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Lanthanide molecular nanomagnets as probabilistic bits†
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Over the decades, the spin dynamics of a large set of lanthanide complexes have been explored.
Lanthanide-based molecular nanomagnets are bistable spin systems, generally conceptualized as
classical bits, but many lanthanide complexes have also been presented as candidate quantum bits
(qubits). Here we offer a third alternative and model them as probabilistic bits (p-bits), where
their stochastic behaviour constitutes a computational resource instead of a limitation. Employing
a novel modelling tool for molecular spin p-bits and molecular nanomagnets, we simulate a minimal
p-bit network under realistic conditions. Finally, we go back to a recent systematic data gather-
ing/recently published dataset and screen the best lanthanide complexes for p-bit behaviour, lay
out the performance of the different lanthanide ions and chemical families and offer some chemical
design considerations.

1 Introduction
The rising of Artificial Intelligence (AI) has been instrumental
for pattern recognition1, reasoning under uncertainty2, control
methods3, analyzing and classifying big data.4,5. Nevertheless,
there is a need for scalable and energy-efficient hardware con-
structed following the same scheme: further progress of AI al-
gorithms depends on the efficiency of its hardware.6 In this sce-
nario, Neuromorphic Computing promises higher efficiency since
it manipulates information with hardware processes that directly
mimic the nature of neurons instead of emulating this via soft-
ware.7,8

The majority of current computers store and process informa-
tion using deterministic bits that can take one of two possible val-
ues, 0 or 1. On the other hand, quantum computers are based on
quantum-bits (qubits) which can exist in a superposition of |0>
and |1> spin states described by a complex wavefunction.9 Be-
tween these two approaches, and sharing some of their qualities,
we can find the probabilistic bits (p-bits, see Figure 1).10 These
information elements can fluctuate stochastically between 0 and
1, but take a well-defined classical value at any given time.

There are many important advantages for the use of p-bits
in computing.11 In contrast with qubits, p-bits may operate at
room temperatures with current technology, and yet are able to
emulate sign-problem–free Hamiltonians (the so-called “stoquas-
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tic” problems).12 Furthermore, there are no hard physical limi-
tations in terms of strength or distance of connections between
p-bits as they can be wired employing known transistor technol-
ogy. In fact, probabilistic computers are designed as a network
of p-bits, autonomously fluctuating between 0 and 1, with proba-
bilities that are controlled through an input constructed from the
outputs of other p-bits.13 Recent landmarks of probabilistic com-
puting include experimental integer factorisation using stochas-
tic magnetic tunnel junctions,14 and an experimental spintronic
demonstration employing the inherently stochastic behaviour of
nanomagnets to implement probabilistic computing.15,16

The nanomagnets employed as p-bits have so far been conven-
tional, solid state materials. This is despite of three decades of
research in molecular nanomagnets which have resulted in the
theoretical investigation of the switching dynamics of stochastic
nanomagnets, describing their relaxation time mechanisms17; in
addition, many studies have been carried on in the area of the ex-
perimental characterisation of several hundreds of molecules pre-
senting a measurable magnetic memory at low temperatures,18

with some of them being very promising as qubits.19 These sys-
tems deserve exploration for their use as nanoscale p-bits. Two
challenges hampered the practical application of molecular nano-
magnets as bits and qubits: (a) the difficulty to detect and ma-
nipulate a single molecular spin, and (b) the instability of their
spin states, since the bit becomes useless as soon as a spin state
suffers spontaneous changes and thus, information is lost. Qubits,
the quantum version of spin-based memories, are even more chal-
lenging, requiring the preservation of quantum coherence and the
implementation of coherent quantum operations.20,21 Notable
achievements have been reported in both fields, such as molec-
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Fig. 1 (a) Bits vs qubit vs p-bit based stochastic neurons. For any starting state and logical operation, bits take simple 0 or 1 values, while qubits
can take coherent superposition states α|0 >+β |1 >. The operation is inherently deterministic, and the same memory position hold the initial and the
final states. P-bit based Binary Stochastic Neurons function in layers (as neural networks) rather than by applying logic gates to memory positions.
Furthermore, they are inherently stochastic, meaning two identical executions will result in different microscopic values for each neuron. (b) Proposed
experimental setup for spin-based p-bits: the state of a p-bit i is read out by a Hall effect probe, and the resulting output voltage is amplified and
translated a magnetic field that (after being properly weighted and added to all other signals) acts as input to a p-bit j. (c) Application domains of
probabilistic computing with p-bits (reused with permission from Chowdhury et al,10 CC BY 4.0).
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ular classical bits with (vanishingly thin) magnetic hysteresis up
to liquid nitrogen temperature,22,23 or molecular qubits where
one can implement a minimal quantum algorithm.24 Although
the ephemeral nature of spin information continues to be a prob-
lem and hinders further progress for these proposed computa-
tion technologies,19,25 there have been advances regarding the
experimental implementation of quantum gates,26,27 and recent
progress in the integration of molecular systems with supercon-
ducting circuits.28,29

When molecular nanomagnets are considered as p-bits, their
stochasticity is a crucial aspect of their nature rather than a de-
fect to be corrected. Then, one can profit from the sophisticated
modelling of their spin dynamics.30 Initial studies on molecular
nanomagnets assumed that a simple Orbach process was the main
relaxation mechanism at high temperatures, thus the focus was
set on modelling the effective barrier (Ueff),31 with a Quantum
Tunneling of the Magnetisation (QTM) model being responsible
for spin relaxation at low temperatures.32

As sufficient data were gathered, the key role of other relax-
ation mechanisms, in particular Raman, was recognized. In par-
allel, spin-phonon coupling was found to be a key phenomenon,
both for Orbach and for Raman processes, and became the focus
of attention in the field.33–35 Recently, the data-science approach
also provided some insights and pointers for the design of molec-
ular nanomagnets.18 Combining electronic structure calculations
with Machine Learning Force Fields is now allowing to unravel
the nature of both the Orbach and the Raman relaxation path-
ways in terms of atomistic processes.36

How could one leverage this expertise for the design of modes
of computing based on molecular p-bits? Molecular nanomagnets
in this context would act as Low Barrier Nanomagnets (LBNs)
and be employed as Binary Stochastic Neurons (BSNs, see Figure
1).37 BSNs would be the Artificial Neural Networks (ANNs)38

equivalents of p-bits:
the output of a BSN is governed by a combination of weights

and biases, with the difference with ANNs being that BSN’s acti-
vation function also includes a stochastical contribution.

A reasonable question here is: why molecular nanomagnets
rather than any other magnetic nanoparticles? Firstly, with
molecules we benefit from a systematization of data, which can
allow experimentalists to choose the best system for their partic-
ular hardware implementation. Moreover, there is the issue of
chemical and crystalline design of molecular nanomagnet-based
nanoparticles vs superparamagnetic nanoparticles. Combining
the SIMDAVIS dataset with inexpensive tools (such as MAGEL-
LAN)39 one could check for crystals where the easy axis is per-
pendicular to a crystal plane, to facilitate choosing the direction of
the easy axis in the device. But a further, more fundamental, ad-
vantage of molecular nanomagnets as LBNs is their reproducible
magnetic behavior. Within the top-down approach of ferromag-
netic nanoparticles, the magnetic dynamics vary with the size of
the nanoparticle. The bottom-up approach of molecular nano-
magnets guarantees reproducible magnetic dynamics that only
depend on the chosen molecule. This would facilitate schemes
that rely on specific operating frequencies, like lock-in amplifica-
tion.

And how would the physics of molecular nanomagnets relate to
the information processing as p-bits? At any given point in time,
the state mi of the ideal spin p-bit i is given by the signum of:

mi = sgn
(

Ii,[−1,1]− r[−1,1]

)
(1)

where Ii,[−1,1] is its input signal, normalized between -1 and 1, and
r[−1,1] is a random number with a uniform distribution between -1
and +1, meaning that the output is stochastic but biased by the
input. It is only unbiased when Ii = 0 and only deterministic when
Ii = 1 or Ii =−1. For a spin p-bit, Ii can be embodied by the polar-
isation achieved by an external magnetic field Bi, i.e. a Zeeman
effect that at a given temperature achieves a certain Boltzmann
distribution. For the direction of the field corresponding to posi-
tive input signals, this is expressed as:

Ii,[0,1] = 2 · e−EZeeman/kT
1+ e−EZeeman/kT

(2)

where
EZeeman = gµBBMJ (3)

where g is Landé’s factor, µB is Bohr’s magneton, B is the external
magnetic field and MJ is the projection of the spin state. Applying
B in the opposite direction would let one access the range Ii,[−1,0].
The same kind of biasing effect can be in principle achieved spin-
tronically, by the flow of a spin-polarized current that acts as an
effective magnetic field that couples with the spin p-bit.40 In any
case, the practical limit values of Ii, i.e. the saturation magneti-
sation, will be given by technological limits. In particular, large
biases would require either very high effective magnetic fields or
very low temperatures, or a combination of both. In the field of
p-bits this behavior is often written, equivalently, as

Ii,[−1,1] = tanh(Hi) (4)

In the general case, for an interconnected network of p-bits,
each input Ii results from the states of the rest of the p-bits m j,
weighted by their connections Ji j, plus a local bias hi:

Ii = ∑
j

Ji jm j +hi (5)

Note that this fundamentally differs from the circuit model of
Boolean logic gates that applies to conventional computing based
on bits and quantum circuits employing qubits. Instead, it is
closer to the way classical neural networks operate, with the dif-
ference being the stochastical character of p-bits. In a neural net-
work, and also in a p-bit network, rather than a logical gate acting
on a memory unit and altering it, the state of a given memory unit
depends on the states of several other memory units with differ-
ent weights, plus a bias (in the case of p-bits, to the bias one adds
a random contribution). The system has to be adapted to solve a
specific problem by adjusting the individual biases of each mem-
ory unit and the weights of each interaction between every pair of
memory units, rather than by selecting an algorithm that applies
a sequence of logical gates. This proposed use of molecular spin
p-bits would add to recent proposals to employ molecular electric
switches to emulate synaptic behaviour.41
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2 Methods
We developed a custom implementation of Markov Chain Monte
Carlo, which is based in random transitions for each spin at each
time step and uses parameterised magnetization dynamics and
Boltzmann distribution for the calculation of the Markov transi-
tion probabilities between the two possible spin states. In contrast
with many Monte Carlo model implementations, our end goal is
not to simulate the thermodynamic properties of a material via
averaging of many samples but the dynamical behavior of a full
population. Thus, within the many implementations of Markov
Chain Monte Carlo methods (including Metropolis Monte Carlo),
three crucial features for our goals are (a) we simulate indepen-
dent particles, meaning we work with N identical and indepen-
dent Markov chains, (b) instead of accumulating data over many
runs with small sizes, we perform a single run with a large size,
which will eventually be the actual number of magnetic molecules
in our p-bit and (c) each calculation step has an associated natural
time in real time units, which is taken into consideration for the
calculation of the transition probabilities; this model is empirical
and relies on externally determined relaxation parameters.

Assuming that the dynamics are the same for each individual
nanomagnet and that the collective behaviour results from a sim-
ple addition of magnetic moment, one can employ the same τ

to describe each individual spin. In particular, we employed the
Maclaurin expansion of the exponential function to calculate the
spin flip probability at a given time interval, and so allow recover-
ing macroscopic spin dynamics of either a single and an ensemble
of molecules. The magnetisation is simulated by the number of
uncompensated spins and scaled to the experimental values (see
full details in the SI section S1A).

In order to simulate stochastic spin dynamics in presence of
a magnetic field, we introduced the Zeeman effect to produce a
bias in the spin flip probability. This allows to recover Boltzmann
statistics (see full details in SI section S1B). This complication of
the model is necessary to be able to reproduce p-bit dynamics in
a spin system that is driven by an external field.

All ac (alternate current) simulations were calculated with the
same scheme, but under a time-dependent field. In-phase and
out-of-phase susceptibilities were fitted employing a generalized
Debye model (see full details in the SI section S2).

The screening of the SIMDAVIS dataset was performed by em-
ploying the SIMDAVIS dashboard (see full details in the SI sec-
tions S3, S4).18

All simulations presented herein were performed on a desktop
computer and took, all in all, less than 24 h of processor time. The
associated software to this work, named STOSS (for STOchastic
Spin Simulator), and the instructions to reproduce all the graphic
results are available at https://github.com/gerlizg/STOSS.

3 Results and discussion

3.1 Lanthanide-based, molecular, isolated spin p-bits at con-
stant field

In state-of-the-art p-bit modelling, the spin dynamics caused by
spin transfer torque effects on solid state superparamagnetic
tunnel junctions are modeled by an Arrhenius/Neel-Brown ap-

proach.42 In the case of molecular spin p-bits, we benefit from
the more sophisticated modelling of molecular nanomagnets, in
which a commonly employed equation of the relaxation time (τ)
reads as follows:

τ
−1 = τ

−1
QTM +CT n + τ

−1
0 exp(−Ueff/T ) (6)

where the first term presents temperature-independent QTM, and
the second and the third terms are thermally-assisted Raman and
Orbach processes, respectively.

This relaxation time τ is employed to describe a collective be-
haviour. In particular, an ensemble of molecular nanomagnets
experiences exponential decay of the magnetisation (see Figure
2):

M(t) = Meq +(M0−Meq)exp[−(t/τ)β ] (7)

where Meq and M0 are the equilibrium and initial magnetisations,
respectively; β is a so-called "stretching" parameter related to the
time-dependent decay rate. Here we worked with β = 1, mean-
ing independent spins (see details in the SI section S1), although
STOSS can incorporate an averaged internal magnetic field re-
flecting the effect of dipolar coupling.

As a basic test for our simulator, we verified that, for a suf-
ficiently large number of spins in the model, an exponential fit
of the decay of the ensemble magnetisation recovers the input τ

with the desired accuracy. This served as a basic benchmark of
the model and also emphasized a further shortcoming: if the ex-
perimental magnetisation relaxes as a stretched exponential, our
current model of independent spins cannot reproduce its shape
properly. A simple modification of the code is available where
the spin flip probability is a function of the spin up/down ratio,
effectively simulating the average internal magnetic field created
by dipolar interaction.

As an illustration, we employ our modelling sofware STOSS to
simulate the magnetisation decay at three representative temper-
atures (2 K, 40 K, 80 K) with the parameters obtained experimen-
tally in the case of [(CpiPr5)Dy(Cp∗)]+.22 Figure 2 upper panels
depicts a simulation of the experimental results based on the evo-
lution of N = 105 spins. While the simulation deviates significantly
from the experimental decay curve at 2 K, they coincide well at
high temperatures (40 K and 80 K). The deviation at low temper-
atures is due to the fact that the observed relaxation of magneti-
sation follows a stretched exponential decay (0 < β < 1 in Eq. 7),
as occurs when spins are interacting. As a result, the value of β

for 2 K is 0.5527, which differs greatly from the values found for
40 K and 80 K (0.9831 and 0.993, respectively). This variation is
due to the time-dependent relaxation rate that likely stems from
the redistribution of local dipolar fields when the magnetisation
of the molecule is varied. In contrast, single exponential decay is
normally adequate to account for the relaxation behaviour at high
temperatures, as evidenced by β ≈ 1 at 40 K and 80 K in this case.
To prove that this is not a bulk simulation but rather intrinsically
microscopic, the evolution of a smaller number of spins N = 100
at each temperature is shown in Figure 2 bottom panels. It is by
the simple addition of a large number of these telegraph noises
that the properties of the bulk sample are reproduced.
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Fig. 2 (a) Structure of [(CpiPr5)Dy(Cp∗)]+ (CpiPr5, penta-iso-propylcyclopentadienyl; Cp∗, pentamethylcyclopentadienyl), (b-d, upper panels) its
magnetisation decay vs time, experimental vs (scaled) simulation, at 3 temperatures, from left to right, 2K, 40K, 80K, with the simulations employing
N = 105 spins. Experimental data are as extracted from Guo et al.22 The simulated magnetisation is plotted as difference between spins "up" and
"down", starting from a fully polarized population, each evolving as explained in the text, and employing the parameters for Orbach, Raman and QTM
mechanisms reported by Guo et al.22 (b-d, lower panels) present the same calculations, in the same conditions, but with a more limited number of
spins N = 102 to evidence the stochastic nature of the model.

3.2 Lanthanide-based, molecular, dynamically driven spin
p-bits

After simulating the spontaneous evolution of a single p-bit with
constant input signal (e.g. constant magnetic field) and bench-
marking the modelling software STOSS against the experimental
relaxation of the magnetisation of a molecular nanomagnet, the
second step is driving it with a time-dependent signal Ii = f(t).
The natural way to test the behaviour of the model in these con-
ditions is by simulating the out-of-phase susceptibility of a molec-
ular nanomagnet, where Ii = cos(t) (see Figure 3).

Note that microscopic (spin-by-spin) simulations of bulk ac be-
haviour are necessarily limited to low temperatures due to fun-
damental reasons. Indeed, the population difference between the
distinct spin directions for very weak fields that are typical in ac
susceptometry B ≤ 0.5 mT is extremely small even at reasonably
low temperatures in the order of T = 2− 4 K, and the popula-
tion difference gets even smaller at higher temperatures. This is
the reason why it can be experimentally challenging to obtain ac
signal for molecular nanomagnets that function at high tempera-
tures. Furthermore, while sample sizes of the order of m = 0.1 mg
are considered small, they typically contain a number of spins
in the order of N ' 1016, which is absolutely out of the bounds
of what one can simulate microscopically. For this reason, we
performed our simulation at T = 20 mK, a temperature in the

low limit of the experimentally accessible for researchers study-
ing magnetic molecules. At this temperature, one should be able
to access the spin dynamics corresponding to the QTM regime.

As above, the dynamic response is simulated by employ-
ing externally obtained parameters. For this simulation we
chose [Dy(bath)(tcpb)3], where tcpb = 1-(4-chlorophenyl)-
4,4,4-trifluoro-1,3-butanedione and bath = 4,7-diphenyl-1,10-
phenanthroline, where τQTM = 0.067 s, n = 4.90, C = 7.80×10−2

s−1 K−4.90, τ0 = 2.83×10−9 s, and the effective energy barrier
(Ueff) is 116.87 cm−1 (167.87 K). In a first example simulation,
we simulated 4 cycles with a period of an order of magnitude
longer than τQTM. Employing N = 104 spins in the simulation, the
response is largely in-phase with the magnetic field and yet a cer-
tain delay in the signal is already evident (see Figure 3(a) up).
To offer a more intuitive insight into how this ensemble response
signal is obtained, we also represented the same simulation with
N = 100 spins (see Figure 3(a) down), where apparently there
is just some relatively rapid telegraph noise overlapped with a
slower random drift. It is crucial to understand that merely by
summing a hundred similarly noisy patterns resulting from mi-
croscopic simulations one can reproduce a relatively clean macro-
scopic behaviour.

We repeated these calculations both at longer and shorter peri-
ods for the oscillation of the magnetic field and fitted the result to
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Fig. 3 Periodically driven p-bits, when simulated by our Markov Chain
Monte Carlo calculations, behave qualitatively as spins in an ac suscep-
tometry experiment: (a) calculated time evolution of N = 2.5×104 (up)
or N = 50 (down) stochastic spins described by the parameters corre-
sponding to [Dy(bath)(tcpb)3], at 20 mK and under an external ac field
of amplitude Bmax = 0.25 mT and frequency 2 Hz that evidences a cer-
tain delay in the shape of the simulated magnetisation for N = 2.5×104,
whereas in the same conditions in the simulation of N = 50 stochastic
spins neither the delay nor the periodicity are apparent and (b) simu-
lated χ ′, χ ′′, where each value of χ ′ (χ ′′) corresponds to the prefac-
tor of the cos(sin) in a weighted sin+cos fit of simulated oscillations
for N = 2.5× 104 p-bits described by the parameters corresponding to
[Dy(bath)(tcpb)3]; the simulation was also performed at 20 mK mean-
ing that the spin dynamics is governed by the parameter τQTM. The solid
lines indicate the fits using the generalized Debye model.

a weighted sum of sin and cos functions to extract in-phase and
out-of-phase signals (details in SI section S2A). The result, illus-
trated in Figure 3(b), is consistent with the expected behaviour,
and the extracted τ of 5.79(6) · 10−2 s using generalized Debye
model is essentially identical to the experimental value.

In the context of molecular nanomagnets, STOSS should serve
as an auxiliary tool in the ongoing effort for a proper interpre-
tation of magnetic relaxation times and magnetic relaxation pa-

rameters.43 In the context of p-bits, one can see this exercise as
a synchronisation with an external periodic drive, but rather than
being limited to simulating bulk ac experiments, one can easily
think of ways to construct more sophisticated circuit architec-
tures. With an adequate circuitry construction, the output of p-bit
i can serve as input for p-bit j. To work at temperatures higher
than T = 20 mT, it suffices to rise the applied magnetic field above
B = 0.5 mT. Precisely this scenario is explored in the next section.

3.3 Lanthanide-based, molecular spin p-bit network

As a minimal toy model for a p-bit network, we explored a 2-p-
bit architecture where each p-bit is constituted by the collective
signal of 106 magnetic molecules, for example forming a thick
layer on top of a sensor. We assume a circuit able to a spin excess
of 103 spins, as should be possible to do employing nanoscale
(100 nm × 100 nm) Hall probes.44 For simplicity we define as
p-bit state 1 the case where there is a spin excess of 103 spins
in the "up" direction, and 0 otherwise. Compared with requiring
also a spin excess for the 0 state, this means that 0 and 1 states
are slightly asymmetrical, but it saves us from having to consider
"dead" times where neither an excess of spin "up" nor "down" can
be detected. Also for simplicity, we take identical p-bits in terms
of τ.

We allowed a free evolution for the spin dynamics of p-bit i (no
input signal, no bias, Bi = 0). It was also assumed that each p-
bit flip in p-bit i is detected by a sufficiently fast readout and it
is used to switch the magnetic field acting on p-bit j. We chose
two systems from the SIMDAVIS dataset which presented distinct
advantages and a maximum in the out-of-phase signal around 4
K and 40 K respectively. Thus, for the simulations at T = 4 K
we chose [Dy{η4-C4(SiMe3)4}η4-C4(SiMe3)3-k-(CH2SiMe2]2−

molecules45, which are air stable and thus in principle easier to
process. This system presents a τ0 = 1.83×10−9 s and Ueff =

464 K. For the simulations at T = 40 K we chose quadruple
decker {[Dy(obPc)2]Cd[Dy(obPc)2]} molecules46, where obPC
= 2,3,9,10,16,17,23,24-octabutoxyphthalocyaninato. This is a
phthalocyaninato-based system that should be easy to deposit on
surfaces with a predictable orientation of the easy axis of mag-
netization. This system presents a τ0 = 1.2×10−7 s and Ueff =
30.24 K. At both temperatures we employed an "on" field (B j) of
20 mT. The "off" field was fitted so that the average field cancels
over a long experiment. In this case, the information flow is uni-
directional, but both the scheme and the modelling are scalable
to larger networks and to more complex information feedbacks.

To quantify the association between the values of the two pbits,
we consider the four states (0,0),(0,1),(1,0),(1,1) where the first
and second index correspond to the state of p-bit i and j respec-
tively, and N(i, j) as the number of such states in a continuous run
of the simulation. We define the association φ between p-bit i and
p-bit j as:

φ =
N(0,0) ·N(1,1)−N(0,1) ·N(1,0)√

N1∗ ·N0∗ ·N∗0 ·N∗1
(8)

with
N1∗ = N(1,0)+N(1,1) (9)
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Fig. 4 Scheme for a toy network of associated p-bits based on the collective behavior of (a,b) [Dy{η4-C4(SiMe3)4}η4-C4(SiMe3)3-k-(CH2SiMe2]2−

molecules45 at T = 4 K and (c,d) quadruple decker {[Dy(obPc)2]Cd[Dy(obPc)2]} molecules46 at T = 40 K, where the state of p-bit i controls a
magnetic field B = 0.02 T acting on p-bit j. (a,c): State of p-bit i and p-bit j vs time; one can appreciate that after a period where p-bit i takes the
value 1 (or 0), p-bit j often follows. (b,d) Association φ (see equation 8) comparing the state of p-bit i at a certain time with state of p-bit j after a
certain delay time where the x-axis is the delay time.

N0∗ = N(0,0)+N(0,1) (10)

N∗0 = N(0,0)+N(1,0) (11)

N∗1 = N(0,1)+N(1,1) (12)

By choosing relatively cold temperatures, even moderate fields
and a moderate number of magnetic molecules per pbit are able
to achieve a strong association between the p-bits (see Figure 4).

We also calculated the delayed association by considering the
state of p-bit i at a certain time t0 and the state of p-bit j at a
later time t0 + d. What one observes both here and also for a
single spin as a p-bit in Supplementary Figure S6 is a base instan-
taneous correlation, that is initially enhanced by allowing a short
delay time between the stimulus and the response, to accommo-
date the intrinsic dynamics, and which is then gradually lost for
longer delay times, until only noise around φ ' 0 is observed, i.e.
mathematically independent values of p-bits i and j. One can also

appreciate that the same magnetic field B = 0.02 T that has an ad-
equate effect at 40 K is excessive at 4 K, with the spin excess of
p-bit j overshooting by a wide margin and taking a long time to
recover when the state of p-bit i changes.

How could such a p-bit network be implemented in practice?
We revealed a possibility in Figure 1(b). Each p-bit would sit on
a clover-type Hall effect probe, where a current is passed in one
direction and a Hall voltage is measured in the perpendicular di-
rection, so that the sign of the Hall voltage is controlled by the
sign of the magnetic moment in the p-bit. This output voltage
signal then needs to be amplified and converted into a current.
This current, passing through an electromagnet, generates a mag-
netic field B that acts as input (red arrow) to another p-bit, with
a sign that depends on the value of the first p-bit. A magnetic
field B = 0.02 T is realistic if the response time is wanted to be
relatively short and able to react to the change in the state of the
p-bits. Note the crucial effect of the magnetic field here, creating
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a Zeeman splitting strong enough to allow our microscopic simu-
lator to pick up correlations at a temperature of 40 K instead of
requiring an extreme cryogenic temperature of 20 mK like in the
previous section.

What we extract from these simulations is that at 4 K and 40 K
even with a moderate number of M = 106 magnetic molecules one
can expect a very high association between p-bits communicated
by reasonable magnetic fields (' 0.02 T) and times (' 1 ms). Sim-
ulations would be more challenging at 300 K, higher number of
molecules and slower nanomagnets would be required, but one
can expect these results to carry over to room temperature. In
the next section we discuss the chemical design of the desired
characteristic relaxation times.

3.4 Experimental constraints and SIMDAVIS dataset screen-
ing for p-bit behaviour

The most convenient setup, from the point of view of the tech-
nical requirements, involves working at room temperature (RT).
This should also be a short-term goal for scalable technologies,
especially if one takes energy consumption into consideration.
However, this seems yet out of the question with molecular nano-
magnets employed either in traditional computation as bits or
in quantum computation as spin qubits. For both applications,
stochastic spin flips that happen at non-cryogenic temperatures
are detrimental and need to be avoided. Then, working at RT
would require long relaxation/coherence times, and this in turn
would require a combination of an extremely high relaxation bar-
rier and extremely weak spin-phonon coupling. These demands
have not been achieved yet with molecular nanomagnets and it
remains unclear whether they can ever be achieved.

The situation is completely different for p-bits, where stochastic
spin flips are expected and a mandatory part of the information
processing. In this case the electronic equipment needs to operate
at least as fast as the relaxation time of the p-bit. If the equipment
operates at significantly lower frequency than the p-bit, only an
average signal would be recorded and the stochasticity would be
lost. Very slow p-bits are also not practical, since the overall oper-
ating speed of the device will be determined by the slowest among
the p-bit relaxation time and the electronic equipment. The ideal
is an approximate match in terms of speed between the p-bits and
the read-write capabilities of the electronic equipment one is us-
ing. If e.g. the electronics are able to read and write at 1 kHz,
then one wants to work with a molecular nanomagnet presenting
a relaxation time τ ' 1 ms at the working temperature.

The translation of these requirements to the parameters char-
acterizing the spin dynamics of molecular nanomagnets is surpris-
ing. One does not actually need or desire particularly high values
of the effective barrier Ueff, which is, shockingly for the molecular
nanomagnet community, not necessarily a key parameter. If one
operates at 300 K, which is often close to the high temperature
limit, spin relaxation time is given in a good approximation by the
attempt time, τ0. Assuming, that is, that Raman relaxation does
not overtake the Orbach process (but why should it, given that
Orbach’s thermal dependence is stronger?). In that scenario, the
goal is to find highly processable molecular systems with a value

of τ0 that is compatible with the available electronics. Should one
need to operate at lower temperatures, the goal will be to find the
molecule presenting a response time in the desired time range.

We estimated τ300K as the characteristic relaxation time accord-
ing to the Néel-Arrhenius equation at 300 K for the 612 samples
for which there is Ueff and τ0 information in the SIMDAVIS dataset
(see Figure 5 upper panel).18 Here we focus on the two most
relevant chemical categories to classify molecular nanomagnets,
namely the lanthanoid ion and the chemical family. We show
with violin plots the fact that, while there is a large dispersion in
τ300K values there is also an influence from the metal ion, from
the chemical family, and from their combinations. Still, it is evi-
denced that the three most popular ions for molecular nanomag-
net design generally require very fast operating times to act as
p-bits at room temperature. The analogous plot for τ4K can be
seen in the Figure 5 lower panel. In this case we discarded all
samples with Ueff > 50 K to avoid plotting impractically (and in
many cases, unrealistically) long relaxation times.

A thorough study of the influence of different chemical vari-
ables on τ300K and τ4K is available in the Supplementary Infor-
mation Sections S3 and S4. We found that for the chemical de-
sign of molecular spin p-bits that are slow enough to be operable
at reasonable frequencies and at room temperature, one could
lean towards coordination spheres consisting of nine donor atoms
in a mixture of Oxygen and Nitrogen, stemming from 3 ligands,
and probably choosing a lanthanide ion other than Dy3+, Tb3+

or Er3+. Embodying each p-bit in larger ensembles of molecular
spins would further facilitate working at manageable speeds and
temperatures (see Supplementary Information Section S2).

As discussed in the previous section and depicted in Figure
4(b), achieving a significant correlation between single spins at
moderate magnetic fields such as B = 0.2 T requires relatively low
temperatures as in the order of 40 K. However, if one desires to
work at RT, the signal will be too weak, but this is true in any
case where one employs a single molecule. Much stronger sig-
nals, allowing one to pick up much weaker correlations, will arise
from a large collection of molecular nanomagnets acting as a sin-
gle p-bit. Indeed, note that Boltzmann populations are governed
by the ratio between energy difference and working temperature.
This means that, if one were to use similar sensitivity and sample
sizes as in the case of commercial ac susceptometry, a B = 0.02 T
(3 orders of magnitude higher than regular ac field) would allow
obtaining sufficient population difference at temperatures up to 3
orders of magnitude higher than in an ac experiment. In this case,
would mean being able to quantify correlation at temperatures
much higher than 300 K. Ultimately, the practical temperature
limit and sample requirement will depend on the experimental
implementation.

4 Conclusions
We employed STOSS, a microscopic simulator code for spin p-
bits based on molecular nanomagnets, to explore this potential
emergent technological application, distinct from conventional
bits and from quantum qubits. To test the software, we re-
produced the most characteristic macroscopic magnetic dynam-
ics of molecular nanomagnets, namely magnetisation relaxation
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Fig. 5 Estimated relaxation times at room temperature (τ300K) and at 4 K (τ4K) for molecular nanomagnets based on Tb3+, Dy3+, Er3+ represented
as violin plots. Relaxation times are categorised for the main chemical families considered in the SIMDAVIS dataset.18 The Néel-Arrhenius equation
was used to estimate this parameter. The violin plot outlines illustrate kernel probability density, i.e. the width of the coloured area represents the
proportion of the data located there. Further complementary representations employing other categorisation criteria are available in the SI.

and in-phase, out-of-phase susceptometry, by simulating the in-
dividual states in a collective of spin p-bits. With the help of
STOSS, we found that under realistic conditions it should be
technologically possible to build small networks of p-bits based
on molecular nanomagnets. We found an inverse correlation be-
tween room temperature p-bit performance and molecular nano-
magnets performance. This is unsurprising considering (a) Ueff

is a good predictor of molecular nanomagnet behavior and (b)
the approximate proportionality τ

−1
0 ∝ U3

eff.
18,47 In this aspect,

these Low Barrier Nanomagnets are proposed to build the ba-
sic neuronal units of Artificial Stochastic Neural Networks. Since
molecular single ion magnets and spin qubits have been explored
for decades,48 this new potential application starts already with
a wealth of molecular diversity, theoretical tools and systemati-
cally organised data facilitating statistical and machine learning
studies.18,49,50 This gives magnetic molecules the potential to be

screened, chosen, and adapted to the different technological con-
straints of different possible implementations. Here one needs
to acknowledge that despite the continuous efficiency improve-
ments in the information and communications technology sector,
it has been shown that there is an increasing weight of computing-
related emission in the climate crisis, a problem which cannot be
addressed merely by technical advances based on futuristic modes
of information processing.51 However, we believe that research
on molecular nanomagnets as probabilistic information carriers
is of sufficient fundamental interest to merit further exploration.

Data availability

All custom data generated and employed for this study are avail-
able at https://github.com/gerlizg/STOSS.
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Code availability
The code named STOSS (for STOchastic Spin Simulator) is avail-
able at https://github.com/gerlizg/STOSS. The instructions to re-
produce all the graphic results are in the Supporting Information
Section S5 and at https://github.com/gerlizg/STOSS.
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