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Cell membranes phase separate into ordered Lo and disordered Ld domains depending on their
compositions. This membrane compartmentalization is heterogeneous and regulates the localization
of specific proteins related to cell signaling and trafficking. However, it is unclear how the hetero-
geneity of the membranes affects the diffusion and localization of proteins in Lo and Ld domains.
Here, using Langevin dynamics simulations coupled with the phase-field (LDPF) method, we in-
vestigate several tens of milliseconds-scale diffusion and localization of proteins in heterogeneous
biological membrane models showing phase separation into Lo and Ld domains. The diffusivity of
proteins exhibits temporal fluctuations depending on the field composition. Increases in molecular
concentrations and domain preference of the molecule induce subdiffusive behavior due to molecular
collisions by crowding and confinement effects, respectively. Moreover, we quantitatively demon-
strate that the protein partitioning into the Lo domain is determined by the difference in molecular
diffusivity between domains, molecular preference of domain, and molecular concentration. These
results pave the way for understanding how biological reactions caused by molecular partitioning
may be controlled in heterogeneous media. Moreover, the methodology proposed here is applica-
ble not only to biological membrane systems but also to the study of diffusion and localization
phenomena of molecules in various heterogeneous systems.

Biological membranes are composed of various kinds
of proteins and lipids. Differences in the molecular com-
position relate to rich patterns of phase separation [1–
5]. Mixtures of saturated and unsaturated lipids gener-
ally cause phase separation into liquid-ordered (Lo) and
liquid-disordered (Ld) domains [6–8]. Specifically, the
Ld domain is rich in unsaturated lipids and of high fluid-
ity, while the Lo domain is rich in saturated lipids and of
low fluidity. Lo domains, enriched in sphingolipids and
cholesterol, are often referred to as lipid rafts [9], and are
thought to play a crucial role in a variety of cellular pro-
cesses such as cell signaling and trafficking. Lipid rafts
are generally considered to be small, heterogeneous, and
highly dynamic domains of several tens of nanometers
size with estimated life time 0.1–102 s [10–13]. The coex-
istence of Lo and Ld domains has been observed in syn-
thetic model membranes under external stimuli or spe-
cific thermodynamic conditions. Direct imaging of cell-
derived plasma membranes of giant plasma membrane
vesicles (GPMVs) has also confirmed the presence of nan-
odomains [14–20] at or near physiological temperature.
Although there has been a longstanding debate regard-
ing the nature and biological role(s) of these domains
in living cells [21, 22], a large number of recent studies
have provided evidence for the coexistence of these do-
mains in intact cells [23–29]. These studies investigated
the recruitment and exclusion of various probes associ-
ated with clustered proteins within cell membranes, and
demonstrated that the concentration of probes in clus-
ters reflects the partitioning observed in phase-separated

domains. The Lo domains are formed not only by lipids
but also by protein–lipid complexes, where the detailed
properties, such as size, lifetime, and stability, depend on
their composition and interaction with scaffolding pro-
teins [21, 22].

In terms of lateral diffusion of membrane proteins,
phase separation may be considered as presenting an in-
homogeneous field in which the protein molecules dif-
fuse. The diffusivities of molecules in such inhomo-
geneous fields are known to be non-uniform in time
and space [30, 31]. Experimental techniques, such as
stimulated emission depletion microscopy combined with
fluorescence correlation spectroscopy (STED-FCS) and
single-particle tracking (SPT), have revealed dynami-
cally heterogeneous motion of proteins in biological mem-
branes [12, 32–40]. Particularly, the local diffusivity of
tracers fluctuates significantly with time due to the in-
fluence of heterogeneity in the field, e.g. intermittent
trapping in domains [12, 32], transient interactions with
partners [34, 38], or slow-active remodeling of the un-
derlying cortical actin network [35, 37]. However, due
to the difficulty of simultaneous measurement of molec-
ular motion and field heterogeneity, the precise effects
of membrane heterogeneity on molecular diffusion and
distribution remain obscure. Although many theoretical
models on molecular diffusion with fluctuating diffusivity
have been proposed to explain the characteristics of non-
Gaussian behavior and anomalous diffusion [41–55], it is
important to understand the origin of fluctuations at the
molecular level, specifically how phase separation, mod-
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eled as an inhomogeneous field, affects protein diffusivity
and promotes protein crowding, or how molecular crowd-
ing induces phase separation and expands nanoscale do-
mains. This understanding will help to clarify the role
of protein–lipid and protein–protein interactions in the
signaling process.

Molecular dynamics (MD) simulations have provided
molecular details on protein diffusion in biological sys-
tems [56–62], and revealed temporal fluctuating of the
protein diffusivity due to protein–protein and protein–
lipid interaction [60, 61]. However, it remains a challenge
for simulations to directly inform molecular dynamics on
a spatiotemporal scale comparable to experiments. Here,
using a mesoscale simulation technique, we unveil dif-
fusion properties and distributions of molecules in het-
erogeneous biological membrane models. This coarse-
grained level, combining Langevin dynamics simulations
and phase-field (LDPF) methods, capture the motion
of individual molecules in heterogeneous membranes at
several tens of milliseconds timescales. We show the
existence of fluctuating diffusivity and a distribution
of molecules in heterogeneous membranes depending on
various parameters such as heterogeneity of fields, molec-
ular concentrations, and domain preference of molecules.
This coarse-grained approach allows us to disentangle the
effects of individual parameters on the observed protein
motion, e.g. the diffusivity difference between the two
membrane phases, the area density covered by proteins,
or the protein affinity to a specific membrane domain.
These results will be important to inform future exper-
iments in real membrane systems in which some effects
may be obscured by the complexity of the system.

RESULTS

Fluctuating diffusivity of an isolated molecule in
heterogeneous biological membrane models

In our analysis, we focused on three distinct phase-
separated heterogeneous biological membrane models de-
scribed in previous studies [63]. The phase separation
process is measured in terms of the field c(r, t), the de-
viation of the local composition from the critical com-
position (see Methods for the simulation details). The
ordered (c < 0) and disordered (c > 0) phases de-
note the raft (Lo) and non-raft (Ld) domains, respec-
tively. The distribution c(r, t) can be obtained by solv-
ing the reaction-diffusion equation. The specific model
choices for the parameters induce clear phase separa-
tion and represent lipid raft formation; (model2) inter-
face pinning by immobile membrane proteins [64, 65],
(model4) immiscible lipid systems, and (model5) cou-
pling to lipid reservoir [1, 66, 67] (see Fig. 1A). Con-
sidering the free energy term F , the phase separation is
classified as “Mixed”, “Nucleation”, and “Spinodal De-

composition” (see Fig. 1B). Since the Lo and Ld domains
have different compositions, diffusion coefficients of the
biomolecules are different [12, 13]. To describe the dif-
fusion of target protein molecules in such heterogeneous
media, we considered the Langevin equation with fluctu-
ating diffusivity,

dr(t)

dt
=

√
2D(r(t), t)w(t), (1)

where r(t) is the position of a diffusing molecule at time
t, and w(t) is white Gaussian noise with ⟨w(t)⟩ = 0.
The diffusion coefficient D(r(t), t) varies depending on
the field composition, D(r(t), t) = (cb + c(r(t), t))D0,
where c(r(t), t) is the normalized order parameter field
(0 < c < 1) (see Figs. 1CD for a sample trajectory). For
a single molecular system, cb = 1 and D0 = 1 were used
in each model, i.e. D(r(t), t) fluctuates in the range of 1
to 2. The simulation time step dt = 0.001 and D0 = 1
correspond to the physical quantities of 1 ns and 1 µm2/s,
respectively. In the simulations, the system size L cor-
responds to 256 nm with periodic boundary conditions.
Simulations were performed for 107 steps corresponding
to 10 ms and analyzed after 106 steps (1 ms) of reaching
equilibrium. Because the lifetime of the raft domain is
0.1–102 s [10–13], we here fixed the field variation and fo-
cused on time scales shorter than the field variation. This
can allow us to evaluate the effect of spatial heterogene-
ity on the molecular dynamics, specifically elucidating
how the (pre-existing) raft domains affects the behavior
of other molecules.

First, we calculated the time-averaged mean squared
displacement (TAMSD) as a quantity that characterizes
the global diffusivity (see Fig. 2A),

δr2(∆; t) =
1

t−∆

∫ t−∆

0

[r(t′ +∆)− r(t′)]2dt′, (2)

where ∆ is a lag time and t is a measurement time. In-
dividual TAMSDs increase linearly and show some am-
plitude scatter. The probability density function (PDF)
of TAMSDs at ∆ = 10−2 ms is found to have a distribu-
tion with roughly two peaks. This scatter is considered
to be an effect of the inhomogeneity of the concentration
distribution in the field.
In order to quantitatively evaluate the effect of dif-

ferent patterns of heterogeneity on the diffusivity fluc-
tuations, the relative standard deviation (RSD) of the
TAMSDs was analyzed,

RSD =

√
⟨δ2(∆; t)

2
⟩ − ⟨δ2(∆; t)⟩2

⟨δ2(∆; t)⟩
. (3)

It is known that RSD decays as t−0.5 in ergodic diffu-
sion, e.g. Brownian motion. In the case of non-ergodic
diffusion processes, e.g. the continuous-time random
walk [68, 69], the RSD converges to a nonzero value for all



3

A

B

C
t = 0

t = t’

25
6 

[n
m

]

model2 model4 model5

Mixed

model3

model1

model4 model5

-1.5 -1 -0.5  0  0.5  1  1.5
c

-1.5

-1

-0.5

 0

10

Λ

Nucleation

Spinodal Decomposition

D

c

t

D

0 t’

FIG. 1. Diffusivity fluctuations in heterogeneous biological membrane models. (A) Snapshots of normalized c field configuration,
0 < c < 1, from phase-field simulations of heterogeneous biological membrane models [1, 63], (model2) interface pinning by
proteins, (model4) recycling in immiscible system, and (model5) coupling to lipid reservoir. Red and blue colored regions
represent Lo and Ld domains, respectively. (B) Phase diagram for the models; the temperature difference Λ from the critical
temperature at which phase separation occurs v.s. c. Considering a free energy term F with α = 0 in eq. 5, the phase separation
is classified as “Mixed”, “Nucleation”, and “Spinodal Decomposition”. (C) Trajectory and (D) the corresponding fluctuating
diffusivity of a molecule depending on the c field. The red and blue colors represent slow and fast diffusive states in Lo and Ld

domains, respectively. Averaged diffusion coefficients are shown for each state.

∆ ≪ t as t → ∞. In fluctuating diffusivity models [43–
45, 70], the RSD exhibits a crossover from a plateau to
a t−0.5 decay with a long crossover time. Here, the RSD
shows a plateau in the time region t ∼ 10−4–10−1 ms (see
Fig. 2B), which implies that the instantaneous diffusivity
fluctuates intrinsically on the corresponding timescale.
Fluctuations of the diffusivity are negligible at the short
and long timescales, where the RSD decays with t−0.5.
The short timescale depends on the initial diffusivity
D(t = 0), while the long timescale relates to the relax-
ation time of the effective diffusivity. In a fluctuating
diffusivity model where diffusivity dichotomously fluctu-
ates between fast and slow states [44, 45], the magnitude
of the RSD depends on the difference in diffusion coef-
ficients between the two states and the mean residence
time of states. The magnitudes of the RSD of models 4
and 5 are higher than that of model 2.

To clarify the origin of the difference in RSDs, Fig. 2C
shows the PDFs of the c for each model. The PDFs of
models 2, 4, and 5 have two peaks and result in large
diffusivity differences between Lo and Ld domains. Fig-
ure 2D shows the PDFs of the residence times of the

molecules in the Lo and Ld domains for each model.
The residence times exhibit a power-law distribution
with an exponential cutoff P (t) ∝ t−β exp(−t/τ). The
power-law exponents for each model are almost the same,
β ≈ −1.5. The cutoff in the residence time relates to
the relaxation time in the RSD at which the crossover
from the plateau to the t−0.5 decay occurs. Longer res-
idence times of the molecule in each domain translate
into longer relaxation times of the RSD. Note that the
first passage time (FPT) distribution of one-dimensional
Brownian motion, starting from the origin at 0 and
passing a certain point x, is given by the distribution
Px(t) = |x| exp(−x2/4Dt)/

√
4Dπt3, that is proportional

to t−1.5 (t → ∞) [71], where D is the diffusion coefficient.
When considering a finite-sized domain, the distribution
t−1.5 has an exponential cutoff depending on the two-
dimensional domain size. The general shape of the FPT
distribution is similar for many scenarios [72].

We confirmed that slow variation of the concentration
field affects little on the fluctuation of the diffusivity (see
Figs. S1 and S2). Since the time scale of the varying
field is much longer than the simulation times, the do-
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FIG. 2. Diffusion of an isolated protein molecule in heterogeneous biological membrane models. (A) TAMSDs of 100 trajectories
of a molecule duffuising in the Model5 membrane for measurement time t = 10 ms. The histogram shows the distribution of
TAMSDs at ∆ = 10−2 ms. (B) RSDs of TAMSDs for three different membrane models with ∆ = 10−6 ms. The RSD was
calculated from 100 trajectories for each model. (C) Distribution of normalized order parameter c. The red colored line is the
boundary defining Lo (c < 0.5) and Ld (c ≥ 0.5) domains. (D) Distribution of residence time of the particle in Lo and Ld

domains following the power-law trend t−1.5 with a log time cutoff at around 10−2 ms. Dashed lines are shown as a reference
for power-law decay.

main boundaries change slightly in equilibrium states. In
systems where the field varies faster than the time scale
that particles move through the regions, a time-varying
field may have a significant effect on the degree of the
fluctuating diffusivity. In addition, we note that RSDs
do not depend on the field patterns (see Fig. S3).

Clustering effect of molecules on the fluctuating
diffusivity in heterogeneous membranes

Cell membranes are crowded with a variety of proteins
occupying 30–50 % of the membrane area [73]. In previ-
ous studies, a concentration dependency of protein sub-
diffusion, ⟨δr2(∆; t)⟩ ∝ ∆α with α < 1, was observed in
biological membranes [58, 60]. Switching off the protein–
protein interactions changes the subdiffusive behavior
(α = 0.84) to normal diffusion (α = 1.0) [34], dynam-
ical correlations in the motions due to frequent molecu-

lar collisions may enhance subdiffusive motion [73]. In
any finite system, the subdiffusive regime will ultimately
cross over beyond some correlation time, see, e.g. [74].

To explore the effect of membrane crowding, we eval-
uate the diffusivity of molecules in molecular crowded
systems with Np = 64, 128, 256, 512, 1024, and 2048
particles corresponding to an area occupancy of 1.4, 3.5,
7.8, 16.6, 34.0, and 59.1 % of the Lo domains, respec-
tively. In the following, we mainly focus on model5 (re-
sults for other models are shown in Fig. S4). In this
membrane state, the separation of Lo and Ld domains
is most pronounced and thus best accessible in exper-
iments. Figure 3A shows the aggregation of molecules
with different area occupancy (see Movie S1). Even in
the absence of molecular field preference, we find that
as Np increases, molecules tend to aggregate in the Lo

domain, where the diffusion coefficient of molecules is
smaller than in the Ld domain. This aggregation af-
fects the diffusive behavior of molecules. Ensemble-
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FIG. 3. Clustering effect of an ensemble of protein molecules on the fluctuations of the diffusivity in a heterogeneous membrane
(Model5). The number of molecules in the field Np and the interaction strength between molecules ϵ were changed. (A) Snap-
shots with different number of molecules at Np = 128, 256, 512, 1024 with ϵ = 2.0. Red and blue colored regions represent
Lo and Ld domains, respectively. Molecules in Lo and Ld domains are colored cyan and magenta, respectively. Molecules
are shown with a size of 21/6σ. (B) Ensemble averaged TAMSDs (left), time evolution of the power-law exponent α of the
ensemble-averaged TAMSD (middle), RSD (right) compared for Np = 64,128,256,512,1024,2048 with ϵ = 2.0. (C) TAMSD, α,
and RSD for ϵ = 0.5, 1.0, 2.0 with Np = 512.

averaged TAMSDs become smaller and exhibit subdif-
fusion when the area occupancy increases (see Fig. 3B).
The power-law exponent of the TAMSD decreases from
α = 1.0 to 0.85, depending on the molecular concen-
tration, up to a time scale of ∼ 0.1 ms). This trend
is similar to that of MD simulations reporting transient
subdiffusion of proteins in a molecular concentration-
dependent manner [58, 60]. Coarse-grained MD simu-
lation for 0.1 ms [60] showed that subdiffusive motion of
proteins in a noncrowded membrane changes to Brown-
ian motion at ∆ > 10 ns attributed to the viscoelasticity
of lipids [75–78], while in a crowded membrane significant
subdiffusive regimes α ∼ 0.8–0.9 extends until tens of mi-
croseconds (> 0.01 ms is not conclusive due to the limited
simulation time). Similar transient subdiffusion induced
by molecular crowding was also observed for hard-core
particles [79].

Here, we discuss the effect of the concentration and the
interaction strength of the tracer molecules. Molecular
concentration has little effect on the magnitude of RSD,
and the relaxation time increases slightly with increas-
ing molecular concentration. The molecular concentra-
tion differences have little effect on the fluctuation of the
diffusivity (see Fig. 3B). Moreover, we evaluated the ef-
fect of the interaction strength ϵ between molecules (see
eq.[9] in Method). When the molecular interaction be-
comes stronger, the magnitude of the TAMSD becomes
small and α decreases (see Fig. 3C). An increase in the
interaction strength has little effect on the RSD.
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represent Lo and Ld domains, respectively. Molecules in Lo and Ld domains are colored cyan and magenta, respectively.
Simulations were performed with Np = 512 and ϵ = 2.0.

Preference of the domain affects the diffusivity in
heterogeneous membranes

It is known that the differences in lipid compositions
in Lo and Ld domains generate a preferential partitioning
of membrane proteins in either domain. The protein do-
main preference, especially of transmembrane proteins,
is determined by its palmitoylation, hydrophobic length,
and surface area of its transmembrane region [80, 81].

In our simulations, the preference was modeled using
a reflective wall at the boundary between Lo and Ld do-
mains (see details in Methods). We evaluate the effect of
preference of the Lo domain (Loχ) (Fig. 4A) or the Ld

domain (Ldχ) (Fig. 4B) on the diffusive dynamics, where
χ is the degree of the domain preference. As shown in
Fig. 4A, molecules are localized more in the Lo domain
with strong Lo domain preference. According to an in-
crease of χ, the TAMSD decreases, and the molecules ex-
hibit more pronounced subdiffusion with smaller anoma-
lous exponents α = 0.8–1.0. In the case of Ld domain
preference, molecules are localized more in the Ld do-
main, and the TAMSD increases with higher χ (Fig. 4B).
Molecules exhibit subdiffusion with anomalous exponents
α = 0.9–1.0. Note that the crossover of α < 1 to normal
diffusion is not observed for larger Loχ in the studied
time window (Fig. 4A). This means that the caging ef-
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fect of molecules in narrow regions strongly influences
anomalous diffusion, significantly more than the crowd-
ing effect with high concentrations (time scale of∼ 0.1 ms
in Fig. 3).

The magnitude of the RSDs for both Loχ and Ldχ be-
comes smaller upon increase of χ (Fig. 4). This is thought
to be due to the fact that high χ increases the confine-
ment of molecules to a preferable domain, which leads
to a decrease in the fluctuation of diffusivity. Moreover,
the area of the Ld domain is larger than that of the Lo

domain in model5. The residence time of the molecule
increases with growing domain area, and the diffusivity
of the molecule remains the same, resulting in a smaller
RSD value. Note that in model2 and model4 membranes,
where the areas of Ld and Lo domains are the same (see
Fig. 2C), the change in RSD when domain preference is
changed is almost the same for Loχ and Ldχ (see Fig. S4).

Confinement of molecules to one domain due to
membrane heterogeneity

A nanoscale domain in membranes increases local
molecular concentrations and molecular collisions, which
are relevant to biological reactions. To see this, the distri-
bution of molecules in the heterogeneous membrane was
analyzed. Figure 5 shows ratios of molecules confined in
the Lo domain examined for each parameter, such as Np,
ϵ, and domain preference. Randomly distributed parti-
cles at the initial time (t = 0) diffuse and start to enrich
in the Lo domain times of t = 0.01 to 0.1 ms. The con-
finement ratio changes like a sigmoidal curve and reaches
a plateau (equilibrium) after 0.1 ms (see Fig. 5AB). Al-
though there is no preferential domain for molecules (Lo0
and Ld0), molecules are more likely to stay in the Lo do-
main, where the diffusion coefficient is lower than in the
other domain, and aggregate with surrounding molecules
there. An increase in molecular concentration enhances
the speed of the ratio increase and the equilibrated ra-
tio because of high encounter rates at high concentrations
(see Fig. 5A). The confinement into the Lo domain is also
enhanced by the interaction strength ϵ between molecules
(see Fig. 5B). The strength of ϵ does not affect the speed
of the ratio increase but increases the ratio at the plateau
(t > 1 ms) as a high interaction strength stabilizes the
cluster of molecules.

We now examine the effect of domain preference, Loχ
or Ldχ. According to an increase in the degree of prefer-
ence χ, once the molecules enter the preferable domain,
molecules cannot easily exit from the domain. Figure 5C
shows that an increase of χ of Lo domain increases both
the equilibrated ratio and the speed of the ratio. While
an increase of χ of Ld decrease the ratio of molecules
in the Lo domain with a crossover around χ ∼ 60 (see
Fig. 5D). The preferential distribution of molecules to
the domain of low diffusivity is inverted by the affinity

strength between molecules and the domain of high dif-
fusivity.

DISCUSSION

Visualizing small and highly dynamic domains in cell
membranes can be challenging due to the reduction in
binary contrast of the heterogeneity when averaging over
time. Despite prolonged debate [21, 22], recent stud-
ies have provided compelling evidence for the coexis-
tence of Lo and Ld domains in living cells [23–29]. The
mobility and aggregation of membrane proteins in cell
membranes are closely linked to the local lipid order,
i.e. phase separation is an organizing principle for mem-
brane protein partitioning [27]. Recent experiments us-
ing a broad range of fluorescent probes with various mem-
brane anchors, which have different lipid domain prefer-
ences, show the existence of segregated domains selec-
tively partitioning membrane proteins according to their
affinity for the Lo or Ld domain [29]. Some membrane
proteins are enriched in the nanoscale region surround-
ing the clustered receptors. Although these studies on
multi-component systems provide us with insights into
macroscopic biological regulation through heterogeneity
in membranes, the underlying intricate mechanisms reg-
ulating the molecular dynamics in such complex sys-
tems have not been fully dissected. A theoretical un-
derstanding is crucial to gain insights into the precise
factors that control molecular diffusion and localization
within inhomogeneous fields. Such a quantitative model
is also indispensable for data analysis in membrane sys-
tems with advanced assimilation methods based on prior
training [82, 83].
In this study, we have used a well-defined in silico

setup simulating molecules with fluctuating diffusivity in
phase-separated fields with Lo (low diffusivity) and Ld

(high diffusivity) domains. This coarse-grained approach
allows us to disentangle the various effects conspiring in
the complex observed motion. We showed that the degree
of fluctuating diffusivity depends on the magnitude of the
difference in molecular diffusivity between domains and
the residence time in domains. Our results suggest that
molecular localization within Lo (low diffusivity) domains
spontaneously occurs in heterogeneous membranes even
when there is no domain preference, and subdiffusive be-
havior is observed due to molecular collision via molecu-
lar crowding in Lo domains. Domain preference extends
the time scale of the subdiffusive regime via molecular
confinement into the preferential domains. The effect of
heterogeneity on protein partitioning was also quantita-
tively evaluated. We demonstrated that the localization
of molecules is determined by the difference in molecu-
lar diffusivity between domains, molecular preference of
domain, and molecular concentration.
The aforementioned results were obtained under the
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FIG. 5. Time variation of ratios of protein molecules confined in the Lo domain in a heterogeneous membrane (Model5). At
t = 0, molecules were randomly distributed. Three parameters were examined; (A) molecular concentration (Np = 64, 256, 1024)
with ϵ = 2.0 and Lo0(Ld0), (B) interaction strength between molecules (ϵ = 0.5, 1.0, 2.0) with Np = 512 and Lo0(Ld0), and
(C) molecular domain preference of Lo20 – Lo80 and (D) Ld20–Ld80 with ϵ = 2.0 and Np = 512.

condition of a fixed field variation to dissect the ef-
fect of pre-existing raft domains on the molecular be-
havior. Membrane proteins possess the ability to mod-
ify their surrounding lipid environment, leading to the
formation of functional protein–lipid complexes. Our
approach could also be applicable in scenarios where
protein–lipid interactions promote or alter the functional
domains within the membrane. To model such effects, we
conducted simulations under two distinct conditions: one
representing a scenario where macroscopic phase separa-
tion does not occur spontaneously without proteins (near
the miscibility critical point, Λ = −0.01) (Fig. 6A), and
another representing a state where macroscopic phase
separation occurs spontaneously without proteins (un-
der the miscibility critical point Λ = −1) (Fig. 6C).
Figure 6A shows snapshots of the phase-separated field
driven by diffusing proteins. Even at a condition where
the macroscopic phase separation does not occur spon-
taneously, from a uniformly distributed state of the field
and proteins, the formation of small-scale clusters of pro-
teins leads to local Lo domains. At this simulation condi-
tion, the normalized c has clear one distinct peak around
∼ 0.6 (Ld) and rudder point at c < 0.5 (Lo) (Fig. 6B).
Note that the contrast between Ld and Lo and the do-
main size depend on the protein–protein and protein–
lipid interaction strength.

At a condition under the critical miscibility tempera-
ture, macroscopic phase separation into Ld and Lo occurs

with marked contrast (Fig. 6C). The PDF of c has two
peaks around ∼ 0.8 (Ld) and ∼ 0.2 (Lo) (Fig. 6E). This
relates to a scenario of the recruitment of additional pro-
teins to the existing functional domains and their subse-
quent alteration of the domain configuration and func-
tion. Interestingly, the presence of diffusing molecules
causes the distorted domain configuration, while the ab-
sence of molecules results in the formation of spherical
domains (Fig. 6D). In addition, diffusing molecules cause
the extension and fusion of the domains (Fig. 6F). Such
recruitment can alter the thermodynamic stability of the
membrane domains without a change in the lipid com-
position.

MSD (Fig. 6G) and RSD (Fig. 6H) are consistent with
the previous results (fixed field variation) that magni-
tude of the RSD depends on the difference in diffusion
coefficients between the Lo and Ld domains.

In realistic biological membranes, lipid compositions
vary significantly for different cell types. External ions
and biomolecules further moderate the heterogeneity in
the signaling and trafficking processes. These factors reg-
ulate the heterogeneity of the phase-separated membrane
and formation of functional multi-protein units in mem-
branes [84]. Interaction with the underlying actin cy-
toskeleton also regulates condensation of the phase along
the actin filament by pinning elements to a preferred
phase [85]. In suitable conditions, the field-dependent
diffusive behavior of molecules is expected to regulate
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FIG. 6. Field modification by diffusing protein molecules: A scenario where the protein–lipid interaction induces the nanoscale
phase separation and creates functional domains in the membrane. Snapshots of the phase-separated field after 1, 10, and
40 ms have elapsed from the initially homogeneous mixed state at 0 ms, and distribution of the normalized c field: (A)(B) a
state where macroscopic phase separation does not occur spontaneously without molecules (Λ = −0.01), (C)(E) a state where
macroscopic phase separation occurs spontaneously without molecule (Λ = −1). The initial c field was set to be homogeneous
with a Gaussian distribution with mean 0 and variance 1. Diffusing molecules are represented with yellow colored circles.
(D) Comparison of the c field after 40 ms, considering the influence of diffusing molecules on the field (left) and not considering
the influence (right). The initial homogeneous c field was given with a Gaussian distribution of mean 0.3 and variance 1.
(F) Expansion and fusion of domain regions caused by diffusing molecules. (G) Ensemble averaged TAMSDs for measurement
time t = 30 ms and (H) RSDs of TAMSDs of 512 diffusing molecules in the fields shown in (A) and (C).

the search time of partners and reaction rates [86]. Pro-
tein condensation on the phase-separated membrane sur-
faces is a key role in downstream signaling [87, 88]. A
quantitative and qualitative elucidation of the nature of
molecular behaviors in heterogeneous media is critical to
understanding cellular behavior.

Our approach presented here is quite general and can
be applied to fundamental questions on molecular dy-
namics in a variety of heterogeneous media in biology,
soft matter, solid-state physics, etc. Our model could
also be extended to more realistic biological membrane
models including, e.g. dynamic modulation of protein
domain preferences via phosphorylation by interaction
with regulatory proteins [89], protein remodeling through
conformational changes, complex inhomogeneous inter-
action between molecules and clusters, the partitioning
by an actin filament mesh [37, 90], alternation of mem-
brane composition in signaling events, and the partition-

ing regulation of membrane signaling [91]. Moreover, the
parameters of this mesoscale simulation can be deter-
mined bottom-up from MD simulations, allowing com-
parison of mesoscopic molecular behavior at the inter-
section of simulations and experimental spatiotemporal
scales. Concurrently, advanced single particle tracking
studies provide massive new data on protein dynamics in
membranes that can be scrutinized by our approach and
advanced methods for data analysis [82, 83]. This could
open a new direction to delineate the role of heterogeneity
in the membranes with more complex multicomponent
systems in a more physiological setting [92, 93].
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METHODS

Simulation models

We used five models of phase separation in cell mem-
branes as described in Ref. [63]. The specific choices for
the parameters represent lipid raft formation (model1)
by thermal fluctuations near the critical temperature,
(model2) by pinning of the interfacial composition of im-
mobile membrane proteins [64, 65], (model3) in misci-
ble or (model4) immiscible lipid systems, and (model5)
by exchange with lipid reservoirs [1, 66, 67]. These
five models are expressed using a Cahn-Hilliard equa-
tion [63, 94, 95] for the order parameter field c(r, t),

∂c(r, t)

∂t
= − 1

τr
(c− cr) +M∇2 δF

δc
+ η(r, t). (4)

The first term on the right-hand side is the term for the
lipid reservoir in model5, where τr is a parameter repre-
senting the relaxation time due to coupling to the lipid
reservoir, and cr is the average compositions imposed by
the lipid reservoir. The second term on the right-hand
side is the modified Ginzburg-Landau free energy term
in the usual Cahn-Hilliard equation, where M is the mo-
bility and F is the free energy,

F =

∫ {
W 2

2
[1− αρ(r)](∇c)2 +

Λc2

2
+

c4

4

}
dr, (5)

where the parameter Λ > 0 (Λ < 0) is a relative tem-
perature to the mean-field critical temperature T > Tc

(T < Tc). W is a parameter to control the line tension
between the raft and nonraft phases. α is a parameter
that explain the local reduction in the line tension due
to immobile membrane proteins. The local concentration
ρ(r) of N immobile membrane proteins in model2 can be
expressed as,

ρ(r) = πσ−2
IMP

N∑
i

exp

(
−|r − ri|2

2σ2
IMP

)
. (6)

η(r, t) in eq. 4 denotes a Gaussian noise term [94],

η(r, t) = F−1

[
(H

√
∆t/∆x)l|q|√
1 + q2l2

× ξ̂(q, t)

]
, (7)

where H can be related to either the temperature of the
system or the rate at which lipids are removed and added
to the leaflet due to vesicular and nonvesicular lipid traf-
ficking events, l denotes the recycling length over which
spatial redistribution of lipids takes place [96], and ξ̂(q, t)
is the Fourier transform of the white Gaussian noise with
mean 0 and variance 1. Here, we used cr = 0.3, M = 1,
σIMP = 1/

√
2, W = 1, and the values of each parameter

in each membrane model are shown in Table I [63]. The

ordered (c < 0) and disordered (c > 0) phases denote the
raft (Lo) and non-raft (Ld) domains.

The system was simulated using the phase-field
method under periodic boundary conditions with a grid
point size of 256 × 256 (256 nm × 256 nm in phys-
ical dimensions). The lattice point width was set to
∆x = ∆y = 1 (1 nm for physical quantities). The time
step was set to dt = 0.005 for dimensionless numbers,
which corresponds to 10−5 s for physical quantities. The
number of simulation steps for each model is shown in
Table I. The initial c field was set to be homogeneous
with a Gaussian distribution with mean 0 and variance
1.

Single particle system

The diffusive particles in each membrane model are
modeled by the Langevin equation 1 with fluctuating
diffusivity. The diffusivity of the particle, D(r(t), t) =
(cb + c(r(t), t))D0, fluctuates depending on the normal-
ized order parameter field c(r(t), t) (0 < c < 1). We
used c(r(t), t) in equilibrium after running simulations for
each number of steps in Table I. The single-particle sim-
ulations were performed 100 times with different initial
coordinates of the particles for the same phase-separated
field. The parameters cb = 1 and D0 = 1 (1 µm2/s) were
used in each model. Simulations were performed for 107

steps (10 ms) with dt = 10−3 (1 ns), and the trajectories
of the particles were analyzed after 106 steps (1 ms) of
reaching equilibrium.

Multi particle system

For multi particle interactions, we performed simula-
tions including particle-particle interactions,

dr(t)

dt
= −D(r(t), t)

kBT

dU(l)

dl
+

√
2D(r(t), t)ω(t), (8)

where, kBT = 1, and Lennard-Jones potential was used,

U(l) = 4ϵ

{(σ
l

)12

−
(σ
l

)6
}

(9)

where l was the distance between two interacting par-
ticles, size of the particle σ was 3.0. The depth of the
potential well ϵ was set as 0.5, 1.0, 2.0. The num-
ber of particles in the system Np was set to Np =
64, 128, 256, 512, 1024, 2048 to compare the effect of parti-
cle concentration on the diffusivity. For multiple particle
systems, we used cb = 0.1 and D0 = 1 in D(r(t), t) =
(cb + c(r(t), t))D0.

We used cdview (https://polymer.apphy.u-fukui.ac.jp/
˜koishi/cdview.php) for visualization of the simulations.
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TABLE I. Values of the parameters in each model [63].

model tr Λ l H α N number of steps
1 ∞ -0.001 0.1 0.0283 0 0 24000
2 ∞ -1 1 0.85 1/π 1500 1500000
3 ∞ 10 1280 0.85 0 0 180
4 ∞ -1 1280 0.85 0 0 24000
5 500 -1 0.1 2.12 0 0 720000

Nanoscale phase separation model modified by
diffusive particles

For a scenario where protein–lipid interaction induces
nanoscale phase separation and creates functional do-
mains in the membrane, we conducted a simulation in
which diffusing particles change the field. For phase sep-
aration, we considered the following expression,

∂c(r, t)

∂t
= ∇

{
M∇

[
−∇2c+ Λc+ c3 + g(r, t)

]}
+η(r, t),

(10)
where M = 1, g(r, t) is a term of short-ranged protein–
lipid interaction,

g(r, t) =

{
αg (r ≤ σ)

αg exp
(
− r−σ

rg

)
(r > σ)

. (11)

g(r, t) was considered at the positions of the diffusing
particles. Here, we set the intensity of field modification
by proteins as αg = 0.5 and its relaxation length as rg =
2.

The particles were simulated using eq. 8 and eq. 9 with
parameters σ = 3.0, ϵ = 2.0, and Np = 512. The c field
was updated every 10 steps of the Langevin simulation
(eq. 8). Simulations were performed for 4 × 107 steps
(40 ms) with dt = 10−3 (1 ns), and the trajectories of
the particles were analyzed after 107 steps (10 ms).

Domain preference of molecules

To implement the domain preference of the molecule,
the energy barrier between the domains was reproduced
by probabilistic reflection when a particle moves from
one domain to another. We compared three patterns.
One is that the particles can move freely between the Lo

and Ld domains without being reflected (χ = 0). The
other two are cases where the particles exhibit Lo or Ld

preferences. Loχ means that the molecule is reflected at
Lo when moving from the Lo domain to the Ld domain
at χ % probability of reflection and not reflected when
moving in the opposite direction. Ldχ is vice versa.
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