
Phonon-mediated dark to bright plasmon conversion

Benjamin Rousseaux,∗ Yanko Todorov, Angela Vasanelli, and Carlo Sirtori

Laboratoire de Physique de l’École Normale Supérieure,
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Abstract

The optical response of a matter excitation embedded in nanophotonic devices is commonly

described by the Drude-Lorentz model. Here, we demonstrate that this widely used approach fails

in the case where quantum-confined plasmons of a two-dimensional electron gas interact strongly

with optical phonons. We propose a new quantum model which contains the semiclassical Drude-

Lorentz one for simple electronic potentials, but predicts very different results in symmetry-broken

potentials. We unveil a new mechanism for the oscillator strength transfer between bright phonon-

polariton and dark plasmon modes, enabling thus new quantum degrees of freedom for designing

the optical response of nanostructures.

1

ar
X

iv
:2

30
1.

08
93

5v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  2
1 

Ja
n 

20
23



Introduction— The emerging field of quantum plasmonics [1–3] explores the strong in-

teraction between quantum emitters and nanoscale plasmonic systems [4]. Recently, the

ability to design semiconductor heterostructures with a high degree of control over e.g.,

carrier densities and resonator geometry, has led to semiconductor plasmonics [5], which,

unlike metals, allows for the design of the effective dielectric response of nanoscale devices.

In strongly confined structures, the plasmonic response depends on the quantum proper-

ties of single electrons [6], allowing new designs of infrared emitters and detectors. In the

case of polar materials, the physics of these devices is further enriched with the presence of

optical phonons, whose interaction with light results in localized and propagating phonon

polaritons [7–12]. Additionally, the well-known Fröhlich interaction between electrons and

phonons [13] allows for the understanding of the complex interaction between phonons, col-

lective electronic excitations and light, as shown recently in the framework of a quantum

theory of polarons [14], and a perturbative approach for the interaction between intraband

electrons and phonon polaritons [15].

Another degree of complexity in the physics of nanoscale light-matter interaction is

brought by the presence of dark plasmon modes [16–22], or light-forbidden transitions

[23, 24]. More specifically, it was shown that an interplay between dark and bright plasmons

can be obtained with symmetry-breaking approaches [25, 26]. In the context of collective

intraband excitations in semiconductor heterostructures, i.e. bulk plasmonic excitations, ex-

ploiting dark plasmons could help to design novel detectors in the mid-infrared and terahertz

domains.

Here, we present a scheme where dark plasmon modes in a two-dimensional layer are

coupled to light via optical phonons in the material. Based on a full quantum model that

we derive, we unveil a dark-to-bright plasmon mode conversion mechanism based on the

spatial overlap between quantized plasmon microcurrents and phonons. While, in symmetric

structures, our predictions are consistent with approaches based on semiclassical plasmon-

phonon interaction models, we find that in asymmetric structures plasmon modes that would

normally not be visible in optical experiments could be made visible by hydridizing them

with phonon polaritons.

This work is organized as follows: we first review the semiclassical interaction between

intraband electronic excitations and optical phonons in a semiconductor quantum well,

and express the corresponding hybridized plasmon-phonon eigenfrenquencies and oscilla-
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Figure 1. (a) System under study: a doped layer of thickness LW is sandwiched between two bar-

riers of thickness LB, forming a square potential well, on top of a perfect reflector. Wavefunctions

(blue lines), and the bright (ω12, ω14) and dark (ω13) transitions are shown as double arrows. (b)

Mixing between intersubband plasmons (e.g., transition at frequency ω̃12) and phonon polaritons

for ω̃12 ≈ ωLO, appearing as plasmon-phonon-polaritons at frequencies Ω±. (c) No coupling is pre-

dicted by the semiclassical approach when e.g. the light-forbidden transition ω̃13 (crossed double

arrow) is resonant with the phonon ω̃13 ≈ ωLO.

tor strengths. Next, we introduce a full quantum model based on the diagonalization of

the plasmon-phonon part of the light-matter Hamiltonian, and express the corresponding

dielectric function in the plasmon-phonon polariton basis. Finally, we study the simple cases

of an infinite quantum well, first in a symmetric square well configuration, and second in a

symmetry-broken potential well, and show a redistribution of the oscillator strength among

all elementary constituents, converting dark plasmon excitations into bright plasmon-phonon

resonances. We also explain why the semiclassical approach fails to capture the effect.

Semiclassical plasmon-phonon interaction—We consider an electron-doped semiconduc-

tor layer of thickness LW with carrier density Ns (in cm−2) placed between two undoped

layers of thickness LB having the same high-frequency dielectric constant ε∞. The top layer

is illuminated with a plane wave, of frequency ω and wavevector k, and the structure is
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assumed to lay on a perfect reflector. The electric field vector of the incident wave is p-

polarized (or transverse magnetic): it is parallel to the plane of incidence. In this work, k is

chosen to be oriented 45 degrees from the z-axis. Due to the reflector, the absorption is then

A(ω) = 1 − R(ω), R(ω) being the reflectivity of the whole structure (see Fig. 1(a)). We

model the conduction band in the doped layer as an infinite quantum well, whose thickness

LW along the growth axis z is negligibly small compared to the relevant wavelengths, and we

assume a constant effective mass m∗ (i.e. parabolic dispersion) for the conduction electrons.

For highly doped layers, the classical treatment of the free electron motion is modeled with

a Drude dielectric function, giving rise to a Berreman mode in a thin film under oblique

incident light [27–30]. However, when the thickness of the layer becomes comparable to

the de Broglie wavelength of electrons, size confinement has to be taken into account by the

quantization of electronic energy levels. This results in selection rules for the optically active

intraband transitions between subbands i, j within the doped layer. The solutions of the

time-independent Schrödinger equation are the single-particle energies Ei and the associated

eigenstates ψi(z) corresponding to the envelope wavefunctions of conduction electrons in the

z direction. In the random-phase approximation [31], the electronic transitions of frequency

ωα = (Ej − Ei)/~, α ≡ i ↔ j are modeled with bosonic excitations bq,α, b
†
q,α, q being the

in-plane wave vector. We restrict our study to a single occupied energy level for simplicity,

with the Fermi level EF laying below the first excited state |ψ2〉 (EF < E2, see Fig. 1(a)).

Thus, all possible electronic transitions occur between the ground state |ψ1〉 and excited

states |ψj〉, j > 1 with no transitions occuring between the excited states. In a perfect

square well, the micro-current densities ξ1j(z) = ψ1(z)∂zψj(z)− ψj(z)∂zψ1(z) associated to

each transition are even (odd) functions for all transitions α ≡ 1↔ j with j > 2 even (odd).

Integrating these micro-currents over the growth axis z allows for the determination of the

oscillator strengths f1j of the transitions, with all even transitions being bright (f1j 6= 0 for

j even), while all odd transitions are dark (f1j = 0 for j odd). In fact, for an infinite square

well, the oscillator strength f12 ' 0.96 of transition 1 ↔ 2 takes almost all the oscillator

strength
∑∞

j=1 f1j = 1. The resonance resulting from the collective excitation of electrons in

the layer is then usually modeled with a Drude-Lorentz dielectric function in the z-direction

[32]:

εplzz(ω) = ε∞

(
1− f12

ω2
P12

ω2 − ω2
12 + iγplω

)
, (1)
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where γpl is the plasmon decay rate. When higher order transitions must be taken into

account, as will be the case in our scheme, Eq. (1) must, however, be revised. A more

general derivation of the dielectric function is presented in the Supplementary Information,

inspired from previous work for a three- and two-dimensional electron gas [33, 34].

Transverse optical (TO) phonons in the doped layer are three-dimensional collective

modes that oscillate at frequency ωTO for low-valued wavevectors, i.e. around the Γ point

in the phonon band diagram. They form a dipole-active degenerate continuum of modes

that couple to free-space radiation. In the crystal bulk, the associated dielectric function is

isotropic:

εph(ω) = ε∞

(
1−

R2
ph

ω2 − ω2
TO + iγphω

)
, (2)

with R2
ph = ω2

LO − ω2
TO, ωLO being the frequency of longitudinal optical phonons, and γph

being the phonon non-radiative rate. In the dielectric functions (1) and (2), light-matter

interaction is accounted for with finite oscillator strengths f12 (or implicitly in Rph for

phonons). The semiclassical dielectric function εsczz(ω) is obtained by summing the resonant

contributions from plasmons and phonons:

εsczz(ω) = εplzz(ω) + εph(ω)− ε∞, (3)

This functions allows accounting for an interaction between plasmons and phonons, as its

zeros correspond to the semiclassical plasmon-phonon-polaritons frequencies Ω±,sc via the

biquadratic equation: (Ω2
±,sc − ω̃2

12)(Ω
2
±,sc − ω2

LO) − f12ω2
P12R

2
ph = 0. Such a description of

plasmon-phonon interaction basically assumes that the latter is mediated by both plasmon

and phonon oscillator strengths, i.e. light-matter couplings (see Fig. 1(b)). Thus, oscil-

lators with very weak light-matter couplings have a negligible contribution in the overall

semiclassical dielectric function, as illustrated in Fig. 1(c). Inverting the z-component of

the semiclassical dielectric tensor, we obtain a relation of the form:

ε∞
εsczz(ω)

= 1 +
∑
λ=±

R2
λ,sc

ω2 − Ω2
λ,sc + iγλ,scω

, (4)

with the plasmon-phonon polaritonic effective plasma frequencies Rλ,sc (including their os-

cillators strengths) and decay rates γλ,sc. The inversion of the dielectric function, as in

expression (4), corresponds to a new function whose poles are the polaritonic frequencies
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Ωλ,sc in the limit of vanishing dissipation rates γλ,sc. This expression, being the usual coupled

Lorentz oscillators dielectric function, will be useful to be compared with the new dielectric

function we derive in the next section.

Full quantum model—In the previous section, we derived the semiclassical plasmon-

phonon interaction by first expressing the plasmon dielectric function εpl(ω) (Eq. (1)), then

the optical phonon dielectric function εph(ω) (Eq. (2)), and by mixing both of them in Eqs.

(3)–(4). Due to the relation between light-matter Hamiltonians and corresponding dielec-

tric functions [33, 34], it seems natural to wonder whether treating the full plasmon-phonon

Hamiltonian and express its global dielectric function should yield the same result as Eqs.

(3) or (4). We now express the full light-matter Hamiltonian H = Hmat +Hlight +Hlight-mat

in terms of plasmon-phonon polaritons, which are mixed matter excitations, and establish

the related dielectric function. The full matter Hamiltonian Hmat is derived in the Supple-

mentary Information and has the form:

Hmat =
∑
q,j

~ω̃1jp
†
qjpqj +

∑
q

~ωLO

(∑
k

r†qkrqk + s†qsq

)
+
∑
q,j,k

~Ξjk

2

(
p†qj + p−qj

)(
r†−qk + rqk

)
, (5)

where ω̃1j = (ω2
1j + ω2

P1j)
1/2, pqj, p

†
qj are the annihilation and creation operators of the

intersubband plasmon associated with the transition 1↔ j, rqk, r
†
qk are operators associated

to plasmon-coupled phonons and Ξjk are the plasmon-phonon coupling strengths. Since the

phonon excitations form a continuum of plane waves, the phonon polarization vector is

spanned over all possible spatial harmonics. However, only the phonon spatial harmonics

that are matched to the shape of the electronic quantum-confined microcurrents couple to

the plasmon excitations. The phonon modes not coupled to the plasmons are accounted

through the bosonic operators sq, s
†
q. Next, to diagonalize the Hamiltonian, we introduce

the polaritonic operators Πqλ =
∑

j(xλjpqj + yλjp
†
−qj) +

∑
k(mλkrqk + hλkr

†
−qk), with the

Hopfield coefficients xλj, yλj,mλk, hλk and new indices λ labeling the polaritonic modes.

These operators satisfy the eigenvalue problem
[
Πqλ, Hmat

]
= ΩλΠqλ, where Ωλ are the

eigenfrequencies of the polariton modes, and the Hamiltonian is expressed in the new basis:

Hmat =
∑

q,λ ~ΩλΠ
†
qλΠqλ +

∑
q ~ωLOs

†
qsq. The final step consists in finding the light-matter

coupling strengths Rλ of the plasmon-phonon polaritons, which we identify in an expansion

of the light-matter interaction term Hlight-mat in the polaritonic basis. We find that the
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z-component of the dielectric tensor accounting for size confinement is:

ε∞
εquzz (ω)

= 1 +
∑
λ

R2
λ

ω2 − Ω2
λ + iγλω

+
(

1−
∑
k

ηk

) R2
ph

ω2 − ω2
LO + iγphω

, (6)

where the polaritonic decay rates γλ are determined from the Hopfield coefficients and we

introduced the projected phonon ‘oscillator strengths’ ηk, corresponding to interactions with

plasmons. It is clear that the dielectric function in Eq. (6) generally differs from (4): the

light-matter couplingsRλ correspond to linear combinations mixing the original plasmon and

phonon oscillator strengths R1j = f1jω
2
P1j and Rph, allowing dark transitions to hybridize

with bright phonons. This differs dramatically from the semiclassical couplings Rλ,sc that

vanish if either of the plasmon or phonon oscillator strength is zero. To further underline this

difference, we derive, in the Supplementary Information, the effective matter Hamiltonian

corresponding to the semiclassical dielectric function, Eq. (3), for the case of transition

1 ↔ 2. We show that the plasmon-phonon coupling strength differs from that in (5) by a

factor ∝
√
f12 ≈ 1, which explains both why the semiclassical approach captures well the

physics for bright transitions, but fails to describe coupling with dark ones.

In addition, the last term in Eq. (6) corresponds to remaining phononic excitations

that do not couple to plasmons, since the factor ηk quantifies the proportion of phonons

with wavenumber k interacting with plasmons. The factor 1 −
∑

k ηk factor thus accounts

for the spatial mismatch between three-dimensional phonons and the xy-plane confined

plasmons, as explained above. This factor is absent from the semiclassical theory, which

assumes a perfect spatial overlap between plasmons and phonons; the latter can be achieved

only for phonons coupled with bulk plasmon excitations. The detailed derivation of the

quantized plasmon-phonon interaction as well as the dielectric tensor are provided in the

Supplementary Information. In the following, we compare absorption spectra resulting from

the well-known semiclassical expression (4) and our quantum approach (6). We specifically

focus, in this paper, on the ability to couple dark plasmon modes to light by hydridizing

them with bright phonons, but a more detailed study based upon our newly derived model

will be presented in future work.

Results—We study numerically the absorption spectra of an infinite quantum well con-

sisting of a doped gallium arsenide (GaAs) layer of thickness LW sandwiched between two
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Figure 2. Plasmon-phonon absorption spectra for an infinite GaAs square well of thickness LW .

(a) Absorption spectra for semiclassical (dotted) and quantum (solid) models, the bright plasmon

ω̃12 being resonant with ωLO (vertical line), corresponding to LW = 235 Å. (b) Same as (a) for

LW = 480 Å, matching the plasmon ω̃14 with ωLO. (c) Semiclassical (log scale) and (d) full

quantum absorption versus ω and LW . (a) and (b) spectra (vertical lines), bare plasmon energies

(white dotted lines), Ωλ,sc the semiclassical model and Ωλ energies (black dashed lines) are shown

in (c) and (d), respectively.

barriers of thickness LB and permittivity ε∞. To obtain the parameters of the dielectric

function (6), we solve Schrödinger’s equation for the envelope functions in the quantum

well, and numerically perform the multiple Hopfield-Bogolyubov diagonalizations described

in the previous section and in the Supplementary Information. The electronic density per

unit area Ns = 1.5× 1011 cm−2 is kept unchanged for all of our calculations, restricting the

well thickness LW to values below 500 Å and keeping the Fermi level below the first excited

state EF < E2, so we do not enter the regime where multiple levels are populated. We can

then restrict our study to transitions 1 ↔ j, with j = 2, 3, 4, even though we fully account

for 50 levels in the well to ensure convergence.

In Fig. 2(a), we plot the absorption spectrum of the structure by matching the frequency

of the bright intersubband plasmon to that of the LO phonon: ω̃12 ' ωLO, and for this we

set LW = 235 Å. Firstly, we notice that our quantum model (solid line) predicts plasmon-

phonon polariton peaks whose position are very close to the semiclassical ones (dotted line):

Ωλ ' Ωλ,sc. However, significant differences between the semiclassical and quantum oscillator
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Figure 3. Dark to bright plasmon conversion in GaAs for Ns = 2.4× 1011 cm−2. (a) Potential well

of the doped layer of total length LW and with a small step of length `step and height hstep. (b)

Absorption spectrum computed from the quantum approach, for ω̃13 ' ωLO (LW = 368 Å) and no

step (`step = 0 Å). (c) Absorption spectrum for `step = 30 Å and hstep = 30 meV. The insets in (b)

and (c) illustrate the corresponding level hybridization sketches.

strengths (peak heights), Rλ 6= Rλ,sc, are found. Another feature that is clearly absent

in the semiclassical prediction is the presence of a residual LO phonon peak at ω = ωLO,

corresponding to phonons that are spatially mismatched with the bright plasmon, and hence

do not couple to it (last term in Eq. (6)).

In Fig. 2(b), we match the low-radiative plasmon corresponding to transition 1 ↔ 4 to

the LO phonon, by setting the well length LW = 480 Å. This time, the semiclassical approach

only shows the bare LO phonon peak, because the oscillator strength of the plasmon is so

low that the model predicts negligible coupling with the phonon. The situation is radically

different from the prediction of the quantum model, with the appearance of two polaritonic

peaks at Ωλ, λ = ±. This is explained by the coupling strength Ξjk between the plasmon

and the phonon being a function of the plasma frequency ωP14 and not a function of its

oscillator strength, the latter quantifying its coupling with light. Therefore, because of

hybridization between the LO phonon, which is bright, and the hardly radiative 1 ↔ 4

plasmon, the oscillator strength of the phonon is redistributed among the polaritonic modes

and the residual (uncoupled) phonon.

Figs. 2(c) and (d) present maps of the absorption spectra in log scale for the semiclassical

and quantum approaches, respectively. Avoided crossing behaviours are found in both maps,

as expected, between the bright 1↔ 2 plasmon and phonons, but only the quantum approach

displays an avoided crossing between the low-radiative 1 ↔ 4 plasmon and phonons. In

(d), we find a Rabi splitting ∼ 9 meV, suggesting that plasmon-phonon polaritons are
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on the onset of ultrastrong coupling regime with Ξ14/ωLO ∼ 0.12. Noticeably, an anti-

crossing behaviour is also found in the behaviour of the eigenfrequencies Ωλ between the

dark 1↔ 3 plasmon and phonons, but with no oscillator strength, hence no visible peak in

the absorption spectrum. This feature is explained by the fact that phonons will hybridize

only with plasmons whose spatial distribution (i.e. the micro-current distribution ξ1j(z))

have significant spatial overlap with the phonons themselves. In the case of an infinite

well, the micro-current densities ξ1j(z) are always even (odd) for j even (odd). Therefore,

dark plasmons having odd distributions, they hydridize only with phonons whose spatial

distribution is also odd, hence the hydridization remains light-forbidden (see Supplementary

Information). Analogously, light-allowed plasmons hydridize only with bright phonons with

an even spatial distribution. This coupling mechanism depending on the parity of the

uncoupled microcurrents is reminiscent of Fermi resonances seen in the infrared spectra of

vibrating molecules, involving the coupling between molecular vibrational modes having the

same symmetries [35].

The symmetry of the square quantum well implies that wavefunctions ψj(z), and by

extension plasmonic micro-currents ξ1j(z), are either even or odd. Since odd micro-currents

generate dark plasmons that are not exploitable in optical experiments, it is beneficial to

break the symmetry of the well so that the distinction between even and odd functions

disappears. Usually, symmetry-breaking has to be significant in order to convert dark modes

to bright ones (see e.g. Ref. [25]). In the following, we show that a tiny asymmetry is

sufficient to exploit dark modes and fully convert them, thanks to the plasmon-phonon

interaction. In the spirit of our former investigation, we consider a similar device, with the

following changes: the electronic density is increased: Ns = 2.4× 1011 cm−2 and the GaAs

potential well of total thickness LW is this time asymmetric and present a small step of

length `step � LW . Since the light-forbidden transition 1 ↔ 3 has no net dipole moment,

we set the step height hstep between E2 and E3 (see Fig. 3(a)) and we parametrize the well

so that ω̃13 ' ωLO. Fig. 3(b) shows the absorption spectrum for LW = 368 Å and no step

(square well), while Fig.3(c) shows the absorption spectrum obtained for `step = 30 Å and

hstep = 30 meV. Our quantum model shows that the (formerly) dark plasmon hydridizes with

bright phonons,in contrast with the symmetric case shown in 3(b), where only a single peak

at ωLO and the detuned bright plasmon at ω̃12 are revealed. Unlike the results shown for the

symmetric well, the dark plasmon-phonon hydridized modes are now light-allowed, despite
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the tiny oscillator strength ratio f13/f12 = 2.68×10−8 and due to symmetry-breaking induced

by the small step. We further study the role of symmetry-breaking in the Supplementary

Information, where the step lengths and heights are varied, showing that the splitting is

robust even for small defects. The ratio f13/f12 is shown to not exceed 0.1 for `step = LW/2,

and is orders of magnitude smaller for `step � LW , confirming that this effect is indeed a

redistribution of oscillator strength between the dark plasmon and the phonon-polaritons.

Conclusion—In summary, we have presented a new model taking into account the effects

of size confinement of electrons in plasmon-phonon interaction in semiconductor materials.

This model explores plasmon-phonon coupling schemes beyond the semiclassical Drude-

Lorentz coupled oscillators model. Phonon modes are automatically sorted between those

overlapping spatially with the plasmon modes, and the remaining ones being uncoupled

to plasmons. But the most interesting toolbox is the ability to describe plasmon-phonon

couplings via direct dipole-dipole interaction, quantified by the effective plasma frequen-

cies, rather than assuming a coupling strength proportional to a product of their oscillator

strengths, hence assuming that plasmon-phonon interaction is mediated only by radiation.

Rather, hydridization occurs between them and oscillator strengths are redistributed, open-

ing the path to dark-to-bright plasmon conversion, as we have demonstrated. We hope

this model will help in the understanding and design of novel devices in nanophotonics,

mid-infrared sources and detectors, and resonance engineering with nanodevices.
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[18] DE Gómez, ZQ Teo, M Altissimo, TJ Davis, S Earl, and A Roberts. The dark side of

plasmonics. Nano letters, 13(8):3722–3728, 2013.

[19] Steven J Barrow, David Rossouw, Alison M Funston, Gianluigi A Botton, and Paul Mul-

vaney. Mapping bright and dark modes in gold nanoparticle chains using electron energy loss

spectroscopy. Nano letters, 14(7):3799–3808, 2014.

[20] Kang Du, Pei Li, Kun Gao, Heng Wang, Zhiqiang Yang, Wending Zhang, Fajun Xiao, Soo Jin

Chua, and Ting Mei. Strong coupling between dark plasmon and anapole modes. The journal

of physical chemistry letters, 10(16):4699–4705, 2019.

[21] Benjamin Rousseaux, Denis G Baranov, Tomasz J Antosiewicz, Timur Shegai, and Göran
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[24] A Cuartero-González and AI Fernández-Domı́nguez. Dipolar and quadrupolar excitons cou-

pled to a nanoparticle-on-mirror cavity. Physical Review B, 101(3):035403, 2020.

[25] Simone Panaro, Adnan Nazir, Carlo Liberale, Gobind Das, Hai Wang, Francesco De Angelis,

Remo Proietti Zaccaria, Enzo Di Fabrizio, and Andrea Toma. Dark to bright mode conversion

on dipolar nanoantennas: a symmetry-breaking approach. Acs Photonics, 1(4):310–314, 2014.
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