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Floquet topological systems have been shown to exhibit features not commonly found in con-
ventional topological systems such as topological phases characterized by arbitrarily large winding
numbers. This is clearly highlighted in the quantum double kicked rotor coupled to spin-1/2 degrees
of freedom [Phys. Rev. A 97, 063603 (2018)] where large winding numbers are achieved by tuning
the kick strengths. Here, we extend the results to the spin-1/2 quantum double kicked top and
find not only does the system exhibit topological regions with large winding numbers, but a large
number of them are needed to fully characterize the topology of the Bloch sphere of the top for
general kick strengths. Due to the geometry of the Bloch sphere it is partitioned into regions with
different topology and the boundaries separating them are home to 0 and π quasienergy bound
states. We characterize the regions by comparing local versions of the mean field, quantum and
mean chiral displacement winding numbers. We also use a probe state to locate the boundaries
by observing localization as the state evolves when it has a large initial overlap with bound states.
Finally, we briefly discuss the connections between the spin-1/2 quantum double kicked top and
multi-step quantum walks, putting the system in the context of some current experiments in the
exploration of topological phases.

I. INTRODUCTION

Periodically driven systems, also called Floquet sys-
tems, have been a useful tool in simulating novel phases
of matter. Periodic driving allows for control in the time
domain which can lead to exotic phases such as Anderson
localization in time [1, 2] and phase space crystals [3, 4].
Of particular interest is the creation of effective magnetic
fields and spin-orbit couplings with lasers to simulate
topological features found in condensed matter systems
[5–8]. A notable example along these lines are Floquet
topological insulators which are laser-induced topological
states in normal materials resulting in the creation and
control of chiral edge states [9]. In some cases, the crystal
structure of solids is also simulated using optical lattices
[10–13]. In these systems, the lasers creating the lattice
are periodically driven to induce effective magnetic field
strengths unobtainable in real materials. This has lead
to the observation of the celebrated Harper-Hofstadter
model [14, 15] which displays one of the more striking
examples of integer quantum Hall physics.

A special class of Floquet systems involves periodic
kicks rather than continuous driving. Their appeal comes
from the fact that only part of the Hamiltonian is re-
sponsible for evolving the system at a given time, so
they are generally easier to conceptualize than their non-
kicked counterparts. Early applications of this method
were used to explore connections between topology and
chaos in the kicked Harper model [16]. In recent years,
one of the main focuses has been in controlling topologi-
cal phases [17], particularly in generating large topologi-
cal invariants such as the winding number which counts
the number of symmetry protected states in the system
[18, 19]. Double kicked systems such as the quantum dou-
ble kicked rotor (QDKR) and the quantum double kicked
top (QDKT) have shown to be promising in this regard

[20–22] where large topological invariants were predicted.

Proposals involving the QDKR coupled to spin-1/2 de-
grees of freedom have shown that arbitrarily large wind-
ing numbers can be achieved [23, 24]. The additional
spin-1/2 degrees of freedom are significant because they
put the QDKR in the perspective of quantum walks
where it plays the role of a coin which is ’tossed’ each
step. The state of the spin determines the direction the
rotor evolves in and is analogous to tossing a coin at reg-
ular intervals and choosing a direction based on whether
it is heads or tails in classical random walks [25]. Of
course, the difference in the quantum case is that the coin
can be in a superposition of heads and tails. Quantum
walks play an important part in the building of efficient
quantum algorithms [26, 27] and provide a foundation
for quantum computation [28]. Quantum walks have also
been proposed as a method to explore topological phases
[29–31] where experiments involved the measurement of
the response of topological invariants to disorder [32, 33]
and the identification of topologically protected bound
states [34–36].

In this paper, we perform the natural step of extending
the results of the spin-1/2 QDKR to the spin-1/2 QDKT.
This is a generalization which amounts to extending the
Hilbert space of the system from a ring to a sphere [37] -
commonly referred to as the Bloch sphere. Our main re-
sult is that, due to the change in geometry of the Hilbert
space, instead of a single topological region on the ring,
an arbitrarily large number of different topological re-
gions can be generated on the Bloch sphere depending
on the kick strengths. In general, many winding num-
bers are needed to characterize the topology of the entire
Bloch sphere and due to the bulk-boundary correspon-
dence, the boundaries between the regions are home to
protected bound states. The number of bound states at
a boundary can also be arbitrarily large, so there can
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be regions around the boundaries which are especially
dynamically stable.

We also show that the spin-1/2 QDKT dynamics can
be framed in terms of a quantum walk on the Bloch
sphere by breaking down the Floquet operator into a se-
ries of coin tosses and coin-dependent rotations. This
allows us to make proper connections between the spin-
1/2 QDKT and traditional quantum walk systems as well
as highlight the key difference between them which is the
source of the topological boundaries. For instance, quan-
tum walks are often implemented with a particle in an
optical lattice which has discrete translational symmetry
and the boundary between two different topological re-
gions is inserted artificially as a local breaking of that
symmetry [30, 34, 38]. However, the Bloch sphere, does
not have translational symmetry due to its geometry and
we show that it is this inhomogeneity that is responsible
for the topological boundaries. Therefore, the topological
boundaries of the spin-1/2 QDKT can be considered to
occur naturally due to the geometry of the Bloch sphere.

We do not choose a specific model for the top, however,
some possibilities for its physical origin are the angular
momentum of a single particle or Fock states of a collec-
tion of two-mode indistinguishable particles [39]. In the
many-body case, the two modes can be external states
like the energy levels of a trapping potential such as the
system of a Bose-Einstein condensate (BEC) occupying
the ground states of a double well potential. The two
modes can also be internal states like the hyperfine states
of atoms [40, 41] or two polarizations of light [42]. In ei-
ther case, the spin-1/2 degrees of freedom can represent a
two-mode particle that is distinguishable from the others
and is either a different species of particle with access to
the same two modes [43, 44] or the same species with a
different pair of modes. When the top operators belong
to the angular momentum of a single particle, the spin-
1/2 degrees of freedom can represent the internal spin
states of that particle.

II. MODEL

The system we will be investigating is the spin-1/2
QDKT which is described by the Hamiltonian

ĤT =
Λ

j
Ĵ2
z + α1Ĵxσ̂x

∑
n

δ [t− nT ]

+α2Ĵyσ̂y
∑
n

δ [t− (n+ 1/2)T ] (1)

where Ĵa, a = x, y, z are the top operators obeying the
usual commutation relation [Ĵi, Ĵj ] = iϵijkĴk and the
Pauli matrices represent the spin-1/2 degrees of freedom
which we label as ↑ and ↓. The parameter Λ is the non-
linear energy, and α1 and α2 are the first and second
kick strengths, respectively. Each period T there are two
kicks where the second kick is delayed by a time T/2.

The dynamics generated after one period is given by
the Floquet operator

ÛT = e−iΛĴ2
zT/2je−iα2Ĵyσ̂ye−iΛĴ2

zT/2je−iα1Ĵxσ̂x .

(2)

We analyze a simplified version of ÛT by setting the pe-
riod to T = 4πj/Λ. This is similar to the on-resonance
condition found in variations of the quantum kicked rotor
[45–47] and results in the unitary operators containing Ĵ2

z

becoming unity since the eigenvalues of Ĵz, m, are inte-
gers in the range −j ≤ m ≤ j. The Floquet operator
becomes

ÛT = e−i
κ2
j Ĵyσ̂ye−i

κ1
j Ĵxσ̂x (3)

where κ1 = α1j and κ2 = α2j are the scaled kick
strengths.
If the interactions between the top and the spin-1/2

degrees of freedom in Eq. (3) are difficult to generate,
then a possible solution is to use interactions of the gen-
eral form Ĥint = ĴzŜz, where in our case Ŝz = σ̂z. They
can arise in squeezing experiments involving interactions
between matter [48] or between matter and light [42].
Also, similar interactions are found in a Bose-Fermi mix-
ture in an optical lattice [49]. Using Ĥint as a starting

point, we can construct ÛT from the rotation operators

R̂x(a) = e−iaĴx , R̂y(a) = e−iaĴy and R̂z(a) = e−iaĴz and
the general Pauli rotation operator

M̂(α, β) =

(
cos(α/2) sin(α/2)e−iβ

− sin(α/2)eiβ cos(α/2)

)
. (4)

The x and z rotation operators can be thought of as a
phase accumulation when only tunneling and only an im-
balance between the two modes is switched on, respec-
tively, and can be used to create the y rotations since
R̂y(a) = R̂z(π/2)R̂x(a)R̂z(−π/2). The explicit break-

down of the unitary operators in ÛT is

e−iκ1Ĵxσ̂x/j = M̂(−π/2, 0)R̂y(π/2)e
−iκ1Ĵzσ̂z/j

×R̂y(−π/2)M̂(π/2, 0)

e−iκ2Ĵyσ̂y/j = M̂(−π/2, π/2)R̂x(−π/2)e−iκ2Ĵzσ̂z/j

×R̂x(π/2)M̂(π/2, π/2) . (5)

A recent proposal of a quantum walk on the Bloch
sphere [50] used the Floquet operator

ÛW = e−i2κĴzσ̂zM̂(α, β) (6)

to evolve the system. In this context, the Pauli operators
represent a quantum coin which is tossed at each step via
M̂(α, β), then a rotation about the Jz axis is performed
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whose direction depends on the state of the coin. There-
fore, ÛT can be thought of as the Floquet operator for
a quantum walk on the Bloch sphere involving four coin
tosses and two rotations, one about the Jy axis and one
about the Jx axis, at each step.

Going forward we will discuss topological regions that
emerge in the space of Ĵz eigenstates, {|m⟩}. To dis-
tinguish between the different topological regions we use
terms which are commonly found in condensed matter
physics such as ’bound’ and ’bulk’ to describe the states
located near and away from the boundaries separating
the regions, respectively. We also use the term ’edge’ to
refer to the minimum and maximum angular momentum
states of the top, |m = ±j⟩. Therefore, it is useful to
consider m as the spatial coordinate of a fictitious 1D
lattice. An important property of this lattice is that it
does not possess discrete translational symmetry which
can be seen from the raising and lowering operators of
the top

Ĵ±|m⟩ =
√

(j ∓m)(j ±m+ 1)|m± 1⟩ . (7)

The inhomogeneity comes from the Hilbert space of the
top which is a Bloch sphere of radius R =

√
j(j + 1).

In order to see this explicitly one can imagine a system
consisting of a single particle in a 1D lattice, with nearest
neighbor hopping, that has been stretched on a sphere
from the north pole to the south pole. If the tunneling
energy is inversely proportional to the distance between
sites the Hamiltonian is

Ĥsph = −αj
∑
m

1

dm,m+1

(
â†m+1âm + h.c.

)
. (8)

Due to the curved surface of the sphere, the distance
between adjacent sites is simply the arclength connect-
ing them dm,m+1 = R|∆θm,m+1| where ∆θm,m+1 =
θm − θm+1 is the difference between the polar angle co-
ordinates of the two sites. To make a connection to the
Ĵz states of the top, we require that the site label m also
be the polar axis coordinate and that it takes unit incre-
ments in the range −j ≤ m ≤ j. This gives the relation
m = j cos θ or θm = arccos(m/j). Finally, we assume
a large system size (j ≫ 1), so that R ≈ j and take
the leading order term in a 1/j expansion of the distance

dm,m+1 ≈
[
1− (m/j)2

]−1/2
which gives

Ĥsph ≈ −α
∑
m

√
j2 −m2

(
â†m+1âm + h.c.

)
. (9)

Although Eq. (9) is an approximation, the square root
factor is the mean field version of the ones in Eq. (7), so
their difference relative to j vanishes as j → ∞. Here,
we see Ĵ+ has a similar to the single particle tunnel-

ing terms
∑

m

√
j2 −m2â†m+1âm. This quick analysis is

not meant to discuss how Ĥsph can be implemented, but

rather highlight two main points: (1) the eigenvalues of

Ĵz are similar to the site label of a 1D lattice stretched
over the semicircle connecting the two poles of a sphere
and (2) the square root factors come from the curvature
of the sphere and therefore have a geometric origin. We
stress the second point because, as we will show, it is the
square root factors that are responsible for the break-
down of the state space of the spin-1/2 QDKT into re-
gions of different topology and therefore the boundaries
between these regions are of geometric origin.

III. RESULTS

A. Quasienergy spectrum

When dealing with time periodic systems it is conve-
nient to use Floquet theory which allows one to write the
dynamics over one period in terms of a time independent
effective Hamiltonian

ÛT = e−iĤeffT . (10)

The set of eigenvalues of the Floquet operator are {λi}
and they can be used to calculate the eigenvalues of the
effective Hamiltonian {εi} = { i

T logλi}, however, they
are only unique within a range of 2π, so they are referred
to as quasienergies. Going forward we set T = 1 with-
out loss of generality. Before we discuss the quasienergy
spectrum we will briefly go over some subtleties in quan-
tifying the topology of Floquet systems.

In static systems, topological phases are characterized
by integers such as the winding number. Through the
bulk-boundary correspondence, they count the number
of protected bound states at the boundary of the bulk.
In periodically driven systems it has been shown that,
in addition to the usual ε = 0 bound states, there are
also ε = π bound states which come from the fact that
the quasienergies are calculated from a unitary operator
and not a Hamiltonian. These states are protected [51]
and cannot be deformed into each other without an en-
ergy gap closing, or breaking of some symmetry, so two
winding numbers are required to characterize each phase.
Care must be taken in calculating these numbers for Flo-
quet systems, however, and it has been shown that the
winding numbers of two chiral symmetrized timeframes
which are w1 and w2, can be used to calculate the wind-
ing numbers that count the number of ε = 0 and ε = π
bound states from the relation [52]

w0 =
w1 + w2

2
wπ =

w1 − w2

2
. (11)

In the spin-1/2 QDKT the Floquet operators in the chiral
symmetrized timeframes take the form
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ÛT,1 = e−i
κ1
2j Ĵxσ̂xe−i

κ2
j Ĵyσ̂ye−i

κ1
2j Ĵxσ̂x (12)

ÛT,2 = e−i
κ2
2j Ĵyσ̂ye−i

κ1
j Ĵxσ̂xe−i

κ2
2j Ĵyσ̂y . (13)

The chiral symmetry that Eqns. (12) and (13) possess

is defined in terms of the relations Γ̂ÛT,1Γ̂ = Û†
T,1 and

Γ̂ÛT,2Γ̂ = Û†
T,2 for the operator Γ̂ = σ̂z. This means that

for any state with quasienergy ε there is a partner state
with quasienergy −ε through the relation σ̂z|ε⟩ = | − ε⟩.
The Floquet operators in Eqns. (3), (12) and (13) are
separated by unitary transformations, so they have the
same spectrum. Figure 1 shows the spectrum for a fixed
value of κ2 = 0.5π and variable κ1 for j = 50. Increasing
κ1 creates new ε = 0 and ε = π states at even and
odd integer multiples of π, respectively. These states
are the bound states mentioned earlier and are protected
in the sense that one can perturb the Floquet operators
with a general term in the exponentials that respects the
chiral symmetry (terms proportional to σ̂x or σ̂y) without
changing the number of bound states.

We note that the bound states do not have quasiener-
gies ε = 0 and ε = π exactly due to finite size effects.
Evidence of this can be seen around κ1 = 4π where there
is a slight wiggle in the energy around ε = 0. Neverthe-
less, for the range of values and system size shown, the
bound states are quite stable. Additionally, we note that
the form of the spectrum depends on the value of κ2 and
for general values the number of bound states does not
always increase monotonically as κ1 increases. This is
highlighted in the phase diagram of the spin-1/2 QDKR
[23] which quickly becomes complicated as κ1 and κ2 in-
crease. With the intent of keeping our analysis simple,
we set κ2 = 0.5π for the remainder of the paper.

B. Locations of bound states

To gain a better insight into the bound states as well
as the topology of the system it would be useful to calcu-
late Ĥeff for the chiral symmetrized Floquet operators in
Eqns. (12) and (13), however, their forms are not obvi-
ous. Some progress can be made by performing a mean
field approximation of the top operators by transforming
them into their coherent state expectation values

⟨Ĵ⟩ = ⟨(Ĵx, Ĵy, Ĵz)⟩ = j(sin θ cosϕ, sin θ sinϕ, cos θ) .
(14)

The angles θ and ϕ are the polar and azimuthal angles,
respectively, of the Bloch sphere of the top with radius
R =

√
j(j + 1). Instead of the polar angle, we find it

useful to use the eigenvalue label of Ĵz, m, as a variable
through the previously mentioned relation m = j cos θ.
Defining the new parameters

K1 = κ1
√
1− (m/j)2 cosϕ

K2 = κ2
√
1− (m/j)2 sinϕ , (15)

FIG. 1. Quasienergies as a function of kick strength. Eigen-
values of ÛT in Eq. (3) as a function of κ1 for a fixed value of
κ2 = 0.5π and j = 50. When κ1/π is even or odd a new pair
of ε = 0 or ε = π states are formed, respectively.

the mean field versions of Eqns. (12) and (13) become

ÛMF
T,1 = e−i

K1
2 σ̂xe−iK2σ̂ye−i

K1
2 σ̂x (16)

ÛMF
T,2 = e−i

K2
2 σ̂ye−iK1σ̂xe−i

K2
2 σ̂y . (17)

In this form, the effective Hamiltonians can be calcu-
lated exactly giving ĤMF

eff,i = εni · σ̂ (Appendix A), where
i = 1, 2 for the two symmetrized timeframes. Both the
quasienergy ε and the vector ni = (nix, niy), which has
unit length, depend on the state of the top. This means
ni maps points on the Bloch sphere of the top to points
on the equator of the spin-1/2 Bloch sphere.
The quasienergy is the same for both timeframes in

Eqns. (16) and (17) and is

ε = arccos [cos(K1) cos(K2)] . (18)

Topological transitions in Floquet systems are marked
by bound states which close the quasienergy gaps at
ε = 0 and ε = π. Looking at Eq. (18), we see that
these energies occur when cos(K1) cos(K2) = ±1 which

in turn occurs when κ1
√
1− (m/j)2 cosϕ = µπ and

κ2
√

1− (m/j)2 sinϕ = νπ, where µ and ν are integers.
Combining these two results gives

π2

1− (m/j)2

[
µ2

κ21
+
ν2

κ22

]
= 1 . (19)

which we use to find the mean field values of m that
correspond to the quasienergies ε = 0 and ε = π

mµ,ν = ±j

√
1− π2

(
µ2

κ21
+
ν2

κ22

)
. (20)

Equation (20) is the mean field prediction of the loca-
tions of localized bound states and consequently gives the
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FIG. 2. Density plot of the probability for a given eigenstate
of the top to have a given quasienergy. Darker shades of black
show higher values of the probability |⟨m|εi⟩|2 where the Ĵz
eigenstate label, m, and the quasienergy, εi, vary along the x
and y axes, respectively. The red dashed curve is the mean
field quasienergy from Eq. (18) for ϕ = 0. The points of
interest are the kinks in the mean field result at ε = 0, π
where protected edge states are shown in the density plot as
localized states around these points. The parameter values
are κ1 = 4.25π, κ2 = 0.5π and j = 200.

locations of the boundaries separating different topolog-
ical regions. The source of these boundaries comes from
the mean field square root factor,

√
1− (m/j)2, which is

due to the curvature of the Bloch sphere. The geomet-
ric origins of these boundaries is reminiscent of geometry
induced domain walls which appear in a 2D lattice of
dipoles on the surface of a torus [53].

To test the mean field predictions we calculate the
probability for a given Ĵz state to be in an eigenstate
of the Floquet operator in Eq. (3), P (m, εi) = |⟨m|εi⟩|2.
Figure 2 shows a density plot of the probability with the
m state label and the quasienergy on the x and y axes,
respectively, along with the m dependence of the mean
field quasienergy for the azimuthal angle ϕ = 0 (dashed,
red). The kinks in the mean field result at ε = 0 and
ε = π are the locations of the localized bound states pre-
dicted from Eq. (20) and they agree quite well with the
quantum probability which shows localized states around
these points. The creation (destruction) of bound states
takes place at the equator of the Bloch sphere at m = 0.
This means that as κ1 decreases in Fig. 2, the ε = 0
bound states at m ≈ 67 will move toward m = 0 until
they reach that point when κ1 = 4π. Further decreasing
κ1 results in the bound states’ destruction as they are
absorbed into the bulk.

C. Local winding numbers

The boundaries partition the Bloch sphere into regions
of different topology which are quantified in terms of
winding numbers. Under the mean field approximation

the winding number has a simple geometric interpreta-
tion as the number of times the vector ni winds around
the origin as ϕ goes from −π to π. However, due to the
square root factors, the winding number is m dependent,
so we calculate local versions of them. The mean field lo-
cal winding number is calculated with the equation [32]

wMF,i(m) =

∫ π

−π

dϕ

2π
ni × ∂ϕni . (21)

The quantum winding number calculation must also be
performed locally due to ϕ not being good quantum num-
ber. The calculation relies on the flat-band transforma-
tion of the effective Floquet Hamiltonian, Q̂ = P̂+ − P̂−,

where P̂+ is the projector onto eigenstates with ε > 0

and P̂− is the projector onto eigenstates with ε < 0. The

chiral symmetry of Ĥeff allows us to write the flat-band
projector as Q̂ = Q̂↑↓+ Q̂↓↑ where Q̂↑↓ = Γ̂↑Q̂Γ̂↓ and Γ̂↑,

Γ̂↓ are the projectors onto the spin-1/2 ↑ and ↓ states, re-
spectively. The spin-1/2 projectors form the chiral sym-

metry operator Γ̂ = Γ̂↑−Γ̂↓ and the symmetrized winding
number operator is then [54–56]

ŵi =
(
Q̂↓↑,i[Ĵz, Q̂↑↓,i] + Q̂↑↓,i[Ĵz, Q̂↓↑,i]

)
/2 (22)

where the index i = 1, 2 is for the two chiral timeframes
from Eqns. (12) and (13). Therefore, the winding number

localized to a single Ĵz state is wi(m) = Trσ⟨m|ŵi|m⟩
where the trace is over the spin-1/2 degrees of freedom.
It is expected that for large system sizes and for states
comfortably within a bulk (away from the topological
boundaries), the quantum and mean field calculations
will agree.
In Fig. 3 (a) and (b), we plot the m dependence of

the mean field (black) and quantum (green) values of
w0 and wπ, respectively, for κ1 = 4.25π and κ2 = 0.5π.
The different topological regions are shown as plateaus
while the boundaries are shown as a steps in the mean
field case and jumps/dips in the quantum case. In each
image the step locations are calculated from Eq. (20)

mµ,ν = ±j
√

1− 16µ2/289− 4ν2 where we find five pairs
of integers which satisfy the equation: 0 ≤ µ ≤ 4 and
ν = 0. The quantum local winding number agrees
with the mean field result strongly in the central bulk
and the agreement falls off moving closer to the edge at
m = ±200. This is expected since finite size effects be-
come pronounced at the edges of the system. Another
obvious feature of the quantum local winding number is
the sudden jumps/dips at the boundaries between differ-
ent topological regions. These are attributed to the fact
that the boundaries are home to exponentially localized
bound states, so they are close to being eigenstates of Ĵz.
Looking at Fig. 1 we see that the parameter values of

κ1 = 4.25π and κ2 = 0.5π mean there are five ε = 0
states and four ε = π states. In Fig. 3, the quan-
tum local winding numbers for the central region are
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FIG. 3. Local winding numbers. (a) Comparison of the mean
field (solid black), quantum (solid green) and mean chiral dis-
placement (dashed red) predictions of the ε = 0 local winding

number over the space of Ĵz states for κ1 = 4.25π, κ2 = 0.5π
and j = 200. The locations of the steps in the mean field
prediction can be calculated from Eq. (20). (b) Same as (a)
except the calculations are performed for the ε = π local
winding number.

|w0| ≈ 5 and |wπ| ≈ 4 which matches the number of
bound states and therefore supports the bulk-boundary
correspondence. To determine how the outer regions sup-
port the bulk-boundary correspondence we once again
turn to the mean field results, specifically the parame-
ters in Eq. (15). There we see that moving away from
the equator of the Bloch sphere atm = 0 has the same ef-
fect on K1 and K2 as decreasing the scaled kick strengths
κ1 and κ2. Figure 1 shows that as κ1 decreases, bound
states are destroyed which is why we see the mean field
local winding number decrease in steps in Fig. 3 as one
moves toward the edges at j = ±200. We see the same
decrease in the quantum local winding numbers, how-
ever, the fluctuations increase as the edge is approached
due to finite size effects.

The winding number is not always directly measurable
in experiments and it is often easier to extract informa-
tion from the dynamics of the system. To this end, the
chiral displacement [32, 57]

Ci(m,n) = Trσ⟨m|Û−n
T,i Ĵzσ̂zÛ

n
T,i|m⟩

=

 ∑
a=↑,↓

∑
j,k

cm∗
j,a c

m
k,ae

−i(εj−εk)n⟨εk|Ĵzσ̂z|εj⟩


i

(23)

has been shown to be related to the quantum wind-
ing number. In the second line of Eq. (23), we take
the spectral decomposition of the Floquet operators,
cmj,a = ⟨a,m|εj⟩ and the subscript i = 1, 2 indicates which
Floquet operator we are using from Eqns. (12) and (13).
The relation to the winding number comes from the fact
that the local winding number at m = 0 can be approxi-
mated as [54]

wi(0) = Trσ⟨0|ŵi|0⟩

=

 ∑
a=↑,↓

∑
j,k

c0∗j,ac
0
k,a⟨εk|Ĵzσ̂z|εj⟩


i

.

(24)

Comparing this equation with Eq. (23), we see that a
long time average of the chiral displacement at m = 0

Ci(0) = lim
N→∞

1

N

N∑
n

Ci(0, n) (25)

will be equal to the winding number if the off-diagonal
terms of ⟨εj |Ĵzσ̂z|εk⟩ can be neglected since they get
’washed-out’ in the averaging process. This was found
to be the case for the spin-1/2 QDKR [23] and in a syn-
thesized 1D topological wire based on the momentum
states of a BEC [54]. Although these terms are small
for our system, they are non-negligible, so they need to
be included in order for the dynamics to display an ac-
curate winding number. Therefore, short time averages
are better in order for the off-diagonal terms to not van-
ish completely. The dashed red curves in Fig. 3 (a) and
(b) show the chiral displacement averaged over N = 20
steps for all states (not just the m = 0 state). We see
it maintains a similar shape to the local winding number
calculated from Eq. (22) (green) including the sudden
jumps/dips at the boundaries, however, it does fall short
of the mean field and quantum local winding numbers
over the majority of the states due to the averaging pro-
cess. A comparison between short and long time averages
of the chiral displacement can be found in Appendix B.

D. Using a probe state to locate topological
boundaries

The boundaries separating different topological regions
can also be located using another dynamical method
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FIG. 4. Evolution of probability distributions for different initial states. (a) Evolution generated by ÛT in Eq. (3) of the
probability distribution of an initial Gaussian state centered on the boundary between two different topological regions. The
boundary is located near ⌊m4,0⌋ = 67 and corresponds to the right closest step to the center in Fig. 3 (a), so it is the boundary
between the (w0, wπ) = (5,−4) and the (w0, wπ) = (3,−4) topological regions. (b) Same initial Gaussian state as in (a) except
it is centered at ⌊m4,0 + m3,0⌋/2 = 104 which is halfway between the boundary separating the (w0, wπ) = (5,−4) and the
(3,−4) regions and the boundary separating the (w0, wπ) = (3,−4) and the (3,−2) regions. (c) Same initial Gaussian state as
in (a) except it is centered at ⌊m3,0⌋ = 141 which is the boundary separating the (w0, wπ) = (3,−4) and the (3,−2) regions
which is the right closest step to the center in Fig. 3 (b). The parameters are κ1 = 4.25π, κ2 = 0.5π and j = 200.

FIG. 5. Inverse participation ratio of Gaussian states in the
Floquet basis. The IPR given in Eq. (26) of the state |ψ0⟩ =√

1
∆m

√
π

∑
m e

− (m−m0)2

2∆m2 |m, ↑⟩ in the basis states of Eq. (3)

is plotted as a function of m0. The red vertical lines are the
predicted locations of the topological boundaries from Eq.
(20) which line up with peaks in the IPR where the Gaussian
strongly overlaps the bound states located at the boundaries.
The peaks match the locations of the steps in the mean field
winding number and the jumps/dips in the quantum winding
number in Fig. 3. The parameter values are ∆m = 10, κ1 =
4.25π, κ2 = 0.5π and j = 200.

which takes advantage of the fact that the boundaries
are home to the ε = 0, π bound states. If an initial state
has a strong overlap with the bound states at a bound-
ary, then it will remain localized there for a long period
of time. In contrast, an initial state comfortably away
from a boundary will explore more of the Hilbert space
as it evolves because of the larger overlap with the bulk
states. We choose the initial probe state to be Gaus-

sian in shape |ψ0⟩ =
√

1
∆m

√
π

∑
m e−

(m−m0)2

2∆m2 |m, ↑⟩ with

∆m = 10. One of the benefits of using this method is
that the details of the initial state are not important as
long as it can pick out one boundary over another. In
Fig. 4 (a), we show the evolution of the probability dis-
tribution in the ↑ subspace of the initial Gaussian state
centered on the boundary located at m0 = ⌊m4,0⌋ = 67.
This boundary is shown in Fig. 3 (a) as the first step
away from the m = 0 state. The strong overlap between
the initial state and the bound states keeps the distribu-
tion localized over the period shown. In Fig. 4 (b), the
initial state is centered at m0 = 104 which is halfway
between two boundaries. Clearly the probability distri-
bution does not remain localized and has a checkered
pattern which is due to parts of the wave function oc-
cupying the ↓ subspace which is not shown. The reason
why the checkered pattern appears in (b) and not (a) is
because the initial state has a larger overlap with ε ̸= 0, π
states in (b) and these states have equal support on both
subspaces due to chiral symmetry whereas the ε = 0, π
bound states have support on a single subspace. In Fig.
4 (c), the initial Gaussian is centered on another bound-
ary at m0 = ⌊m3,0⌋ = 141 which is the first step from
the center in Fig. 3 (b). Again, the probability distribu-
tion is fairly localized with small parts of it propagating
away due the Gaussian having a weaker overlap with the
bound states compared to the ones in (a).
In order to get a sense of the overall quality of the

specific initial state we chose, we take a look at the inverse
participation ratio (IPR) which is a good measure of the
localization of a state in a given basis

IPR =
∑
i

|⟨εi|ψ0⟩|4 . (26)

Here, |εi⟩ are the eigenstates of ÛT in Eq. (3) and |ψ0⟩
is the initial Gaussian state. The two extreme values are
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IPR = 1 and IPR = 1
2(2j+1) when |ψ0⟩ is completely lo-

calized and completely spread in the basis, respectively.
In Fig. 5 the IPR is plotted as a function of the cen-
ter of the Gaussian m0 where the red vertical lines are
the locations of the boundaries predicted from Eq. (20).
The peaks correspond to the initial state being localized
at the boundaries where it strongly overlaps with the
bound states. The relative height of the peaks, includ-
ing the peak at m = 0, are state dependent, so Gaus-
sians with different widths will produce different qualita-
tive results, however, the peak locations will remain the
same. Nevertheless, the chosen Gaussian does an excel-
lent job at picking out the boundary locations with the
only discrepancy being near the edge of the system at
m = 200. There the distance between boundaries is sim-
ilar to ∆m = 10, so the initial state lacks the resolution
required to locate those boundaries completely.

IV. SUMMARY AND DISCUSSIONS

We have shown that, like the spin-1/2 QDKR, the spin-
1/2 QDKT has topological regions with large winding
numbers. However, the two models differ in the number
of topological regions for a given pair of kick strengths.
Whereas the spin-1/2 QDKR has a single region, differ-
ent regions proliferate in the Bloch sphere of the spin-1/2
QDKT as the kick strengths increase. We quantify the
topology of each region by comparing local versions of
the mean field, quantum and mean chiral displacement
winding numbers. We find that away from the edge of
the system they agree with the number of bound states
at the boundaries separating each region which supports
the bulk-boundary correspondence. Finally, we used a
simple dynamical method to locate the boundaries by
preparing a Gaussian initial state and evolving it. When
the initial state is centered on a boundary the state re-
mained localized due to the large overlap with the bound
states exponentially localized there.

The spin-1/2 QDKT is a rich topological system with
many possible avenues to explore. As previously men-
tioned, it is related to quantum walks and can be used to
investigate the effects of multiple topological boundaries
in the walk space. A notable departure from former quan-
tum walk studies is the source of the boundaries. Usually
they are implemented via insertion of an inhomogeneity
at a specific site, whereas here, they come from the ge-
ometry of the Bloch sphere in which the walk is taking
place and can therefore be considered as being built-in by
nature. The positions of the boundaries are controlled by
the kick strengths which leads to some interesting possi-
bilities for using the topology of the spin-1/2 QDKT as
a tool to control the state of the system. One example of
this is in the creation of cat states. One can imagine ini-
tially setting each kick strength close to some multiple of
π, so that a pair of boundaries just forms at the equator
of the Bloch sphere of the top (m = 0), then preparing
the initial product state |ψ0⟩ = 1√

2
(| ↑⟩+ | ↓⟩)|θ0 = π/2⟩,

where |θ0 = π/2⟩ is a coherent state centered on the
equator. Provided the coherent state has a strong over-
lap with the bound states at the boundary it will remain
clamped there as we showed in Fig. 4. If one of the the
kick strengths is made to increase slowly in time, then the
coherent state is effectively pulled apart with parts of it
moving toward opposite poles of the Bloch sphere as the
boundaries move away from the equator resulting in the
final state |ψf ⟩ = 1√

2
(| ↑, θ0 + θ⟩+ | ↓, θ0 − θ⟩). The final

state is often referred to as a Bell-cat state and is used
to test entanglement generation and efficient information
extraction beyond the original two-qubit Bell state [58].
The process is possible due to the chiral symmetry of the
system which forces the bound states at the two newly
formed boundaries to have support in opposite spin-1/2
subspaces.
Another topic to explore is the connection between

topology and chaos. Some initial numerical results of
the level spacings of the quasienergies indicate that the
spin-1/2 QDKT displays chaotic behavior as the kick
strengths increase. It has been shown that nonlinear ef-
fects can lead to chaotic behavior in the bulk of a system
while the boundaries have topological order [59]. How-
ever, the spin-1/2 QDKT is unique in that the number of
boundaries also increases as the kick strengths increase.
This raises the question as to how a bulk can be chaotic
when boundaries proliferate in the system.

Appendix A: Derivation of winding vector

We can find ni by expanding the unitary operators in
Eqns. (16) and (17) in terms of trigonometric functions
using the identity

e−iab·σ̂ = cos(a)− ib · σ̂ sin(a) (A1)

which gives

ÛMF
T,1 = cosK1 cosK2 − i (sinK1 cosK2σ̂x + sinK2σ̂y)

(A2)

ÛMF
T,2 = cosK1 cosK2 − i (sinK1σ̂x + sinK2 cosK1σ̂y) .

(A3)

For ÛMF
T,1 we define

cos ε = cosK1 cosK2

sin ε =

√
sin2K1 cos2K2 + sin2K2

and similarly for ÛMF
T,2 we define

cos ε = cosK1 cosK2

sin ε =

√
sin2K2 cos2K1 + sin2K1
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FIG. 6. Comparison of short time and long time averages of
the chiral displacement. The solid orange and dashed blue
curves show time averages of the chiral displacement using
Eq. (25) for N = 10 and N = 1000, respectively. The long
time average has less agreement with the mean field prediction
(solid black) than the short time average because important
terms get ’washed-out’ in the averaging process. The param-
eter values are κ1 = 7.5π, κ2 = 0.5π and j = 200.

which allows us to write the Floquet operators as

ÛMF
T,i = cos ε− i sin ε (nixσ̂x + niyσ̂y) (A4)

where the vector components are

n1x =
sinK1 cosK2

sin ε
, n1y =

sinK2

sin ε
(A5)

n2x =
sinK1

sin ε
, n2y =

sinK2 cosK1

sin ε
.(A6)

It is clear from Eq. (A4) that the effective Hamilto-

nian mentioned in the main text takes the form ĤMF
eff,i =

εni · σ̂. We note that the derivation of the winding
vector components is the same as the one for the spin-
1/2 QDKR in Ref. [23] with the only difference be-

ing that here we have K1 = κ1
√
1− (m/j)2 cosϕ and

K2 = κ2
√
1− (m/j)2 sinϕ and they have m = 0.

Appendix B: Short and long time averages of the
chiral displacement

We find that the short time average rather than the
long time average of the chiral displacement in Eq. (23)
captures the winding number. Figure 6 explicitly shows
the difference between short and long time average cal-
culations of wπ for κ1 = 7.5π and κ2 = 0.5π. The solid
orange and dashed blue data is calculated with N = 10
and N = 1000, respectively, and the solid black curve
is the mean field prediction. The long time average re-
sult has less fluctuations than the short time average, but
has a larger disagreement with the mean field result over
the range of states. This is because the long time average
does not keep terms like ⟨εk|Ĵzσ̂z|εj⟩, where j ̸= k, which
are necessary to accurately predict the winding number
from the chiral displacement. However, the long time av-
erage still exhibits the sudden jumps at the boundaries,
so it can still be used to locate the boundaries.

[1] K. Sacha, Anderson localization and Mott insulator
phase in the time domain, Sci. Rep. 5, 10787 (2015).

[2] K. Giergiel and K. Sacha, Anderson localization of a Ry-
dberg electron along a classical orbit, Phys. Rev. A 95,
063402 (2017).

[3] L. Guo, M. Marthaler, and G. Schön, Phase Space Crys-
tals: A New Way to Create a Quasisenergy Band Struc-
ture, Phys. Rev. Lett. 111, 205303 (2013).

[4] L. Guo and M. Marthaler, Synthesizing lattice structures
in phase space, New J. Phys. 18, 023006 (2016).
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