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Topology in the space-time scaling limit of quantum dynamics
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We investigate the role of topology in the space-time scaling limit of quantum quench dynamics,
where both time and system size tend to infinity at a constant ratio. There, while the standard
topological characterization relying on local unitary transformations becomes ill defined, we show
how a different dynamical notion of topology naturally arises through a dynamical winding number
encoding the linear response of the Berry phase to a magnetic flux. Specifically, we find that the
presence of a locally invisible constant magnetic flux is revealed by a dynamical staircase behavior
of the Berry phase, whose topologically quantized plateaus characterize the space-time scaling limit
of a quenched Rice-Mele model. These jumps in the Berry phase are also shown to be related to
the interband elements of the DC current operator. We outline possible experimental platforms for
observing the predicted phenomena in finite systems.

Topology has become a cornerstone for understand-
ing and distinguishing phases of matter [IH3]. While
initially this approach has mostly been used to unravel
topological properties of low temperature systems [4H9],
recent advances in experimentally controlling the quan-
tum dynamics of atomic many-particle states [10 [IT]
have triggered the study of topological features far from
equilibrium. In particular, within the paradigmatic
quantum quench protocol[12], new dynamical topologi-
cal invariants, which are predicted to characterize the
change in topology of the quenched Hamiltonian[I3HIg]
have been observed[I9, 20], and the dynamical robust-
ness of topological features has been addressed, both
theoretically[21H29] and experimentally[30]. Since topo-
logical phases may be defined as equivalence classes un-
der local unitary transformations [31I], bulk topologi-
cal properties of a quantum state cannot dynamically
change during coherent time evolution generated by a
local Hamiltonian[IT, 17, 2], [22] 25 [3T]. Notwithstand-
ing these fundamental constraints, symmetry protected
topological invariants can be fragile, if the underlying
symmetries are dynamically broken [28430]. In addi-
tion, topological invariants are typically defined in the
thermodynamic limit (TL), while all experiments deal
with finite systems. Hence, the conventional topolog-
ical characterization is meaningful only for time scales
such that ¢t < L/v/, where L measures the system size,
and v/ is a characteristic band velocity of the post quench
Hamiltonian [I1]. At later times, since an extensively
long unitary time evolution is no longer a local trans-
formation, standard topological properties are expected
to become ill defined [II] and previous works on quan-
tum quenches have thus mostly focused on the t < L/v/
regime. Alternatively, the opposite regime t > L/v/ has
been addressed in the context of adiabatic state prepa-
ration, where the finite size is harnessed to adiabatically
connect different equilibrium topological phases [32H36].

In the present work we propose to investigate a differ-
ent out of equilibrium regime, namely the quench dy-
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FIG. 1. (a) Ilustration of a Rice-Mele lattice model on a
ring [see Eq. @}, subject to a quench by a sudden variation
of the intercell hopping amplitude vr* — ~vrf. (b) Schematic
representation of the closed loops formed in the complex plane
by the Bloch state overlap - [see Eq. ] as a function of
quasi-momentum k. Non-trivial loops (right panel) may form
in the STSL regime at at critical values n;, [see Eq. (@)] of
the ratio n = 2wt/L. Solid lines represent the 0-th order
contribution ¢ (k,n) [see Eq. ], shallow halos visualize the
sub-leading contribution 2#59)(k,n)/L. When n < ni (left
panel) the winding number v vanishes, while for 57 < n < 73
(right panel) v = 2. The dashed line depicts the unit circle
as a guide to the eye.

namics in the space-time scaling limit (STSL), where
both time and system size tend to infinity while their
ratio n = 2wt/L is kept constant, and we show how a
different dynamical topological invariant v(n) naturally
arises (see Fig.[I|for an illustration with a quenched Rice-
Mele model[37, [38]). To understand its physical implica-
tions, we analyze the effect of a constant magnetic flux
® threading a one dimensional (1D) system with peri-



odic boundary conditions (PBC). Remarkably, while ®,
as a global property, remains invisible in the quench dy-
namics for sub-extensive times, in the STSL the Berry
phase [38H40] is found to dynamically acquire a staircase
behavior (see Fig. , whose plateau values are topologi-
cally quantized as 27v®/®(, where &y = h/e is the flux
quantum. Since the limits ¢ —+ +oco and L — +oo do
not commute, these properties are unique to the STSL
regime and cannot be obtained by applying the long time
limit to formulae derived in the standard TL. Yet, we
demonstrate that clear signatures of our predictions can
be observed in finite systems of moderate size that are
within reach of present day quantum simulators.

For definiteness, we consider a sudden quench in a sys-
tem of non-interacting spinless fermions hopping in a 1D
bipartite lattice with PBC, and we assume the Hamil-
tonian to be traceless. We measure lengths in units of
the lattice spacing a, so that the length L of the system
coincides with the number of cells. Thanks to trans-
lation invariance we can write the initial/final realiza-
tions in reciprocal space as H// = 3", cf(k)[d"// (k) -
ole(k). Here k € 27n/L is a dimensionless quasi-
momentum, where n € {—|L/2],..., [(L—1)/2]}, while
o is the three dimensional vector of Pauli matrices
and cf(k) = (c:rq(k:),cTB(k)) is a spinor of fermionic
operators, which create spinless fermions with quasi-
momentum % in sublattice A/B. All the informa-
tion about the specific Hamiltonian realizations is thus
encoded in the k-dependent three dimensional vectors
d"/f (k). In particular, the initial/final spectra are given
by e;/f(k:) = +[d*//(k)|. Moreover, the time evolved
many-particle state can be easily reconstructed out of the
single particle time dependent Bloch spinors |uy (k,t)) =
e_i[df(k)"’]t/hm;(k», where |u’_(k)) are the Bloch single
particle eigenstates of H".

We assume H’ to have a finite band gap, initialize
the system in its half filled insulating ground state, and
follow the time evolution of the Berry phase in its dis-
cretized formulation, appropriate for finite system sizes
ep(t,L) =), arg&_(k,t, L) [41], where

€ (k,t, L) = (u_(k + ok, t)|u_(k, 1)) (1)

and 6k = 2n/L. As in the standard continuous formu-
lation, the discrete Berry phase is gauge invariant un-
der |u_(k,t)) — |[u*(k,t)) = e*®|u_(k,t)) and takes
quantized values, equal to either 0 or m, when charge
conjugation symmetry is present[2, B8, [42]. Moreover, in
the usual TL, i.e. L — 400 while ¢t € R, it is straight-
forward to realize that §_(k,t,L) = 1 + iAp(k,t)0k +
O(L72), where Ap(k,t) = (u_(k,t)|i0x|u_(k,t)) is the
time dependent Berry connection, and the standard re-
sult pp(t) = [7_dk Ap(k,t) is recovered [38].

However, in the STSL, when ¢, L — +o0 with fixed n =
0kt =2nt/L € R, the function £_(k,t, L) may develop a
non-trivial dependence on k and n already to zeroth order

in the 1/L expansion. Indeed one can write §_(k,t, L) =
59)(1@ n) + 5(,1)(]%‘, n,t)0k + O(L~2) where[42]

¢ (k,n) = cosv! (k)] —iC(k)sinfo! (K)n) . (2)

Here C(k) = di(k)-d/ (k) is the cosine of the k-dependent
angle between the initial and final unit vectors, while
v (k) = 8kef_(k)/h is the post quench band veloc-
ity. Then it is straightforward to derive |§(_0)(k,7))| =
V1 —{S(k)sin[vf (k)n]}2, where S?(k) = 1 — C?(k), and
we notice that, if C(k) = 0 is satisfied by some k*, Eq.(2)
vanishes at equally spaced critical ratios

M, = (gﬂm—l)ﬂ) %

Some comments are in order. In the limit n — 0 one
has €9 (k,n) — 1+ O(L~1) and the standard TL result
is recovered. Moreover, at finite 7, Eq. is reminis-
cent of the k-dependent contribution to the Loschmidt
amplitude, appearing in the context of dynamical quan-
tum phase transitions (DQPT)[I3] 14, 43]. Similarly, the
condition C(k*) = 0 leading to a vanishing 5@ in Eq.
is formally equivalent to the requirement for observing
DQPT[13]. However, we emphasize that, while the k de-
pendent contribution to the Loshmidt amplitude stems
from the overlap between the initial and the time evolved
Bloch spinor at the same k, the quantity studied here,
Eq., is the overlap between Bloch spinors that are both
time evolved and that are computed at different quasi-
momenta, namely k& and k + dk. It is precisely such a
tiny deviation that yields to Eq. at t ~ L/vf. Thus,
while DQPT occur at finite times in a TL system, Eq.
vanishes at extensive critical times ¢}, = nf, L/27, with
1y, given by Eq..

We now start to investigate the topological features
unique to the STSL regime, i.e. where 7 takes finite val-
ues even for arbitrarily large systems. Far away from its
critical values, by treating n as a parameter, we can define
a0 (k;n) = argg(_o)(k,n). The function k& — a9 (k;n)
from a circle to a circle naturally leads to the defini-
tion of a dynamical winding number v(n) € Z through
2O (k;n) = a9 (k;n) + kv(n), where & (k;n) is a R-
valued smooth periodic function. Remarkably, by con-
trast to the conventional equilibrium framework [2], this
dynamical winding number does not require any symme-
try to be properly defined. We can then write the Berry
phase in the STSL regime as pg(n) = wg) (n) + <p(Bl)(77),
where

meNL . (3)

oo =45 | AR [EO (kn) + ko] L (4)

while wg)(n) is analogous to the usual integral of the

Berry connection[d2]. Thus, let us focus on the conse-
quences of the new contribution stemming from a non-

trivial f@. A priori, 9055(,))(77) is of order L and, given that



the Berry phase is defined mod 27, the zeroth order
would produce a Berry phase that wildly fluctuates with
time. Nonetheless, if d*(k) and df (k) have the same par-
ity under k <> —k, then (% (k;n) becomes an odd func-
tion of k and the integral in Eq. vanishes identically.
This condition physically corresponds to a quench that
does not generate any stationary current[d4]. However,
if we now assume that a finite and constant magnetic
flux ® is present throughout the entire quench dynamics,
the quasi-momenta get shifted according to k& — k + ¢,
where ¢ = %’rq%. This shift does not affect the integral
of the odd periodic part & (k;n), which remains van-
ishing. However, although ¢ is infinitesimal for large L,
the shift yields a finite contribution proportional to v(n),
thanks to the factor L in Eq.. We thus end up with

G (@) = 20 ())B/Dy + O(L™Y) . (5)

We can therefore conclude that, in the STSL, the Berry
phase develops a non-trivial zeroth order contribution
which induces a quantized response to an applied mag-
netic flux and the quantization is encoded in the dynam-
ical topological invariant v(n). In this respect, v plays a
role analogous to the Chern number in the integer quan-
tum Hall effect [4] [5]: while the latter uniquely defines
the linear Hall response to an applied electric field, the
former encodes the linear response of the Berry phase
to an applied magnetic flux. However, while the various
plateaus in the Hall conductance identifies different equi-
librium topological phases as a function of the chemical
potential, the winding number v(n) topologically charac-
terizes an out of equilibrium state and is thus a function
of time. Note that, since v(n) can change only at the
critical ratios 7;, in Eq.7 the topological invariant is
stable for extensive time windows At = L/2vf (k*). This
means that the system undergoes a new kind of dynam-
ical topological phase transition, where a well defined
topological invariant suddenly changes at the extensive
critical times ¢} . Moreover, since the quantized response
does not depend on system size, it is remarkable to notice
that even a fraction of the elementary flux quantum may
yield a detectable signature in the coherent dynamics of
a macroscopic quantum system.

After the above general derivations, we now choose a
specific setup to illustrate our results. We consider a
sudden quench of the hopping amplitudes in the Rice-
Mele model, which is defined by

d(k) = vy(1+rcosk,rsink,u) (6)

and depicted in Figa). Here ~ is the reference energy
scale, r is the ratio between intercell and intracell hop-
ping, and w is the ratio between the staggered potential
on A and B sublattice, breaking charge conjugation and
chiral symmetry. We choose a quench such that C(k)
vanishes for some k*, a condition that, for a given H7, is
fulfilled by a vast class of initial states. Here we quench

FIG. 2. The linear response App/® of the Berry phase to an
applied magnetic flux is plotted, in units of e/h = 27/®Py, as
a function of n = 27t/L in the STSL regime, after quantum
quenches in finite Rice-Mele lattices with PBC [see Eq. (6])].
In all quenches, the energy scale ~ is fixed to a constant value
throughout the entire protocol, together with the ratio of the
staggered potential u = 0.1. The ratio r of the staggered
hopping amplitudes is instead quenched from r* = 0.5 to rf =
2 while the magnetic flux, when present, is constant and equal
to ®/®y = 1/10. System sizes are L = 40 (blue), L = 80
(red), and L = 400 (green). The plateaus at v = 2, 4, 6,
and 8 are clearly visible already for L = 40, they do not
depend on system size and abruptly change at critical ratios
- The fluctuations are instead system size dependent and
are suppressed with increasing L.

from ¥ = 0.5 to 7/ = 2 while keeping u = —0.1 constant.
It is then straightforward to show that v(n), which has
to be zero for = 0, increases by two at each critical
ratio n),. Such increase by two units can be easily un-
derstood if one recognizes that the condition C(k) =0 is
satisfied by two quasi-momenta {k},k5} which, because
of symmetry, are related by ki = —k3 and are thus asso-
ciated to the same critical ratios n;,,. Concurrently, the
closed loop traced by 5(_0)(k, 7)) in the complex plane as a
function of k touches the origin twice at the critical ra-
tios and the winding increases by two. Far away from 7,
the winding of f@(k,n) is instead a robust topological
invariant. Moreover, it coincides with the winding of the
whole overlap function Eq., since the first order con-
tribution f(_l)(k:,n)ék is suppressed by a factor L~! and
it cannot destroy the robustness of the invariant. A com-
parison between the loops traced by ¢_(k,n) for n < nj
and nf < n < n5 is schematically depicted in Figb),
where the solid lines denote the finite contribution given
by 5(70)(16,77)7 while the shallow halos around them ac-
count for the L~! contribution carried by 5(_1)(k, n)ok.

We can now fully appreciate the interplay between a
finite dynamical winding number and a constant mag-
netic flux. In Figl2] we plot the n-dependent response
of the Berry phase to an applied magnetic flux, namely



App(n)/® where App(n) = pp(n; @ # 0) — ¢p(n; @ =
0), for the above specified quench in a finite Rice-Mele
lattice. We compute the same quantity for different sys-
tem sizes, while keeping the non-zero value of the mag-
netic flux always equal to ®/®y = 1/10, and we display
the values of App(n)/® in units of the universal con-
stants e/h = 2w/ ®Dy.

Increasing L at constant 7, hence going towards the
STSL regime, a staircase profile becomes more and more
pronounced. The critical ratios at which the jumps oc-
cur are given by Eq. while the heights of the different
plateaus are encoded in Eq.. The reason is straight-
forward: The contribution to the Berry phase given by
Agpg)(n) amounts to bounded fluctuations with zero av-
erage, which are produced by the slight mismatch be-
tween k and k + ¢ and are suppressed in the STSL. The
contribution carried by Agog)(n) instead corresponds to
rigid shifts of 47® /P each time a critical ratio is reached,
independent of system size. In the proper STSL a sharp
staircase profile is thus recovered.

We would like to elaborate on the differences between
the TL and the STSL in terms of the Berry phase, the
Wannier wavefunctions, and the particle current density.
In the standard TL (n — 0), the many-particle insu-
lating state can be built out of a Slater determinant of
exponentially localized Wannier functions[45]. Because
a vector potential can be always gauged away for such
wavefunctions[46], a constant magnetic flux cannot lead
to observable signatures. At the same time, the time
derivative of the Berry phase is linked, even out of equi-
librium, to the particle current density[28]. In contrast,
in the STSL regime, the localization length of the Wan-
nier functions becomes comparable to system size[dT],
with a twofold implication. On the one hand, the mag-
netic flux can no longer be gauged away and can lead
to observable signatures, such as the staircase profile de-
picted in Figl2l On the other hand, the jumps of the
Berry phase at the critical ratios 7}, are not associated
to a physical current. Instead one can show that[42]

%%’g) (n) = % /:dk (u’_(k)|j§c(k)|ul_(k)> (7)
w (0)
+% _ﬂdkRe{M(ui(kﬂjéc(k)ui_(k»}

where jd];(k:) = vf(k)d’ (k) - o is the component of the
particle current operator that commutes with the post
quench Hamiltonian and describes a DC current, while
X (k,n) = (u_(k + 5k, t)|us (k, 1)) + O(L~Y). In the in-
teresting case in which the Berry phase develops a stair-
case profile, the first integral, which is the expectation
value of the DC current and it is the only contribution
appearing in the long time limit of a TL system, is vanish-
ing due to symmetry. The jumps are instead produced by
the additional contribution in the second line of Eq.7

which is absent in the standard TL. Such integral does
not correspond to the expectation value of a particle cur-
rent and it rather involves the inter-band elements of the
DC current operator.

In summary, we have shown that intriguing topologi-
cal features arise in the STSL regime after a quantum
quench, when both time and system size are sent to
infinity while keeping their ratio finite. In particular,
we have rigorously defined a dynamical winding num-
ber v(n), which characterizes the many-particle state of
a 1D two-band model in the STSL regime, see Fig[lb).
Notably, its definition does not rely on any specific sym-
metry, at variance with the customary equilibrium set-
ting. We have shown that the dynamical winding number
physically encodes the linear response of the Berry phase
to an applied magnetic flux, which thus exhibits a stair-
case behavior as a function of 7, see Figl2] The plateaus
are quantized in units of e/h and the jumps between
them occur at the well defined critical times given by
Eq.. It is also worth mentioning that this phenomenon
can be observed with state of the art experimental tech-
niques. The long coherence time of ultracold atoms in
optical lattices[48] may also allow one to approach the
STSL regime experimentally in finite systems. Moreover,
given the possibility to generate artificial gauge fields[49)
and reconstruct the time dependent Berry phase through
quantum state tomography techniques[19, 20, B0], we ex-
pect experiments with ultracold atoms, similar to the one
described in Ref.[30], to enable observing the onset of a
staircase profile as depicted in Figl2] An alternative im-
plementation could be based on quantum walks in pho-
tonic platforms where the present quench dynamics can
be simulated and the time-dependent Berry phase can
be measured [50, 51]. Our work provides a starting point
for investigating further topological properties unique to
the STSL regime, including the study of higher dimen-
sions with richer geometry of Bloch bands, and probing
the robustness of the dynamical winding number v to the
breaking of translation invariance and its generalization
in the presence of many-body interactions.
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TOPOLOGY IN THE SPACE-TIME SCALING LIMIT OF QUANTUM DYNAMICS
SUPPLEMENTAL MATERIAL

In this Supplemental Material we summarize some useful results about quenches in two band models and we provide
some details about the definition of the Berry phase for a finite size system, its evaluation in the space-time scaling
limit, and its connection to the current operator.

Quench in a two band model

In the quench protocol described in the Main Text, the single particle eigenstates |u’, (k)) of the initial Hamiltonian
H =Y, ¢l (k)[di(k) - o]c(k), determined by the unit vector d’(k) = d’(k)/|d" (k)| through the eigenvalue problem
[ (k) - o]uly(k)) = +[ul(k)), evolve according to the post-quench Hamiltonian H/ = 37, ¢f(k)[d/ (k) - o]c(k) as
lut(k,t)) = exp|—i[d” (k) - ]t/h]|u’.(k)). In turn, the related projector p+(k,t) = |us(k,t)){u+(k,t)| can always be
written as p (k, t) = [00 £ d(k, t) - 0]/2, where o denotes the 2 x 2 identity matrix and d(k,t) is a time-dependent
unit vector given by [S1]

d(k,t) = dy (k) + do (k) cos[2ld! (k)|t/H] + dux (k) sin[2]d! (k) [¢/H] (S1)

where d| (k) = [d(k)-d” (k)]df (k), d1 (k) = d’(k)—d (k) and dx (k) = —[d’(k) xd (k)], with d/ (k) = df (k)/|d/ (k).
Because the initial state is the many-body ground state of the initial Hamiltonian H* at half filling, where the lower
band € (k) = —|d"(k)| is completely filled and the upper band €' (k) = +|d’(k)| is empty, the evolved many-
body state can always be regarded to as the half filled ground state of a fictitious (two flat band) Hamiltonian
H(t)=3,c (k)[d(k,t) - o)c(k), where time appear as a parameter.

Discrete Berry phase

On the basis of the previous Section, the Berry phase associated to the many body state of a quenched two band
insulator can be formulated in terms of |u_ (k,t)) and d(k,t). We shall now determine some of its general properties
that hold independently of the time dependence. In order to lighten the notation, we are thus going to omit the ¢
variable, which will be restored later, when time plays a major role. Yet we will deal with both the lower band Berry
phase pp_ and the upper band Berry phase ¢p4. In the Main Text, the symbol ¢p was used to denote pp_ while
here we explicitly keep both band indexes to highlight the relations between ¢p_ and ¢p.

When dealing with a finite system, the Berry phase has to be reformulated in terms of finite differences according to
0B+ = Y pepz argés mod 2w, where {4 = (u+ (k4 0k)|us(k)), BZ denotes the Brillouin Zone and dk = 27 /L [S2].

We first note that in the continuum limit L — o0, if |ux(k)) is a smooth function of k (as it is usually the
case in the time independent framework and for ¢t < L/v/), we can approximate &y ~ 1 + i(u(k)|i0k|us(k))dk,
implying arg &4 ~ (us (k)|i0k|u+ (k))dk, and we recover the standard expression pp+ = [ dkAp(k), where Apy (k) =
(ug (k)|i0k|ux (k)) is the Berry connection of the upper/lower band.

Then we show that some general properties fulfilled by the Berry phase in the customary continuous formulation
are preserved also in the present discrete formulation [S3]. Indeed, despite {1 at each k is gauge dependent, the Berry
phase is gauge invariant, as can be seen by rewriting pp+ as

ppe =Tmln ] (we(k+0k)us(k)) = argtr [ pe(k) (S2)
keBZ keBZ

where tr denotes the trace on a two dimensional space and the projectors p (k) are gauge invariant.

Moreover, Eq. also enables one to prove that ¢p_ + PBt = 0 mod 27. Indeed we observe that, for each k, the
related projector can be written as p1 = 8°(+d)oo + ,B(id) o, where the real parts 5%, Br and the imaginary parts
B9, Br of the B-coefficients are functions of the unit vector d= d(k) satisfying the following parity relations

B%(d) = +5%(~d)
BY(d) = T a)
Br(d) = ~Br(~d)
B:(Q) = +8;(-d)



It is then straightforward to prove by induction that the product Ry = [], p+(k) of an arbitrary set of projectors
px (k) is a matrix Ry = B({xd(k)})oo + B({:I:(Ai(%) .o whose B-coefficients are functions of the entire set {d(k)}
(s3

of unit vectors and satisfy the parity relations Eq.(S3) in terms of {d(k)} <+ {—d(k)}, implying that

tr [T pe(k) = BR({xd(k)}) +iBy({£d(k)}) = Br({d(k)}) £iBY({d(k)}) . (54)
keBZ

Thus, in view of Eqs. and , the relation ¢p_ + pp+ =0 mod 27 holds also in the discrete formulation.
Finally, if charge conjugation symmetry is present then the following relations hold true

Ao (k) = do (k) (55)
Czy,Z(k) = _dy,Z(_k) (S6)
and one can prove that ¢op_ = pp4 mod 27. Together with the general constraint ¢ = —pp4+ mod 27 this

implies that, when the system is invariant under charge conjugation, the Berry phase is constrained to be either 0 or
7 even in the discrete formulation.

The space-time scaling limit

We can now evaluate the time dependent discrete Berry phase ¢p_ in the space-time scaling limit (STSL). Given
that £ (k,t, L) = (u_(k + 0k, t)|u_(k,t)) and |u_(k,t)) = exp[—i [d/ (k)t/h] - &]|u’ (k)) we have to evaluate

el SRR e — os|df (k + k)t /h| +i[df (k + k) - o] sin |d/ (k + 5k)t/h] (S7)
to order L=, where t ~ L while n = 2nt/L is fixed. Let us first evaluate the modulus. To make the notation
lighter, we suppress an overall factor 4~' and the dependence on k in the the Taylor expansion df(k + 0k) =
df + 9,d’ ok + £02d7 (6k)? + O(5k)®. Thus we get

|df (k + 5k)t| = ’dft +odn + 15k 92d’n + O(L*Q)’

d/ - opa’ df2  df-o2df
|dft|\/1+2 Ondd 5y ('6’“ ° k >5k2+0(L—3)

|d7[? |d7|? |d7f|?
df - 9,df Op(df - 9pdl) ~
— |dft|\/1+2 e 5k + TP §k2 +O(L3)
d’ - 9,d’ 10p(d’ - 0pd’)  [df - 8,d?\”
_ f 1 k - k k _ k 2 L_3
. tl{ e l? ar (S ) | rou
fa2qf —
:dft{ +ak—d6k [d O d(df)(a’“d > }6k2+O(L‘3)}
= d’t + opd’n + 5kd In+O0(L™%) (S8)
where df = |df| and
Opd’)?
i = o2al — (dif) (S9)
Then the unit vector Eif(k + 0k) appearing in Eq. is given by
. dft
d’ (k + 6k) = 2
aft {1+ %ok + § [ LEGOAE o2 4+ O(L-3) }
8kdf77 _9
+ 3 +O(L™7)
st {1+ 2ok + § [ LERE ok2 4+ O(L-3) }

dft akdf akdf'ﬂ _9 N f _92
dft{1— b 6k} e 0(L7) = df 1 0,k + O(L2) (S10)



whence one obtains
A" 4R/ — o [(dt + Opd!n + %6kd§n) /B +i[(df + 8,d? k) - o] sin [(d7t + OpdTn + %mgn) /h] +O(L™?)
= i@ Oy okain)/MAT o 4 sgin [(d/t + Oyd! n) /h] [0pd” - o] + O(L72) (S11)
and
cild! (k+skyt/n]-o —ild! (K)t/h]-o _ Li[(Ondn+Fokdln)/Rla o | isr s [(dft—s—akdf )/h] [0pd’ - ole —i[dt/h]-o +O(L?)
= cos [(Opd’n + §6kd2n) /h] +isin [(9pd'n + 5cszgdzn) /h[d’ - o]
+idk sin [(d't + dxd’n) /1] cos [d7t/h] [9pd” - o]
+idk sin [(dt + dxd’n) /h] sin [d7t/R] [(OrdT x A7) - o] + O(L72)
= cos [Bkdfn/h] - %sin [&Cdfn/h} [5kd£77/h]
+isin [Opd /K] [d7 - o] + %cos [0d! /1] [0kdjn/n][dT - o]
+idksin [(d/t + Opd'n) /h] cos [dt/h] [9d - o]
+idksin [(d't + xd'n) /h] sin [d't/h] [(Ord” x A7) - o] + O(L™2)
= 0w /M) O iy d8 /) + 8% coslokd?n/Hdfn/ B[ - o]
+idk cos [Od! n/H] {sm [ t/h] cos [d7t/n] [94d - o] + sin® [dt/B] (B! x &) -a]}
+idk sin [Ogd’ /1] {(;052 [d/t/K] (0447 - o] + cos [d/t/h] sin [d't/K] [(Oxd’ x df) -0']}
+O(L72) . (S12)

Thus, by recalling the definition &_(k,¢, L) = (u—(k + Ok, t)|u_(k,t)) = (' (b +
5k)|ei[df(k+5k)t/h]"’e_i[df(k)t/ﬁ]'”|ui_(k)) and by Taylor expanding (u’ (k + 6k)| = (u| + 0k(dpu’| + O(Jk)?,
we finally arrive at

¢ (k,t,L) = <u72_‘ei[akdfn/h][&f-o-]|ui_> _|_5k<8kui_|ei[6kdfn/h][&f.0']|ui_>
ok ik s
== sin[0xd/n/h] [dbn/B](ul[ul) + i cos[Oxdn/] [d5n/R)(u’|[d’ - o][u’)
~+idk cos [8kdfn/h] (u' | %sin [2dft/h] [0pd - o] + %(1 — cos [Qdft/h] )[(8k&f x df) - a’]}|ul_>

+idk sin [Od’n/h) (ul- |{ (1 + cos [2d/t/h] ) [ - o] + %sin [2dt/h] (05! x df) .a]}\uQ +O(L7?)

1
2

= Ok, n) + 0k D (k,n,t) + O(L7?) (S13)
where

f@(l@,n) = (ui,\ei[a’“df”/h”&f'auui) = cos[@kdfn/h] +isin[8kdfn/h]<ui|[af -ol|u?)
= cos[Okd/n/h) +i[d’ - d'] sin[0,d'n/h] (S14)
while £ (k, n,t) = €5 (k, ) + €5 (k, 7, 1) and
€8 (k) = — sinfoht/n/R][dn /1] — sinfodn/Wim{ (Ghec [ - o]jul )}
+%cos[akdfn/h][d§n/h] (W' |[df - o)|u’ ) + isin[0pd’n/RRe{(Opu’ |[df - o]|u’ )}
i cos[Ond /B (ul[i0p]u’ ) + %cos [0cd’ n/h] (ul [[(9rF x A7) - oljuct )

+%sin [0 n/h] (ul |[8ed - o]l ) (S15)



¢ B (k. t) = %sin [2d/t/h] (u’ |{ cos [Opd n/h] (84" - &) + sin [’ n/h) [(Brdf x A7) - a}}w; )
+ %cos [2d/t/h] (u- { — cos [Oxd’n/h] [(0xd x A7) - o] + sin [0xd n/h] [Od -a]}w_ ) . (S16)

Notice that, since by definition of £_ its gauge dependence amounts to corrections of order dk, the zeroth order
contribution {EO) turns out to be gauge invariant. Moreover, the modulus of £_ is given by

(0) (1)
-] = \/|§<°>|2 +20kRe {€V¢D L+ O(L-2) = || + 6k Re {if(g)} +O(L7?) (S17)

while the argument equals

(0)yx £(1)
B (0) (1) _a _ 0) (E27)7¢ _2
arg{g,}_lm{m [5, + ke oL )}} —arg{«f }+6k1 {I&‘O I +O(L7?) (S18)
The Berry phase thus acquires the form
_ _ (€©yreh 1y (0) 1) 1
pp-= > argb_= Y arg } Y 6kIm R +OL ) =W + oW o) (S19)
keBZ keBZ kEBZ €271
where
<pB_ Z arg 5(0) / dk arg (O)} (S20)
keBZ
while

(0)yx (1) x (0)yx £(1,4)
o) = > 6kIm {(£|§<3)|£2 }m/ dem{M} : (521)

0
keBZ |§7)|2

In Eq.(S20) the summation over k has been replaced by an integral, according to the usual recipe
Srepz — (L/2m) [T dk, since the function arg{f(_o)(k,n)} varies smoothly in k with respect to dk. The

same procedure cannot be straightforwardly applied to the summation in Eq. 1' since f(_l)(k', 7,1) contains terms
proportional to sin [2d” (k)t/h] and cos [2d/ (k)t/h], which are rapidly oscillatory functions of k for ¢ ~ L [see the

contribution 59’3)(k,n7t) in Eq. ] Nonetheless, because of this highly oscillatory behaviour, the summation
of such terms is negligible in the STSL and gog)_ in Eq. 1' is eventually recast into an integral involving the
contribution f(_l’A) (k,m) only.

Berry phase and current operator

We start this Section by showing that, for  — 0, which corresponds to the usual thermodynamic limit, one recovers
the known relation 9;pp(t)/2m = J7(t) [S4]. Indeed, when i — 0, Eq.(S13) reduces to

€ (k,t,L) =1+ idk(dpd’t/R)(u’ |[d7 - o)|u’ ) + i0k(ul|id)|u’)
+idk(u’ {sm [2d/t/h] [Ord” - o] + ;(1 — cos [2d/t/h] )[(Ord” x A7) - a]} lul) + O(L~?) (S22)
so that
arg{¢_(k,t, L)} = 0k(u'|idy|u’) + 0k(Opd t/h)(u’ |[dT - o]u’)
+0k(ul | {; sin [2d7t /K] [0df - o] + %(1 — cos [2dt/h] )[(rdf x d7) -a‘]} lul) + O(L™2)(S23)



and

U

() _ e Zk:arg{ﬁ_(k,t,L)} o [ kA )+ o " ko’ /R ([ - oful ) ¢

2

+% dk(u' | {;sin [2d/t/h] [Oxd” - o] + %(1 — cos [2dt/h] )[(Ordf x A7) ~a‘]} lu’ )
t
= ‘/"%ﬁ(o) +Thot+ /0 dt' J4 . (t) (S24)

where A% (k) is the initial Berry connection, while Ji ., and J4,(t) are the integral over the Brillouin zone of
the expectation values of the operators Jj (k) = h™'8d! (df - &) and Ji.(k,t) = h~'d/ {cos[2d t/h] [0rd! - o] +

sin[2d7t/h)[(df x Gk({f) - o] }, respectively, which can in turn be interpreted as the DC/AC term of k-component
current operator resulting from its Heisenberg evolution

W (k, t) = e~ i14 /M o, qF . g eild’t/mIa o
= il t/naAl a1y Gf (df - o) + df (9df - o))l /Mo
— gpdf (df o) + df(cos[dft/h] — isin[dt/H)[d’ - a]) [Dd” - o‘](cos[dft/h] +isin[d’t/R)[d7 - 0'])
= Opd!(df - o) + df(cos2[dft/h] [0rd! - o] — isin[dt/h] cos[dt/R)[d! - o][Opd] - o]
+isin[d’t/h] cos[d't/h][Opd! - o][d’ - o] + sin?[d’t/h)[d” - o)[Bkd” - o[d” - a])
= 0pdf (df o) + df(COSQ[dft/h] [0,df - o] + 2sin]d t/h] cos[dt/R][(d] x 9,df) - o]
—sin2[d/t/R)[d! x (8df x dT)] - )
= Opdf (df - +df(cos [d7t/R)[0xd! - o] + 2sin[d’t/R] cos[d/t/R][(d] x O,df) - o] — sin[d/t/h][0,d - 0'])
= 0pdf (df o) + df(cos[ d't/R)[0kd/ - o] + sin[2d” t/R)[(d” x O)dY) ~a‘]> (S25)

Let us now determine the relation between 90%))7 and the current operator in the space-time scaling limit. Starting

from £ (k, ) = (ul (k)[e T ®|ui (k) we get

SO0 (k) = (W] TR M TS () Y b () D (1) =
s=+

= €9 (k,n) (' (k)| The (B Jul (k) + X' (k) (. (k)| T (k) | (K)) (S26)
where x (k: n) = (u* (k)\eijléc(k)ﬂui(k)). Then, in view of the definition
o= [ ah g€V k) = o [ dkTmIn € (k, ) (s27)
we arrive at
d
% / dkIm lnf O (k,m)
L / i ‘”(k )t ()| The (k) (k) + ix® (k. m) ()| T (k) ()
O (k,n)

L i i L[ Xk, ;
=5 7ﬂdk(u_(k)|‘7,;f}c(k)\u_(k)>+%/ dkRe{g(O)(kn)<u+(k)|jgc(k)|u_(k)> (S28)
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