amplitude for electron between site x and
x′, then the hopping Hamiltonian, in the BdG basis is
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FIG. S4. Variation in quasi-energy gaps vs. system size, the
gaps are computed (I) from the fitting of Josephson current
(using fitting function J(Ω/2) = (w̃J/2)2 sinφEJ(φ), where

EJ(φ) =
√
w̃2
J cos2 φ+ E2

0 and E0 is the energy splitting of
Majorana bound states in the absence of junction), (II) from
the quasi-energies of the full system computed by the evolu-
tion operator and (III) from the Floquet perturbation theory,
Appendix D and Ref. 80.

written as hx′→x(t) =
∑
ηη′

1
2wΨ†(t)xητ

z
ηη′Ψ(t)x′η′ +h.c.,

where τz is the Pauli matrix in particle-hole space.
The electronic bond current operator can then be

defined as Ĵx′→x = ∂h(t,ζ)x′→x

∂ζ

∣∣∣
ζ=0

, where h(t, ζ) =∑
ηη′

1
2we

−iζΨ†(t)xητ
z
ηη′Ψ(t)x′η′ + h.c.. Lead and time

averaged bond current from site x′ to site x, is then de-
fined as

J̄x′→x = −
∑
ηη′

Im
[
wτzηη′ χ̄xη,x′η′

]
. (S40)

This is the expression we use to calculate the Josephson
current numerically, where x and x′ are the last and first
sites of the left and right superconductors, respectively,
which, in our numerical simulation, are linked by a hop-
ping amplitude wJ .

Numerical results at finite temperature

The results for the zero-temperature case are shown in
the main text. We plot the Josephson current at finite
temperature in Fig. S2a. According to Fig. S2b, the dif-
ference in the occupation of 0-FMF changes depending
on the temperature. Comparison of the occupation dif-
ference determined analytically and numerically in inset
of Fig. S2a.

D. Floquet perturbation in the extended-zone

The Shrödinger’s equation of any periodically driven
Hamiltonian H(t) is given as

i∂t|Ψα(t)〉 = H(t)|Ψα(t)〉, (S41)

where |Ψα(t)〉 = e−iεα |uα(t)〉, with quasienergy εα
and the time-periodic Floquet-state |uα(t)〉. The
Shrödinger’s equation in terms of the Floquet states reads

(H(t)− i∂t)|uα(t)〉 = εα|uα(t)〉. (S42)

In the Fourier-space the above can be written as

⇒
∑
p

(
δnpnΩ−H(n−p)

)
|u(p)
α 〉 = εα|u(n)

α 〉, (S43)

The left-hand side matrix is the (static) extended-zone
(EZ) Hamiltonian. The eigen-energies of this Hamilto-
nian are periodic, with the driving frequency’s period
Ω = 2π/T , and the n-th floquet zone is defined as nΩ− Ω

2

to nΩ + Ω
2 . The energy εα + mΩ that lives in the mth

Floquet zone corresponds to an eigenvector, which is a
column vector of the form:

|uEZ
mα〉 =



·
·

|u(1+m)
α 〉
|u(0+m)
α 〉

|u(−1+m)
α 〉
·
·


. (S44)

For a driven topological superconductor, if it hosts 0-
FMF, there are nearly-degenerate states (at the two
edges of the wire) at energy nΩ of the above EZ Hamil-
tonian, whereas, if it hosts π-FMF, there are degenerate
states at the boundary of the Floquet zones (i.e, at ener-
gies (n+ 1/2)Ω of the EZ Hamiltonian).

When there are two such driven topological supercon-
ductors, the spectrum of the net EZ Hamiltonian con-
tains four edge-states (in the limit of large sizes of the
superconductors), two at the far ends of the supercon-
ductors and two at the junction of the SC’s. In presence
of a weak tunnel coupling between the superconductors,
one can the perform a degenerate perturbation theory in
obtaining a gap between the Majoranas that live at the
junction. We plot this perturbative result of the gap in
Fig. (S4) and compare with numerical result.

E. 0-FMF case

In the Fig. (S5) we summarize numerical results for
the case of a parameters when we have 0-FMF.
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FIG. S5. (a) Quasienergy spectrum of the driven Kitaev model of N = 105 sites, highlighting edge modes (colored red). Here
parameters are ∆ = 0.5, w = 0.5, µ0 = 4.75, µd = 1.25. At the time period T = 1.45455, there are two 0-FMF, which
contribute maximally to the Josephson current. (b) Quasienergy gap of 0-FMF localized at end of an uncoupled driven Kitaev
chain as a function of the length of the chain (N sites). When δ < w̃J (w̃J is defined in the main text, for the parameter
range of the plot, w̃J ≈ 0.2wJ), the Josephson current between two such superconductor, J̄ , is linearly proportional to the wJ .
The grayscale color of the circles at each system size indicates the fitting J̄ ∝ wpJ . In the inset we show, in solid line, how δ
varies with system size, which is of the same order of δ0 (dashed line) for δ � wJ . wJ = 10−3 and other parameters are the
same as in Fig (a). (c) Current phase relation for various system sizes. For the larger system size the current shows a sharper
jump at π phase difference same as π− Majorana case, a hallmark signature of Majorana fermions. In this limit the Josephson
current is linearly proportional to the wJ (shown in the inset). Time period of driving T = 1.45454 and the chemical potential
of the external reservoir is set at µr = Ω. (d) Validity of sum-rule for zero 0- case, in presence of static disorder characterized
by disorder strength D. The summed current is compared with the numerically obtained value using non-equilibrium Green’s
function method (marked as NEGF), which shows robustness of the sum-rule in this case as well. In the inset we show that

the dominant contribution comes from µr = nΩ with n = ±1, where we show how
∫ 2π

0
|〈Ĵ(µr = nΩ)〉|dφ as a function of n.
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