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The electromagnetic coupling between hetero-structures made of different materials is of great interest, both
from the perspective of discovering new phenomena, as well as for its potential applications in novel devices. In
this work, we study the electromagnetic coupling of a hetero-structure made of a topological insulator (TI) slab
and a single graphene layer, where the later presents a diluted concentration of ionized impurities. We explore
the topological effects of the magneto-electric polarizability (MEP) of the TI, as well as its relative dielectric
permittivity on the electrical conductivity in graphene at low but finite temperatures.

I. INTRODUCTION

As stated by the great Aristotle more than 2000 years ago
in his work Metaphysics[1] “To return to the difficulty which
has been stated with respect both to definitions and to num-
bers, what is the cause of their unity? In the case of all things
which have several parts and in which the totality is not, as
it were, a mere heap, but the whole is something beside the
parts, there is a cause; for even in bodies contact is the cause
of unity in some cases, and in others viscosity or some other
such quality.” The combination of different materials in the
form of hetero-structures[2] is our modern quest to search for
novel properties that emerge beyond the trivial superposition
of those of their individual parts. This search is of great in-
terest not only from a fundamental perspective, since exciting
new phenomena may be observed, but also to engineer ma-
terials for applications in novel devices. Among the different
emerging phenomena in hetero-structures, electromagnetic ef-
fects are highly relevant for the transmission and storage of
energy and information. In this context, the control of elec-
tronic transport properties is of fundamental importance.

The discovery of novel materials with non-trivial topolog-
ical properties [3], such as topological insulators (TIs) [4],
Dirac and Weyl semimetals [5], has introduced a plethora of
new phenomenology. In particular, the existence of gapless
edge (in 2D TIs) or surface (in 3D TIs) pseudo-relativistic chi-
ral states [6] makes them excellent potential candidates for ap-
plications in quantum information technologies and thermo-
electrics [7]. In addition, the so-called magneto-electric po-
larizability (MEP) [8, 9] that locally modifies the constitutive
relations between the electromagnetic fields in TIs, provides
new opportunities to control the magnetoelectric response in
such systems. Even though these effects have been exten-
sively studied in individual topological materials, their elec-
tromagnetic coupling when integrated into hetero-structures
remains a vast territory for further exploration [10, 11].

In this work, we consider a hetero-structure composed of a
TI slab and a single graphene layer, as depicted in Fig. 1. We
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further assume that a diluted concentration of ionized impu-
rities is present in the graphene monolayer. The presence of
such charged impurities will induce a local distortion of the
charge density of the 2D electron gas, leading to a non-trivial
electromagnetic coupling between the TI and the graphene
monolayer in the heterostructure. As a probe of this cou-
pling, we further studied the electrical conductivity as a func-
tion of temperature, by including the scattering effects with
the local electromagnetic field configuration via the Kubo lin-
ear response formalism [12–14]. We applied our theoreti-
cal results to model the electromagnetic coupling in hetero-
structures made of different TIs (PbTe, Bi2Te3, PbSe, PbS,
Bi2Se3, TlBiSe2, TbPO4). Our analytical and numerical re-
sults suggest that, among the properties of the TIs, the dielec-
tric permittivity ε1 is the most relevant at tuning the electronic
transport in the coupled graphene monolayer. On the other
hand, we also observed that the topological effects arising
from the presence of the MEP coefficient θ are comparatively
very small even at zero temperature.

FIG. 1. Pictorial representation of the system. A hetero-structure
composed by a TI slab (with material properties ε1, µ1, and θ1) and
a graphene monolayer. The two materials are separated by a distance
z0. A diluted concentration of ionized impurities is present in the
graphene monolayer.

II. ELECTROMAGNETIC RESPONSE OF THE TI

The effective field theory governing the electromagnetic re-
sponse of topological insulators, independently of the micro-
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scopic details, is defined by the action (in SI units) [8]:

S =

∫
d4x

{
1

2

[
εE2 − (1/µ) B2

]
+
α

π

√
ε0
µ0
θE ·B

}
,

(1)

where α = e2/(4πε0~c) ' 1/137 is the fine structure con-
stant, ε and µ are the permittivity and permeability of the ma-
terial, respectively, and θ is the topological magnetoelectric
polarizability (MEP) or axion field. The coupling between the
gauge field and the free sources is introduced as usual. TR
symmetry indicates that θ = 0, π (mod 2π), and hence the
θ-term in the action of Eq. (1) has no effect on Maxwell equa-
tions in the bulk. The nontrivial topological property, a surface
half-integer quantum Hall effect, manifests only when a TR-
breaking perturbation is induced on the surface to gap the sur-
face states, thereby converting the material into a full insula-
tor. This can be achieved by introducing magnetic dopants to
the surface [15] or by the application of an external static mag-
netic field [16]. In this situation, θ is quantized in odd integer
values of π, where the magnitude and sign of the multiple is
controlled by the strength and direction of the TR-breaking
perturbation.

The field equations arising from the theory of Eq. (1) are
those of Maxwell electrodynamics in a medium with the mod-
ified constitutive relations [8]

D = εE + α
θ

π

√
ε0
µ0

B, H =
1

µ
B− α θ

π

√
ε0
µ0

E. (2)

The θ-dependent term in each constitutive equation en-
codes the most salient feature of this theory: the topologi-
cal magneto-electric effect, where an electric field can induce
a magnetic polarization and a magnetic field can induce an
electric polarization [9].

The general solution to the field equations can be expressed
in terms of an indexed Green’s function Gµν which satis-
fies the field equations for a point-like source and appropriate
boundary conditions, namely,

Aµ(r) =

∫
V

Gµν(r, r′) Jν(r′) d3r′, (3)

where r and r′ are the coordinates of the field-observation
and the source, respectively. Here, Aµ = (Φ/c,A) is the
four-potential and Jµ = (ρc,J) is the four-current density.
The exact form of the indexed Green function depends on
the geometry configuration of the problem. For example, ex-
plicit expressions for the problem of two topologically insu-
lating media separated by a planar interface can be found in
Refs. [17, 18]. The corresponding expressions for a spheri-
cal interface is reported in Refs. [10, 19], and the results for a
cylindrial interface have been reported in Ref. [20]. The full
expressions are not illuminating at all, so here we just con-
centrate in the problem at hand, where the source is purely
electric, i.e. we take J i = 0.

Let us consider the particular configuration depicted in Fig.
2. The half-space z < 0 is occupied by a topological insulator
with a dielectric constant ε1, a magnetic permeability µ1, and

FIG. 2. Charge density ρ(r) near to a planar surface

MEP θ1, while the half-space z > 0 is occupied by a material
(topologically trivial or not) with a dielectric constant ε2, a
magnetic permeability µ2, and MEP θ2. A charge distribution
ρ(r) is placed in the region z > 0, as shown in Fig. 2. The
electric potential becomes

Φ(r) =

∫
G(r, r′) ρ(r′) d3r′, (4)

where the corresponding Green function (i.e. the 00-
component of the indexed Green’s function), for z > 0, is

G(r, r′) ≡ G0
0(r, r′) =

1

4πε2

(
1

r+
+

κ

r−

)
, (5)

with r± =
√

(x− x′)2 + (y − y′)2 + (z ∓ z′)2 and

κ ≡ ε2 − ε1 −∆

ε2 + ε1 + ∆
, ∆ ≡ µ1µ2

µ1 + µ2

(
α
θ1 − θ2
π

√
ε0
µ0

)2

.

(6)

The magnetic response, which is purely topological since
the source is electric, is determined by the 0i-components of
the indexed Green’s function. One obtains

A(r) =

∫
G(r, r′) ρ(r′) d3r′, (7)

where the corresponding Green’s vector, for z > 0, is

G(r, r′) ≡ Gi0(r, r′) êi =
µ1g

4π

êz × ρ
ρ2

(
1− z + z′

r−

)
,

(8)

with ρ = (x− x′)êx + (y − y′)êy and

g = α
θ1 − θ2
π

√
ε0
µ0

µ2

µ1 + µ2

2

ε1 + ε2 + ∆
. (9)

As expected, in the non-topological limit θ1 → θ2 we get
∆ = 0 and g = 0, since the topological magnetoelectricity
disappears. Besides, κ → (ε2 − ε1)/(ε2 + ε1), which is the
usual electrostatic result. As a consistency check one can fur-
ther verify the image magnetic monopole effect of topological
insulators [21]: for a poinlike charge of strength q at z0, the
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electric field can be interpreted in terms of the original charge
plus an image charge of strength κq at −z0, and the mag-
netic field can be interpreted as that of a magnetic monopole
of strength qg at −z0.

In the next section we apply the above results to the elec-
tronic density distribution that represents the physical config-
uration depicted in Fig. 1.

III. ELECTRONIC RESPONSE DUE TO THE IONIZED
IMPURITY IN THE GRAPHENE MONOLAYER

In this section, we shall present the effective continuum
model, in coordinate space, to account for the electromagnetic
effects of a single charged impurity in the monolayer graphene
located at a distance z0 from the surface of a planar topolog-
ical insulator, as shown in Fig. 1. Let us assume that the un-
perturbed uniform electron gas density in the graphene mono-
layer is ρ0 = (−e)nc, with nc = N/A the free carrier density.
If the ionized impurity has a charge Q, and is localized at the
point r0, it will contribute to the total charge density with a
delta distribution Qδ(r − r0). In response to this charge, the
2D electron gas in the graphene monolayer will redistribute
itself in order to screen it, leading to a small local deviation
from the uniform charge density ρ(r) − ρ0 ≡ ρY (r). After
a standard many-body treatment of the 2D electron gas via
the random phase approximation (RPA), such screening can
be well captured in the static regime via the Thomas-Fermi
model [22], that leads to a Yukawa density distribution in co-
ordinate space,

ρY(r) = Qδ(r− r0)− Q

2πl0

e−|r−r0|/l0

|r− r0|
δ(z − z0). (10)

Here, the inverse screening length l−10 is given by the
Thomas-Fermi wave-vector qTF, defined by [22]

qTF =
2πe2

ε2
D(εF ), (11)

where we have defined the density of states at the Fermi level
εF = ~vFkF,

D(εF) = 4

∫
d2k

(2π)2
δ (~vFk − εF) =

2

π

εF

(~vFkF)
2 . (12)

Finally, by using the definition of the Fermi wave-vector in
mono-layer graphene as a function of the free carrier density
nc

kF =
√
πnc, (13)

we obtain from Eq. (11) and Eq. (12) that the Yukawa-
screening length is given by

l−10 ≡ qTF = 4
e2

ε2

√
π nc
~vF

. (14)

As discussed in the previous section, the presence of this lo-
cal deviation ρY (r) in the charge density will act as a source
to generate an electromagnetic response at the TI, in the form

of scalar Φ(r) and vector potentials A(r), respectively. These
electromagnetic potentials will exist not only at the TI itself,
but also at the graphene monolayer, thus generating an elec-
tromagnetic coupling between the two materials that consti-
tute the hetero-structure.

To compute the electromagnetic potentials we use the the-
ory discussed in the previous Section. We leave the details of
the technical calculations to the Appendix A and we present
here only the final results. For definiteness we evaluate the
potentials at z = z0, which is the position of the graphene
monolayer as measured from the TI surface. So, we take
r = ρ + z0êz . We first compute the scalar potential Φ(r),
which is given by Eq. (4) with the Green’s function given by
Eq. (5), with the charge density ρY(r) of Eq. (10). The final
result is

Φ(ρ) =
Q

4πε1

[
1

ρ
+

κ√
ρ2 + (2z0)2

− Λ
(0)
0 (ρ)− κΛ

(0)
1 (ρ)

]
,

(15)

where we have defined the functions (for j = 0, 1)

Λ
(ν)
j (ρ) =

∫ ∞
0

dk
Jν(kρ)√
1 + (kl0)2

e−k(2jz0). (16)

The mathematical details of the derivation of these func-
tions are presented in the Appendix A. This result can be in-
terpreted as follows. The first term corresponds to the poten-
tial due to the original ionized impurity of charge Q at z0.
The second term is due to the image of the ionized impurity,
of strength κQ localized at the image point −z0. The third
term Λ

(0)
0 (ρ) corresponds to the electrostatic potential on the

monolayer graphene due to the electronic cloud described by
the Yukawa term in Eq. (10), and the last term, κΛ

(0)
1 (ρ), is

the image of such electronic cloud. Figure 3 shows the behav-
ior of the scalar potential of Eq. (15) with z0 = 1.42Å, as a
function of ρ/a0, where a0 = 2.46Å is the lattice constant of
graphene.

We now evaluate the vector potential A(r), which is given
by Eq. (7) with the vector Green’s function of Eq. (8) and the
charge density ρY(r) of Eq. (10). After some manipulations,
fully discussed in the Appendix A, we get

A(ρ) = ASch(ρ)− µ1Qg

4π
êφ Λ

(1)
1 (ρ), (17)

where the first term ASch(r) is exactly the Schwinger’s vector
potential of a straight vortex line or Dirac string over the z
axis

ASch(ρ) =
µ1Qg

4π

êφ
ρ

[
1− 2z0√

ρ2 + (2z0)2

]
, (18)

which describes a magnetic monopole of strength Qg at
the image point −z0. The second term, proportional to
êφ Λ

(1)
1 (ρ), corresponds to the magnetic response due to the

electronic cloud described by the Yukawa term.
Applying our previous explicit results for the electromag-

netic response of the TI, we will study the electrical conduc-
tivity in the coupled graphene monolayer. For this purpose,
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FIG. 3. Scalar potential of Eq. (15) with z0 = 1.42Å, as a function of ρ/a0, where a0 = 2.46Å is the lattice constant of the graphene. The
panels are constructed for several values of qTF and θ̃, and we assumed z0 = 1.42Å.

we first need to analyze the scattering mechanism experienced
by the massless Dirac fermions in the graphene monolayer,
due to the presence of the local electromagnetic fields result-
ing from this coupling, which is the subject of the next section.

IV. SCATTERING ANALYSIS AND PHASE SHIFT

In this section, we shall analyze the scattering mecha-
nism experienced by massless Dirac fermions in the graphene
monolayer coupled to the planar TI, as shown in the hetero-
structure depicted by Fig. 1. As discussed in the previous
section, the electromagnetic coupling between the TI and the
graphene monolayer in the presence of ionized impurities,
will generate a local electromagnetic field characterized by
the scalar and vector potential Φ(r) and A(r), as given by

Eq. (15) and Eq. (17), respectively. Therefore, the dynamics
of the charge carriers is determined by the effective Hamilto-
nian (with the minimal coupling prescription):

Ĥξ = ξvFσ · [p̂− qA(r)] + qΦ(r)Î , (19)

where ξ = ±1 is the valley index for each of the Dirac K±
points, vF is the Fermi velocity, and q = ∓e is the fermion’s
electric charge (electrons or holes depending on the sign of
the chemical potential).

As seen in Eq. (15) and Eq. (17), the electromagnetic fields
generated by the coupling decay at long distances with respect
to the position of the impurity. Therefore, we can apply the
standard assumptions in scattering theory, i.e. that incident
fermions far from the impurity are described by asymptoti-
cally free particle states, with momentum k, and band index
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λ. In polar coordinates, those are given by the bi-spinors

〈x|Φk,λ〉 = Φ
(λ)
k (x) =

1√
2

[
1
λ

]
eik·x =

1√
2

[
1
λ

]
eikr cosφ,

(20)
with energy

E(0,ξ)µ,k = λξ~vF|k|. (21)

Now, it is convenient to use the identity

eikr cosφ =

∞∑
m=−∞

imeimφJm(kr), (22)

in order to expand the incident spinor into angular momentum
channels m ∈ Z

Φ
(λ)
k (x) =

1√
2

∞∑
m=−∞

im
[

Jm(kr)eimφ

iλJm+1(kr)ei(m+1)φ

]
. (23)

Due to the azymuthal symmetry of the system, we can also
expand the angular dependence of the eigenspinor of the full

Hamiltonian into angular momentum channels

〈x|Ψk,λ〉 = Ψ
(λ)
k (x)

=
1√
2

∞∑
m=−∞

im
[

fm(kr)eimφ

iλgm(kr)ei(m+1)φ

]
, (24)

where the radial dependence is implicit in the functions
fm(kr) and gm(kr), that are yet to be determined, as we show
in Appendix B. From the Lippmann-Schwinger formalism in
terms of the retarded and advanced Green’s functions, the fi-
nal asymptotic states can also be decomposed into angular-
momentum channels. To do so, we consider that the electro-
magnetic potential possesses a compact support, i.e. it decays
with a characteristic distance a, so that for r > a the interac-
tion potential becomes negligible. Then, the eigenspinors can
be found from the following self-consistent integral equations:

[
fm(r)
gm(r)

]
=

[
Jm(kr)
Jm+1(kr)

]
− λξiπk

2~vF

∫ r

0

dr′r′
[
Jm(kr′)H

(1)
m (kr) Jm+1(kr′)H

(1)
m (kr)

Jm(kr′)H
(1)
m+1(kr) Jm+1(kr′)H

(1)
m+1(kr)

] [
eΦ(r′) −λξqvFA(r′)

−λξqvFA(r′) eΦ(r′)

] [
fm(r′)
gm(r′)

]

− λξiπk

2~vF

∫ a

r

dr′r′
[
Jm(kr)H

(1)
m (kr′) Jm+1(kr)H

(1)
m (kr′)

Jm(kr)H
(1)
m+1(kr′) Jm+1(kr)H

(1)
m+1(kr′)

] [
eΦ(r′) −λξqvFA(r′)

−λξqvFA(r′) eΦ(r′)

] [
fm(r′)
gm(r′)

]
. (25)

and for r > a we have[
fm(r)
gm(r)

]
=

[
Jm(kr)
Jm+1(kr)

]
− λξiπk

2~vF

∫ a

0

dr′r′
[
Jm(kr′)H

(1)
m (kr) Jm+1(kr′)H

(1)
m (kr)

Jm(kr′)H
(1)
m+1(kr) Jm+1(kr′)H

(1)
m+1(kr)

] [
eΦ(r′) −λξevFA(r′)

−λξevFA(r′) eΦ(r′)

] [
fm(r′)
gm(r′)

]
,

(26)

which we label as internal and external solutions, respec-
tively.

From the above states, the so-called phase shift δm is easily
computed from the external solution (because it carries the
scattering information) as

eiδm(k) sin δm(k) = −λξπk
4~vF

∫ a

0

dr′r′
[
Jm(kr′) Jm+1(kr′)

] [ qΦ(r′) −λξqvFA(r′)
−λξqvFA(r′) qΦ(r′)

] [
fm(r′)
gm(r′)

]
, (27)

so that the spinor [fm(r′), gm(r′)]
T is given by the internal

solution (because it is the region that produced the scattering).

V. RELAXATION TIME AND ELECTRICAL
CONDUCTIVITY

In order to compute the microscopic transport coefficients,
we define the quantum operators, related to the particle, en-

ergy and heat currents, respectively:

ĵ =
∑
pσ

vpn̂pσ, (28)

ĵE =
∑
pσ

vpEpσn̂pσ, (29)
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ĵQ =
∑
pσ

vp (Epσ − µ) n̂pσ, (30)

where for a particle with momentum p and spin σ, we identify
vp as the group velocity, n̂pσ as the particle number density
operator, Epσ as the energy, and µ as the chemical potential
of the system. The corresponding macroscopic observed cur-
rents are given by the ensemble average of the above opera-
tors, i.e.,

J =
〈
ĵ
〉
, (31a)

JE =
〈
ĵE

〉
, (31b)

JQ =
〈
ĵQ

〉
. (31c)

As is shown in Appendix C 1, the currents are coupled
to the temperature and electrochemical potential gradients
through the so-called Onsager’s coefficients, which in tensor
notation take the form[23]:

J = − 1

T

←→
L (11) · ∇ (µ+ eV ) +

←→
L (12) · ∇

(
1

T

)
, (32a)

JQ = − 1

T

←→
L (21) · ∇ (µ+ eV ) +

←→
L (22) · ∇

(
1

T

)
. (32b)

Here T is the system’s temperature and V the external bias
voltage that triggers the electric current. Then, the electrical
conductivity tensor is found by imposing the isothermal con-
dition∇T = 0

←→σ =
e2

T

←→
L (11), (33)

the thermal conductivity tensor is defined by J = 0

←→κ =
1

T 2

(
←→
L (22) −

←→
L (21) ·

[←→
L (11)

]−1
·
←→
L (12)

)
, (34)

and the Seebeck coefficient or thermopower is given by

S =
1

eT

[←→
L (11)

]−1
·
←→
L (12). (35)

The connection of the Onsager’s coefficients with the mi-
croscopic dynamical variables is given by the Kubo’s linear
response theory. In the Appendix C 2 we show that for the
particle current operator

ĵ(ξ)(x) = ξvF |x〉σ〈x| , (36)

and the heat current operator

ĵ
(ξ)
Q (x) = ξvF(Ĥξ − µ) |x〉σ〈x| , (37)

given the thermal equilibrium density operator

ρ̂0 =
exp

[
−β
(
Ĥξ − µ

)]
Tr
[
exp

[
−β
(
Ĥξ − µ

)]] , (38)

the Onsager’s coefficients take the form[24]

L
(11)
αβ = −T

∫ ∞
0

dt e−s t
∫ β

0

dβ′ Tr
[
ρ̂0ĵα(−t− i~β′)ĵβ

]
,

(39a)

L
(12)
αβ = L

(21)
αβ

= −T
∫ ∞
0

dt e−s t
∫ β

0

dβ′ Tr
[
ρ̂0ĵQα(−t− i~β′)ĵβ

]
,

(39b)

L
(22)
αβ = −T

∫ ∞
0

dt e−s t
∫ β

0

dβ′ Tr
[
ρ̂0ĵQα(−t− i~β′)ĵQβ

]
.

(39c)

These expressions are reduced to a more explicit form by
introducing the spectral density function [12]

Aξ(x,x′;E)

= 2π
∑
λ

∫
d2k‖

(2π)2
Ψλ,k‖(x)⊗Ψ†λ,k‖(x

′)δ
(
E − Eλ,ξk‖

)
,

(40)

and its relationship with the retarded and advanced Green’s
functions:

Aλ,ξ(k‖;E) = i
[
〈Gλ,ξR (k‖;E)〉 − 〈Gλ,ξA (k‖;E)〉

]
, (41)

so that, for instance, the coefficient L(11)
αβ takes the form:

L
(11)
αβ (T ) = δαβ4π

(
~v2FT
(2π)

3

)∫ ∞
−∞

dE

(
−∂f0(E)

∂E

)
×
∫ ∞
0

dk‖〈Gλ,ξR (k‖;E)〉〈Gλ,ξA (k‖;E)〉
k‖ · k‖
k‖

.

(42)

where f0(E, T ) = (1 + exp[(E − µ)/kT ])
−1 is the Fermi-

Dirac distribution.
By following Ref. [12] (see Appendix C 3 for details) it is

possible to include vertex corrections to the formalism. For
that purpose, one of the k‖ factors is replaced by the vertex
correction ΓRA(k‖, E), that satisfies the Bethe-Salpeter equa-
tion (see Fig. 4):

ΓRA(k‖, E) = k‖

+ nimp

∫
d2k′‖
(2π)2

〈
Gλ,ξR (k′‖)

〉〈
Gλ,ξA (k′‖)

〉 ∣∣∣T̂ (λ,ξ)

k′‖k‖

∣∣∣2 ΓRA(k′‖, E),

(43)

where T̂ (λ,ξ)
k′‖k‖

is the T -matrix operator.
Therefore, when vertex corrections are incorporated then

Eq. (42) (as well as the other coefficients) is modified as

L
(11)
αβ (T ) = δαβ

~v2FT
2π2

∫ ∞
−∞

dE

(
−∂f0(E)

∂E

)
×
∫ ∞
0

dk‖

〈
Gλ,ξR (k‖)

〉〈
Gλ,ξA (k‖)

〉 k‖ · ΓRA(k‖, E)

k‖
,

(44)
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FIG. 4. The Bethe-Salpeter integral equation for the vertex function
ΓRA(k).

L
(12)
αβ (T )

= δαβ
~v2FT
2π2

∫ ∞
−∞

dE

(
−∂f0(E)

∂E

)
(E − µ)

×
∫ ∞
0

dk‖

〈
Gλ,ξR (k‖)

〉〈
Gλ,ξA (k‖)

〉 k‖ · ΓRA(k‖, E)

k‖
,

(45)

and

L
(22)
αβ (T )

= δαβ
~v2FT
2π2

∫ ∞
−∞

dE

(
−∂f0(E)

∂E

)
(E − µ)2

×
∫ ∞
0

dk‖

〈
Gλ,ξR (k‖)

〉〈
Gλ,ξA (k‖)

〉 k‖ · ΓRA(k‖, E)

k‖
.

(46)

Following Ref. [12], as is shown in Appendix C 3, by con-
sidering the general form ΓRA(k‖, E) = γ(k‖, E)k‖, the re-
laxation time can be introduced with the relation

γ(kF) =
τ1(kF)

τ1(kF)− τ(kF)
, (47)

where we defined (for cosφ′ = k‖ · k′‖/k2‖)

1

τ1(kF)

=
2πnimp

~

∫ d2k′‖

(2π)2

∣∣∣T (λ,ξ)
k′‖k‖

∣∣∣2 cosφ′ δ(~vFkF − ~vFk
′
‖).

(48)

so that, by following Ref. [12] the total transport relaxation
time is defined by

1

τtr(kF)
=

1

τ(kF)
− 1

τ1(kF)
(49)

=
2πnimp

~

∫
d2k′

(2π)2
δ(~vFkF − ~vFk

′)
∣∣∣T (λ,ξ)

k′‖k‖

∣∣∣2 (1− cosφ′),

which can be expressed in terms of the scattering phase shifts
δm(k) of Eq. (27) as

1

τtr(kF)
=

2nimpvF

kF

∞∑
m=−∞

sin2 [δm(kF)− δm−1(kF)] . (50)

With all these ingredients, as is computed in Ap-
pendixes C 4 and C 5, the electrical conductivity is

σxx(T ) = 4

(
e2

h

)
kFvF τtr(kF)

×
[
1 + 2

kBT

vF~kF
ln

(
1 + exp

[
−~kFvF

kBT

])]
,

(51)

and the thermal conductivity and the Seebeck coefficient are,
respectively, given by

καα(T ) = − 2~2

πkBT 2

(
kBT

~

)4

τtr(kF)

×
∑

λ,ξ=±1

3 Li3
(
−e

λξ~vFkF
kBT

)
+ 2

[
Li2
(
−e

λξ~vFkF
kBT

)]2
ln
(

1 + e
λξ~vFkF
kBT

)
 .
(52)

S(T ) =
1

eT

∑
λ,ξ

L
(12)(λ,ξ)
αα (T )

L
(11)(λ,ξ)
αα (T )

= −kB

e

∑
λ=±1

∑
ξ=±1

2λξLi2
(
−e

λξ~vFkF
kBT

)
ln
(

1 + e
λξ~vFkF
kBT

) +
~vFkF

kBT

 .

(53)

VI. RESULTS AND DISCUSSION

In the following, we set the Fermi velocity in graphene
as vF = 1016Ås−1, the chiral and band indexes as ξ = 1,
and λ = 1, and the distance between the TI surface and the
graphene monolayer as z0 = 1.42Å. As a function of the free
carrier density in grapgene nc, we obtain the Fermi kF, and the
Thomas-Fermi qTF wave-vectors as defined by Eq. (13) and
Eq. (14), respectively, and the corresponding Yukawa screen-
ing length l0 = q−1TF . Moreover, for a monovalent ionic im-
purity the charge Q = +e, all the magnetic permeabilities
are fixed to unity, and the relative dielectric permittivity ε2 is
taken as 6.9, corresponding to graphene for which we assume
θ2 = 0.

A. The role of the MEP θ1

To test the impact of the topological component, repre-
sented by the MEP parameter θ1, on the electromagnetic
coupling between the TI and the massless Dirac fermions
in graphene, we compute the electrical conductivity from
Eq. (51) for two different materials: TlBiSe2, and TbPO4.
Those materials are characterized by the parameters displayed
in Table I, where θ̃ ≡ αθ1/π.

Figure 5 shows the electrical conductivity in the graphene
monolayer (with a carrier density nc = 1012m−2) computed
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Material εr θ̃ Ref.
TlBiSe2 4 11α [25]
TbPO4 3.5 0.22 [26]

TABLE I. Material constants for TlBiSe2, and TbPO4.

from Eq. (51) when the TI slab is made of TlBiSe2. To elu-
cidate the impact of the topological MEP terms, we imple-
mented the cases θ̃ = 0 and θ̃ = 11α, as Table I indicates. As
can be noticed, the topological effects are negligible even for
low temperatures, where the residual conductivity is modified
just by a factor ∼ 0.01%.

FIG. 5. Electrical conductivity in the graphene monolayer σxx as
a function of temperature. Each curve corresponds to a TlBiSe2 TI
slab, with and without the contribution from the MEP term. The inset
is included to appreciate the small deviations at low-temperatures.
The impurity concentration is taken as nimp = 1012m−2.

When the carrier density is increased to nc = 1017m−2, the
picture doesn’t change: as is depicted in Fig. 6, the effect of
the topological MEP term remains small. Nevertheless, the
electrical conductivity remains essentially constant for tem-
peratures up to 300K, and therefore the (small) effects of the
topological MEP terms remain present at room temperature.
The same behavior is found for TbPO4, i.e., the effects of the
topological MEP θ-terms on the electrical conductivity remain
very small, on the order of 0.1%.

In order to understand the effects of the MEP terms, let us
analyze Fig. 3 where the panels are constructed for several
values of the Thomas-Fermi wavevector qTF and the MEP θ̃.
As can be appreciated, the topological effects are sensitive to
the value of qTF, which implies that the integration regions for
the Eqs. (25)-(27) need to be carefully fixed for each window
of parameters. For instance, Fig. 3 implies that the scalar po-
tential is negligible for ρ & 40a0. To have an insight into
these results in terms of the intrinsic graphene parameters, the
Thomas-Fermi wavevector qTF can be calculated as a function
of the corresponding free carrier density nc. Therefore, by
following Eq. (14) we choose the four cases

n(a)
c = 3.2 · 1013m−2, n(b)

c = 3.2× 1015m−2

n(c)
c = 3.2× 1017m−2, n(d)

c = 3.2× 1019m−2, (54)

where the super-indexes (a)-(d) correspond to the panels in
Figs. 3 (a)-(d), respectively. Note that despite the hierarchy

FIG. 6. Electrical conductivity in the graphene monolayer σxx
(scaled by a factor of 10−4) as a function of the dimensionless tem-
perature kBT/vF~kF. Each curve corresponds to a slab made of
TlBiSe2 with and without the contribution from the MEP. The inset
is included to appreciate the small deviations at low-temperatures,
and the arrows indicate the absolute temperature T = 300K. The
impurity concentration is taken as nimp = 1012m−2.

and deviations between the magnitude of the potential as a
function of θ̃ remain, for higher carrier densities the topolog-
ical effects contribute to a slower decay of the potential, that
then sustains finite values at longer distances (see Fig. 3-(d)).
Moreover, as seen in the same figure the potential develops a
second maxima, that can be attributed to the contribution aris-
ing from the MEP topological term. This effect implies that
the topological terms are comparatively less screened than the
trivial ones. Nevertheless, it is important to point out that the
state-of-the-art estimations for the value of θ̃ suggest that it is
small (see Table I). Hence, as Fig. 3 shows, the topological
contribution to the electromagnetic coupling can be neglected
unless the TI material satisfies θ > 137π. The later scenario
is shown Fig. 7 where we plot the electrical conductivity for
an hypothetical material with θ̃ = 3 and a dielectric constant
close to graphene. In this case, even at room temperature the
topological effects are considerable so that the electrical con-
duction in the sample is enhanced. Additionally, as in the case
of realistic MEP’s values, if the graphene carrier density is in-
creased, the topological effects can be differentiated from the
trivial ones up to room temperature. In contrast, for low nc,
the topological MEP terms induce appreciable deviations only
at low temperatures.

B. The role of ε1

An essential characteristic of the scalar potential of Eq. (15)
is its dependence on the dielectric constant through the κ fac-
tor in Eq. (6). In particular, by ignoring the topological param-
eters θ, the combination (ε2−ε1)/(ε2+ε1) can be understood
as an effective image charge located at the slab. Therefore, we
present the change in the conductivity as a function of this
image charge when the relative permittivity ε2 is fixed as the
graphene one.

Figure 8 shows the electrical conductivity σxx(k = kF)
computed from Eq. (51), as a function of temperature for
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FIG. 7. Graphene’s electrical conductivity σxx (scaled by a factor
of 10−6) as a function of the dimensionless temperature kBT/vF~kF.
Each curve corresponds to a slab made of an hypothetical material
with εHyp. ' εgraphene. The arrow indicates the absolute temperature
T = 300K. The impurity concentration is taken as nimp = 1012m−2.

Material εr Ref.
PbTe 414 [27, 28]

Bi2Te3 290 [29, 30]
PbSe 210 [31, 32]
PbS 169 [33, 34]

Bi2Se3 113 [30, 35]

TABLE II. Relative dielectric permittivity εr for several topological
insulators.

graphene when it is close to different TI materials. Here, due
to the results of Sec. VI A, we ignore the MEP θ. In order
to reproduce the curves for actual materials, we follow the
data of Table II where the relative permittivities of the TIs are
presented. As can be noticed, at higher TI permittivities the
electrical conductivity decreases, consistent with the presence
of a strong image charge that considerably modifies the free
carrier mobility in graphene.

FIG. 8. Electrical conductivity of graphene σxx as a function of tem-
perature for nc = 1012m−2. Each curve corresponds to different
materials for the slab. The relative permittivity ε1 of each TI is shown
in Table II. The arrow points the direction in which ε1 increases. The
impurity concentration is taken as nimp = 1012m−2.

A similar situation is found when the slab material is

Material εr Ref.
Si 11.9 [36, 37]

GaAs 13.18 [38, 39]
InSb 17.6 [40, 41]

TABLE III. Relative dielectric permittivity εr for several semicon-
ductors.

FIG. 9. Electrical conductivity of graphene as a function of tempera-
ture. Each curve corresponds to different materials for the slab. The
relative permittivity of the materials is shown in Table II. The arrow
points the direction in which ε1 increases. The impurity concentra-
tion is taken as nimp = 1012m−2.

FIG. 10. Electrical conductivity of graphene σxx (scaled by a factor
of 10−4) as a function of the dimensionless temperature kBT/vF~kF

for nc = 1017m−2. Each curve corresponds to different materials
for the slab. The relative permittivity ε1 of each TI is shown in Ta-
ble II. The thick and thin arrows indicate the absolute temperature
T = 300K and the direction in which ε1 increases, respectively. The
impurity concentration is taken as nimp = 1012m−2.

changed to a normal semiconductor (Si, GaAs, and InSb),
as is shown in Fig. 9. Such behavior supports the idea of
the screening effect due to the image charge on the scattered
fermions. In fact, note that for the selected semiconductors,
the graphene’s conductivity is high compared with the case
when the slab is made of a TI. This is because the former ma-
terials possess small relative permittivities (see Table III) in
contrast with the latter ones that have εr of one order of mag-
nitude higher.

As may be expected, the carrier density in graphene also
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FIG. 11. Electrical resistivity of graphene as a function of temper-
ature and the ionized impurity concentration nimp. Here is assumed
that graphene is close to a Bi2Te3 slab.

modifies its electrical conductivity. For instance, Fig. 10
shows σxx for a carrier concentration of nc = 1017m−2 when
the slab is build of different TIs. Again, the screening effects
on the image charge are presented in the scattering process so
that the conductivity decreases for higher εr. Nevertheless,
the electrical conductivity remains constant up to room tem-
perature, a feature that may be used for several applications.

Finally, Fig. 11 displays the electrical resistivity ρxx ≡ σ−1xx
for graphene when the slab is made up of Bi2Te3, as a function
of the impurity concentration nimp. Clearly, the conductiv-
ity increases when there are fewer ions inserted in graphene,
given that the fermions have a larger free mean path, as can
be directly appreciated from Eq. (50) where the transport re-
laxation time is clearly inversely proportional to the impurity
concentration nimp.

VII. SUMMARY AND CONCLUSIONS

In this work, we studied the electromagnetic coupling in a
hetero-structure made of a TI slab in contact with a graphene
monolayer, the later with a diluted concentration of ionized
impurities. By taking into account the topologically non-
trivial response due to the presence of the MEP terms in the
TI, we studied the configuration of the local electromagnetic
fields, including the effects of the image charges and the elec-
tronic screening due to the presence of the ionized impurities
in graphene. As a probe for this electromagnetic coupling,
we used Kubo’s linear response formalism to calculate the
electrical conductivity at finite temperature in graphene under
this configuration. To test this theory in a reallistic scenario,
we evaluated our analytical formulas for the characteristic pa-
rameters of several TI materials. Our result suggest that the
contribution to the conductivity arising from the topologically
non-trivial MEP terms are in general small, except at very low
temperatures and large carrier densities in the graphene mono-
layer. On the other hand, it was also shown that the difference
between the dielectric constants, expressed by the combina-
tion (ε2 − ε1) / (ε2 + ε1) possesses an important role at de-
termining the overall magnitude of the electrical conductivity,

as can be inferred from our analytical theory since it repre-
sents the magnitude of an effective image charge located at
the TI slab. We tested this effect by considering the realis-
tic parameters for several different TI materials (Table II), in-
cluding also for comparison the coupling with a few common
semiconductors Si, GaAs and InSb (see Fig. 9). In all those
cases, the important effect of the relative dielectric permittiv-
ity of the slab material on the electrical conductivity of the
coupled graphene monolayer is verified. This rather robust
effect suggest a mechanism to control and modulate the elec-
tronic transport properties in this type of hetero-structures.
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Appendix A: Calculation of the electromagnetic potentials

In Section II we presented a detailed derivation of the
electromagnetic response of the TI material, as expressed by
Eq. (15) for the scalar potential and Eq. (17) for the vector
potential, respectively.

The scalar potential is given by Eq. (4) with the charge den-
sity of Eq. (10), i.e. Φ(r) =

∫
G(r, r′) ρY(r′) d3r′. After per-

forming the integration over the Dirac’s deltas associated with
the localized ionized impurity and the screening cloud at the
graphene monolayer (located at z = z0), we obtain

Φ(ρ) =
Q

4πε1

(
1

ρ
+

κ√
ρ2 + (2z0)2

)

− 1

4πε1

Q

2πl0

∫ (
1√

(x− x′)2 + (y − y′)2

+
κ√

(x− x′)2 + (y − y′)2 + (2z0)2

)
e−ρ

′/l0

ρ′
d2r′,

(A1)

where ρ′ =
√
x′ 2 + y′ 2. This expression suggests the defini-

tion of the generic integrals (for j = 0, 1)

Ij(ρ) =
1

2πl0

∫
d2r′

e−ρ
′/l0

ρ′
√

(x− x′)2 + (y − y′)2 + (2jz0)2
,

(A2)

such that the scalar potential contains both I0 and I1. To eval-
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uate these integrals, we use the expansion:

1√
(x− x′)2 + (y − y′)2 + (2jz0)2

=

+∞∑
m=−∞

∫ ∞
0

dk eim(ϕ−ϕ′)Jm(kρ)Jm(kρ′)e−k(2jz0),

(A3)

so that

Ij(ρ) =
1

2πl0

+∞∑
m=−∞

∫ ∞
0

dk Jm(kρ) e−k(2jz0)

×
∫ 2π

0

dϕ′ eim(ϕ−ϕ′)
∫ ∞
0

dρ′ Jm(kρ′) e−ρ
′/l0 .

(A4)

The angular integration yields 2πδm0. Therefore

Ij(ρ) =
1

l0

∫ ∞
0

dk J0(kρ)e−k(2jz0)
∫ ∞
0

dρ′ J0(kρ′)e−ρ
′/l0 .

(A5)

Now, using the integral formula

∫ ∞
0

dx e−αxJν(βx) =
β−ν

[√
α2 + β2 − α

]ν
√
α2 + β2

, (A6)

for Re(α± iβ) > 0 and Re ν > −1, we obtain

Ij(ρ) =

∫ ∞
0

dk
J0(kρ)√
1 + (kl0)2

e−k(2jz0). (A7)

The case j = 0 has a closed form expression:

I0(ρ) =

∫ ∞
0

dk
J0(kρ)√
1 + (kl0)2

=
1

l0
I0(ρ/2l0)K0(ρ/2l0),

(A8)

where In(z) and Kn(z) are the modified Bessel functions of
the first and second kind, respectively. The case j = 1 can not
be expressed in terms of simple functions, but it can easily be
evaluated numerically. All in all, the above results fully pro-
vide the scalar potential of Eq. (15). For later use we further
define the functions (for j = 0, 1, respectively)

Λ
(ν)
j (ρ) =

∫ ∞
0

dk
Jν(kρ)√
1 + (kl0)2

e−k(2jz0), (A9)

such that Λ
(0)
j (ρ) = Ij(ρ).

We now turn to the evaluation of the vector potential, which
is given by Eq. (7) with the charge density of Eq. (10), i.e.
A(r) =

∫
G(r, r′) ρY(r′) d3r′. To this end, we use the fol-

lowing integral identity [17]:

R

R2

[
1− z + z′√

R2 + (z + z′)2

]

=
1

2πi

∫
k

k2
e−k(z+z

′)eik·Rd2k

= − 1

2π
∇⊥

∫
1

k2
e−k(z+z

′)eik·R d2k, (A10)

where ∇⊥ = êx∂x + êy∂y is the gradient in the transverse
coordinates and R ≡ ρ−ρ′ = (x−x′)êx+(y−y′)êy . Using
this result, the vector Green’s function (8) can be expressed as

G(r, r′) = −µ1g

8π2
êz ×∇⊥

∫
1

k2
e−k(z+z

′)eik·R d2k,

(A11)

such that the vector potential becomes

A(r) = −µ1g

8π2
êz ×∇⊥

∫
d2k

k2
eik·ρ e−kz

∫
d3r′ ρY(r′) e−ik·ρ

′
e−kz

′
. (A12)

Substituting the charge density distribution Eq. (10), and performing the integrals involving the Dirac deltas we obtain

A(r) = −µ1Qg

8π2
êz ×∇⊥

∫
d2k

k2
eik·ρ e−k(z+z0)

[
1− 1

l0

∫ ∞
0

dρ′ J0(kρ′) e−ρ
′/l0

]
. (A13)

The integral in ρ′ can be easily evaluated by using the formula (A6). To evaluate this integral we introduce polar coordinates
such that k · ρ = kρ cosϕ. Performing the angular integration we obtain

A(r) = −µ1Qg

4π
êz ×∇⊥

∫
dk

k
J0(kρ) e−k(z+z0)

[
1− 1√

1 + (kl0)2

]
. (A14)
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Finally, taking the gradient, −∇⊥J0(kρ) = k êρJ1(kρ), and using that êz × êρ = êφ, one finds

A(r) =
µ1Qg

4π
êφ

∫ ∞
0

dk J1(kρ) e−2kz0

[
1− 1√

1 + (kl0)2

]
. (A15)

The first integral can be evaluated by using the integral formula (A6) and yields the Schwinger vector potential for a magnetic
monopole at the image point −z0. It corresponds to the first term in Eq. (17). The second term can not be expressed in terms of
simple functions, however it corresponds to the function Λ

(1)
1 (ρ), defined by Eq. (A9). On the whole we get the expression (17)

for the vector potential.

Appendix B: The scattered states

1. The Lippman-Schwinger equation and free Green’s
function

In this section, we shall closely follow the formalism pre-
sented in Ref. [12]. In the elastic scattering theory, we look
for spinor solutions |Ψµ,k〉 of the total Hamiltonian of Eq. (19)
with the same energy as in Eq. (21). That solution is given by
the well known Lippmann-Schwinger equation

|Ψk,µ〉 = |Φk,µ〉+ ĜξR,0(E)Ĥξ
1 |Ψk,µ〉 , (B1)

where the Green’s operator ĜξR,0(E) or resolvent is given by

ĜξR,0(E) =
1

E − Ĥξ
0 + iη+

, (B2)

where the positive sign for the regulator iη+ defines the re-
tarded Green’s function, which in turn produces outgoing
spherical waves from the scattering center. Moreover, the ad-
vanced Green’s function is defined as

ĜξA,0(E) =
[
ĜξR,0(E)

]†
, (B3)

and using the explicit form of the resolvent of Eq. (B2) we
have a relation between the retarded and the advanced GFs

ĜξR,0(E)− ĜξA,0(E) = −2πiδ
(
E − Ĥξ

0

)
. (B4)

The resolvent in Eq. (B2) is the solution to the equation(
E + iη+ − Ĥξ

0

)
ĜξR,0(E) = Î . (B5)

At this point we introduce the T̂ matrix as usual

T̂ ξ(E) |Φk,µ〉 = Ĥξ
1 |Ψk,µ〉 , (B6)

so that the Lippmann-Schwinger equation becomes

|Ψk,µ〉 =
(
Î + ĜξR,0(E)T̂ ξ(E)

)
|Φk,µ〉 . (B7)

Inserting Eq. (B7) into Eq. (B6), and solving for the T̂ -
matrix operator, we find the formal expression

T̂ ξ(E) = Ĥξ
1

(
Î − ĜξR,0(E)Ĥξ

1

)−1
. (B8)

We are also interested in the total retarded Green’s function,
which is the solution to the equation(

E + iη+ − Ĥξ
)
ĜξR(E) = Î , (B9)

where Ĥξ = Ĥξ
0 + Ĥξ

1 is the full Hamiltonian. The last equa-
tion can be transformed into a self-consistent relation(

E + iη+ − Ĥξ
0

)
ĜξR(E) = Î + Ĥξ

1 Ĝ
ξ
R(E), (B10)

and making use of Eq. (B5) we have

ĜξR(E) = ĜξR,0(E) + ĜξR,0(E)Ĥξ
1 Ĝ

ξ
R(E). (B11)

The formal solution of this equation is

ĜξR(E) =
[
Î − ĜξR,0(E)Ĥξ

1

]−1
ĜξR,0(E), (B12)

that combined with Eq. (B8) leads to the identity

Ĥξ
1 Ĝ

ξ
R(E) = T̂ ξ(E)ĜξR,0(E). (B13)

Then, the complete retarded GF is given by

ĜξR(E) = ĜξR,0(E) + ĜξR,0(E)T̂ ξ(E)ĜξR,0(E), (B14)

and hence one can show that the T -matrix itself satisfies a
self-consistent equation of the form

T̂ ξ(E) = Ĥξ
1 + Ĥξ

1 Ĝ
ξ
R,0(E)T̂ ξ(E). (B15)

From the latter it follows that

T̂ ξ(E)−
[
T̂ ξ(E)

]†
=
[
T̂ ξ(E)

]† (
ĜξR(E)− ĜξA(E)

)
T̂ ξ(E),

(B16)
and using the Eq. (B4) we get an useful expression:

T̂ ξ(E)−
[
T̂ ξ(E)

]†
= −2πi

[
T̂ ξ(E)

]†
δ
(
E − Ĥξ

0

)
T̂ ξ(E).

(B17)
The form for the retarded Green’s function matrix in the

coordinates representation is [12]
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Gξ
R,0 (x,x′; k) = −λξik

4~vF

[
H

(1)
0 (k|x− x′|) iλe−iϕH

(1)
1 (k|x− x′|)

iλeiϕH
(1)
1 (k|x− x′|) H

(1)
0 (k|x− x′|)

]
, (B18)

FIG. 12. Triangle used for the application of the addition theorem
for the Bessel functions.

where ϕ is the angle of the vector x− x′ w.r.t. the x axis. We
want to expand this matrix Green´s function in polar coordi-
nates. In order to do it, we use the addition theorem for Bessel
functions [42]

e±iνψZν(λR) =

∞∑
m=−∞

Zν+m(λr2)Jm(λr1)e±imθ, (B19)

where Zν is any of the Bessel functions Jν , Yν ,H(1)
ν , orH(2)

ν .
The quantities r1, r2, R are given by x, x′ and |x − x′|, re-
spectively. Moreover, the angles θ and ψ are defined in the
triangle of Fig. 12, from which

ϕ = 2π + φ− ψ. (B20)

Let us write the Green’s function as:

Gξ
R,0 (x,x′; k) = −λξik

4~vF

[
G11 G12

G21 G22

]
, (B21)

so that by using

H
(1)
0 (k|x− x′|) =

∞∑
m=−∞

H(1)
m (kr)Jm(kr′)eim(φ′−φ)

=

∞∑
m=−∞

H
(1)
−m(kr)J−m(kr′)e−im(φ′−φ),

(B22)

the components G11, and G22 are obtained by shifting m
Eq. (B22) as m → −m and m → m + 1, respectively. The
latter, together with the Bessel function’s properties yields

G11 =

∞∑
m=−∞

H(1)
m (kr)Jm(kr′)eim(φ−φ′), (B23)

and

G12 =

∞∑
m=−∞

H
(1)
m+1(kr)Jm+1(kr′)ei(m+1)(φ−φ′).

(B24)

On the other hand:

G21 = iλeiϕH
(1)
1 (k|x− x′|)

= iλei(2π+φ−ψ)H
(1)
1 (k|x− x′|)

= iλeiφe−iψH
(1)
1 (k|x− x′|)

= iλeiφ
∞∑

m=−∞
H

(1)
m+1(kr)Jm(kr′)e−im(φ′−φ)

= iλ

∞∑
m=−∞

H
(1)
m+1(kr)Jm(kr′)eiφeim(φ−φ′). (B25)

and

G12 = iλe−iϕH
(1)
1 (k|x− x′|)

= iλe−i(2π+φ−ψ)H
(1)
1 (k|x− x′|)

= iλe−iφ
∞∑

m=−∞
H

(1)
m+1(kr)Jm(kr′)eim(φ′−φ)

= iλ

∞∑
m=−∞

H
(1)
−m(kr)J−m−1(kr′)e−iφe−i(−m−1)(φ−φ

′)

= −iλ

∞∑
m=−∞

H(1)
m (kr)Jm+1(kr′)e−iφ

′
eim(φ−φ′),

(B26)

where in the last step we shifted m→ −m− 1.
Then, if we consider that r < r′
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Gξ
R,0 (x,x′; k) = −λξik

4~vF

∑
m∈Z

[
Jm(kr<)H

(1)
m (kr>)eim(φ−φ′) −iλJm+1(kr<)H

(1)
m (kr>)e−iφ

′
eim(φ−φ′)

iλJm(kr<)H
(1)
m+1(kr>)eiφeim(φ−φ′) Jm+1(kr<)H

(1)
m+1(kr>)ei(m+1)(φ−φ′)

]
, (B27)

where r> (r<) is the greater (lower) between r and r′.

2. The radial integral equation

Now, representing the Lippmann-Schwinger Eq. (B1) in the
coordinate basis we have

〈x|Ψk,λ〉 = 〈x|Φk,λ〉

+

∫
R2

d2x′Gξ
R,0 (x,x′; k) Hξ

1(x′) 〈x′|Ψk,λ〉 ,

(B28)

where 〈x|Ψk,λ〉 is given in Eq. (24), 〈x|Φk,λ〉 is the free
spinor of Eq. (23), Gξ

R,0 (x,x′; k) is the matrix Green’s func-
tion given in Eq. (B27), and the matrix form of the operator

representing the interaction with the external fields Hξ
1 is

Hξ
1(x) = −ξqvFσ · êφA(r) + qΦ(r)σ0, (B29)

where the scalar potential Φ(r) is given in Eq. (15), the mag-
nitude of the vector potential A(r) = êφA(r) is given in
Eq. (17), σ0 is the 2× 2 unit matrix and

σ · êφ =

[
0 −ie−iφ

ieiφ 0

]
. (B30)

Then, we have

Hξ
1(x) =

[
qΦ(r) iq−iφξqvFA(r)

−iqiφξqvFA(r) qΦ(r)

]
. (B31)

After we make all the replacements, we can extract the ra-
dial part to obtain the radial integral equation. For r < a the
final result can be written as

[
fm(r)
gm(r)

]
=

[
Jm(kr)
Jm+1(kr)

]
− λξiπk

2~vF

∫ r

0

dr′r′
[
Jm(kr′)H

(1)
m (kr) Jm+1(kr′)H

(1)
m (kr)

Jm(kr′)H
(1)
m+1(kr) Jm+1(kr′)H

(1)
m+1(kr)

] [
eΦ(r′) −λξqvFA(r′)

−λξqvFA(r′) eΦ(r′)

] [
fm(r′)
gm(r′)

]

− λξiπk

2~vF

∫ a

r

dr′r′
[
Jm(kr)H

(1)
m (kr′) Jm+1(kr)H

(1)
m (kr′)

Jm(kr)H
(1)
m+1(kr′) Jm+1(kr)H

(1)
m+1(kr′)

] [
eΦ(r′) −λξqvFA(r′)

−λξqvFA(r′) eΦ(r′)

] [
fm(r′)
gm(r′)

]
. (B32)

and for r > a we have[
fm(r)
gm(r)

]
=

[
Jm(kr)
Jm+1(kr)

]
− λξiπk

2~vF

∫ a

0

dr′r′
[
Jm(kr′)H

(1)
m (kr) Jm+1(kr′)H

(1)
m (kr)

Jm(kr′)H
(1)
m+1(kr) Jm+1(kr′)H

(1)
m+1(kr)

] [
eΦ(r′) −λξevFA(r′)

−λξevFA(r′) eΦ(r′)

] [
fm(r′)
gm(r′)

]
.

(B33)

Finally, in order to obtain asymptotic eigenstates, we ex-
pand the Bessel’s functions when x→∞ as follows:

Jν(x)→
√

1

2πx

[
ei(x−

νπ
2 −

π
4 ) + e−i(x−

νπ
2 −

π
4 )
]
,

H(1)
ν (x)→

√
2

πx
ei(x−

νπ
2 −

π
4 ). (B34)

Then[
Jm(kr)
Jm+1(kr)

]
→
√

2

πkr

∑
s=±1

[
1
∓is

]
e±is(kr−

mπ
2 −

π
4 ),

(B35)

and

[
Jm(kr′)H

(1)
m (kr) Jm+1(kr′)H

(1)
m (kr)

Jm(kr′)H
(1)
m+1(kr) Jm+1(kr′)H

(1)
m+1(kr)

]

→
√

2

πk

[
1
−i

] [
Jm(kr′) Jm+1(kr′)

] ei(kr−mπ2 −π4 )
√
r

.

(B36)

so that after replacing in Eq. (B33), we obtain the result shown
in Eq. (27).
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Appendix C: The transport coefficients

In this section, we shall present the mathematical details
involved in the calculation of the electronic transport coeffi-
cients, in particular the electrical conductivity, leading to the
results presented in the main body of the article.

1. The Onsager’s coefficients

In order to compute the microscopic transport coefficients,
let us start by defining the quantum operators representing the
particle, energy and heat currents, respectively:

ĵ =
∑
pσ

vpn̂pσ, (C1)

ĵE =
∑
pσ

vpEpσn̂pσ, (C2)

ĵQ =
∑
pσ

vp (Epσ − µ) n̂pσ, (C3)

where for a particle with momentum p and spin σ, we iden-
tify Epσ as the particle’s energy, vp = −∇pEpσ as the group
velocity at momentum p, n̂pσ as the particle number density
operator, and µ as the chemical potential of the system. The
corresponding observed macroscopic currents are given by the
ensemble average of the above operators, i.e.,

J =
〈
ĵ
〉
, (C4a)

JE =
〈
ĵE

〉
, (C4b)

JQ =
〈
ĵQ

〉
. (C4c)

Now, let us introduce the Onsager’s coefficients L
(ij)
αβ

through the relations linking the currents with the gradients
in temperature and electro-chemical potential [23]

Jα = − 1

T
L
(11)
αβ ∇β (µ+ eV ) + L

(12)
αβ ∇β

(
1

T

)
, (C5a)

JQα = − 1

T
L
(21)
αβ ∇β (µ+ eV ) + L

(22)
αβ ∇β

(
1

T

)
, (C5b)

which in tensor notation take the form

J = − 1

T

←→
L (11) · ∇ (µ+ eV ) +

←→
L (12) · ∇

(
1

T

)
, (C6a)

JQ = − 1

T

←→
L (21) · ∇ (µ+ eV ) +

←→
L (22) · ∇

(
1

T

)
. (C6b)

The above tensors are directly related to the transport co-
efficients, as can be shown by exploring different limits[23].
First, note that for∇T = 0 and∇µ = 0, the current is purely
electric. Therefore:

eJ = − 1

T

←→
L (11) · ∇

(
e2V

)
=←→σ · (−∇V ) , (C7)

and the electrical conductivity tensor is given by

←→σ =
e2

T

←→
L (11). (C8)

The same procedure is applied to find the thermal conduc-
tivity, which is given by the condition J = 0. Thus, from
Eq. (C6a) we have

0 = − 1

T

←→
L (11) · ∇ (µ+ eV ) +

←→
L (12) · ∇

(
1

T

)
, (C9)

and solving we obtain

1

T
∇ (µ+ eV ) =

[←→
L (11)

]−1
·
←→
L (12) · ∇

(
1

T

)
. (C10)

By substituting in Eq. (C6b) we have

JQ = −
←→
L (21) ·

[←→
L (11)

]−1
·
←→
L (12) · ∇

(
1

T

)
+
←→
L (22) · ∇

(
1

T

)
= − 1

T 2

(
←→
L (22) −

←→
L (21) ·

[←→
L (11)

]−1
·
←→
L (12)

)
· ∇T.

(C11)

Then, the thermal conductivity tensor is

←→κ =
1

T 2

(
←→
L (22) −

←→
L (21) ·

[←→
L (11)

]−1
·
←→
L (12)

)
,

(C12)
and the Seebeck coefficient (thermopower) is given by

S =
1

eT

[←→
L (11)

]−1
·
←→
L (12). (C13)

2. The Linear Response Regime

To express the Onsager’s coefficients in terms of dynami-
cal variables, we apply the Kubo formalism within the linear
response regime. For that sake, we express the entropy pro-
duction rate as[23]

dQ

dt
= T

∂S

∂t

= −J · ∇ (µ+ eV ) + T JQ · ∇
(

1

T

)
= T

∑
i

Ji ·Xi

≡ ∂

∂t
F (t), (C14)

where J1 = J, J2 = JQ, and

X1 = − 1

T
∇ (µ+ eV ) ,

X2 = ∇
(

1

T

)
.

(C15)
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We know that the Kubo’s formula is given by[24]

Ji = −
∫ ∞
0

dt e−s t
∫ β

0

dβ′ Tr
[
ρ̂0
∂

∂t
F (−t− i ~β′)̂ji(x)

]
,

(C16)
where s is a positive quantity that guarantees the adiabatic
switching-on of the perturbation, so that at the end of the cal-
culation, we take the limit s → 0. When inserting Eq. (C14)
into Eq. (C16), we have

Ji = −TL

{∫ β

0

dβ′ Tr

[
ρ̂0

(∑
k

ĵk(−t− i~β′) ·Xk

)
ĵi(x)

]}
,

(C17)

with L{·} the Laplace’s transform in the variable s:

L{f(t)} =

∫ ∞
0

dt e−stf(t). (C18)

Then,

L
(11)
αβ = −TL

{∫ β

0

dβ′ Tr
[
ρ̂0ĵα(−t− i~β′)ĵβ

]}
,

(C19a)

L
(12)
αβ = L

(21)
αβ = −TL

{∫ β

0

dβ′ Tr
[
ρ̂0ĵQα(−t− i~β′)ĵβ

]}
,

(C19b)

L
(22)
αβ = −TL

{∫ β

0

dβ′ Tr
[
ρ̂0ĵQα(−t− i~β′)ĵQβ

]}
.

(C19c)

To compute the traces, we define the current operator by

ĵ(ξ)(x) = ξvF |x〉σ〈x| , (C20)

the heat current operator

ĵ
(ξ)
Q (x) = ξvF(Ĥξ − µ) |x〉σ〈x| , (C21)

and the equilibrium density operator

ρ̂0 =
exp

[
−β
(
Ĥξ − µ

)]
Z(β, V, µ)

, (C22)

where Z(β, V, µ) = Tr exp
[
−β
(
Ĥξ − µ

)]
is the grand-

canonical partition function. Here, Ĥξ is the Dirac Hamil-
tonian with chirality ξ and Fermi’s velocity vF.

We start with Eq. (C19a) and take the trace in the complete
and orthonormal basis

{∣∣Ψλ,k‖

〉}
of the total Hamiltonian,

such that

Ĥξ
∣∣Ψλ,k‖

〉
= Eλ,ξk‖

∣∣Ψλ,k‖

〉
, (C23)

from which
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L
(11)
αβ (x,x′) = −TL

{∫ β

0

dβ′ Tr
[
ρ̂0ĵα(x,−t− i~β′)ĵβ(x′, 0)

]}

= −TL

{∫ β

0

dβ′ Tr
[
ρ̂0e

i(−t−i~β′)Ĥξ/~ĵα(x)ei(t+i~β′)Ĥξ/~ĵβ(x′)
]}

= −TL

{∫ β

0

dβ′
∑
λ,λ′

∫
d2k‖

(2π)2

∫ d2k′‖

(2π)2

×
〈

Ψλ,k‖

∣∣∣ρ̂0ei(−t−i~β′)Ĥξ/~ĵα(x)ei(t+i~β′)Ĥξ/~
∣∣∣Ψλ′,k′‖

〉〈
Ψλ′,k′‖

∣∣∣ĵβ(x′)
∣∣∣Ψλ,k‖

〉}

= −T
∑
λ,λ′

∫
d2k‖

(2π)2

∫ d2k′‖

(2π)2

∫ ∞
0

dt e
−
[
i

(
Eλ,ξk‖
−Eλ

′,ξ
k′‖

)
/~+s

]
t
∫ β

0

dβ′e

(
Eλ,ξk‖
−Eλ

′,ξ
k′‖

)
β′

× ρ0
(
Eλ,ξk‖

)〈
Ψλ,k‖

∣∣∣ĵα(x)
∣∣∣Ψλ′,k′‖

〉〈
Ψλ′,k′‖

∣∣∣ĵβ(x′)
∣∣∣Ψλ,k‖

〉
= −T

∑
λ,λ′

∫
d2k‖

(2π)2

∫ d2k′‖

(2π)2
−1

−
[
i
(
Eλ,ξk‖
− Eλ′,ξk′‖

)
/~ + s

] e
(
Eλ,ξk‖
−Eλ

′,ξ
k′‖

)
β
− 1(

Eλ,ξk‖
− Eλ′,ξk′‖

)
× e
−β

(
Eλ,ξk‖
−µ

)
Z

〈
Ψλ,k‖

∣∣∣ĵα(x)
∣∣∣Ψλ′,k′‖

〉〈
Ψλ′,k′‖

∣∣∣ĵβ(x′)
∣∣∣Ψλ,k‖

〉
. (C24)

Rearranging terms:

L
(11)
αβ (x,x′) = −~T

∑
λ,λ′

∫
d2k‖

(2π)2

∫ d2k′‖

(2π)2

−i
(
Eλ,ξk‖
− Eλ

′,ξ
k′‖

)
+ ~ s(

Eλ,ξk‖
− Eλ′,ξk′‖

)2
+ ~2s2


ρ0

(
Eλ,ξk‖

)
− ρ0

(
Eλ
′,ξ

k′‖

)
(
Eλ,ξk‖
− Eλ′,ξk′‖

)


×
〈

Ψλ,k‖

∣∣∣ĵα(x)
∣∣∣Ψλ′,k′‖

〉〈
Ψλ′,k′‖

∣∣∣ĵβ(x′)
∣∣∣Ψλ,k‖

〉
. (C25)

Note that the first term in the numerator of the first square bracket

−i
(
Eλ,ξk‖
− Eλ

′,ξ
k′‖

)
(
Eλ,ξk‖
− Eλ′,ξk′‖

)2
+ ~2s2

ρ0
(
Eλ,ξk‖

)
− ρ0

(
Eλ
′,ξ

k′‖

)
(
Eλ,ξk‖
− Eλ′,ξk′‖

)
 = −i

ρ0

(
Eλ,ξk‖

)
− ρ0

(
Eλ
′,ξ

k′‖

)
(
Eλ,ξk‖
− Eλ′,ξk′‖

)2
+ ~2s2

(C26)

is odd in the integration variables, and therefore, has zero con-
tribution. As expected, no imaginary part survives. For the
real part, we use

lim
s→0+

~ s(
Eλ,ξk‖
− Eλ′,ξk′‖

)2
+ ~2s2

= πδ
(
Eλ,ξk‖
− Eλ

′,ξ
k′‖

)
,

(C27)
so that for the term in the second square bracketρ0

(
Eλ,ξk‖

)
− ρ0

(
Eλ
′,ξ

k′‖

)
(
Eλ,ξk‖
− Eλ′,ξk′‖

)
 δ (Eλ,ξk‖

− Eλ
′,ξ

k′‖

)
=
∂f0(E)

∂E

∣∣∣∣
E=Eλ,ξk‖

δ
(
Eλ,ξk‖
− Eλ

′,ξ
k′‖

)
, (C28)

where f0(E, T ) = (1 + exp[(E − µ) /kBT ])
−1 is the Fermi-

Dirac distribution. Then

L
(11)
αβ (x,x′) = −π~v2FT

×
∑
λ,λ′

∫
d2k‖

(2π)2

∫ d2k′‖

(2π)2
∂f0(E)

∂E

∣∣∣∣
E=Eλ,ξk‖

δ
(
Eλ,ξk‖
− Eλ

′,ξ
k′‖

)
×Ψ†λ,k‖(x)σαΨλ′,k′‖(x)Ψ†λ′,k′‖(x

′)σβΨλ,k‖(x
′), (C29)

where we have used the representation of the current operator
in Eq. (C20). On the other hand, we know that

Ψ†λ,k‖(x)σαΨλ′,k′‖(x)Ψ†λ′,k′‖(x
′)σβΨλ,k‖(x

′)

= Tr
[
σαΨλ′,k′‖(x)⊗Ψ†λ′,k′‖(x

′)σβΨλ,k‖(x
′)⊗Ψ†λ,k‖(x)

]
,

(C30)
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and by defining the spectral functionAξ(x,x′;E):

Aξ(x,x′;E)

= 2π
∑
λ

∫
d2k‖

(2π)2
Ψλ,k‖(x)⊗Ψ†λ,k‖(x

′)δ
(
E − Eλ,ξk‖

)
,

(C31)

together with the identity∫
d3k

(2π)3

∑
λ

g
(
Eλ,ξk‖

)
Ψλ,k‖(x)⊗Ψ†λ,k‖(x

′)

=

∫ ∞
−∞

dE

2π
Aξ(x,x′;E)g (E) , (C32)

we arrive at the result

L
(11)
αβ (x,x′)

= −~v2FT
2π

∫ ∞
−∞

dE
∂f0(E)

∂E
Tr
[
σαAξ(x,x′;E)σβAξ(x′,x;E)

]
,

(C33)

where an additional factor of 2 comes from the spin degener-
acy.

The other Onsager’s coefficients are obtained by the same
fashion, so that:

L
(12)
αβ (x,x′) = L

(21)
αβ (x,x′)

= −~v2FT
2π

∫ ∞
−∞

dE
∂f0(E)

∂E
(E − µ)

× Tr
[
σαAξ(x,x′;E)σβAξ(x′,x;E)

]
, (C34)

and

L
(22)
αβ (x,x′) = −~v2FT

2π

∫ ∞
−∞

dE
∂f0(E)

∂E
(E − µ)2

× Tr
[
σαAξ(x,x′;E)σβAξ(x′,x;E)

]
.

(C35)

Let us work on the spectral function. Its coordinate repre-
sentation is given by

Aξ(x,x′;E)

=

∫
d2k‖

(2π)2
eik‖·(x−x

′)
∑
λ

(
σ0 + λ

σ · k‖
|k‖|

)
Aλ,ξ(k‖;E),

(C36)

so that by inserting Eqs. (C33)-(C35) we have

L
(11)
αβ (x,x′) =

∫
d2q‖

(2π)2
eiq‖·(x−x

′)

×
(
~v2FT

2π

)∫ ∞
−∞

dE

(
−∂f0(E)

∂E

)
×
∫

d2k‖

(2π)2
Tr
[
σαAξ(k‖ + q‖;E)σβAξ(k‖;E)

]
=

∫
d2q‖

(2π)2
eiq‖·(x−x

′)L
(11)
αβ (q‖;T ). (C37)

Without loss of generality, we will define the Onsager’s co-
efficients in the limit q‖ → 0. Then:

L
(11)
αβ (T ) = lim

q‖→0
L
(11)
αβ (q‖;T )

=

(
~v2FT

2π

)∫ ∞
−∞

dE

(
−∂f0(E)

∂E

)
×
∫

d2k‖

(2π)2
Aλ,ξ(k‖;E)Aλ,ξ(k‖;E)

× Tr
[
σα

(
σ0 + λ

σ · k‖
k‖

)
σβ

(
σ0 + λ

σ · k‖
k‖

)]
.

(C38)

From the SU(2) algebra, we can readily obtain the trace

Tr
[
σα

(
σ0 + λ

σ · k‖
k‖

)
σβ

(
σ0 + λ

σ · k‖
k‖

)]
= 4

kαkβ
k2‖

,

(C39)

and hence we have

L
(11)
αβ (T ) = 4

(
~v2FT

2π

)∫ ∞
−∞

dE

(
−∂f0(E)

∂E

)
×
∫

d2k‖

(2π)2
kαkβ
k2‖
Aλ,ξ(k‖;E)Aλ,ξ(k‖;E).

(C40)

Performing the angular integral over polar coordinates
d2k‖ = dφdk‖k‖ first, we get∫

d2k‖

(2π)2
kαkβ
k2‖

=
δαβ

(2π)2
π

2

∫ ∞
0

dk‖
k‖ · k‖
k‖

. (C41)

Finally, using the definition of the spectral function in terms
of the retarded and advanced disorder-averaged Green’s func-
tions,

Aλ,ξ(k‖;E) = i
[
〈Gλ,ξR (k‖;E)〉 − 〈Gλ,ξA (k‖;E)〉

]
,(C42)

we obtain (in the limit of low impurity concentrations nimp �
1)

L
(11)
αβ (T ) = δαβ4π

(
~v2FT
(2π)

3

)∫ ∞
−∞

dE

(
−∂f0(E)

∂E

)
×
∫ ∞
0

dk‖〈Gλ,ξR (k‖;E)〉〈Gλ,ξA (k‖;E)〉
k‖ · k‖
k‖

.

(C43)

3. The Vertex Corrections and Relaxation Time

To include the vertex corrections, as described in Ref. [12],
we can formally perform the substitution k‖ → ΓRA(k‖;E)
for one of the momenta in the integral. Here, ΓRA(k‖;E)
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is the solution to the Bethe-Salpeter equation depicted in the
diagram Fig. 4, given by

ΓRA(k‖, E) = k‖

+ nimp

∫
d2k′‖
(2π)2

〈
Gλ,ξR (k′‖)

〉〈
Gλ,ξA (k′‖)

〉 ∣∣∣T̂ (λ,ξ)

k′‖k‖

∣∣∣2 ΓRA(k′‖, E).

(C44)

where T̂ (λ,ξ)
k′‖k‖

is the T -matrix operator.
Hence, we have

L
(11)
αβ (T ) = δαβ

~v2FT
2π2

∫ ∞
−∞

dE

(
−∂f0(E)

∂E

)
×
∫ ∞
0

dk‖

〈
Gλ,ξR (k‖)

〉〈
Gλ,ξA (k‖)

〉 k‖ · ΓRA(k‖, E)

k‖
,

(C45)

L
(12)
αβ (T )

= δαβ
~v2FT
2π2

∫ ∞
−∞

dE

(
−∂f0(E)

∂E

)
(E − µ)

×
∫ ∞
0

dk‖

〈
Gλ,ξR (k‖)

〉〈
Gλ,ξA (k‖)

〉 k‖ · ΓRA(k‖, E)

k‖
,

(C46)

and

L
(22)
αβ (T )

= δαβ
~v2FT
2π2

∫ ∞
−∞

dE

(
−∂f0(E)

∂E

)
(E − µ)2

×
∫ ∞
0

dk‖

〈
Gλ,ξR (k‖)

〉〈
Gλ,ξA (k‖)

〉 k‖ · ΓRA(k‖, E)

k‖
.

(C47)

Now, the vertex function must be of the form ΓRA(k‖, E) =
γ(k‖, E)k‖, with γ(k‖, E) a scalar function. Moreover, in the
limit of low impurity concentration nimp � 1 we have〈

Gλ,ξR (k‖)
〉〈

Gλ,ξA (k‖)
〉
→

2πτ(k‖)

~
δ(E − λξ~vFk‖).

(C48)

Then, in such a limit, we obtain a secular integral equation
for the scalar function γ(k‖, E)

γ(k‖, E) = 1 + nimp
2π

~

∫
d2k′‖
(2π)2

τ(k′‖)

×
∣∣∣T (λ,ξ)

k′‖k‖

∣∣∣2 δ(E − λξ~vFk
′
‖) γ(k′‖, E)

k‖ · k′‖
k2‖

. (C49)

At low temperatures, an exact solution is possible since the
derivative of the Fermi distribution takes a compact support
at the Fermi energy. Therefore, we can evaluate γ(k‖;E) and
τ(k‖) at the Fermi momentum kF, to obtain

γ(kF) =
τ1(kF)

τ1(kF)− τ(kF)
, (C50)

where we defined (for cosφ′ = k‖ · k′‖/k2‖)

1

τ1(kF)

=
2πnimp

~

∫ d2k′‖

(2π)2

∣∣∣T (λ,ξ)
k′‖k‖

∣∣∣2 cosφ′ δ(~vFkF − ~vFk
′
‖).

(C51)

After the substitution of γ(k‖, E) from Eq. (C50), and the
simple relation

−∂f0(E)

∂E
=

1

kBT
f0(E) [1− f0(E)] (C52)

we finally obtain for the bulk Onsager coefficients

L(11)
αα (T ) =

v2F
πkB

τtr(kF)

∫ ∞
0

dk‖k‖ f0

(
Eλ,ξk‖

) [
1− f0

(
Eλ,ξk‖

)]
,

(C53)

L(12)
αα (T ) =

v2F
πkB

τtr(kF)

×
∫ ∞
0

dk‖k‖ f0

(
Eλ,ξk‖

) [
1− f0

(
Eλ,ξk‖

)]
(λξ~vFk‖ − µ),

(C54)

and

L(22)
αα (T ) =

v2F
πkB

τtr(kF)

×
∫ ∞
0

dk k‖ f0

(
Eλ,ξk‖

) [
1− f0

(
Eλ,ξk‖

)]
(λξ~vFk‖ − µ)2.

(C55)

By following Ref. [12] the total transport relaxation time is
defined by

1

τtr(kF)
=

1

τ(kF)
− 1

τ1(kF)
(C56)

=
2πnimp

~

∫
d2k′

(2π)2
δ(~vFkF − ~vFk

′)
∣∣∣T (λ,ξ)

k′‖k‖

∣∣∣2 (1− cosφ′),

which can be expressed in terms of the scattering phase shifts
δm(k)

1

τtr(kF)
=

2nimpvF

kF

∞∑
m=−∞

sin2 [δm(kF)− δm−1(kF)] .

(C57)

4. The Electrical Conductivity

Note that f0(ε) [1− f0(ε)] = f0(ε)f0(−ε) is an even func-
tion of its argument. Then we can write

f0

(
Eλ,ξk‖

) [
1− f0

(
Eλ,ξk‖

)]
=

eλξ(~vFk−λξµ)/kBT

(eλξ(~vFk−λξµ)/kBT + 1)2

=
e(~vFk−λξµ)/kBT

(e(~vFk−λξµ)/kBT + 1)2
,

(C58)
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provided by the fact that λξ = ±1. Let us introduce the vari-
ables

x =
~vF

kBT
k, µ̃ =

λξµ

kBT
, (C59)

so that

f0(x)(1− f0(x)) =
ex−µ̃

(ex−µ̃ + 1)2
=

∂

∂µ̃

(
1

ex−µ̃ + 1

)
.

(C60)
This change of variables implies that the desired integrals

have the form

In =
d

dµ̃

∫ ∞
0

xn

ex−µ̃ + 1
dx, for n = 2, 3, 4. (C61)

By using the integral representation of the Polylogarithm
function

− Lis(−z) =
1

Γ(s)

∫ ∞
0

xs−1

ex/z + 1
dx, (C62)

and the derivative relation

d

dµ̃
Lis(−eµ̃) = Lis−1(−eµ̃), (C63)

one can show that the integral of interest is

In = −n! Lin(−eµ̃). (C64)

Thus,

L(11)(λ,ξ)
αα (T )

=
v2F
πkB

τtr(kF)

∫ ∞
0

dk‖ k‖ f0

(
Eλ,ξk‖

) [
1− f0

(
Eλ,ξk‖

)]
=

v2F
πkB

τtr(kF)

(
kBT

~vF

)2
d

dµ̃

∫ ∞
0

x

ex−µ̃ + 1
dx

=
1

πkB

(
kBT

~

)2

τtr(kF) I1, (C65)

or by defining the chemical potential as µ = ~vFkF

L(11)(λ,ξ)
αα (T ) =

1

πkB

(
kBT

~

)2

τtr(kF) ln
(

1 + e
λξ~vFkF
kBT

)
.

(C66)

The electrical conductivity is then obtained from Eq.(C8)

σαβ =
e2

T

∑
λ=±1

∑
ξ=±1

L(11)(λ,ξ)
αα (T )

=
2e2

T

1

πkB

(
kBT

~

)2

τtr(kF)

×
[
ln
(

1 + e
~vFkF
kBT

)
+ ln

(
1 + e

−~vFkF
kBT

)]
=

2e2kBT

π~2
τtr(kF)

[
ln
(
e

~vFkF
kBT

)
+ 2 ln

(
1 + e

− ~vFkF
kBT

)]
,

(C67)

which after some elementary algebra reduces to Eq. (51).

5. The Thermal Conductivity and Seebeck Coefficient

By following the same procedure, the other coefficients are

L(12)(λ,ξ)
αα (T ) = λξ

v2F
πkB

τtr(kF)

×
∫ ∞
0

dk‖ k‖ f0

(
Eλ,ξk‖

) [
1− f0

(
Eλ,ξk‖

)]
(~vFk‖ − µ̃ · kBT )

= λξ
v2F
πkB

τtr(kF)

(
kBT

~vF

)2

(kBT )

×
[
d

dµ̃

∫ ∞
0

x2

ex−µ̃ + 1
dx− µ̃ d

dµ̃

∫ ∞
0

x

ex−µ̃ + 1
dx

]
=
λξ

π

~
kB

(
kBT

~

)3

τtr(kF) [I2 − µ̃I1] , (C68)

and

L(22)(λ,ξ)
αα (T ) =

v2F
πkB

τtr(kF)

×
∫ ∞
0

dk‖ k‖ f0

(
Eλ,ξk‖

) [
1− f0

(
Eλ,ξk‖

)]
(~vFk‖ − µ̃ · kBT )2

=
v2F
πkB

τtr(kF)

(
kBT

~vF

)2

(kBT )2

×
[
d

dµ̃

∫ ∞
0

x3

ex−µ̃ + 1
dx− 2µ̃

d

dµ̃

∫ ∞
0

x2

ex−µ̃ + 1
dx

+ µ̃2 d

dµ̃

∫ ∞
0

x

ex−µ̃ + 1
dx

]
=

~2

πkB

(
kBT

~

)4

τtr(kF)
[
I3 − 2µ̃ I2 + µ̃2 I1

]
, (C69)

so that

L(12)(λ,ξ)
αα (T )

= −2λξ

π

~
kB

(
kBT

~

)3

τtr(kF)

×
[

Li2
(
−e

λξ~vFkF
kBT

)
− λξ~vFkF

kBT
Li1
(
−e

λξ~vFkF
kBT

)]
,

(C70)

and

L(22)(λ,ξ)
αα (T ) = − 2~2

πkB

(
kBT

~

)4

τtr(kF)

×
[
3 Li3

(
−e

λξ~vFkF
kBT

)
− 2λξ

~vFkF

kBT
Li2
(
−e

λξ~vFkF
kBT

)
+

1

2

(
~vFkF

kBT

)2

Li1
(
−e

λξ~vFkF
kBT

)]
. (C71)

Then, the thermal conductivity is obtained by replacing
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Eqs. (C65), (C68) and (C69) into Eq. (C12)

κ(λξ)αα (T ) =
1

T 2

[
L(22)(λ,ξ)
αα (T )− L

(12)(λ,ξ)
αα (T )L

(21)(λ,ξ)
αα (T )

L
(11)(λ,ξ)
αα (T )

]

=
~2

πkBT 2

(
kBT

~

)4

τtr(kF)

(
I3 −

I22
I1

)
, (C72)

in such a way that the final result is

καα(T ) = − 2~2

πkBT 2

(
kBT

~

)4

τtr(kF)

×
∑

λ,ξ=±1

3 Li3
(
−e

λξ~vFkF
kBT

)
+ 2

[
Li2
(
−e

λξ~vFkF
kBT

)]2
ln
(

1 + e
λξ~vFkF
kBT

)
 .

(C73)

The Seebeck coefficient is obtained replacing Eqs. (C65)
and (C68) into Eq. (C13)

S(T ) =
1

eT

∑
λ,ξ

L
(12)(λ,ξ)
αα (T )

L
(11)(λ,ξ)
αα (T )

= −kB

e

∑
λ=±1

∑
ξ=±1

2λξLi2
(
−e

λξ~vFkF
kBT

)
ln
(

1 + e
λξ~vFkF
kBT

) +
~vFkF

kBT

 .

(C74)
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