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1. Introduction

The Casimir effect [1] was originally predicted as a quantum phenomenon induced from the
zero-point energy of photon fields under the existence of spatial boundary conditions, which is
nothing but a finite-volume effect for the zero-point energy. As a result, an attractive force between
two parallel metal plates, the Casimir force, has been experimentally established [2, 3]. Since the
origin of the Casimir effect is the zero-point energy of a quantum field, various types of particle
fields, including scalar/fermion/gauge fields, should exhibit analogous Casimir effects.

In order to calculate the Casimir effect in the continuous spacetime, one needs to remove
the ultraviolet divergence of the zero-point energy, by using mathematical techniques. On the
lattice spacetime, such a divergence does not exist, so that physical quantities resulting from the
Casimir effect are theoretically well-defined. Quantum fields on the lattice space are common
degrees of freedom in solid state physics, such as electrons, phonons, and magnons, and these
fields can also induce the Casimir effects under boundary conditions. In Fig. 1, we compare the
conventional photonic Casimir effect (the left) and the Casimir effects realized inside thin films of
three-dimensional (3D) materials (the right). Thus, the Casimir effect inside materials intrinsically
exists as long as a system is “finite-size," and particularly the geometries with boundaries in
the one direction, such as thin films of 3D materials, narrow nanoribbons of 2D materials, and
short nanochains of 1D materials, are analogous to the conventional setup. These Casimir effects
automatically contribute to the internal pressure and other thermodynamic quantities of the system.

The Casimir effect on the lattice is calculated using a lattice regularization scheme [4–12].
The Casimir effect on the lattice was investigated for relativistic scalar fields [4, 5], relativistic
fermion fields [6, 7, 10, 12], and nonrelativistic particle fields [8] (specifically, magnon fields in
antiferromagnets and ferrimagnets [9] and electron fields in Dirac/Weyl semimetals [11]). For
example, we consider the three dimensional lattice with a length 𝐿𝑧 = 𝑎𝑧𝑁𝑧 between boundary
conditions imposed in the 𝑧 direction, where 𝑎𝑖 and 𝑁𝑖 (𝑖 = 𝑥, 𝑦, 𝑧) are the lattice spacing and the
number of lattice links, respectively (see the right of Fig. 1). Then, the Casimir energy per the
surface area 𝐿𝑥𝐿𝑦 = 𝑎𝑥𝑎𝑦𝑁𝑥𝑁𝑦 (which precisely should be called the Casimir “surface density")

distance between plates 

Conventional photonic Casimir effect

photon fields

(origin of Casimir effect) 
plate

(boundary)

Casimir effect inside 3D materials

film thickness 𝑧

𝑦
𝑥

𝐿𝑧

electron/phonon/magnon fields 

(origin of Casimir effect)

edge of film

(boundary)
𝑎𝑧

Figure 1: Left: Conventional Casimir effect for photon fields. Right: Casimir effects for quantum fields on
the lattice.
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is defined with the lattice regularization as follows:

𝐸Cas ≡ 𝐸sum
0 (𝑁𝑧) − 𝐸 int

0 (𝑁𝑧), (1a)

𝐸sum
0 (𝑁𝑧) =

∑︁
𝑗

∫
BZ

𝑑2(𝑎𝑖𝑘⊥)
(2𝜋)2

[
±1

2

∑︁
𝑛

|𝜔𝑘⊥,𝑛, 𝑗 |
]
, (1b)

𝐸 int
0 (𝑁𝑧) =

∑︁
𝑗

∫
BZ

𝑑2(𝑎𝑖𝑘⊥)
(2𝜋)2

[
±𝑁𝑧

2

∫
BZ

𝑑 (𝑎𝑧𝑘𝑧)
2𝜋

|𝜔k, 𝑗 |
]
. (1c)

Thus, the Casimir energy 𝐸Cas is defined as the difference between the zero-point energies 𝐸sum
0

(with discrete eigenvalues 𝜔𝑘⊥,𝑛, 𝑗 labeled by 𝑛) and 𝐸 int
0 (with continuous eigenvalues 𝜔k, 𝑗). The

momentum integrals with respect to the continuous spatial momenta k = (𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧) are taken
within the first Brillouin zone (BZ), where 𝑑2(𝑎𝑖𝑘⊥) ≡ 𝑑 (𝑎𝑥𝑘𝑥)𝑑 (𝑎𝑦𝑘𝑦). The discrete-momentum
sum

∑
𝑛 is also taken within the first BZ.

∑
𝑗 is the sum of possible eigenvalues labeled by 𝑗 (which

physically corresponds to particle/antiparticle and spin degrees of freedom). The sign of ± is fixed
as + for boson fields and − for fermion fields. The factor of 1/2 is a feature of the zero-point
energy. The absolute value is needed to correctly take into account negative-energy eigenvalues of
relativistic fields. As some examples of boundary conditions, 𝑘𝑧 in 𝐸sum

0 is discretized as

𝑎𝑧𝑘𝑧 →
2𝑛𝜋
𝑁𝑧

(𝑛 = 0, · · · , 𝑁𝑧 − 1 or 1, · · · , 𝑁𝑧) (periodic), (2a)

𝑎𝑧𝑘𝑧 →
(2𝑛 + 1)𝜋

𝑁𝑧

(𝑛 = 0, · · · , 𝑁𝑧 − 1 or 1, · · · , 𝑁𝑧) (antiperiodic), (2b)

𝑎𝑧𝑘𝑧 →
𝑛𝜋

𝑁𝑧

(𝑛 = 0, · · · , 2𝑁𝑧 − 1 or 1, · · · , 2𝑁𝑧) (phenomenological). (2c)

For the phenomenological boundary (2c), we have to replace the sum in Eq. (1b) as
∑

𝑛 → 1
2
∑

𝑛.
Note that the two types of ranges of 𝑛, the ranges starting from 𝑛 = 0 and that from 𝑛 = 1, are
equivalent to each other.

The definition (1a) is similar to that in the continuous spacetime (as defined by Casimir [1]),
but on the lattice there is no ultraviolet divergence in each term by the existence of the lattice cutoff.
Therefore, we can obtain the solution from the exact summation and the numerical integration (or
analytic integration, if possible). In these proceedings, we show various types of Casimir effects on
the lattice, by substituting some types of 𝜔k, 𝑗 into the definition (1a).

2. Wilson fermions

First, as an instructive example, we demonstrate the Casimir effect for the Wilson fermions (see
Refs. [6, 7, 10] for details). Since the low-energy (infrared) behavior of the conventional Wilson
fermion simulate that of the Dirac fermions, we expect a similar Casimir effect if the Casimir energy
is determined by its infrared dynamics of quantum fields.

The dispersion relations of 3D Wilson fermions [13, 14] are given as

𝜔Wilson
± = ±ℏ𝑐

𝑎𝑖

√√√
𝑥,𝑦,𝑧∑︁
𝑖

sin2 𝑎𝑖𝑘𝑖 +
[
𝑟

𝑥,𝑦,𝑧∑︁
𝑖

(1 − cos 𝑎𝑖𝑘𝑖) + 𝑎𝑖𝑚 𝑓

]2

. (3)
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Figure 2: Casimir energy and Casimir coefficients for Wilson fermions in the 3+1 dimensions (see Refs. [6, 7]
for details). (a) Periodic boundary condition (b) Antiperiodic boundary condition.

For simplicity, we set the natural unit (ℏ = 1, 𝑐 = 1), 𝑎 ≡ 𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 , and 𝑟 = 1.
Figures 2(a) and (b) show the dimensionless Casimir energy 𝑎𝐸Cas and the dimensionless

Casimir coefficient defined as 𝐶 [𝑑 ]
Cas ≡ 𝑁𝑑

𝑧 𝑎𝐸Cas with the periodic and antiperiodic boundary condi-
tions. From these figures, the Casimir effect for massless Wilson fermions (𝑎𝑚 𝑓 = 0) is consistent
with the analytic solutions for the Dirac fermion (dotted lines) in the larger 𝑁𝑧 , while the difference
in the smaller 𝑁𝑧 reflects the ultraviolet lattice effect of Wilson fermions. When we switch on a
fermion mass (𝑎𝑚 𝑓 = 0.2), we find that the Casimir energy in the larger 𝑁𝑧 is suppressed, which
is similar to the property well known in the Casimir effect for massive particle fields.

3. Effective Weyl electrons in Weyl semimetals

As an example of interesting behaviors of the Casimir effect on the lattice, we here demonstrate
an oscillatory behavior of the Casimir energy. We consider the dispersion relations obtained from
an effective Hamiltonian of time-reversal-symmetry breaking 3D Weyl semimetals, given as [15]

𝜔WSM
± = ±

√√√
𝑡2

𝑥,𝑦∑︁
𝑖

sin2 𝑎𝑖𝑘𝑖 +
[
𝑚 − 𝑡 ′

𝑥,𝑦,𝑧∑︁
𝑖

(1 − cos 𝑎𝑖𝑘𝑖)
]2

. (4)

This band structure is characterized by the three parameters, 𝑡, 𝑡 ′, and 𝑚. For simplicity, we
assume 𝑡 = 𝑡 ′. In the parameter region of 0 < 𝑚/𝑡 < 2, these dispersion relations are distributed
across the zero (Fermi) energy, and then the crossing points are regarded as the two Weyl points at
(𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧) = (0, 0,±𝑘WP) with 𝑘WP = 1

𝑎𝑧
arccos(1 − 𝑚/𝑡) [e.g., see Fig. 3(b)]. At 𝑚/𝑡 = 0 and 2,

the eigenvalues just touch the Fermi level without forming Weyl points [see Figs. 3(a) and (c)]. In
the regions of 𝑚/𝑡 < 0 and 𝑚/𝑡 > 2, the eigenvalues are separated from the Fermi level.

Figure 3(d) shows the dimensionless Casimir energy 𝐸Cas/𝑡 at 𝑚/𝑡 = 0.0, 0.5, or 2.0 and
the dimensionless Casimir coefficient defined as 𝐶

[3]
Cas ≡ 𝑁3

𝑧𝐸Cas/𝑡 with the phenomenological
boundary (2c). We find that, at 𝑚/𝑡 = 0.5, the Casimir energy oscillates with a period 𝜏Cas. This
period is characterized only by the distance between the two Weyl points (WPs) [11]:

𝜏Cas =
𝜋

𝑎𝑧𝑘WP
. (5)
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Figure 3: (a)-(c) Dispersion relations of Weyl fermions in Weyl semimetals described by Eq. (4), where
the model parameter is fixed as 𝑚/𝑡 = 0.0, 0.5, or 2.0. (d) Casimir energy for Weyl fermions with the
phenomenological boundary (see Ref. [11] for details).

For 𝑚/𝑡 = 0.5, the Weyl points are located at 𝑎𝑧𝑘𝑧 = ±𝑎𝑧𝑘WP = ±𝜋/3, so that the corresponding
period is 𝜏Cas = 3. At 𝑚/𝑡 = 0.0 and 2.0, since there are no Weyl points, the Casimir energy does
not oscillate. Thus, the oscillation of Casimir energy is useful as a signal of Weyl points (or nodes)
at finite momentum.

4. Effective Dirac electrons in Dirac semimetals

The concepts shown in the Sec. 3 can be applied to realistic Dirac/Weyl semimetals. From an
effective Hamiltonian describing 3D Dirac semimetals such as Cd3As2 and Na3Bi, we obtain the
following dispersion relations [16, 17]:

𝜔DSM
± = 𝜖0 ±

√︃
𝑀2 + 𝐴2(𝑘2

𝑥 + 𝑘2
𝑦), (6)

where 𝜖0 = 𝐶0 + 𝐶1𝑘
2
𝑧 + 𝐶2(𝑘2

𝑥 + 𝑘2
𝑦) and 𝑀 = 𝑀0 + 𝑀1𝑘

2
𝑧 + 𝑀2(𝑘2

𝑥 + 𝑘2
𝑦). For Cd3As2, the

model parameters are given as 𝐴 = 0.889 eVÅ, 𝐶0 = −0.0145 eV, 𝐶1 = 10.59 eVÅ2, 𝐶2 = 11.5
eVÅ2, 𝑀0 = −0.0205 eV, 𝑀1 = 18.77 eVÅ2, 𝑀2 = 13.5 eVÅ2 [18], 𝑎𝑥 = 𝑎𝑦 = 12.67 Å , and
𝑎𝑧 = 25.48 Å [19]. For Na3Bi, 𝐴 = 2.4598 eVÅ, 𝐶0 = −0.06382 eV, 𝐶1 = 8.7536 eVÅ2,
𝐶2 = −8.4008 eVÅ2, 𝑀0 = −0.08686 eV, 𝑀1 = 10.6424 eVÅ2, 𝑀2 = 10.361 eVÅ2, 𝑎𝑥 = 𝑎𝑦 = 5.448
Å, and 𝑎𝑧 = 9.655 Å [16]. To construct the dispersion relations on the lattice, we replace
𝑘2
𝑖
→ 1

𝑎2
𝑖

sin2 𝑎𝑘𝑖 for the term with 𝐴 and 𝑘2
𝑖
→ 1

𝑎2
𝑖

(2 − 2 cos 𝑎𝑘𝑖) for the other terms.
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Figure 4: (a)-(b) Dispersion relations of Dirac electrons in Cd3As2 or Na3Bi thin films described by Eq. (6).
(c)-(d) Casimir energy for Dirac electrons with the phenomenological boundary (see Ref. [11] for details).

Figure 4 shows the numerical results. For both Cd3As2 and Na3Bi, we can find the oscillation
of the Casimir energy and coefficient with a period characterized by the Dirac points (DPs). From
these results, we expect the periods 𝜏Cas = 𝜋

𝑎𝑧𝑘DP
∼ 3.73 and 3.60, which corresponds to the film

thicknesses of 𝐿𝑧 = 𝑎𝑧𝜏Cas ∼ 9.5 nm and 3.5 nm, respectively.

5. Landau levels in Weyl/Dirac semimetals

In solid state physics, magnetic fields are experimentally controlled and modify band structures
via the Landau quantization and the Zeeman splitting, which will be useful for tuning the qualitative
property and quantitative strength of the Casimir effect. For example, the zeroth Landau level (0LL)
of Weyl fermions described by Eq. (4) is written as [20]

𝜔WSM−0LL = −𝑚 + 𝑡 ′(1 − cos 𝑎𝑘𝑧) + 𝜋𝑡 ′𝜙. (7)

𝜙 ≡ 𝑒𝐵𝑎𝑥𝑎𝑦/ℎ is the magnetic flux parallel to the 𝑧-direction with the magnetic-field strength
𝐵, the electric charge 𝑒, and the Planck constant ℎ. Note that, in Eq. (7), we have neglected the
Zeeman splitting, but it can be effectively included in the third term. Within the parameter region
of −1 < −𝑚/𝑡 ′+1+ 𝜋𝜙 < 1, the 0LL in Eq. (7) is distributed across Fermi level at the Fermi points.

Similarly, the 0LLs of Dirac electrons in Dirac semimetals can be described as [20]

𝜔DSM−0LL
↑ = 𝑚 − 𝑡 ′(1 − cos 𝑎𝑘𝑧) − 𝜋𝑡 ′𝜙 + 𝜆𝑧𝑔↑𝜙, (8a)

𝜔DSM−0LL
↓ = −𝑚 + 𝑡 ′(1 − cos 𝑎𝑘𝑧) + 𝜋𝑡 ′𝜙 − 𝜆𝑧𝑔↓𝜙, (8b)
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Figure 5: (a)-(b) Dispersion relations of the zeroth Landau levels of Weyl/Dirac electrons in Weyl/Dirac
semimetals, described by Eqs. (7) and (8). (c)-(d) Casimir energy for Weyl/Dirac electrons with the phe-
nomenological boundary (see Ref. [11] for details).

where the last terms mean the Zeeman splitting.
Figures 5(c) shows the Casimir effect for the 0LL from Eq. (7), where we fix the positions of the

Fermi points (FPs) as 𝑎𝑘FP = 𝜋/4 and 𝜋/10 [as shown in Fig. 5(a)]. We find the oscillation of the
Casimir energy, where the periods are 𝜏Cas = 4 and 10, respectively. Figure 5(d) shows the results
from Eqs. (8), where we fix the Fermi points of the spin-down and spin-up bands as 𝑎𝑘FP = 𝜋/18
and 𝜋/20 [as shown in Fig. 5(b)]. We find that the combination of the two periods induces a “beat"
of the Casimir energy, and its period is estimated as 𝜏beat = 1/( 1

18 − 1
20 ) = 180.

6. Nonrelativistic fields

An open question regarding the Casimir effect is whether the nonrelativistic counterpart of the
Casimir effect exists or not. In the continuous spacetime, one may expect the absence of the Casimir
energy by taking the heavy-mass limits of massive fields with the eigenvalues 𝜔± = ±

√
𝑘2 + 𝑚2 or

by utilizing a renormalization scheme for quadratic dispersion relations with 𝜔± = ±𝑘2/2𝑚. Since
nonrelativistic fields on the lattice are one of the most general band structures in solid state physics,
the understanding of the Casimir effect for such fields will be essential.

Here, following Ref. [8], we demonstrate the Casimir effect for quadratic dispersion relations
on the lattice, defined as

𝜔
quad
± = ±

𝑥,𝑦,𝑧∑︁
𝑖

ℏ𝑐

𝑎𝑖
(2 − 2 cos 𝑎𝑖𝑘𝑖). (9)
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Figure 6: Casimir energy for quadratic dispersion relations on the lattice (see Ref. [8] for details).

For simplicity, we set ℏ = 1, 𝑐 = 1, and 𝑎 ≡ 𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 .
Figure 6 shows the Casimir energy with the periodic boundary conditions. From this figure,

we find the Casimir energy survives only at 𝑁𝑧 = 1, while the Casimir energy is exactly zero at
𝑁𝑧 ≥ 2. Such a disappearance of the Casimir effect at 𝑁𝑧 ≥ 2 is caused by an exact cancellation
between 𝐸sum

0 and 𝐸 int
0 . This behavior may be called the remnant Casimir effect [8]. Furthermore,

for the phenomenological boundary (2c), we find that the Casimir energy is exactly zero at any 𝑁𝑧 .
Note that such a behavior theoretically appears in various types of Hamiltonians. For example,

the 0LL of Weyl semimetals can be described as a cosine band as in Eq. (7), and in the parameter
region of | − 𝑚/𝑡 ′ + 1 + 𝜋𝜙| > 1, this cosine band does not cross the Fermi level. As a result, we
can prove that the Casimir energy for such a band structure is exactly zero.

7. Conclusions

We have shown some examples of Casimir effects on the lattice. In solid state physics, since
there exist various types of relativistic or norelativistic quantum fields on the lattice, such as
electrons, phonons, and magnons, the zero-point fluctuations from these fields induce the Casimir
effect under a finite size of the system. Such a study will open novel engineering fields utilizing the
Casimir effect, which may be called Casimir electronics and Casimir spintronics.
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