
1

The Conditional Cauchy-Schwarz Divergence
with Applications to Time-Series Data and

Sequential Decision Making
Shujian Yu, Hongming Li, Sigurd Løkse, Robert Jenssen, and José C. Prı́ncipe Life Fellow, IEEE

Abstract—The Cauchy-Schwarz (CS) divergence was developed by Prı́ncipe et al. in 2000. In this paper, we extend the classic CS
divergence to quantify the closeness between two conditional distributions and show that the developed conditional CS divergence can
be simply estimated by a kernel density estimator from given samples. We illustrate the advantages (e.g., rigorous faithfulness
guarantee, lower computational complexity, higher statistical power, and much more flexibility in a wide range of applications) of our
conditional CS divergence over previous proposals, such as the conditional KL divergence and the conditional maximum mean
discrepancy. We also demonstrate the compelling performance of conditional CS divergence in two machine learning tasks related to
time series data and sequential inference, namely time series clustering and uncertainty-guided exploration for sequential decision
making.

Index Terms—Conditional Cauchy-Schwarz divergence, Time series clustering, Sequential decision making

✦

1 INTRODUCTION

Quantifying the dissimilarity or distance between two prob-
ability distributions (i.e., ps(y) with respect to pt(y), where
y is a random variable or vector, s and t refer to domain
index) is a fundamental problem in pattern analysis and
machine intelligence, receiving significant interests in both
machine learning and statistics [1], [2]. It also plays a central
role in various problems, such as the generative models [3],
the independence or conditional independence tests [4], [5],
and the design of robust deep learning loss functions [6].

Different types of divergence or discrepancy measures
have been developed over the past few decades [7].
Among them, integral probability metrics (IPMs) [8] and
f -divergences [9], [10] are perhaps the two most popu-
lar choices. IPMs aim to find a well-behaved function f
from a class of function F such that |Eps

f(y) − Ept
f(y)|

is maximized. Notable examples in this category include
the Wasserstein distance and maximum mean discrepancy
(MMD) [11]. On the other hand, f -divergences, such as the
Kullback-Leibler (KL) divergence and the Jensen-Shannon
divergence, regards two distributions as identical if they
assign the same likelihood to every point [12].

This work was funded in part by the Research Council of Norway (RCN) under
grant 309439, and the U.S. ONR under grant ONR N00014-21-1-2295.
Shujian Yu is with the Machine Learning Group, UiT - The Arctic University
of Norway, Tromsø, Norway, and with the Quantitative Data Analytics
Group, Vrije Universiteit Amsterdam (email:yusj9011@gmail.com).
Hongming Li and José C. Prı́ncipe are with the Department of Electrical and
Computer Engineering, University of Florida, Gainesville, FL 32611, USA
(e-mail:hongmingli@ufl.edu; principe@cnel.ufl.edu).
Sigurd Løkse is with the Drones and Autonomous Systems group at NORCE
Norwegian Research Centre, Tromsø, Norway (email:sigl@norceresearch.no).
Robert Jenssen is with the Machine Learning Group, UiT - The Arctic
University of Norway, Tromsø, Norway, with the Pioneer AI Centre, Copen-
hagen University, and with the Norwegian Computing Center, Oslo, Norway
(email:robert.jenssen@uit.no).

In the early 2000s, Principe et al. [13], [14] suggested a
way to quantify the distributional dissimilarity simply by
measuring the tightness of the famed Cauchy-Schwarz (CS)
inequality associated with two distributions1:

∣∣∣ ∫ p(y)q(y)dy
∣∣∣2 ≤ ∫ | p(y) |2 dy ∫ | q(y) |2 dy, (1)

with equality if and only if p(y) and q(y) are linear indepen-
dent, a measure of the “distance” between the probability
density functions (PDFs) can be defined with:

DCS(p; q) = − log


∣∣∣ ∫ p(y)q(y)dy∣∣∣2∫

| p(y) |2 dy
∫
| q(y) |2 dy


= −2 log(

∫
p(y)q(y)dy) + log(

∫
p(y)2dy)

+ log(

∫
q(y)2dy),

(2)

which was named the CS divergence.
The CS divergence enjoys a few appealing proper-

ties [15]. For example, it has closed-form expression for
mixture-of-Gaussians (MoG) [16], a property that KL diver-
gence does not hold. Moreover, it can be simply evaluated
with the kernel density estimator (KDE). Specifically, given
{ys

i }Mi=1 and {yt
i}Ni=1, both in Rp, drawn i.i.d. from ps(y)

and pt(y), respectively. Using the kernel density estimator

1. In this work, we interchangeably use ps(y) wrt. pt(y) or p(y) wrt.
q(y) to denote two distributions.

ar
X

iv
:2

30
1.

08
97

0v
2

 [
cs

.L
G

]
 2

6
A

pr
 2

02
4

2

(KDE) [17] with Gaussian kernel Gσ(·) = 1√
2πσ

exp(−∥·∥2

2σ2),
Eq. (2) can be estimated as [15]:

D̂CS(ps(y); pt(y)) = −2 log

(
1

MN

M∑
i=1

N∑
j=1

Gσ(y
s
i − yt

j)

)
+

log

(
1

M2

M∑
i,j=1

Gσ(y
s
i − ys

j)

)
+ log

(
1

N2

N∑
i,j=1

Gσ(y
t
i − yt

j)

)
.

(3)
The estimator in Eq. (3) is also closely related to the famed
MMD. We refer interested readers to Appendix A.3 for more
details.

Due to these properties, the CS divergence has been
widely used in a variety of practical machine learning
applications. Popular examples include measuring the sim-
ilarity of two Poisson point processes [18] or data clustering
by maximizing the sum of divergences between pairwise
clusters [19]. Recently, it has been applied to variational
autoencoders (VAE) [20], [21] by imposing a MoG prior,
which significantly improves the representation power and
the quality of generation. In another application to scene
flow estimation for a pair of consecutive point clouds, the CS
divergence demonstrated noticeable performance gain over
the Chamfer distance and the Earth Mover’s distance [22].

All the above-mentioned measures can only be used to
evaluate the dissimilarity of two (marginal) distributions,
whereas, in practice, one is also frequently interested to
quantify the dissimilarity of two conditional distributions,
i.e., p(y|x) with respect to q(y|x). In fact, the conditional
divergence itself has also been used, as a key ingredient,
in recent machine learning applications. For example, in
domain adaptation and generalization, given input x and
class label y, suppose ϕ is a feature extractor, it is crucially
important to align both the (marginal) distribution of latent
representations p(ϕ(x)) and the conditional distribution
p(y|ϕ(x)) [23], although in practice people resort to match
the class conditional distribution p(ϕ(x)|y) for simplicity
(because y is discrete) [24], [25]. In self-supervised learning,
let v1 and v2 denote two different augmented views of
the same input entity x, suppose z1 and z2 are the latent
representations of v1 and v2, respectively. To ensure mini-
mum sufficient information in z1 and z2, it is necessary to
minimize the conditional divergence between pθ(z1|v1) and
pφ(z2|v2), in which θ and φ are parameters of view-specific
encoders [26].

Despite the growing attention and increasing importance
of the conditional divergence, methods on quantifying the
dissimilarity or discrepancy of two conditional distributions
are less investigated. In this paper, we follow the line of
the classic CS divergence in Eq. (2) and extend it to con-
ditional distributions. We illustrate the advantages of the
developed conditional CS divergence over the conditional
KL divergence and the conditional maximum mean discrep-
ancy (CMMD) [27], [28]. We also demonstrate its versatile
applications and consistent performance boost in two tasks
related to time series data, namely time series clustering and
uncertainty-guided exploration for reinforcement learning
without rewards. We finally discuss the potential usages
of the new divergence to other fundamental problems and
identify its limitations that deserve further research.

2 BACKGROUND KNOWLEDGE

2.1 Problem Formulation
We have two sets of observations ψs = {(xs

i ,y
s
i)}Mi=1 and

ψt = {(xt
i,y

t
i)}Ni=1 that are assumed to be independently

and identically distributed (i.i.d.) with density functions
ps(x,y) and pt(x,y), respectively. Here, x is a random vec-
tor which contains input or explanatory variables, whereas
y is the response or dependent variable (or vector).

Typically, the conditional distributions p(y|x) in ψs and
ψt are unknown and unspecified. The aim of this pa-
per is to develop a computationally efficient measure to
quantify the closeness between ps(y|x) and pt(y|x) based
on observations from ψs and ψt, which we denote as
D(ps(y|x); pt(y|x)).

2.2 Existing Measures of D(ps(y|x); pt(y|x))
We now briefly review previous efforts to measure
D(ps(y|x); pt(y|x)). The most natural choice is obviously
the Kullback-Leibler (KL) divergence. Indeed, by the chain
rule for KL divergence, DKL(ps(y|x); pt(y|x)) can be de-
composed as:

DKL(ps(y|x); pt(y|x)) = DKL(ps(x,y); pt(x,y))−DKL(ps(x); pt(x)).
(4)

Eq. (4) suggests that one can measure
DKL(ps(y|x); pt(y|x)) by simply taking the difference
between DKL(ps(x,y); pt(x,y)) and DKL(ps(x); pt(x)), in
which both terms can be evaluated by popular plug-in
KL divergence estimators, such as the k-nearest neighbors
(k-NN) estimator [29] and the KDE estimator. Albeit its
simplicity, the decomposition rule requires estimation in
the joint space of two variables, which further increase
dimensionality and makes estimation more difficult. On
the other hand, a common drawback for k-NN estimator
and its variants (e.g., [30]) is that they are not differentiable,
which limits their practical applications in modern deep
learning tasks.

The second approach defines a distance metric through
the embedding of probability functions in a reproducing
kernel Hilbert space (RKHS) F . The RKHS estimators are
much more well-behaved with respect to the dimensionality
of the input data, which is also particularly important for
our CS divergence. Specifically, let {ys

i }Mi=1 and {yt
i}Ni=1 be

the sets of samples from ps(y) and pt(y) respectively, the
maximum mean discrepancy (MMD) [11] is defined as the
distance of feature means µs and µt in F . That is,

MMD[ps(y), pt(y)] = ∥µs − µt∥2F (5)

In practice, an estimate of the MMD objective compares
the square difference between the empirical kernel mean
embeddings:

M̂MD[ps(y), pt(y)] = ∥ 1

M

M∑
i=1

ϕ(ys
i)−

1

N

N∑
i=1

ϕ(yt
i)∥2F

=

[
1

M2

M∑
i,j

κ(ys
i ,y

s
j)−

2

MN

MN∑
i,j

κ(ys
i ,y

t
j) +

1

N2

N∑
i,j

κ(yt
i ,y

t
j)

]
,

(6)
where ϕ(y) := κ(y, ·) refers to a (usually infinite dimension)
feature map of y, κ : Y×Y → R is a positive definite kernel
(usually Gaussian).

3

An unbiased and more commonly used MMD estimator
is given by:

M̂MDu[ps(y), pt(y)] =

[
1

M(M − 1)

M∑
i

M∑
i̸=j

κ(ys
i ,y

s
j)

− 2

MN

MN∑
i,j

κ(ys
i ,y

t
j) +

1

N(N − 1)

N∑
i

N∑
i ̸=j

κ(yt
i ,y

t
j)

]
.

(7)

The RKHS embedding of conditional distributions was
developed by Song et al. [28], [31] via a conditional covari-
ance operator CY |X = CY XC−1

XX = CY X (CXX + λI)
−1, in

which CXX and CY X are respectively the uncentered co-
variance and cross-covariance operator. Later, Ren et al. [27]
measures the difference of two conditional distributions by
the square difference between the empirical estimates of the
conditional embedding operators. The so-called conditional
maximum mean discrepancy (CMMD) is defined as:

ĈMMD[ps(y|x), pt(y|x)] = ∥ĈsY |X − ĈtY |X∥2F⊗G

= ∥Φs(Ks + λI)−1ΥT
s − Φt(Kt + λI)−1ΥT

t ∥2F⊗G

= tr(KsK̃
−1
s LsK̃

−1
s) + tr(KtK̃

−1
t LtK̃

−1
t)

− 2 tr(KstK̃
−1
t LtsK̃

−1
s),

(8)

in which ⊗ denotes tensor product, G is the RKHS
corresponding to x, K̃ = K + λI , tr denotes ma-
trix trace. Φs = [ϕ(ys

1), ϕ(y
s
2), · · · , ϕ(ys

M)] and Υs =
[ϕ(xs

1), ϕ(x
s
2), · · · , ϕ(xs

M)] are implicitly formed feature ma-
trices for dataset ψs, Φt and Υt are defined similarly for
dataset ψt.Ks = ΥT

s Υs ∈ RM×M andKt = ΥT
t Υt ∈ RN×N

are the Gram matrices for input variables X , Ls = ΦT
s Φs ∈

RM×M and Lt = ΦT
t Φt ∈ RN×N are the Gram matrices

for output variables Y . Finally, Kst = ΥT
s Υt ∈ RM×N

and Lts = ΦT
t Φs ∈ RN×M are the Gram matrices between

ψs and ψt on input and output variables, i.e., (Kst)ij =
κ(xs

i ,x
t
j) and (Lts)ij = κ(yt

i ,y
s
j).

The recently developed conditional Bregman matrix di-
vergence [32] applies the decomposition rule in Eq. (4) and
quantifies the difference of two conditional distributions via:

Dφ,B(ps(y|x); pt(y|x)) = Dφ,B(C
s
xy;C

t
xy)−Dφ,B(C

s
x;C

t
x),
(9)

in which Dφ,B refers to the Bregman matrix divergence [33].
Cxy ∈ Sp+q

+ denotes the sample covariance matrix that char-
acterizes the joint distribution p(x,y), whereas Cx ∈ Sp+
denotes the sample covariance matrix that characterizes the
distribution p(x). Formally, given a strictly convex, differ-
entiable function φ, the matrix Bregman divergence from a
matrix ρ to a matrix σ is defined as:

Dφ,B(σ; ρ) = φ(σ)− φ(ρ)− tr
(
(∇φ(ρ))T (σ − ρ)

)
, (10)

where tr(·) denotes the trace. For example, when φ(σ) =
tr(σ log σ − σ), where log σ is the matrix logarithm, the
resulting Bregman matrix divergence is:

DvN(σ; ρ) = tr(σ log σ − σ log ρ− σ + ρ), (11)

which is also referred to von Neumann divergence [34].
We summarize in Table 1 different properties (such as

computational complexity, differentiability and faithfulness)
associated with different existing measures. We also in-
clude our new measure for a comparison. Here, we define

TABLE 1
Properties of different conditional divergences. “Diff.” refers to the

differentiability; “Faith.” refers to the faithfulness.

Hyperparameter Complexity2 Diff. Faith.
Cond. KL1 k O(kN logN) ✗ ✓

Cond. MMD kernel size σ; λ O(N2d+N3) ✓ ?3

Cond. Bregman free O(Nd2 + d3) ✓ ✗

Cond. CS (ours) kernel size σ O(N2d) ✓ ✓
1 We assume the conditional KL divergence is estimated nonparametri-

cally with k-nearest neighbors (k-NN) graph.
2 N refers to number of samples, d is the dimension of x or y.
3 Indeed, there is no universally agreed-upon definition for conditional

MMD, and the faithfulness property depends on the specific defini-
tion [36]. But this is beyond the scope of our work.

“faithfulness” of a measure when D(ps(y|x); pt(y|x)) ≥ 0
in general and D(ps(y|x); pt(y|x)) = 0 if and only if
ps(y|x) = pt(y|x). The computational complexity of con-
ditional KL divergence estimator by k-NN graph can be
reduced to O(kN logN). The computational complexity of
conditional MMD comes from the computation of Gram
matrices (O(N2d) complexity) and matrix inversion (O(N3)
complexity). Our conditional CS divergence also requires
computation of Gram matrices, but avoids matrix inver-
sion. The computational complexity of conditional Bregman
divergence is dominated by the value of d, rather than
N . Because it requires evaluating a covariance matrix of
size d × d and its eigenvalues. Note that, the computation
of Gram matrices can take only O(RN log d) complexity,
where R is the number of basis functions for approximating
kernels which determines the approximation accuracy [35].

3 THE CONDITIONAL CAUCHY-SCHWARZ DIVER-
GENCE

3.1 Extending Cauchy-Schwarz divergence for condi-
tional distributions
Following Eq. (2), the CS divergence for two conditional
distributions p(y|x) and q(y|x) can be expressed naturally
as:

DCS(p(y|x); q(y|x)) = −2 log
(∫

X

∫
Y
p(y|x)q(y|x)dxdy

)
+ log

(∫
X

∫
Y
p2(y|x)dxdy

)
+ log

(∫
X

∫
Y
q2(y|x)dxdy

)
= −2 log

(∫
X

∫
Y

p(x,y)q(x,y)

p(x)q(x)
dxdy

)
+ log

(∫
X

∫
Y

p2(x,y)

p2(x)
dxdy

)
+ log

(∫
X

∫
Y

q2(x,y)

q2(x)
dxdy

)
,

(12)

which contains two conditional quadratic terms (i.e.,∫
X
∫
Y

p2(x,y)
p2(x) dxdy and

∫
X
∫
Y

q2(x,y)
q2(x) dxdy) and a cross term

(i.e.,
∫
X
∫
Y

p(x,y)q(x,y)
p(x)q(x) dxdy).

Proposition 1. The conditional CS divergence defined in Eq. (12)
is a “faithful” measure on the closeness between p(y|x) and
q(y|x).

Proof. All proof(s) are demonstrated in Appendix B.

We demonstrate below that Eq. (12) has closed-form
empirical estimator. The estimation technique used in our

4

paper is a bit different to that in [15], but enjoys more
advantages. Interested readers can refer to Appendix A.2.

Proposition 2. Given observations ψs = {(xs
i ,y

s
i)}Mi=1 and

ψt = {(xt
i,y

t
i)}Ni=1 which are sampled from distributions p(x,y)

and q(x,y), respectively. Let Kp and Lp denote, respectively, the
Gram matrices for the variable x and the output variable y in
the distribution p. Similarly, let Kq and Lq denote, respectively,
the Gram matrices for the variable x and the output variable
y in the distribution q. Meanwhile, let Kpq ∈ RM×N (i.e.,
(Kpq)ij = κ(xs

i−xt
j)) denote the Gram matrix from distribution

p to distribution q for input variable x, and Lpq ∈ RM×N the
Gram matrix from distribution p to distribution q for output vari-
able y. Similarly, let Kqp ∈ RN×M (i.e., (Kqp)ij = κ(xt

i−xs
j))

denote the Gram matrix from distribution q to distribution p
for input variable x, and Lqp ∈ RN×M the Gram matrix
from distribution q to distribution p for output variable y. The
empirical estimation of DCS(p(y|x); q(y|x)) is given by:

D̂CS(p(y|x); q(y|x)) ≈ log

 M∑
j=1

(∑M
i=1K

p
jiL

p
ji

(
∑M

i=1K
p
ji)

2

)
+ log

 N∑
j=1

(∑N
i=1K

q
jiL

q
ji

(
∑N

i=1K
q
ji)

2

)
− log

 M∑
j=1

(∑N
i=1K

pq
ji L

pq
ji

(
∑M

i=1K
p
ji)(
∑N

i=1K
pq
ji)

)
− log

 N∑
j=1

(∑M
i=1K

qp
ji L

qp
ji

(
∑M

i=1K
qp
ji)(

∑N
i=1K

q
ji)

)

(13)

Remark 1 (Difference between CS and conditional CS).
Taking a close look on the expressions of CS divergence and con-
ditional CS divergence, we can find some interesting connections.
Suppose M = N for simplicity, the expression of CS divergence
according to Eq. (3) can be reformulated as2:

DCS(p(y); q(y)) = log

(
1

M2
tr(Lp · 1)

)
︸ ︷︷ ︸

within-distrib. similarity

+ log

(
1

N2
tr(Lq · 1)

)
︸ ︷︷ ︸

within-distrib. similarity

− log

(
1

MN
tr(Lpq · 1)

)
︸ ︷︷ ︸

cross-distrib. similarity

− log

(
1

NM
tr(Lqp · 1)

)
︸ ︷︷ ︸

cross-distrib. similarity

,

(14)

where 1 is the all-ones matrix. log
(

1
M2 tr(L

p · 1)
)

=

log
(

1
M2

∑M
i,j=1 κ(y

s
i − ys

j)
)
≈ log

(
Eyi∼p,yj∼pκ(y

s
i − ys

j)
)

measures the logarithm of the expected within-distribution sim-
ilarity for any two samples that are drawn from p (the same inter-
pretation applies for the term log

(
1

N2 tr(L
q · 1)

)
). By contrast,

log
(

1
MN tr(Lpq · 1)

)
= log

(
1

MN

∑M
i=

∑N
j=1 κ(y

s
i − yt

j)
)
≈

log
(
Eyi∼p,yj∼qκ(y

s
i − yt

j)
)

measures the logarithm of the ex-
pected cross-distribution similarity for any two samples such
that one is drawn from p, whereas another is drawn from q (the
same interpretation applies for the term log

(
1

NM tr(Lqp · 1)
)
).

2. In fact, the last two terms in Eq. (14) are equal. We reformulate the
CS divergence in this form only for the ease of the following analysis.

Similarly, the expression of conditional CS divergence (in
Eq. (56)) can be reformulated as:

DCS(p(y|x); q(y|x)) = log (tr(Lp · C1)) + log (tr(Lq · C2))

− log (tr(Lpq · C3))− log (tr(Lqp · C4)) ,
(15)

where C1, C2, C3 and C4 are some matrices based on the
conditional variables x in both data sets.

Comparing Eq. (14) with Eq. (15), it is easy to ob-
serve that both CS divergence and conditional CS di-
vergence leverage the general idea of summing up
within-distribution similarities and then subtracting cross-
distribution similarity, and rely on the Gram matrices Lp,
Lq , Lqp and Lpq . However, the CS divergence assigns uni-
form weights on elements of those Gram matrices, whereas
the conditional CS divergence applies non-uniform weights,
in which the weights are only determined by the condi-
tional variable x. Specifically, C1 ∈ RM×M , C2 ∈ RN×N ,
C3 ∈ RN×M and C4 ∈ RM×N are given by:

C1 =


Kp

11

(
∑M

i=1 Kp
1i)

2 · · · Kp
M1

(
∑M

i=1 Kp
Mi)

2

...
. . .

...
Kp

1M

(
∑M

i=1 Kp
1i)

2 · · · Kp
MM

(
∑M

i=1 Kp
Mi)

2

 , (16)

C2 =


Kq

11

(
∑N

i=1 Kq
1i)

2 · · · Kq
N1

(
∑N

i=1 Kq
Ni)

2

...
. . .

...
Kq

1N

(
∑N

i=1 Kq
1i)

2 · · · Kq
NN

(
∑N

i=1 Kq
Ni)

2 ,

 , (17)

C3 =


Kpq

11

(
∑M

i=1 Kp
1i)(

∑N
i=1 Kpq

1i)
· · · Kpq

M1

(
∑M

i=1 Kp
Mi)(

∑N
i=1 Kpq

Mi)

...
. . .

...
Kpq

1N

(
∑M

i=1 Kp
1i)(

∑N
i=1 Kpq

1i)
· · · Kpq

MN

(
∑M

i=1 Kp
Mi)(

∑N
i=1 Kpq

Mi)

 ,
(18)

C4 =


Kqp

11

(
∑M

i=1 Kqp
1i)(

∑N
i=1 Kq

1i)
· · · Kqp

1N

(
∑M

i=1 Kqp
Mi)(

∑N
i=1 Kq

Mi)

...
. . .

...
Kqp

1M

(
∑M

i=1 Kqp
1i)(

∑N
i=1 Kq

1i)
· · · Kqp

NM

(
∑M

i=1 Kqp
Mi)(

∑N
i=1 Kq

Mi)

 ,
(19)

We provide a geometric interpretation in Fig. 1 to fur-
ther clarify the difference and use the cross-distribution
similarity term as an example, i.e., tr(Lpq · 1) with re-
spect to tr(Lpq · C3). For both marginal and conditional
CS divergences, given a point ys

i (i.e., the i-th sample that
is drawn from p(y)), we need to evaluate all its cross-
distribution similarities, i.e., Lpq

i1 = κ(ys
i − yt

1) (solid line),
Lpq
i2 = κ(ys

i − yt
2) (dotted line), · · · , and Lpq

iN = κ(ys
i − yt

N)
(dashed line).

Without random variable x, the sum of all similarities
for ys

i is simply
∑N

j=1 L
pq
ij (i.e., equal weight). Now, if

there is a conditional variable x, it can be expected that
the sum of cross-distribution similarities will be influenced
by this variable. Due to the i.i.d. assumption, we find that
the weight on Lpq

ij is only determined by the similarity
between xi and xj (i.e., Kpq

ij), and is independent to Kpq
i1 ,

· · · , Kpq
i,j−1, Kpq

i,j+1, · · · , Kpq
iN (if we ignore the normal-

ization term), which makes sense. Moreover, the reason

5

𝒴

𝒳

𝑝 𝑞

𝑦𝑖
𝑠

𝑥𝑖
𝑠

𝑦1
𝑡
𝑦2
𝑡

𝑦𝑁
𝑡

𝑥1
𝑡

𝑥2
𝑡

𝑥𝑁
𝑡

𝐿𝑖1
𝑝𝑞

𝐿𝑖2
𝑝𝑞

𝐿𝑖𝑁
𝑝𝑞

𝐾𝑖1
𝑝𝑞

𝐾𝑖2
𝑝𝑞 𝐾𝑖𝑁

𝑝𝑞…

Fig. 1. To evaluate the expected value of cross-distribution similarity for
ys
i , the weight on Lpq

ij is only determined by Kpq
ij , and is independent to

Kpq
i1 , · · · , Kpq

i,j−1, Kpq
i,j+1, · · · , Kpq

iN .

why the impact of Kpq
ij to Lpq

ij takes the form Lpq
ijK

pq
ij

(rather than other nonlinear forms) can be attributed to the
Gaussian kernel that we used in our paper, which satisfies

κ

([
xi

yi

]
−
[
xj

yj

])
= κ(xi − xj)κ(yi − yj).

Remark 2 (Difference between conditional CS and condi-
tional MMD). Interestingly, the relationship between CS diver-
gence (Eq. (14)) and conditional CS divergence (Eq. (15)) also
holds for MMD and conditional MMD [27]. Specifically, suppose
M = N , the objective of MMD in Eq. (6) can be rewritten as:

M̂MD =
1

M2
tr(Lp · 1) + 1

N2
tr(Lq · 1)− 2

MN
tr(Lpq · 1).

(20)
The objective of conditional MMD in Eq. (8) can be expressed

as:

ĈMMD =
1

M2
tr(Lp·C ′

1)+
1

N2
tr(Lq·C ′

2)−
2

MN
tr(Lpq·C ′

3),

(21)
where C ′

1, C ′
2 and C ′

3 are some matrices based on the conditional
variables x in both data sets.

Despite the high similarity, we elaborate two major differences
between conditional CS divergence and conditional MMD.

• (C1 ̸= C ′
1, C2 ̸= C ′

2 and C3 ̸= C ′
3). Conditional CS

divergence is not simply computed by just putting a “log”
on each term of conditional MMD. That is, C1 ̸= C ′

1,
C2 ̸= C ′

2 and C3 ̸= C ′
3. For simplicity, we only analysis

in detail the difference between C1 and C ′
1.

Let Dp = diag (Kp · 1) ∈ RM×M , where diag(·) refers
to a diagonal matrix, i.e.,

Dp =


∑M

i=1K
p
1i · · · 0

...
. . .

...
0 · · ·

∑M
i=1K

p
Mi

 . (22)

We have C1 = Kp(Dp)−2. By comparing Eq. (8) with
Eq. (21), we also have C ′

1 = (K̃p)−1Kp(K̃p)−1, where
K̃p = Kp + λI . Therefore,

C ′
1 = (K̃p)−1Kp(K̃p)−1

= (K̃p)−1Kp(Dp)−2(Dp)2(K̃p)−1

= (K̃p)−1C1(D
p)2(K̃p)−1 ̸= C1.

(23)

C ′
1 involves matrix inverse of K̃p with computational

complexityO(M3). By contrast, C1 only involves matrix

inverse of a diagonal matrix Dp with computational com-
plexity O(M). Additionally, C1 avoids the introduction
of an additional hyperparameter λ, which is actually hard
to tune in practice. The difference between C2 (or C3) and
C ′

2 (or C ′
3) can be analyzed similarly.

• (tr(Lpq · C3) ̸= tr(Lqp · C4)). The last two terms in
conditional CS divergence are not the same.

3.2 Two special cases of conditional CS divergence
We then discuss two special cases of the basic conditional
CS divergence. Our purpose is to illustrate the flexibility
and versatility offered by the definition of the conditional
CS divergence, the elegance of its sample estimator (by just
relying on the quadratic form and the inner products of
samples), and its great potential to different downstream
applications.

The last advantage does not hold with other divergence
measures that have been discussed in Section 2.2. For ex-
ample, if we stick to the decomposition rule in Eq. (4)
(as in conditional KL divergence and conditional Bregman
divergence), we implicitly assume that the dimension of
x remains the same in ps and pt, which may not hold
true in certain scenarios (e.g., comparing p(y) with respect
to q(y|x)). On the other hand, there is still no universal
agreement on a rigorous definition of the embedding of
conditional distributions in RKHS (due to improper as-
sumptions or difficulty of interpretation) [36], which limits
the usages of conditional MMD in a wider setting.

3.2.1 p(y1|x) with respect to p(y2|x)
Our first case assumes that the variable x in both distribu-
tions remains the same and aims to quantify the divergence
between p(y1|x) and p(y2|x), in which y1 and y2 are
dependent. This case is common in supervised learning.

Recall a standard supervised learning paradigm, we
have a training set D = {xi, yi}Ni=1 of input feature x and
desired response variable y. We assume that xi and yi are
sampled i.i.d. from a true but unknown data distribution
p(x, y) = p(y|x)p(x). The high-level goal of supervised
learning is to use the dataset D to learn a particular con-
ditional distribution qθ(ŷ|x) of the task outputs given the
input features parameterized by θ, which is a good approx-
imation of p(y|x), in which ŷ refers to the predicted output.

If we measure the closeness between p(y|x) and qθ(ŷ|x)
with the KL divergence, the learning objective becomes [37]:

minDKL(p(y|x); qθ(ŷ|x)) = minE (− log(qθ(ŷ|x)))−H(y|x)
⇔ minE (− log(qθ(ŷ|x))) ,

(24)

where H(y|x) only depends on D that is independent to the
optimization over parameters θ.

For regression, suppose qθ(ŷ|x) is distributed normally
N (hθ(x), σ

2I), and the network hθ(x) gives the predic-
tion of the mean of the Gaussian, the objective reduces to
E
(
∥y − hθ(x)∥22

)
, which amounts to the mean squared error

(MSE) loss3 and is empirically estimated by 1
N

∑N
i=1(yi −

ŷi)
2.

3. Note that, log(qθ(ŷ|x)) = log

(
1√
2πσ

exp

(
− ∥y−hθ(x)∥22

2σ2

))
=

− log σ − 1
2
log(2π)− ∥y−fθ(x)∥22

2σ2 .

6

The CS divergence between p(y|x) and qθ(ŷ|x) is defined
as:

DCS(p(y|x); qθ(ŷ|x)) = −2 log
(∫

X

∫
Y
p(y|x)qθ(ŷ|x)dxdy

)
+ log

(∫
X

∫
Y
p2(y|x)dxdy

)
+ log

(∫
X

∫
Y
q2θ(ŷ|x)dxdy

)
= −2 log

(∫
X

∫
Y

p(x, y)qθ(x, ŷ)

p2(x)
dxdy

)
+ log

(∫
X

∫
Y

p2(x, y)

p2(x)
dxdy

)
+ log

(∫
X

∫
Y

q2θ(x, ŷ)

p2(x)
dxdy

)
,

(25)

which can be elegantly estimated as shown in Proposition 3
in a non-parametric way, without any parametric assump-
tions (e.g., Gaussian) on the underlying distribution qθ(ŷ|x)
as in the KL divergence case.

Proposition 3. Given observations {(xi, yi, ŷi)}Ni=1, where
x ∈ Rp denotes a p-dimensional input variable, y is the desired
response, and ŷ is the predicted output generated by a model hθ .
Let K , L1 and L2 denote, respectively, the Gram matrices for
the variable x, y, and ŷ (i.e., Kij = κ(xi,xj), L1

ij = κ(yi, yj)
and L2

ij = κ(ŷi, ŷj)). Further, let L21 denote the Gram matrix
between ŷ and y (i.e., L21

ij = κ(ŷi, yj)). The prediction term
DCS(p(y|x); qθ(ŷ|x)) is given by:

D̂CS(p(y|x); qθ(ŷ|x)) = log

(
N∑

j=1

(∑N
i=1 KjiL

1
ji

(
∑N

i=1 Kji)2

))

+ log

(
N∑

j=1

(∑N
i=1 KjiL

2
ji

(
∑N

i=1 Kji)2

))
− 2 log

(
N∑

j=1

(∑N
i=1 KjiL

21
ji

(
∑N

i=1 Kji)2

))
.

(26)

To test the effectiveness of Eq. (71) as a valid loss
function, we train neural networks for prediction purpose.
The first data is the benchmark California housing4, which
consists of 20, 640 samples and 8 features. We randomly
select 70% training samples and 30% test samples. The
task is to predict the median house value which has been
rescaled between 0.15 and 5. The second data is the rota-
tion MNIST5, in which the goal is to predict the rotation
angles of handwritten digits. Specifically, 10, 000 samples
were selected from MNIST dataset. Each sample was ran-
domly rotated with a degree that is uniformly distributed
between −45◦ and 45◦. The training and test sets each
contain 5, 000 images. For simplicity, we use fully-connected
networks (8 − 128 − 32 − 128 − 1 for California housing
and 784 − 256 − 196 − 36 − 1 for rotation MNIST) and
Sigmoid activation function. We choose SGD optimizer with
learning rate 1e−3 and mini-batch size 128. We observe that
the conditional CS divergence loss achieves slightly better
prediction accuracy than the MSE loss, as shown in Fig. 2.

In case of multi-output regression which is also named as
multi-task regression [38] (i.e., there are more than two tar-
gets need to be predicted), some of the tasks are often more
closely related and more likely to share common relevant
covariates than other tasks. Thus, it is necessary to take into

4. https://scikit-learn.org/stable/modules/generated/sklearn.
datasets.fetch california housing.html.

5. https://de.mathworks.com/help/deeplearning/ug/
train-a-convolutional-neural-network-for-regression.html.

0 20 40 60 80 100
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

RM
SE

MNIST Rotation
conditional CS divergence
MSE

(a) Rotation MNIST

0 20 40 60 80 100
Epoch

0.25

0.30

0.35

0.40

0.45

RM
SE

CA Housing
conditional CS divergence
MSE

(b) California Housing

Fig. 2. The root mean square error (RMSE) of the regression network
trained with MSE loss and conditional CS divergence loss on test data
in each epoch.

account the complex correlation structure in the outputs for
a more effective multi-task learning [38], [32]. It makes sense
to measure relatedness between the i-th regression task and
the j-th regression task by the conditional CS divergence
between p(yi|x) and p(yj |x). This proposal is empirically
justified in our Section 4.2.

3.2.2 p(y|x1) with respect to p(y|{x1,x2})

Our second case assumes that the variable y remains the
same and aims to quantify the divergence between p(y|x1)
and p(y|{x1,x2}), i.e., there is a third variable x2 that
influences the distribution of y. From a probabilistic per-
spective, p(y|x1) = p(y|{x1,x2}) implies that y is condi-
tionally independent to x2 given x1, written symbolically
as y ⊥⊥ x2|x1. Hence, the divergence between p(y|x1) and
p(y|{x1,x2}) is also a good indicator on the degree of
conditional independence, which is considerably difficult to
measure.

The CS divergence for p(y|x1) and p(y|{x1,x2}) can be
expressed as (denote x⃗ = [x1;x2], i.e., the concatenation of
x1 and x2):

DCS(p(y|x1); p(y|{x1,x2}) = −2 log

(∫
X

∫
Y
p(y|x1)p(y|x⃗)dx⃗dy

)
+ log

(∫
X

∫
Y
p2(y|x1)dxdy

)
+ log

(∫
X

∫
Y
p2(y|x⃗)dx⃗dy

)
= −2 log

(∫
X

∫
Y

p(x1,y)p(x⃗,y)

p(x1)p(x⃗)
dx⃗dy

)
+ log

(∫
X

∫
Y

p2(x1,y)

p2(x1)
dxdy

)
+ log

(∫
X

∫
Y

p2(x⃗,y)

p2(x⃗)
dx⃗dy

)
,

(27)

which can be efficiently estimated from samples as shown
in Proposition 4.

Proposition 4. Given observations ψ = {(x1
i ,x

2
i ,yi)}Ni=1,

where x1 ∈ Rp1 , x2 ∈ Rp2 and y ∈ Rq . Let K1, K12 and
L denote, respectively, the Gram matrices for the variable x1, the
concatenation of variables {x1,x2}, and the variable y. That is,

(K12)ji = κ

([
x1
j

x2
j

]
−
[
x1
i

x2
i

])
= κ(x1

j − x1
i)κ(x

2
j − x2

i). The

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html
https://de.mathworks.com/help/deeplearning/ug/train-a-convolutional-neural-network-for-regression.html
https://de.mathworks.com/help/deeplearning/ug/train-a-convolutional-neural-network-for-regression.html

7

empirical estimation of DCS(p(y|x1); p(y|{x1,x2}) is given by:

DCS(p(y|x1); p(y|{x1,x2}) ≈ log

(
N∑

j=1

(∑N
i=1 K

1
jiLji

(
∑N

i=1 K
1
ji)

2

))

+ log

(
N∑

j=1

(∑N
i=1 K

12
ji Lji

(
∑N

i=1 K
12
ji)

2

))

− 2 log

(
N∑

j=1

(∑N
i=1 K

1
jiLji

(
∑N

i=1 K
1
ji)(
∑N

i=1 K
12
ji)

))
.

(28)

There are vast AI applications that may benefit from
an efficient sample estimator to the conditional indepen-
dence [39]. Taking the representation learning as an exam-
ple, our aim is to learn a representation function φ for the
features x, such that our predictions ŷ are “invariant” to
some metadata z. If z refers to some protected attribute(s)
such as race or gender, the Equalized Odds condition [40]
requires the conditional independence between prediction
and protected attribute(s) given ground truth of the target,
i.e., ŷ ⊥⊥ z|y or equivalently p(ŷ|y) = p(ŷ|z, y). On the
other hand, if z is the environment index in which the
data was collected, the condition y ⊥⊥ z|φ(x) or equivalently
p(y|φ(x)) = p(y|z, φ(x)) is commonly used as a target for
invariant learning in domain generalization [41].

Since the attention of this paper is on dynamic data,
we demonstrate the implication of Eq. (79) on time series
causal discovery [42]: given two time series {xt} and {yt},
identify the true causal direction between them, i.e., does
{xt} cause {yt}, or does {yt} cause {xt}, which is also
known as bivariate causal direction identification [43].

According to Granger [44], [45] (the 2003 Nobel Prize
laureate in Economics), a time series (or process) {xt} causes
another time series (or process) {yt} if the past of {xt} has
unique information about the future of {yt}. Essentially,
Granger proposed to test the following hypothesis for iden-
tification of a causal effect of {xt} on {yt} [46]:

H0 : p(yt+1|yn
t) = p(yt+1|yn

t ,x
m
t),

{xt} is not the cause of {yt}
H1 : p(yt+1|yn

t) ̸= p(yt+1|yn
t ,x

m
t),

{xt} is the cause of {yt}

(29)

where yt+1 refers to the future observation of {yt}. xm
t =

[xt, xt−τ , · · · , xt−(m−1)τ] denotes the past observation (or
reconstructed state-space vector) of {xt}, in which τ is
the time delay, m is the embedding dimension. yn

t =
[yt, yt−τ , · · · , yt−(n−1)τ] denotes the past observation of
{yt} with embedding dimension n.

From an information-theoretic perspective, one can
directly evaluate the closeness between p(yt+1|yn

t) and
p(yt+1|yn

t ,x
m
t) to perform the above test. If we use the

expected KL divergence, we get:

E
(
log

(
p(yt+1|yn

t ,x
m
t)

p(yt+1|yn
t)

))
=

∫ ∫ ∫
p(yt+1,y

n
t ,x

m
t) log

(
p(yt+1|yn

t ,x
m
t)

p(yt+1|yn
t)

)
dytdy

n
t dx

m
t

= −E (log p(yn
t ,x

m
t)) + E (log p(yt+1,y

n
t ,x

m
t))

− E (log p(yt+1,y
n
t)) + E (log p(yn

t))

= H(yn
t ,x

m
t)−H(yt+1,y

n
t ,x

m
t) +H(yt+1,y

n
t)−H(yn

t),
(30)

𝑥2

𝑥3

𝑥4𝑥5

𝑥1

GT

𝑥2

𝑥4𝑥5

𝑥1

LGC

𝑥2

𝑥3

𝑥4𝑥5

𝑥1

KGC

𝑥2

𝑥3

𝑥4𝑥5

𝑥1

TE

𝑥2

𝑥3

𝑥4𝑥5

𝑥1

(CS)2
0.4

0.4
𝑥3

0.3

0.1

(a) Hénon chaotic maps

𝑥2

𝑥3

𝑥1
GT

𝑥2

𝑥3

𝑥1
LGC

𝑥2

𝑥3

𝑥1
KGC

𝑥2

𝑥3

𝑥1
TE

𝑥2

𝑥3

𝑥1
(CS)20.3

(b) NLVAR3

Fig. 3. The ground truth (GT) causal graph and that was identified
by linear Granger causality (LGC), kernel Granger causality (KGC),
transfer entropy (TE) with kNN estimator, and our causal score with CS
divergence (CS)2. The blue solid line represents the detected bivari-
ate causal direction (after significance test). The orange dashed curve
represents anti-causal direction that could be incorrectly detected (i.e.,
a false positive). The ratio behind the curve is the possibility of a false
positive over 10 independent trials.

which is also known as the transfer entropy (TE) [47].
An alternative choice is our conditional CS divergence

as shown in Eq. (79), i.e., DCS(p(yt+1|yn
t); p(yt+1|yn

t ,x
m
t)),

by simply taking y = yt+1, x1 = yn
t , and x2 = xm

t . Hence,
we can define a causal score for direction x→ y by:

Cx→y = DCS(p(yt+1|yn
t); p(yt+1|yn

t ,x
m
t))

−DCS(p(xt+1|xm
t); p(xt+1|xm

t ,y
n
t)).

(31)

A causal direction x → y is confirmed if Cx→y is
significantly larger than 0. On the other hand, the inverse
direction y→ x is confirmed ifCx→y is significantly smaller
than 0.

To demonstrate the effectiveness of our causal score,
we test its performances on two benchmark simulations:
the 5 coupled Hénon chaotic maps in [48] with the true
causal relation xi−1 → xi, and the NLVAR3 model in [49]
which is a nonlinear vector autoregression (VAR) process
of order 2 with 3 variables. We also compare our mea-
sure of causality with the classic linear Granger causality
test [44], the popular kernel Granger causality (KGC) [50]
(a generalization of linear Granger causality to nonlinear
case by kernel method) and TE with kNN estimator [51].
We generate 1, 024 samples for each model and determine
all pairwise causal directions by the corresponding causal
score coupled with a significance test. Equations of these
two models, details about the implementation regarding
different competing methods and the significance test all
can be found in Appendix C.1.

As can be seen from Fig. 3, the linear Granger causality
fails in nonlinear data, whereas our method (CS)2, the
popular KGC and TE can precisely detect all pairwise causal
directions. Compared with KGC, our measure is much more
computationally efficient; compared with TE with kNN esti-
mator, our measure is differentiable and easy-to-implement
(it only requires evaluation of three Gram matrices), which
facilitates more potential usages as demonstrated in the next
section.

4 NUMERICAL SIMULATIONS ON SYNTHETIC DATA

We carry out two numerical simulations on synthetic data to
demonstrate the behaviors (especially the statistical power)

8

of our conditional CS divergence with respect to previous
proposals mentioned in Table 1. Both simulations are de-
signed to examine, qualitatively and quantitatively, how
powerful of our divergence is to distinguish two different
conditional distributions.

4.1 Simulation I

Motivated by previous literature on two-sample conditional
distribution test [52], we generate 5 sets of data that have
distinct conditional distributions. Specifically, in set (a), the
dependent variable y is generated by y = 1 +

∑p
i=1 xi + ϵ,

where p refers to the dimension of explanatory variable x,
ϵ denotes standard normal distribution. In set (b), y = 4 +∑p

i=1 xi + ϵ, i.e., there is a mean (or 1st order moment) shift
with respect to set (a). In set (c), y = 1+

∑p
i=1 xi+ψ, where

ψ denotes a Logistic distribution with location parameter
µ = 1 and the scale parameter s = 1. In set (d), y = 1 +∑p

i=1 x
2
i + ϵ. In set (e), y = 1 +

∑p
i=1 x

2
i + ψ. For each set,

the input distribution p(x) is an isotropic Gaussian, but the
conditional distribution p(y|x) differs from each other. For
example, in set (a), p(y|x) ∼ N (y−

∑p
i=1 xi−1, 1), whereas

in set (e), p(y|x) ∼ Logistic(y −
∑p

i=1 x
2
i − 2, 1).

To evaluate the statistical power of each conditional
divergence measure to distinguish any two sets of data,
we randomly simulate 500 samples from each set, each
with input dimension p = 10. We apply non-parametric
permutation test with number of permutations P = 500
and significant rate η = 0.05 to test if one measure can
distinguish these two sets6. We repeat this procedure 100
independent times and use the percentage of success (a suc-
cess refers to the tested measure is able to distinguish two
sets) as the statistical power. Table 2 summarizes the power
test results. Specifically, the (i, j)-th element of each matrix
reports the quantitative statistical power of one measure to
distinguish set (i) from set (j) via the following hypothesis
test: {

H0 : pi(y|x) = pj(y|x),
H1 : pi(y|x) ̸= pj(y|x).

(32)

An ideal measure is expected to generate a diagonal matrix
with zeros on the main diagonal and ones on all off-diagonal
elements.

As can be seen, the conditional CS divergence is much
more powerful to distinguish two different conditional dis-
tributions (especially the ability to distinguish set (c) from
set (a), and set (d) from set (e)), although it also has few false
alarms in the main diagonal.

If we look deeper, the conditional von Neumann diver-
gence on covariance matrix C has nearly zero power to
distinguish set (a) from set (b), in which there is only a mean
shift. This is because the covariance matrix only encodes the
2nd moment information such that it is insufficient to distin-
guish two conditional distributions if the distributional shift
comes from 1st or higher-order moments. This also indicates
that the conditional von Neumann divergence has no guar-
antee on the “faithfulness”, which is a big limitation. On
the other hand, it is surprising to find that the conditional
MMD fails to identify the distinctions in these tests. Note
that, this result does not mean that the conditional MMD

6. Please refer to Appendix C.2 on the details of the permutation test.

is incapable of quantifying the conditional discrepancy. It
simply suggests that a non-parametric permutation test is
not a reliable way to characterize the tail probability of the
extremal value of conditional MMD statistics. Hence, a more
computationally efficient way is required such that one can
determine the optimal detection threshold. However, to the
best of our knowledge, this is still an open problem.

4.2 Simulation II

Motivated by the multi-task learning literature [53], we
construct a synthetic data set with 15 related regression
tasks, each with input dimension 20. For each task, the input
variable xt are generated i.i.d. from the same distribution.
The corresponding output is generated as yt = wT

t xt + ϵ,
where wt ∈ R20 is the regression coefficients or weights of
the t-th task, ϵ ∼ N (0, 1) is the independent noise. Because
different tasks have the same input distribution p(x), their
relatedness is mainly manifested by the conditional distri-
bution p(y|x), which is also parameterized by w.

In our data, each task is mostly related to its neighboring
tasks to manifest strong locality relationships. Specifically,
the weight in the 1st task is generated by w1 ∼ N (0, I20),
The weights from the 2nd task to the 15th task (i.e., w2

to w15) share the same regression coefficients with w1 on
dimensions 3 to 20. However, the first two dimensions of
w2 to w15 are generated by applying a rotation matrix of the

form R =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
to the first two dimensions of

w1, in which θ is evenly spaced between [0, 2π]. This way,
w15 gets back to w1 and the task i is mostly related to task
(i − 1) and task (i + 1). In other words, the relatedness
amongst these 15 tasks forms a circular structure.

We simulate 200 samples from each task and apply the
four different conditional divergence measures to quantify
the closeness between pairs of tasks, i.e., the discrepancy
from task i to task j is quantified byD(pi(y|x); pj(y|x)). For
each measure, we can obtain a 15×15 matrix that encodes all
pairwise discrepancies. We then apply the multidimensional
scaling (MDS) to project the obtained discrepancy matrix
into a 2-dimensional space to visualize the (dis)similarity
between individual tasks. We consider two types of input
distributions: xt follows an isotropic multivariate Gaussian
distribution (i.e., xt ∼ N (0, I20)) and each element of xt is
drawn from an uniform distribution U(0, 1).

As can be seen from Fig. 4, when input data is Gaus-
sian distributed, our conditional CS divergence (excluding
the task 5), the conditional KL divergence, and the condi-
tional von Neumann divergence are capable of identifying
a roughly circular structure across all tasks. The result of
conditional von Neumann divergence is the closest to a
standard circle. This is because the data in each task is
Gaussian distributed and does not contain mean shift, such
that the 2nd moment information in covariance matrix C is
sufficient to distinguish two distributions. The conditional
MMD can discover precisely the locality relationships (e.g.,
tasks 2, 3, 4 are closely related and tasks 1, 14, 15 are closely
related). However, it is hard to identify the global circular
structure. When input data is uniformly distributed, the
performance of the von Neumann divergence drops signifi-
cantly, whereas our conditional CS divergence still identifies

9

TABLE 2
Power test for conditional CS divergence, conditional KL divergence (with k-NN graph estimator), conditional Bregman divergence (operated on

covariance matrix C), and conditional MMD.

Conditional CS Conditional KL von Neumann (C) Conditional MMD

(a) (b) (c) (d) (e) (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

(a) 0.05 1 1 1 1 0.03 1 1 1 1 0.03 0.02 0.86 1 1 0.06 0 0 0 0
(b) 1 0.05 1 1 1 1 0.05 0.98 1 1 0.04 0.09 0.87 1 1 0 0.07 0 0 0
(c) 1 1 0.05 1 1 0.99 0.99 0.06 1 1 0.87 0.88 0.06 1 1 0 0 0.02 0 0
(d) 1 1 1 0.08 0.92 1 1 1 0.03 0.79 1 1 1 0.07 0.11 0 0 0 0.04 0
(e) 1 1 1 0.91 0.10 1 1 1 0.79 0.04 1 1 1 0.14 0.04 0 0 0 0 0.10

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

1

2

3

4 5

6

7

8

9

10

1112

13

14

15

(a) Ground Truth
-2 -1 0 1 2

-1.5

-1

-0.5

0

0.5

1

1.5

1

2
3

4

5

6

7

8

910

11

12

13

14

15

(b) Conditional CS
-0.1 -0.05 0 0.05 0.1 0.15 0.2

-0.1

-0.05

0

0.05

0.1

1

2
3

4

5

6

78

9

10

11

12

13
14

15

(c) Conditional KL
-4 -2 0 2 4

-3

-2

-1

0

1

2

3

1

2

3
4

5

6
7

8
9

10

11

12

13

14

15

(d) Conditional von Neu-
mann

-200 -100 0 100 200 300
-150

-100

-50

0

50

100

150

200

1

2
3

4

5
67

8

9

10 11

12

13

14

15

(e) Conditional MMD

-0.4 -0.2 0 0.2 0.4 0.6
-0.5

0

0.5

1

2

3

4 5

6

7

8

9

10

1112

13

14

15

(f) Ground Truth
-0.04 -0.02 0 0.02 0.04 0.06

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(g) Conditional CS
-0.2 -0.1 0 0.1 0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

1

23

4

5

6
7

8

9

10

11

12

13

14

15

(h) Conditional KL
-0.15 -0.1 -0.05 0 0.05 0.1 0.15

-0.1

-0.05

0

0.05

0.1

12

3

4

5

6

7

8

9

10

11

12

13 14

15

(i) Conditional von Neu-
mann

-500 0 500
-500

0

500

1

2

3
4

5

67

8

9

10

11

12

13

14

15

(j) Conditional MMD

Fig. 4. The ground truth task structure (first column) and that is learned by the conditional CS divergence (second column); the conditional KL
divergence (third column); the conditional von Neumann divergence (fourth column); and the conditional MMD (fifth column) when the input variable
x is Gaussian distributed (first row) and uniform distributed (second row), respectively. We connect each task with its 3 nearest tasks.

that tasks 7 − 12 are closely related, forming a small circle,
and tasks 13− 15, 1− 6 are closely related, forming another
small circle. It should be noted that our measure only missed
capturing the locality relationship between tasks 6 and 7. In
contrast, both conditional KL divergence and conditional
MMD revealed a few spurious relationships. For example,
task 6 with respect to tasks 12 and 14 in Fig. 4(h) and task 6
with respect to tasks 3, 13, 15 in Fig. 4(j).

The quantitative evaluation in Table 3 is consistent with
the visualization results, where we utilize two measures to
quantify the closeness between the estimated graph struc-
ture and the ground truth. The first measure involves calcu-
lating the percentage p based on the difference between the
estimated graph adjacency matrixAS and the true adjacency
matrix AG. The second measure is the geodesic distance
dx⃗(LG, LS) [54]:

dx⃗(LG, LS) = arccosh

(
1 +
∥(LG − LS)x⃗∥22∥x⃗∥22
2(x⃗TLGx⃗)(x⃗TLS x⃗)

)
, (33)

in which LG is the ground truth graph Laplacian, LS is
the estimated graph Laplacian, and we select x⃗ to be the
smallest non-trivial eigenvector of LG which encodes the
global structure of a graph. For both measures, a smaller
value indicates better performance.

TABLE 3
Quantitative evaluation on task structure discovery for Gaussian input

(left of /) and uniform input (right of /).

Methods cond. CS cond. KL cond. vN cond. MMD
p(AG ̸= AS) 0.196/0.187 0.204/0.293 0.062/0.293 0.231/0.418
dx⃗(LG, LS) 1.785/2.607 2.246/2.696 1.494/2.658 2.872/3.273

5 APPLICATIONS TO TIME SERIES DATA AND SE-
QUENTIAL DECISION MAKING

Our conditional CS divergence can be used in diverse ap-
plications associated with time series and sequential data.
In the following, we comprehensively evaluate its perfor-
mances against other SOTA methods in time series cluster-
ing and exploration in the absence of explicit rewards.

5.1 Time Series Clustering

Time series clustering is an unsupervised machine learning
technique to partition time series data into groups. The
similarity based approach is a dominating direction for time
series clustering, in which the general idea is to infer the
similarity (or distance) between pairwise time series and
perform clustering based on the obtained similarities.

Popular time series similarity measures include for
example dynamic time warping (DTW) [55], the time
warp edit distance (TWED) [56], and the move-split-merge

10

(MSM) [57]. However, many of these measures cannot be
straightforwardly applied to multivariate time series as they
did not take relations between different attributes into ac-
count [58]. The recently proposed learned pattern similarity
(LPS) [59] and time-series cluster kernel (TCK) [60] are two
exceptions. Both measures rely on an ensemble strategy
to compute the similarity, whereas the latter leverages the
Gaussian mixture model (GMM) to fit the data which makes
it very effective to deal with missing values.

In contrast to the above-mentioned measures that aim to
align two sequences locally or rely on ensemble strategies
which is computationally expensive, we suggest a new
way to measure time series similarity from a probabilistic
perspective. Specifically, given two time series {xt} and
{yt}, let K denote a predefined embedding dimension,
the conditional distributions p(xt|xt−1,xt−2, · · · ,xt−K)
and p(yt|yt−1,yt−2, · · · ,yt−K) characterize the predic-
tive behavior or dynamics of {xt} and {yt}, respec-
tively. Hence, our new measure directly evaluates the
dissimilarity between {xt} and {yt} by the conditional
CS divergence between p(xt|xt−1,xt−2, · · · ,xt−K) and
p(yt|yt−1,yt−2, · · · ,yt−K) , i.e.,

DCS(p(xt|xt−1,xt−2, · · · ,xt−K); p(yt|yt−1,yt−2, · · · ,yt−K)).
(34)

That is, we expect to quantify the closeness of two
(multivariate) time series by measuring the discrepancy of
their internal dynamics. One can also understand our condi-
tional divergence in Eq. (34) from a kernel adaptive filtering
(KAF) [61] perspective. Specifically, given a time series {xt}
(or {yt}), the KAF aims to learn a nonlinear (kernel) regres-
sion function fx (or fy) to predict xt (or yt) using its past K
values {xt−1,xt−2, · · · ,xt−K} (or {yt−1,yt−2, · · · ,yt−K})
in an online manner, i.e., xt = fx(xt−1,xt−2, · · · ,xt−K)
and yt = fy(yt−1,yt−2, · · · ,yt−K). Here, K is also called
the filter order. Obviously, fx is an approximation to
p(xt|xt−1,xt−2, · · · ,xt−K). Hence, our divergence can also
be interpreted as the discrepancy between filters fx and fy.
However, we would like to emphasize that, although our
divergence has such an interpretation, it does not mean we
need to explicitly learn filters fx and fy or identify their
parameters. That is, our divergence is model-free.

For simplicity, we assume {xt} and {yt} have the
same length L. For each time series, we can reformu-
late the sequential observations into a so-called Hankel
matrix of size (K + 1) × (L − K) as shown in Fig. 5.
That is, for sample index i, we have a vector observation
{xi,xi+1, · · · ,xi+K−1} (or {yi,yi+1, · · · ,yi+K−1}) and its
corresponding desired response xi+K (or yi+K). Then, the
problem reduces to how to estimate Eq. (34) from the L−K
pairs of observations {[xi,xi+1, · · · ,xi+K−1]

T ,xi+K}L−K
i=1

that are drawn from p(X) and another L −K observations
{[yi,yi+1, · · · ,yi+K−1]

T ,yi+K}L−K
i=1 that are drawn from

q(Y), in which X ∈ RK+1 and Y ∈ RK+1. By Eq. (56),
we only need to compute eight Gram matrices of size
(L − K) × (L − K), without any parametric model or
parametric assumptions on the underlying distribution. For
example, the Gram matrix Lp for the desired response
variable is evaluated as (Lp)ij = κ(xi+K − xj+K); whereas
the cross Gram matrix Lpq is (Lpq)ij = κ(xi+K − yj+K), in
which 1 ≤ i, j ≤ L−K .

𝑥𝐾+1

1 2 𝐿 − 𝐾𝑖… Time

𝑥1

𝑥2

𝑥2

𝑥3

𝑥𝐾+2

𝑥𝑖

𝑥𝑖+1

𝑥𝑖+𝐾

…

𝑥𝐿−𝐾

𝑥𝐿−𝐾+1

𝑥𝐿
response
variable

predictor
variable

𝑥𝐾 𝑥𝐾+1 𝑥𝑖+𝐾−1 𝑥𝐿−1

Fig. 5. Reformulating a time series {xt} into a Hankel matrix.

(a) 10 time series from classes
“Normal”, “Cyclic”, and “In-
creasing trend” in Synthetic
Control dataset

fire

water

fountain

(b) Example snapshots of
classes “fire”, “fountain”,
“water” in UCLA dataset

Fig. 6. Exemplar time series in (a) Synthetic Control; and (b) UCLA
datasets. Each row is a time series.

We test our measure on 12 benchmark time series
datasets from the UCI7 and UCR8 databases, which cover a
wide spectrum of domains, ranging from biomedical data to
industrial processes. Additionally, we also test on two chal-
lenging dynamic texture (DT) datasets: Highway Traffic [62]
and UCLA [63]. The DT is a sequence of images of moving
scenes such as flames, smoke, and waves that exihibits
certain stationarity in time. The statistics of all datasets are
summarized in Appendix C.3.1. Fig. 6 demonstrates exem-
plar time series from different classes in Synthetic Control
and UCLA datasets. For datasets like Traffic and UCLA, the
dimension d is substantially larger than the length T , posing
significant challenges for clustering tasks.

Our measure is compared to four other similarity mea-
sures, namely DTW, TWED, MSM, and TCK. The original
DTW can only be applied to univariate time series, which
has later been extended for multivariate scenario [64]. In our
work, we use a state-of-the-art (SOTA) multivariate imple-
mentation in [65] for comparison. Details of all competing
measures and their hyperparameters setting are discussed in
Appendix C.3.2. For our method, similar to the KAF, the em-
bedding dimension or filter order K is a crucial parameter.
Practically, we can rely on Takens’ embedding theorem [66]
or set it heuristically with some prior knowledge. In our ex-
periment, we observed that the Taken’s embedding usually
underestimate the value of K that gives the best clustering
performance. Therefore, for all the univariate time series,
the value of K is selected among 3 values: 10, 15 and 20.
For multivariate time series, such as PenDigits and Robot
failures, we set K = 1 due to data prior knowledge. For
Traffic and UCLA, we also set K = 1, because the frame
dimension is much larger than time series length.

7. https://archive.ics.uci.edu/ml/datasets.php
8. https://www.cs.ucr.edu/∼eamonn/time series data/

https://archive.ics.uci.edu/ml/datasets.php
https://www.cs.ucr.edu/~eamonn/time_series_data/

11

TABLE 4
Clustering performance comparison (by spectral clustering) in terms of
normalized mutual information (NMI). “-” indicates the corresponding

measures cannot be extended to multivariate time series or fail to
obtain meaningful results. The best performance is in bold; the second

best performance is underlined.

Datasets DTW MSM TWED TCK Cond.
CS (ours)

Coffee 0.689 0.592 0.689 0.689 1
Diatom 0.788 0.837 0.774 0.806 0.743

DistalPhalanxTW 0.570 0.522 0.571 0.491 0.584
ECG5000 0.833 0.777 0.725 0.695 0.727
FaceAll 0.508 0.796 0.849 0.559 0.750

Synthetic control 0.744 0.565 0.565 0.781 0.758

PenDigits 0.725 0.488 0.655
Libras 0.652 0.554 0.606
uWave 0.834 0.624 0.759

Robot failure LP1 0.0607 0.176 0.686
Robot failure LP2 0.227 0.363 0.438
Robot failure LP3 0.170 0.144 0.328
Robot failure LP4 0.241 0.080 0.516
Robot failure LP5 0.091 0.080 0.393

Traffic 0.144 - 0.145
UCLA 0.149 - 0.559

For each test dataset, we can obtain a N × N dissim-
ilarity matrix D that encodes all pairwise dissimilarities
using any competing measures (N is the number of time
series). To quantitatively evaluate the quality of D, we
apply two clustering methods on top of D: k-medoids
and spectral clustering [67]. To apply spectral clustering,
we first convert the dissimilarity matrix D to a valid
adjancency matrix A by a kernel smooth function, i.e.,
Aij = exp (−Dij/b). For each measure, the parameter b is
chosen from {0.1, 0.2, 1, 2, 10, 20}, and the best performance
is taken. We use normalized mutual information (NMI) as
the clustering evaluation metric. Please refer to [68] for
detail definitions of NMI. Table 4 and Table 5 summarize
the clustering results using, respectively, spectral clustering
and k-medoids. We can summarize a few observations:
1) the clustering performances in terms of two different
clustering methods roughly remain consistent; 2) there is
no obvious winner for univariate time series, all methods
can achieve competitive performance; this makes sense, as
DTW, MSM, TWED and TCK are all established methods;
3) our conditional CS divergence has obvious performance
gain for multivariate time series; it is also generalizable to
Traffic and UCLA, in which the dimension is significantly
larger than the length; 4) the performance of our conditional
CS divergence is stable in the sense that our measure does
not have failing case; by contrast, DTW get very low NMI
values in Robert failure LP1-LP5, whereas TCK completely
fails in Traffic and UCLA.

Finally, one should note that, different from DTW and
other competing measures, our conditional CS divergence
is not specifically designed for just measuring similarity
between two temporal sequences, it is versatile, flexible, and
has wide usages in other machine learning problems.

Apart from the above quantitative analysis, we provide
in Appendix C.3.3 how to perform exploratory data analysis
for real-world time series data to identify useful patterns.
Additionally, we planned to conduct the same experiment

TABLE 5
Clustering performance comparison (by k-medoids) in terms of

normalized mutual information (NMI). “-” indicates the corresponding
measures cannot be extended to multivariate time series or fail to

obtain meaningful results. The best performance is in bold; the second
best performance is underlined.

Datasets DTW MSM TWED TCK Cond.
CS (ours)

Coffee 0.592 0.258 0.689 0.811 1
Diatom 0.552 0.768 0.760 0.821 0.730

DistalPhalanxTW 0.484 0.456 0.495 0.458 0.587
ECG5000 0.846 0.756 0.707 0.727 0.595
FaceAll 0.694 0.722 0.849 0.584 0.705

Synthetic control 0.909 0.899 0.856 0.869 0.745

PenDigits 0.722 0.416 0.640
Libras 0.440 0.596 0.390
uWave 0.748 0.707 0.754

Robot failure LP1 0.132 0.455 0.658
Robot failure LP2 0.232 0.315 0.427
Robot failure LP3 0.106 0.149 0.453
Robot failure LP4 0.084 0.113 0.365
Robot failure LP5 0.098 0.234 0.261

Traffic 0.139 - 0.152
UCLA 0.381 - 0.416

using conditional KL divergence and conditional MMD.
However, applying conditional KL divergence straightfor-
wardly presents a challenge as the kNN estimator may yield
negative values with a noticeable likelihood, hindering the
application of spectral clustering or k-medoids. This issue
is not encountered with conditional CS. On the other hand,
the performance of conditional MMD is always poor, due
to the difficulty of tuning the additional hyperparameter
λ in Eq. (8). Furthermore, the computational burden of
conditional MMD is cubic, stemming from matrix inversion.

5.2 Uncertainty-Guided Exploration for Sequential De-
cision Making

Our second application deals with sequential decision mak-
ing under uncertainty, especially in the scenarios where
clear rewards are sparse or not available. Let us recall a
(discounted) Markov Decision Process (MDP) defined by
a 5-tuple (S,A, P,R, γ), where S is the set of all possible
states (state space),A is the set of all possible actions (action
space). The agent learns a policy function π : S 7→ A
mapping states to actions at every time step. P : S×A 7→ S
is the transition function or probability. At each timestep
t, upon observing the state st, the execution of action at
triggers an extrinsic reward rt = r(st, at) ∈ R given by
the reward function R : S × A 7→ R, and a transition
to a new state st+1 ∼ P (·|st, at). The optimal agent max-
imizes the discounted cumulative extrinsic reward Q =
E (
∑∞

t=0 γ
trt+1|st, at), where γ ∈ (0, 1) is a discounting

factor which decays rewards received further in the future.
Even though the reward paradigm is fundamentally

flexible in many ways, it is also brittle and limits the
agent’s ability to learn about its environment, especially
when the rewards are sparse or unavailable. To make agents
to discover the environment without the requirement of a
reward signal, such that the learned policy is more flexible
and generalizable, recent studies seek to find an alternative

12

form of reinforcement learning with objective that is reward-
independent and favors exploration [69].

Many exploration schemes have been developed over
the past years. Here, we consider an uncertainty-guided
exploration in the sense that if a state has not been visited
sufficiently for the agent to be familiar with it, then that state
will have high uncertainty and an agent will be driven to it.
This ensures that an agent will thoroughly investigate new
areas of the action-state space [70].

At each timestep t, we observe a transition of
state st → st+1, we can update our belief distri-
bution p(st+1|st, at). Following the observation of a
new state transition, we can compute the divergence
D(pnew(st+1|st, at); pold(st+1|st, at)) between the two belief
functions, before and after incorporating the new knowl-
edge. In practice, we introduce a replay buffer to record 2τ
steps of {st+1, st, at} trios. Here we define pold to be the
conditional distribution of trios in the old half of the buffer,
while pnew corresponds the new half. When a new state tran-
sition is observed that greatly changes the model, this means
that the agent was quite uncertain about the outcome of the
action taken in that particular state. In order to encourage
exploration of the agent to states that have not been visited
sufficiently, the action selection module should be trained by
maximizing D(pnew(st+1|st, at); pold(st+1|st, at)). We term
such exploration strategy the “divergence-to-go (DTG)”,
and the optimal policy πdtg aims to maximize the divergence
between old and new experience at each visited state:

πdtg = argmax
π

E

(∞∑
t=0

D(pnew(st+1|st, at); pold(st+1|st, at))
)
.

(35)
The DTG exploration was initially proposed in [71], but

the authors estimate D(pnew(st+1|st, at); pold(st+1|st, at))
by the Euclidean distance and make a few additional as-
sumptions on the underlying distribution of p(st+1|st, at)
to make the estimation tractable. In this section, we straight-
forwardly estimate the conditional CS divergence between
pnew(st+1|st, at) and pold(st+1|st, at) using Eq. (56) in which
we treat st+1 as variable y and the concatenation of [st, at]
as variable x, without any distributional assumptions. We
denote our improved exploration method the DTG-CS.
Identical to the original DTG, we also incorporate a ker-
nelized Q-learning backbone [72] into our methodology.
The detailed algorithm of DTG-CS and its major differences
to standard reward-based Q-learning are provided in Ap-
pendix C.4.

We apply our method to a mountain car, pendulum
and maze task, as shown in Fig. 7. The mountain car is a
benchmark reinforcement learning (RL) test bed in which
the agent attempts to drive an underpowered car up a 2-
dimensional hill. Each time step, the agent selects an action
from A = {−1, 0, 1} based on the 2-dimensional state
space S consisting of the cart’s position and velocity. Zero
represents no action. Negative actions drive the cart to the
left while positive actions drive it to the right. To reach the
goal, the agent must climb the hill to the left and then allow
the combination of gravity and positive actions to drive the
cart to the top of the hill on the right. The pendulum is
another classic control problem in reinforcement learning,
which consists of a pendulum attached at one end to a fixed

point, and the other end being free. We set it to start at
downward position and the goal is to apply torque on the
free end to swing it into an upright position. Each step, the
agent chooses a action (torque) from the range [−1,+1]. In
maze game, an agent is placed from a start (red point). The
goal of the agent is to reach the exit (blue point) as quickly
as possible. For every step, the agent must decide which
action to take among four options: left, right, up or down.

We compare our DTG-CS with basic Q-learning, the
random exploration, the baseline DTG [71] and the recently
proposed maximum entropy (MaxEnt) exploration [69]. To
demonstrate the superiority of conditional CS divergence
over its KL divergence and MMD counterparts, we also im-
plement DTG-KL and DTG-MMD. Basic Q-learning usually
requires pre-collected state-reward buffer with goal rewards
or random policy to avoid converging to local optimum
(or even non-optimum), if rewards are sparse. Hence, we
introduce random actions using ϵ-greedy (ϵ0 = 0.5) in the Q-
learning for the mountain car and the Maze. MaxEnt encour-
ages efficient discovery of an unknown state space by maxi-
mizing the entropy of state distribution −Es∈S [log2 p(s)], in
which S is the set of all visited states. We repeat the training
process for 100 independent runs with different global seeds
and record the mean value of the number of steps used to
achieve the goal for the first time. Note that, for maze game,
the agent may not reach the exit given sufficient number of
training steps (because it has a chance to converge to a dead
end). Therefore, we additionally report the success rate over
100 independent runs. If the method cannot achieve the goal
within 50, 000 training steps, we regard it as a failure.

Table 6 shows the quantitative results. For mountain car,
our method outperforms all competing methods, although
the improvement over DTG is marginal. This is not surpris-
ing since mountain car is a simple task. In short, exploration-
based methods (MaxEnt, DTG, and its variants including
our DTG-CS) can achieve the goal faster than reward-driven
Q-learning and random policy. For pendulum, contrast to
the other two environments where the agent can only obtain
rewards by achieving the goals, the agent of the pendulum
receives rewards at arbitrary positions. Closer to the upright
position, higher the rewards9. Hence, it is not supervising
that the reward-based Q-learning outperforms others. Our
DTG-CS achieves best result among remaining methods,
without explicitly utilizing rewards. For maze, our method
outperforms all other methods by a substantial margin. We
obtain similar results to basic DTG but improve significantly
the success rate. MaxEnt obtains higher success rate than Q-
learning and random policy but takes longer time to achieve
the goal.

Fig. 8 visualizes results using heatmaps of training steps.
For mountain car, we plot the log-probability of occupancy
of the 2D state space with location on the X-axis and speed
on the Y -axis. In summary, states of Q-learning and random
policy cluster near the initial state while exploration-based
methods (especially DTG and DTG-CS) evenly distribute
in the entire state space. For pendulum, we plot the 2D
positions of the free end to show the traces of the bar.
A full circle indicates the agent explores the state space

9. https://www.gymlibrary.dev/environments/classic control/
pendulum/

https://www.gymlibrary.dev/environments/classic_control/pendulum/
https://www.gymlibrary.dev/environments/classic_control/pendulum/

13

(a) Mountain Car (b) Pendulum (c) Maze

Fig. 7. (a) The goal of mountain car is to touch the flag; (b) The goal of
Pendulum is to make the bar upright. (c) A 20 × 20 maze. The goal is
to reach the exit (blue point) as quickly as possible from the start (red
point).

TABLE 6
For mountain car and Pendulum, we show the number of steps used to
achieve the goal for the first time. For Maze, we also show the success

rate after “/” given 50, 000 training steps.

Methods Mountain
car (step)

Pendulum
(step)

Maze
(step/success rate)

Random 42085 5884 15666/0.15
Q-learning 53204 3276 12906/0.18

MaxEnt 13761 5213 31039/0.4
DTG 979 4562 2618/0.58

DTG-KL 1659 4780 4181/0.53
DTG-MMD 1853 4282 4383/0.61

DTG-CS 946 4105 2581/0.75

completely. Random policy stays in the lower semicircle due
to gravity. Q-learning can explore the full space with the
help of dense rewards. MaxEnt explores more than random
but cannot distribute evenly before reaching 50, 000 steps
training. DTG-based methods produce similar results to Q-
learning but employ no rewards. For maze, we plot 2D
state spaces with (x, y) coordinates. States of Q-learning
and random policy still cluster near the start point, and the
density decreases monotonically with respect to the distance
to the exit. MaxEnt produces two local maximums apart
from the initial state (see the middle and the upper right
corner) which makes it has a larger probability to stuck in
dead end. DTG-based approach avoids both limitations.

6 CONCLUSIONS AND IMPLICATIONS FOR FUTURE
WORK

We developed the conditional Cauchy-Schwarz (CS) diver-
gence to quantify the closeness between two conditional
distributions from samples, which can be elegantly eval-
uated with kernel density estimator (KDE). Our condi-
tional CS divergence enjoys simultaneously relatively lower
computational complexity, differentiability, and faithfulness
guarantee. The new divergence can be applied to a variety
of time series and sequential decision making applications
in a versatile way. With regard to time series clustering, it
demonstrated obvious performance gain for multivariate or
high-dimensional time series. With regard to reinforcement
learning without explicit rewards, it outperforms the popu-
lar maximum entropy strategy and encourages significantly
exploration to states that have not been visited sufficiently
for the agent to be familiar with it. We additionally ana-
lyzed two special cases of conditional CS divergence and
illustrated their implications in other challenging areas such

as time series causal discovery and the loss function design
of deep regression models.

Our research opens up exciting avenues for future
work, especially from an application perspective. Given the
promising performance of causal score with CS divergence
(CS)2 on benchmark simulated data in Fig. 3, it would be
interesting to systematically investigate its ability on causal
discovery for realistic data in other domains, such as neu-
roscience, econometrics, and climate science. Meanwhile,
it is compelling to apply our conditional CS divergence
estimator in Eq. (56) and a by-product on sample efficient
measure on conditional independence in Eq. (79) to different
downstream tasks that aim to learn invariant and fair latent
representations (see also discussions in Sec. 3.2.2).

We conclude this paper with an initial investigation
to unsupervised domain adaptation (UDA) on EEG data.
Our motivation is to inspire interested readers to jointly
investigate more wider applications of the conditional CS
divergence and unveil its undiscovered theoretical proper-
ties.

In UDA, we have M labeled samples Ds = {(xi
s, y

i
s)}Mi=1

from a source domain with distribution ps and N unlabeled
samples Dt = {xj

t}Nj=1 from a target domain with distribu-
tion pt (pt ̸= ps). The primary goal of UDA is to learn a
neural network hθ = f ◦ g such that the risk on the target
domain is minimized, where f : x 7→ z is a feature extractor
and g : z 7→ y is a classifier. We denote the prediction
by ŷ = g(z). According to [73], the loss ltest in the test
distribution (a.k.a., target domain) is upper bounded by:

ltest ≤ ltrain+
M√
2

√
DKL(pt(z); ps(z)) +DKL(pt(y|z); ps(y|z)),

(36)
in which ltrain is the loss in source domain, and it is assumed
that − log p̂(y|z) is upper bounded by a constant M .

Eq. (36) implies that achieving small test error neces-
sitates matching both the marginal distribution p(z) and
the conditional distribution p(y|z), which aligns with [23].
Motivated by this theoretical basis, it makes sense to replace
KL divergence (due to difficulty of estimation) with our CS
divergence, and optimize the following objective:

LCE + α [DCS(pt(z); ps(z)) +DCS(pt(ŷ|z); ps(y|z))] , (37)

where LCE = − 1
M

∑M
i=1 y

i
s log ŷ

i
s is the cross-entropy loss

on source domain and α > 0 controls the strength of regu-
larization. Note that, in target domain, there is no ground
truth yt. Hence, we approximate yt with its prediction
ŷt = hθ(xt), which is a common trick in UDA literature.

We apply CS divergence-based domain adaptation to
EEG classification on two benchmark real-world datasets,
namely BCI Competition IIIb [74] and SEED [75]. We also
compare our method with representative MMD-based ap-
proaches, which include DDC [76], DAN [77], JAN [24],
DJP-MMD [78]. The baseline model is EEGNet [79], and z is
selected to be the latent representation before the final linear
classification layer. An detailed discussion on experimental
setup and the difference amongst all competing approaches
are provided in Appendix C.5. According to Table 7, our
CS divergence always outperforms the best MMD-based
approaches.

14

(a) Random (b) Q-learning (c) MaxEnt (d) DTG (e) DTG-KL (f) DTG-MMD (g) DTG-CS

(h) Random (i) Q-learning (j) MaxEnt (k) DTG (l) DTG-KL (m) DTG-MMD (n) DTG-CS

(o) Random (p) Q-learning (q) MaxEnt (r) DTG (s) DTG-KL (t) DTG-MMD (u) DTG-CS

Fig. 8. The log-probability of occupancy of the two-dimensional state space in mountain car (first row), the log-probability of occupancy of x-y
coordinates in Pendulum (second row) and the heatmap of traces for maze within 50, 000 training steps (third row). We repeat the experiment 100
times with different random seeds and show the average results.

TABLE 7
Classification accuracy for different approaches.

Methods S4 → X11 X11 → S4 SEED
EEGNet (no adaptation) 0.608 0.718 0.515

DDC 0.610 0.766 0.564
DAN 0.615 0.768 0.547
JAN 0.609 0.771 0.543

DJP-MMD 0.628 0.768 0.536
CS (ours) 0.631 0.801 0.578

REFERENCES

[1] R. Flamary, N. Courty, D. Tuia, A. Rakotomamonjy, Optimal trans-
port for domain adaptation, IEEE Transactions on Pattern Analysis
and Machine Intelligence 39 (9) (2017) 1853–1865.

[2] A. Cherian, S. Sra, A. Banerjee, N. Papanikolopoulos, Jensen-
bregman logdet divergence with application to efficient similar-
ity search for covariance matrices, IEEE Transactions on Pattern
Analysis and Machine Intelligence 35 (9) (2012) 2161–2174.

[3] M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adver-
sarial networks, in: International conference on machine learning,
PMLR, 2017, pp. 214–223.

[4] A. Gretton, K. Fukumizu, C. Teo, L. Song, B. Schölkopf, A. Smola,
A kernel statistical test of independence, Advances in neural
information processing systems 20.

[5] X. Wang, W. Pan, W. Hu, Y. Tian, H. Zhang, Conditional dis-
tance correlation, Journal of the American Statistical Association
110 (512) (2015) 1726–1734.

[6] E. Amid, M. K. Warmuth, R. Anil, T. Koren, Robust bi-tempered
logistic loss based on bregman divergences, Advances in Neural
Information Processing Systems 32.

[7] A. Basu, H. Shioya, C. Park, Statistical inference: the minimum
distance approach, CRC press, 2011.

[8] A. Müller, Integral probability metrics and their generating classes
of functions, Advances in Applied Probability 29 (2) (1997) 429–
443.

[9] A. Rényi, et al., On measures of entropy and information, in:

Proceedings of the fourth Berkeley symposium on mathematical
statistics and probability, Vol. 1, Berkeley, California, USA, 1961.

[10] I. Csiszár, Information-type measures of difference of probability
distributions and indirect observation, studia scientiarum Mathe-
maticarum Hungarica 2 (1967) 229–318.

[11] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, A. Smola,
A kernel two-sample test, The Journal of Machine Learning Re-
search 13 (1) (2012) 723–773.

[12] S. Zhao, A. Sinha, Y. He, A. Perreault, J. Song, S. Ermon, Com-
paring distributions by measuring differences that affect decision
making, in: International Conference on Learning Representations,
2021.

[13] J. C. Principe, D. Xu, J. Fisher, S. Haykin, Information theoretic
learning, Unsupervised adaptive filtering 1 (2000) 265–319.

[14] J. C. Principe, D. Xu, Q. Zhao, J. W. Fisher, Learning from examples
with information theoretic criteria, Journal of VLSI signal process-
ing systems for signal, image and video technology 26 (1) (2000)
61–77.

[15] R. Jenssen, J. C. Principe, D. Erdogmus, T. Eltoft, The cauchy–
schwarz divergence and parzen windowing: Connections to graph
theory and mercer kernels, Journal of the Franklin Institute 343 (6)
(2006) 614–629.

[16] K. Kampa, E. Hasanbelliu, J. C. Principe, Closed-form cauchy-
schwarz pdf divergence for mixture of gaussians, in: The 2011
International Joint Conference on Neural Networks, IEEE, 2011,
pp. 2578–2585.

[17] E. Parzen, On estimation of a probability density function and
mode, The annals of mathematical statistics 33 (3) (1962) 1065–
1076.

[18] H. G. Hoang, B.-N. Vo, B.-T. Vo, R. Mahler, The cauchy–schwarz
divergence for poisson point processes, IEEE Transactions on
Information Theory 61 (8) (2015) 4475–4485.

[19] M. Kampffmeyer, S. Løkse, F. M. Bianchi, L. Livi, A.-B. Salberg,
R. Jenssen, Deep divergence-based approach to clustering, Neural
Networks 113 (2019) 91–101.

[20] D. P. Kingma, M. Welling, Auto-encoding variational {Bayes}, in:
International Conference on Learning Representations, 2014.

[21] L. Tran, M. Pantic, M. P. Deisenroth, Cauchy-schwarz regularized
autoencoder, Journal of Machine Learning Research 23.

[22] P. He, P. Emami, S. Ranka, A. Rangarajan, Self-supervised robust
scene flow estimation via the alignment of probability density

15

functions, in: Proceedings of the AAAI Conference on Artificial
Intelligence, 2022, pp. 861–869.

[23] H. Zhao, R. T. Des Combes, K. Zhang, G. Gordon, On learning
invariant representations for domain adaptation, in: International
Conference on Machine Learning, PMLR, 2019, pp. 7523–7532.

[24] M. Long, H. Zhu, J. Wang, M. I. Jordan, Deep transfer learning
with joint adaptation networks, in: International conference on
machine learning, PMLR, 2017, pp. 2208–2217.

[25] H. Yan, Y. Ding, P. Li, Q. Wang, Y. Xu, W. Zuo, Mind the class
weight bias: Weighted maximum mean discrepancy for unsuper-
vised domain adaptation, in: Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 2272–2281.

[26] M. Federici, A. Dutta, P. Forré, N. Kushman, Z. Akata, Learning
robust representations via multi-view information bottleneck, in:
International Conference on Learning Representations, 2020.

[27] Y. Ren, J. Zhu, J. Li, Y. Luo, Conditional generative moment-
matching networks, Advances in Neural Information Processing
Systems 29.

[28] L. Song, J. Huang, A. Smola, K. Fukumizu, Hilbert space embed-
dings of conditional distributions with applications to dynamical
systems, in: Proceedings of the 26th Annual International Confer-
ence on Machine Learning, 2009, pp. 961–968.

[29] Q. Wang, S. R. Kulkarni, S. Verdú, Divergence estimation for
multidimensional densities via k-nearest-neighbor distances, IEEE
Transactions on Information Theory 55 (5) (2009) 2392–2405.

[30] M. Noshad, K. R. Moon, S. Y. Sekeh, A. O. Hero, Direct estima-
tion of information divergence using nearest neighbor ratios, in:
2017 IEEE International Symposium on Information Theory (ISIT),
IEEE, 2017, pp. 903–907.

[31] L. Song, K. Fukumizu, A. Gretton, Kernel embeddings of condi-
tional distributions: A unified kernel framework for nonparamet-
ric inference in graphical models, IEEE Signal Processing Maga-
zine 30 (4) (2013) 98–111.

[32] S. Yu, A. Shaker, F. Alesiani, J. Principe, Measuring the discrepancy
between conditional distributions: methods, properties and appli-
cations, in: Proceedings of the 29th International Joint Conference
on Artificial Intelligence, 2020, pp. 2777–2784.

[33] B. Kulis, M. A. Sustik, I. S. Dhillon, Low-rank kernel learning
with bregman matrix divergences., Journal of Machine Learning
Research 10 (2).

[34] M. A. Nielsen, I. L. Chuang, Quantum computation and quantum
information.

[35] J. Zhao, D. Meng, Fastmmd: Ensemble of circular discrepancy for
efficient two-sample test, Neural computation 27 (6) (2015) 1345–
1372.

[36] J. Park, K. Muandet, A measure-theoretic approach to kernel
conditional mean embeddings, Advances in neural information
processing systems 33 (2020) 21247–21259.

[37] B. Rodriguez Galvez, The information bottleneck: Connec-
tions to other problems, learning and exploration of the ib
curve, https://www.diva-portal.org/smash/get/diva2:1332068/
FULLTEXT01.pdf.

[38] X. Chen, S. Kim, Q. Lin, J. G. Carbonell, E. P. Xing, Graph-
structured multi-task regression and an efficient optimization
method for general fused lasso, arXiv preprint arXiv:1005.3579.

[39] R. Pogodin, N. Deka, Y. Li, D. J. Sutherland, V. Veitch, A. Gret-
ton, Efficient conditionally invariant representation learning, in:
International Conference on Learning Representations, 2023.

[40] M. Hardt, E. Price, N. Srebro, Equality of opportunity in su-
pervised learning, Advances in neural information processing
systems 29.

[41] B. Li, Y. Shen, Y. Wang, W. Zhu, D. Li, K. Keutzer, H. Zhao,
Invariant information bottleneck for domain generalization, in:
Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 36, 2022, pp. 7399–7407.

[42] C. K. Assaad, E. Devijver, E. Gaussier, Survey and evaluation
of causal discovery methods for time series, Journal of Artificial
Intelligence Research 73 (2022) 767–819.

[43] J. M. Mooij, J. Peters, D. Janzing, J. Zscheischler, B. Schölkopf, Dis-
tinguishing cause from effect using observational data: methods
and benchmarks, The Journal of Machine Learning Research 17 (1)
(2016) 1103–1204.

[44] C. W. Granger, Investigating causal relations by econometric
models and cross-spectral methods, Econometrica: journal of the
Econometric Society (1969) 424–438.

[45] C. W. Granger, Testing for causality: A personal viewpoint, Journal
of Economic Dynamics and control 2 (1980) 329–352.

[46] L. Su, H. White, A nonparametric hellinger metric test for condi-
tional independence, Econometric Theory 24 (4) (2008) 829–864.

[47] T. Schreiber, Measuring information transfer, Physical review let-
ters 85 (2) (2000) 461.

[48] D. Kugiumtzis, Direct-coupling information measure from
nonuniform embedding, Physical Review E 87 (6) (2013) 062918.

[49] B. Gourévitch, R. L. Bouquin-Jeannès, G. Faucon, Linear and
nonlinear causality between signals: methods, examples and neu-
rophysiological applications, Biological cybernetics 95 (4) (2006)
349–369.

[50] D. Marinazzo, M. Pellicoro, S. Stramaglia, Kernel method for
nonlinear granger causality, Physical review letters 100 (14) (2008)
144103.

[51] J. Zhu, J.-J. Bellanger, H. Shu, R. Le Bouquin Jeannès, Contribu-
tion to transfer entropy estimation via the k-nearest-neighbors
approach, Entropy 17 (6) (2015) 4173–4201.

[52] J. X. Zheng, A consistent test of conditional parametric distribu-
tions, Econometric Theory 16 (5) (2000) 667–691.

[53] R. Flamary, A. Rakotomamonjy, G. Gasso, Learning constrained
task similarities in graphregularized multi-task learning, Regular-
ization, Optimization, Kernels, and Support Vector Machines 103.

[54] G. Bravo Hermsdorff, L. Gunderson, A unifying framework for
spectrum-preserving graph sparsification and coarsening, Ad-
vances in Neural Information Processing Systems 32.

[55] D. J. Berndt, J. Clifford, Using dynamic time warping to find
patterns in time series, in: Proceedings of AAAI Workshop on
Knowledge Discovery in Databases, 1994, pp. 359–370.

[56] P.-F. Marteau, Time warp edit distance with stiffness adjustment
for time series matching, IEEE transactions on pattern analysis and
machine intelligence 31 (2) (2008) 306–318.

[57] A. Stefan, V. Athitsos, G. Das, The move-split-merge metric for
time series, IEEE transactions on Knowledge and Data Engineer-
ing 25 (6) (2012) 1425–1438.

[58] Z. Bankó, J. Abonyi, Correlation based dynamic time warping of
multivariate time series, Expert Systems with Applications 39 (17)
(2012) 12814–12823.

[59] M. G. Baydogan, G. Runger, Time series representation and sim-
ilarity based on local autopatterns, Data Mining and Knowledge
Discovery 30 (2) (2016) 476–509.

[60] K. Ø. Mikalsen, F. M. Bianchi, C. Soguero-Ruiz, R. Jenssen, Time
series cluster kernel for learning similarities between multivariate
time series with missing data, Pattern Recognition 76 (2018) 569–
581.

[61] W. Liu, P. P. Pokharel, J. C. Principe, The kernel least-mean-square
algorithm, IEEE Transactions on Signal Processing 56 (2) (2008)
543–554.

[62] A. B. Chan, N. Vasconcelos, Classification and retrieval of traffic
video using auto-regressive stochastic processes, in: IEEE Proceed-
ings. Intelligent Vehicles Symposium, 2005., IEEE, 2005, pp. 771–
776.

[63] P. Saisan, G. Doretto, Y. N. Wu, S. Soatto, Dynamic texture
recognition, in: Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR
2001, Vol. 2, IEEE, 2001, pp. II–II.

[64] M. Shokoohi-Yekta, B. Hu, H. Jin, J. Wang, E. Keogh, Generalizing
dtw to the multi-dimensional case requires an adaptive approach,
Data mining and knowledge discovery 31 (1) (2017) 1–31.

[65] D. Schultz, B. Jain, Nonsmooth analysis and subgradient methods
for averaging in dynamic time warping spaces, Pattern Recogni-
tion 74 (2018) 340–358.

[66] F. Takens, Detecting strange attractors in turbulence, in: Dynamical
systems and turbulence, Warwick 1980, Springer, 1981, pp. 366–
381.

[67] A. Ng, M. Jordan, Y. Weiss, On spectral clustering: Analysis and
an algorithm, Advances in neural information processing systems
14.

[68] W. Xu, X. Liu, Y. Gong, Document clustering based on non-
negative matrix factorization, in: Proceedings of the 26th annual
international ACM SIGIR conference on Research and develop-
ment in informaion retrieval, 2003, pp. 267–273.

[69] E. Hazan, S. Kakade, K. Singh, A. Van Soest, Provably efficient
maximum entropy exploration, in: International Conference on
Machine Learning, PMLR, 2019, pp. 2681–2691.

[70] I. J. Sledge, M. S. Emigh, J. C. Prı́ncipe, Guided policy exploration
for markov decision processes using an uncertainty-based value-
of-information criterion, IEEE transactions on neural networks
and learning systems 29 (6) (2018) 2080–2098.

https://www.diva-portal.org/smash/get/diva2:1332068/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1332068/FULLTEXT01.pdf

16

[71] M. Emigh, E. Kriminger, J. C. Principe, A model based approach
to exploration of continuous-state mdps using divergence-to-go,
in: 2015 IEEE 25th International Workshop on Machine Learning
for Signal Processing (MLSP), IEEE, 2015, pp. 1–6.

[72] J. Bae, P. Chhatbar, J. T. Francis, J. C. Sanchez, J. C. Principe, Rein-
forcement learning via kernel temporal difference, in: 2011 Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society, IEEE, 2011, pp. 5662–5665.

[73] A. T. Nguyen, T. Tran, Y. Gal, P. Torr, A. G. Baydin, KL guided
domain adaptation, in: International Conference on Learning Rep-
resentations, 2022.

[74] B. Blankertz, K.-R. Muller, D. J. Krusienski, G. Schalk, J. R. Wolpaw,
A. Schlogl, G. Pfurtscheller, J. R. Millan, M. Schroder, N. Bir-
baumer, The bci competition iii: Validating alternative approaches
to actual bci problems, IEEE transactions on neural systems and
rehabilitation engineering 14 (2) (2006) 153–159.

[75] W.-L. Zheng, B.-L. Lu, Investigating critical frequency bands and
channels for eeg-based emotion recognition with deep neural
networks, IEEE Transactions on autonomous mental development
7 (3) (2015) 162–175.

[76] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, T. Darrell, Deep
domain confusion: Maximizing for domain invariance, arXiv
preprint arXiv:1412.3474.

[77] M. Long, Y. Cao, J. Wang, M. Jordan, Learning transferable features
with deep adaptation networks, in: International conference on
machine learning, PMLR, 2015, pp. 97–105.

[78] W. Zhang, D. Wu, Discriminative joint probability maximum mean
discrepancy (djp-mmd) for domain adaptation, in: 2020 interna-
tional joint conference on neural networks (IJCNN), IEEE, 2020,
pp. 1–8.

[79] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P.
Hung, B. J. Lance, Eegnet: a compact convolutional neural net-
work for eeg-based brain–computer interfaces, Journal of neural
engineering 15 (5) (2018) 056013.

[80] E. Garcı́a-Portugués, Notes for Nonparametric Statistics, 2024,
version 6.9.1. ISBN 978-84-09-29537-1.
URL https://bookdown.org/egarpor/NP-UC3M/

[81] Q. Li, J. S. Racine, Nonparametric econometrics: theory and prac-
tice, Princeton University Press, 2023.

[82] J. Beirlant, E. J. Dudewicz, L. Györfi, E. C. Van der Meulen, et al.,
Nonparametric entropy estimation: An overview, International
Journal of Mathematical and Statistical Sciences 6 (1) (1997) 17–
39.

[83] P. Duan, F. Yang, S. L. Shah, T. Chen, Transfer zero-entropy and
its application for capturing cause and effect relationship between
variables, IEEE Transactions on Control Systems Technology 23 (3)
(2014) 855–867.

[84] G. Doretto, A. Chiuso, Y. N. Wu, S. Soatto, Dynamic textures,
International Journal of Computer Vision 51 (2) (2003) 91–109.

[85] X. You, W. Guo, S. Yu, K. Li, J. C. Prı́ncipe, D. Tao, Kernel learning
for dynamic texture synthesis, IEEE Transactions on Image Pro-
cessing 25 (10) (2016) 4782–4795.

[86] Y. Xu, Y. Quan, H. Ling, H. Ji, Dynamic texture classification
using dynamic fractal analysis, in: 2011 International Conference
on Computer Vision, IEEE, 2011, pp. 1219–1226.

[87] L. N. Ferreira, From time series to networks in r with the ts2net
package, arXiv preprint arXiv:2208.09660.

[88] J. Bae, L. S. Giraldo, P. Chhatbar, J. Francis, J. Sanchez, J. Principe,
Stochastic kernel temporal difference for reinforcement learning,
in: 2011 IEEE International Workshop on Machine Learning for
Signal Processing, IEEE, 2011, pp. 1–6.

[89] Z. Lan, O. Sourina, L. Wang, R. Scherer, G. R. Müller-Putz, Do-
main adaptation techniques for eeg-based emotion recognition: a
comparative study on two public datasets, IEEE Transactions on
Cognitive and Developmental Systems 11 (1) (2018) 85–94.

[90] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., Pytorch: An im-
perative style, high-performance deep learning library, Advances
in neural information processing systems 32.

https://bookdown.org/egarpor/NP-UC3M/
https://bookdown.org/egarpor/NP-UC3M/

17

APPENDIX A
BACKGROUND KNOWLEDGE

A.1 On Kernel Functions in Multivariate Kernel Density Estimation
Kernel density estimation (KDE) can be extended to estimate multivariate densities f in Rd based on the same principle:
perform an average of densities “centered” at the data points [80]. Specifically, given M samples X1, X2, · · · , XM in Rd,
the KDE of f evaluated on an arbitrary point x is given by:

f̂(x,Σ) :=
1

M |Σ|1/2
M∑
i=1

K(Σ−1/2(x−Xi)), (38)

where K is a d-variate symmetric kernel that is unimodal at 0 and that depends on the bandwidth matrix Σ, a symmetric
positive definite (SPD) matrix. Then, the bandwidth matrix Σ can be thought of as the variance-covariance matrix of a
multivariate normal density with mean Xi and the KDE in Eq. (38) can be regarded as a data-driven mixture of those
densities [80].

A common notation is KΣ(z) := |Σ|−1/2K(Σ−1/2z), so the KDE can be compactly written as:

f̂(x,Σ) :=
1

M

M∑
i=1

KΣ(x−Xi). (39)

Considering a full bandwidth matrix Σ gives more flexibility to the KDE, but also quadratically increases the amount
of bandwidth parameters (d(d+1)

2 in total) that need to be chosen precisely, which notably complicates bandwidth selection
as the dimension d grows, and increases the variance of the KDE. A common simplification is to consider a diagonal
bandwidth matrix Σ = diag(σ2

1 , · · · , σ2
d), which yields the KDE employing product kernels [80], [81]:

f̂(x,Σ) :=
1

M

M∑
i=1

κσ1
(x1 −Xi,1)× κσ2

(x2 −Xi,2)× · · · × κσd
(xd −Xi,d), (40)

where x = [x1, x2, · · · , xd]T , Xi = [Xi,1, Xi,2, · · · , Xi,d]
T , σ = [σ1, σ2, · · · , σd]T is the vector of bandwidths, κσ(·) is a

univariate kernel function such as Gaussian κσ(·) = 1√
2πσ

exp(−∥·∥2

2σ2).
Note that, the only assumption in Eq. (40) was that the samples are independent. That is, no restrictions were placed on

the s index for each dimension Xi,s(s = 1, 2, · · · , d). The product kernel is used simply for convenience, and it certainly
does not require that the Xi,s’s are independent across the s index. In other words, the multivariate KDE in Eq. (40) is
capable of capturing general dependence among the different dimension of Xi [81, Chapter 1.6].

In practice, a much simpler and common choice is to consider σ = σ1 = σ2 = · · · = σd.

A.2 Resubstitution Estimator and Plug-in Estimator
The CS divergence involves the estimation of inner product of two density functions. In fact, quantities like

∫
p2dµ and∫

pqdµ can be estimated in a couple of ways [82]. In this paper, we use a so-called resubstitution estimator; whereas the
authors in [15] use the plug-in estimator that simply inserting KDE of the density into the formula, i.e.,∫

p2dµ ≈
∫
p̂2(x)dx =

∫ (
1

N

N∑
i=1

κσ(xi − x)
)2

dx

=
1

N2

N∑
i=1

N∑
j=1

∫
κσ(xi − x)× κσ(xj − x)dx.

(41)

Authors of [15] then assume a Gaussian kernel and rely on the property that the integral of the product of two Gaussians
is exactly evaluated as the value of the Gaussian computed at the difference of the arguments and whose variance is the
sum of the variances of the two original Gaussian functions. Hence,∫

p2dµ ≈ 1

N2

N∑
i=1

N∑
j=1

∫
κσ(xi − x)× κσ(xj − x)dx =

1

N2

N∑
i=1

N∑
j=1

κ√2σ(xi − xj). (42)

To our knowledge, other kernel functions, however, do not result in such convenient evaluation of the integral because
the Gaussian maintains the functional form under convolution.

By contrast, we estimate
∫
p2dµ as:∫

p2dµ = Ep(p) =
1

N

N∑
i=1

p(xi) =
1

N

N∑
i=1

 1

N

N∑
j=1

κσ(xi − xj)

 dx =
1

N2

N∑
i=1

N∑
j=1

κσ(xi − xj). (43)

Although Eq. (43) only differs from Eq. (42) by replacing
√
2σ with σ, our estimator offers two immediately advantages

over that in [15]: 1) our estimator is generalizable to all valid kernel functions; and 2) the empirical estimator of conditional
CS divergence can be achieved much more easily using only the resubstitution estimator.

18

A.3 CS Divergence and its Connection to MMD
Given M samples {ys

i }Mi=1 drawn from distribution ps and N samples {yt
i}Ni=1 drawn from distribution pt. By the kernel

density estimation (KDE) with a kernel function κσ of width σ10, we have:

p̂s(y) =
1

M

M∑
i=1

κσ(y − ys
i), (44)

and

p̂t(y) =
1

N

N∑
i=1

κσ(y − yt
i). (45)

To evaluate the dissimilarity between ps and pt, a natural choice is the Euclidean distance:

DED(ps; pt) =

∫
(ps(y)− pt(y))2dy

=

∫
p2s(y)dy +

∫
p2t (y)dy −

∫
ps(y)pt(y)dy

(46)

By Eq. (43), we have: ∫
p2s(y)dy = Eps

(ps) =
1

M2

M∑
i=1

M∑
j=1

κσ(y
s
j − ys

i). (47)

Similarly, ∫
p2t (y)dy = Ept

(pt) =
1

N2

N∑
i=1

N∑
j=1

κσ(y
t
j − yt

i), (48)

and ∫
ps(y)pt(y)dy = Eps(pt) =

1

MN

M∑
i=1

N∑
j=1

κσ(y
t
j − ys

i). (49)

Combining Eqs. (47)-(49), we have:

DED(ps; pt) =
1

M2

M∑
i,j=1

κσ(y
s
j − ys

i)︸ ︷︷ ︸
A

+
1

N2

N∑
i,j=1

κσ(y
t
j − yt

i)︸ ︷︷ ︸
B

− 2

MN

M,N∑
i,j=1

κσ(y
t
j − ys

i)︸ ︷︷ ︸
C

. (50)

Note that Eq. (50) is exactly the same (in terms of mathematical expression) to the square of MMD using V-statistic
estimator [11]:

M̂MDv[ps(x), pt(x)] =

 1

M2

M∑
i,j=1

κ(ys
i ,y

s
j) +

1

N2

N∑
i,j=1

κ(yt
i ,y

t
j)−

2

MN

M,N∑
i,j=1

κ(yt
j ,y

s
i)

 1
2

. (51)

Although, in practice, the U-statistic estimator of MMD is more widely used:

M̂MDu[ps(x), pt(x)] =

 1

M(M − 1)

M∑
i=1

M∑
j ̸=i

κ(ys
i ,y

s
j) +

1

N(N − 1)

N∑
i=1

N∑
j ̸=i

κ(yt
i ,y

t
j)−

2

MN

M∑
i=1

N∑
j=1

κ(yt
j ,y

s
i)

 1
2

, (52)

On the other hand, by substituting Eqs. (47)-(49) into the definition of CS divergence (DCS(p∥q) =
−2 log(

∫
p(y)q(y)dy) + log(

∫
p(y)2dy) + log(

∫
q(y)2dy)), we obtain:

D̂CS(p∥q) = log

 1

M2

M∑
i,j=1

κσ(y
s
j − ys

i)

+ log

 1

N2

N∑
i,j=1

κσ(y
t
j − yt

i)

− 2 log

 1

MN

M∑
i=1

N∑
j=1

κσ(y
t
j − ys

i)

 . (53)

To summarize, the mathematical expression of MMD can be derived by either taking the distance of kernel mean
embedding in a reproducing kernel Hilbert space (RKHS) or taking the Euclidean distance of two distributions which are

estimated by KDE. More interestingly, one can estimate MMD by
(

A + B − 2 C
) 1

2
, and CS divergence by log

(
A
)
+

log
(

B
)
− 2 log

(
C
)

. Note, however, that this observation does not apply to conditional MMD and conditional CS
divergence.

10. For example, the most popular Gaussian kernel function is expressed as κσ(·) = 1√
2πσ

exp(− ∥·∥2
2σ2).

19

APPENDIX B
PROOFS

B.1 Proof to Proposition 1

Proof. Denote p̃(y) = p(y|x) and q̃(y) = q(y|x). By the CS inequality, we have:∫
p̃(y)q̃(y)dy ≤

√(∫
p̃(y)2dy

)(∫
q̃(y)2dy

)
. (54)

Therefore, DCS(p̃(y); p̃(y)) is non-negative and reduces to zero if and only if p̃(y) and q̃(y) are linearly dependent, i.e.,
p̃(y) = λq̃(y).

On the other hand, p̃(y) and q̃(y) are valid probability distributions in the sense that
∫
p̃(y)dy = λ

∫
q̃(y)dy =∫

q̃(y)dy = 1, which implies λ = 1.

B.2 Proof to Proposition 2

The conditional CS divergence for p(y|x) and q(y|x) is expressed as:

DCS(p(y|x); q(y|x)) = −2 log
(∫

X

∫
Y

p(x,y)q(x,y)

p(x)q(x)
dxdy

)
+ log

(∫
X

∫
Y

p2(x,y)

p2(x)
dxdy

)
+ log

(∫
X

∫
Y

q2(x,y)

q2(x)
dxdy

)
,

(55)
which contains two conditional quadratic terms (i.e.,

∫
X
∫
Y

p2(x,y)
p2(x) dxdy and

∫
X
∫
Y

q2(x,y)
q2(x) dxdy) and a cross term (i.e.,∫

X
∫
Y

p(x,y)q(x,y)
p(x)q(x) dxdy).

Given observations ψs = {(xs
i ,y

s
i)}Mi=1 and ψt = {(xt

i,y
t
i)}Ni=1 which are sampled from distributions p(x,y) and

q(x,y), respectively. Let Kp and Lp denote, respectively, the Gram matrices for the variable x and the output variable y
in the distribution p. Similarly, let Kq and Lq denote, respectively, the Gram matrices for the variable x and the output
variable y in the distribution q. Meanwhile, let Kpq ∈ RM×N (i.e., (Kpq)ij = κ(xs

i − xt
j)) denote the Gram matrix from

distribution p to distribution q for input variable x, and Lpq ∈ RM×N the Gram matrix from distribution p to distribution
q for output variable y. Similarly, let Kqp ∈ RN×M (i.e., (Kqp)ij = κ(xt

i − xs
j)) denote the Gram matrix from distribution

q to distribution p for input variable x, and Lqp ∈ RN×M the Gram matrix from distribution q to distribution p for output
variable y. The empirical estimation of DCS(p(y|x); q(y|x)) is given by:

D̂CS(p(y|x); q(y|x)) ≈ log

 M∑
j=1

(∑M
i=1K

p
jiL

p
ji

(
∑M

i=1K
p
ji)

2

)+ log

 N∑
j=1

(∑N
i=1K

q
jiL

q
ji

(
∑N

i=1K
q
ji)

2

)
− log

 M∑
j=1

(∑N
i=1K

pq
ji L

pq
ji

(
∑M

i=1K
p
ji)(
∑N

i=1K
pq
ji)

)− log

 N∑
j=1

(∑M
i=1K

qp
ji L

qp
ji

(
∑M

i=1K
qp
ji)(

∑N
i=1K

q
ji)

) (56)

In the following, we first demonstrate how to estimate the two conditional quadratic terms (i.e.,
∫
X
∫
Y

p2(x,y)
p2(x) dxdy and∫

X
∫
Y

q2(x,y)
q2(x) dxdy) from samples. We then demonstrate how to estimate the cross term (i.e.,

∫
X
∫
Y

p(x,y)q(x,y)
p(x)q(x) dxdy). We

finally explain the empirical estimation of DCS(p(y|x); q(y|x)).

Proof. [The conditional quadratic term]

The empirical estimation of
∫
X
∫
Y

p2(x,y)
p2(x) dxdy can be expressed as:

∫
X

∫
Y

p2(x,y)

p2(x)
dxdy = Ep(X,Y)

[
p(X,Y)

p2(X)

]
≈ 1

M

M∑
j=1

p(xj ,yj)

p2(xj)
. (57)

By kernel density estimator (KDE), we have:

p(xj ,yj)

p2(xj)
≈M

∑M
i=1 κσ(x

p
j − xp

i)κσ(y
p
j − yp

i)(∑M
i=1 κσ(x

p
j − xp

i)
)2 . (58)

Therefore, ∫
X

∫
Y

p2(x,y)

p2(x)
dxdy ≈

M∑
j=1

∑M
i=1 κσ(x

p
j − xp

i)κσ(y
p
j − yp

i)(∑M
i=1 κσ(x

p
j − xp

i)
)2

 . (59)

20

Similarly, the empirical estimation of
∫
X
∫
Y

q2(x,y)
q2(x) dxdy is given by:

∫
X

∫
Y

q2(x,y)

q2(x)
dxdy ≈

N∑
j=1

∑N
i=1 κσ(x

q
j − xq

i)κσ(y
q
j − yq

i)(∑N
i=1 κσ(x

q
j − xq

i)
)2

 . (60)

[The cross term]
Again, the empirical estimation of

∫
X
∫
Y

p(x,y)q(x,y)
p(x)q(x) dxdy can be expressed as:∫

X

∫
Y

p(x,y)q(x,y)

p(x)q(x)
dxdy = Ep(X,Y)

[
q(X,Y)

p(X)q(X)

]
≈ 1

M

M∑
j=1

q(xj ,yj)

p(xj)q(xj)
. (61)

By KDE, we further have:

q(xj ,yj)

p(xj)q(xj)
≈M

∑N
i=1 κσ(x

p
j − xq

i)κσ(y
p
j − yq

i)∑M
i=1 κσ(x

p
j − xp

i)
∑N

i=1 κσ(x
p
j − xq

i)
. (62)

Therefore, ∫
X

∫
Y

p(x,y)q(x,y)

p(x)q(x)
dxdy ≈

M∑
j=1

(∑N
i=1 κσ(x

p
j − xq

i)κσ(y
p
j − yq

i)∑M
i=1 κσ(x

p
j − xp

i)
∑N

i=1 κσ(x
p
j − xq

i)

)
. (63)

Note that, one can also empirically estimate
∫
X
∫
Y

p(x,y)q(x,y)
p(x)q(x) dxdy over q(x,y), which can be expressed as:∫

X

∫
Y

p(x,y)q(x,y)

p(x)q(x)
dxdy = Eq(X,Y)

[
p(X,Y)

p(X)q(X)

]
≈ 1

N

N∑
j=1

p(xj ,yj)

p(xj)q(xj)

≈
N∑
j=1

(∑M
i=1 κσ(x

q
j − xp

i)κσ(y
q
j − yp

i)∑M
i=1 κσ(x

q
j − xp

i)
∑N

i=1 κσ(x
q
j − xq

i)

)
.

(64)

[Empirical Estimation]
Let Kp and Lp denote, respectively, the Gram matrices for the input variable x and output variable y in the distribution

p. Further, let (K)ji denotes the (j, i)-th element of a matrix K (i.e., the j-th row and i-th column of K). We have:∫
X

∫
Y

p2(x,y)

p2(x)
dxdy ≈

M∑
j=1

(∑M
i=1K

p
jiL

p
ji

(
∑M

i=1K
p
ji)

2

)
. (65)

Similarly, let Kq and Lq denote, respectively, the Gram matrices for input variable x and output variable y in the
distribution q. We have: ∫

X

∫
Y

q2(x,y)

q2(x)
dxdy ≈

N∑
j=1

(∑N
i=1K

q
jiL

q
ji

(
∑N

i=1K
q
ji)

2

)
. (66)

Further, let Kpq ∈ RM×N denote the Gram matrix between distributions p and q for input variable x, and Lpq the Gram
matrix between distributions p and q for output variable y. According to Eq. (63), we have:∫

X

∫
Y

p(x,y)q(x,y)

p(x)q(x)
dxdy ≈

M∑
j=1

(∑N
i=1K

pq
ji L

pq
ji

(
∑M

i=1K
p
ji)(
∑N

i=1K
pq
ji)

)
. (67)

Therefore, according to Eqs. (65)-(67), an empirical estimate of DCS(p(y|x); q(y|x)) is given by:

DCS(p(y|x); q(y|x)) ≈ log

 M∑
j=1

(∑M
i=1K

p
jiL

p
ji

(
∑M

i=1K
p
ji)

2

)+ log

 N∑
j=1

(∑N
i=1K

q
jiL

q
ji

(
∑N

i=1K
q
ji)

2

)
− 2 log

 M∑
j=1

(∑N
i=1K

pq
ji L

pq
ji

(
∑M

i=1K
p
ji)(
∑N

i=1K
pq
ji)

) .
(68)

Note that, according to Eq. (64), DCS(p(y|x); q(y|x)) can also be expressed as:

DCS(p(y|x); q(y|x)) ≈ log

 M∑
j=1

(∑M
i=1K

p
jiL

p
ji

(
∑M

i=1K
p
ji)

2

)+ log

 N∑
j=1

(∑N
i=1K

q
jiL

q
ji

(
∑N

i=1K
q
ji)

2

)
− 2 log

 N∑
j=1

(∑M
i=1K

qp
ji L

qp
ji

(
∑M

i=1K
qp
ji)(

∑N
i=1K

q
ji)

) .
(69)

21

Therefore, to obtain a consistent and symmetric expression, we estimate DCS(p(y|x); q(y|x)) by:

DCS(p(y|x); q(y|x)) ≈ log

 M∑
j=1

(∑M
i=1K

p
jiL

p
ji

(
∑M

i=1K
p
ji)

2

)+ log

 N∑
j=1

(∑N
i=1K

q
jiL

q
ji

(
∑N

i=1K
q
ji)

2

)
− log

 M∑
j=1

(∑N
i=1K

pq
ji L

pq
ji

(
∑M

i=1K
p
ji)(
∑N

i=1K
pq
ji)

)− log

 N∑
j=1

(∑M
i=1K

qp
ji L

qp
ji

(
∑M

i=1K
qp
ji)(

∑N
i=1K

q
ji)

) .
(70)

B.3 Proof to Proposition 3
Given observations ψ = {(xi,y

1
i ,y

2
i)}Ni=1, where x ∈ Rp, y1 ∈ Rq and y2 ∈ Rq . Let K , L1 and L2 denote, respectively, the

Gram matrices for the variable x, y1, and y2. Further, let L21 denote the Gram matrix between y2 and y1. The empirical
estimation of DCS(p(y1|x); p(y2|x)) is given by:

DCS(p(y1|x); p(y2|x)) ≈ log

(
N∑

j=1

(∑N
i=1 KjiL

1
ji

(
∑N

i=1 Kji)2

))

+ log

(
N∑

j=1

(∑N
i=1 KjiL

2
ji

(
∑N

i=1 Kji)2

))
− 2 log

(
N∑

j=1

(∑N
i=1 KjiL

21
ji

(
∑N

i=1 Kji)2

)) (71)

Proof. Eq. (71) can be obtained by setting x1 = x2 = x. In this sense, we have:

K = Kp = Kq = Kpq = Kqp ∈ RN×N . (72)

Plugging in Eq. (72) into Eq. (56), we obtain Eq. (71).

B.4 Proof to Proposition 4
Proof. The CS divergence for conditional distribution p(y|x1) and conditional distribution p(y|x1,x2) can be expressed as
(denote x⃗ = [x1;x2]):

DCS(p(y|x1); p(y|{x1,x2})

= −2 log
(∫

X

∫
Y
p(y|x1)p(y|x⃗)dx⃗dy

)
+ log

(∫
X

∫
Y
p2(y|x1)dxdy

)
+ log

(∫
X

∫
Y
p2(y|x⃗)dx⃗dy

)
= −2 log

(∫
X

∫
Y

p(x1,y)p(x⃗,y)

p(x1)p(x⃗)
dx⃗dy

)
+ log

(∫
X

∫
Y

p2(x1,y)

p2(x1)
dxdy

)
+ log

(∫
X

∫
Y

p2(x⃗,y)

p2(x⃗)
dx⃗dy

)
,

(73)

Following the proof to Proposition 2, the two conditional quadratic terms can be estimated empirically by:∫
X

∫
Y

p2(x1,y)

p2(x1)
dxdy ≈

N∑
j=1

(∑N
i=1K

1
jiLji

(
∑N

i=1K
1
ji)

2

)
, (74)

and ∫
X

∫
Y

p2(x⃗,y)

p2(x⃗)
dx⃗dy ≈

N∑
j=1

(∑N
i=1K

12
ji Lji

(
∑N

i=1K
12
ji)

2

)
. (75)

We only discuss below the empirical estimation to the term
∫
X
∫
Y

p(x1,y)p(x⃗,y)
p(x1)p(x⃗)

dx⃗dy.
We have: ∫

p(x1,y)p(x⃗,y)

p(x1)p(x⃗)
= Ep(x⃗,y)

[
p(x1,y)

p(x1)p(x⃗)

]
≈ 1

N

N∑
j=1

p((x1)j ,yj)

p((x1)j)p(x⃗j)
. (76)

By KDE, we have:

p((x1)j ,yj)

p((x1)j)p(x⃗j)
≈ N

∑N
i=1 κσ(yj − yi)κσ((x1)j − (x1)i)∑N

i=1 κσ((x1)j − (x1)i)×
∑N

i=1 κσ((x1)j − (x1)i)κσ((x2)j − (x2)i)
. (77)

Therefore,∫
p(x1,y)p(x⃗,y)

p(x1)p(x⃗)
≈

N∑
j=1

(∑N
i=1 κσ(yj − yi)κσ((x1)j − (x1)i)∑N

i=1 κσ((x1)j − (x1)i)×
∑N

i=1 κσ((x1)j − (x1)i)κσ((x2)j − (x2)i)

)

=
N∑
j=1

(∑N
i=1K

1
jiLji

(
∑N

i=1K
1
ji)(
∑N

i=1K
12
ji)

)
.

(78)

22

Combining Eq. (74), Eq. (75) and Eq. (78), we obtain Eq. (79).

DCS(p(y|x1); p(y|{x1,x2}) ≈ log

 N∑
j=1

(∑N
i=1K

1
jiLji

(
∑N

i=1K
1
ji)

2

)
+ log

 N∑
j=1

(∑N
i=1K

12
ji Lji

(
∑N

i=1K
12
ji)

2

)− 2 log

 N∑
j=1

(∑N
i=1K

1
jiLji

(
∑N

i=1K
1
ji)(
∑N

i=1K
12
ji)

) (79)

APPENDIX C
EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

C.1 Detailed experiment settings of Causal analysis in Section 3.2

We first consider 5 coupled Hénon chaotic maps [48], whose ground truth causal relationship is xi−1 → xi. The system of
K coupled Hénon chaotic maps is defined as:{

x1,t = 1.4− x21,t−1 + 0.3x1,t−2

xi,t = 1.4− (Cxi−1,t−1 + (1− C)xi,t−1)
2 + 0.3xi,t−2 for i = 2, 3, · · · ,K.

(80)

In our simulation, we set the coupling strength C = 0.3 and generate 1, 024 samples in 10 independent realizations
respectively.

Next, we consider a nonlinear VAR process of order 1 with 3 variables (NLVAR3) [49]:
x1,t = 3.4x1,t−1(1− x21,t−1) exp (−x21,t−1) + 0.01w1,t

x2,t = 3.4x2,t−1(1− x22,t−1) exp (−x22,t−1) + 0.5x1,t−1x2,t−1 + 0.01w2,t

x3,t = 3.4x3,t−1(1− x23,t−1) exp (−x23,t−1) + 0.3x2,t−1 + 0.5x21,t−1 + 0.01w3,t

(81)

where w1,t, w2,t and w3,t denotes independent standard Gaussian noise. The true causal directions in NLVAR3 are x1 → x2,
x1 → x3, x2 → x3. Again, we generate 1, 024 samples in 10 independent realizations respectively.

The delay τ and the embedding dimension d are vital parameters for all Wiener and Granger causality methods. In
our simulations, we simply use the ground truth from the synthetic models, that is {τ = 1, d = 1} for NLVAR3 and
{τ = 1, d = 2} for Hénon maps, since selecting the embedding automatically is not the topic of this paper.

For kernel Granger causality (KGC), we use the official MATLAB code from authors11 and select kernel size σ by the
median rule. For transfer entropy, we use the kNN entropy estimator from the Information Theoretical Estimators Toolbox12

and set k = 3 as default.
Once we obtain the causal score Cx→y with one of the measures, we need to test its significance. To carry out this

hypothesis test, we may use the Monte Carlo method by constructing a surrogate time series. The constructed surrogate
time series must satisfy the null hypothesis that the causal influence from x to y is completely destroyed; at the same time,
the statistical properties of x and y should remain the same. To construct the surrogate time series that satisfies these two
conditions, we apply the surrogate time series construction method in [83].

Specifically, given N samples, let T denotes the length of training set (in our case T = 1, 024), a pair of surrogate time
series for x and y is constructed as: {

xsurr = [xi, xi+1, · · · , xi+T−1]

ysurr = [yj , yj+1, · · · , yj+T−1],
(82)

where i and j are randomly chosen from 1, 2, · · · , N − T + 1 and |j − i| ≥ e and e is a sufficient large integer such that
there is almost no correlation between xsurr and ysurr. In our simulation, we set e = 512. On these surrogate data we use a
permutation test (100 permutations) to obtain a p-value. P -values below 0.05 were considered as significant.

C.2 Details of Permutation Test in Section 4.1

11. https://github.com/danielemarinazzo/KernelGrangerCausality
12. https://bitbucket.org/szzoli/ite/src/master/

https://github.com/danielemarinazzo/KernelGrangerCausality
https://bitbucket.org/szzoli/ite/src/master/

23

Algorithm 1: Test the significance of conditional divergence

Input: Two groups of observations ψs = {(xs
i ,y

s
i)}Mi=1 and ψt = {(xt

i,y
t
i)}Ni=1; Permutation number P ; Significant rate η.

Output: Test decision (Is H0 : ps(y|x) = pt(y|x) True or False?).
1: Compute conditional divergence value d0 on ψs and ψt with one of the conditional divergence measures (e.g.,

conditional KL, or conditional Bregman divergence, or conditional MMD, or conditional CS divergence).
2: for m = 1 to P do
3: (ψm

s , ψ
m
t)← random split of ψs

⋃
ψt.

4: Compute conditional divergence value dm on ψm
s and ψm

t with the selected conditional divergence measure.
5: end for
6: if 1+

∑P
m=1 1[d0≤dt]
1+P ≤ η then

7: decision←False
8: else
9: decision←True

10: end if
11: return decision

C.3 Detailed Experiment Settings and Additional Results of Time Series Clustering in Section 5.1
C.3.1 More on Dynamic Texture Datasets
The dynamic texture (DT) is a sequence of images of moving scenes such as flames, smoke, and waves, which exhibits
certain stationarity in time and can be modeled using a linear dynamic system (LDS) [84]:{

ht = Aht−1 + vt, vt ∼ N(0, Q)

yt = Cht + wt, wt ∼ N(0, R)
(83)

where yt ∈ Rm is the observational frame at time t, ht ∈ Rn (n ≪ m) is the hidden state vector at time t, A ∈ Rn×n

is the state transition matrix, C ∈ Rm×n is the output matrix that maps hidden states to observations. Finally, vt and wt

are Gaussian noises with covariance matrices Q and R, respectively. Thus, a single dynamic texture can be described by a
transition function f from yt−1 to yt, i.e., yt = f(yt−1) [85]. In this sense, it is natural to expect to distinguish different
DTs by the conditional distribution p(yt|yt−1).

The UCLA database13 originally contains 200 DT sequences from 50 categories, and each category contains 4 video
sequences captured from different viewpoints. All the video sequences are of the size 48× 48× 75, where 75 is the number
of frames. By combining sequences from different viewpoints, the original 50 categories are merged to 9 categories: boiling
water (8), fire (8), flowers (12), fountains (20), plants (108), sea (12), smoke (4), water (12) and waterfall (16), where the
numbers in parentheses denote the number of the sequences in each category. This dataset is however very challenging and
imbalanced, because the category “plants” contains too many videos. Therefore, we follow [86] and remove the category
of “plants”. Finally, there are a total of 92 video sequences from 8 categories.

The traffic database14 [62], consists of 253 videos divided into three classes: light, medium, and heavy traffic. Videos
have 42 to 52 frames with a resolution of 48× 48 pixels.

The statistics of all datasets are summarized in Table 8.

C.3.2 Competing Baselines and Their Hyperparameters Setting
We include the following representative baselines in the literature of time series clustering for evaluations:

• DTW is a well-known approach to measure the similarity between two temporal time series sequences. It uses
the dynamic programming technique to find the optimal temporal matching between elements of two-time series.
In our experiments, we use the implementation of DTW and its multivariate extension provided by Schultz and
Jain15 [65]. We apply the default warping window constraint, i.e., the length of the longer sequence.

• MSM distance is a distance metric for time series. It is conceptually similar to other edit distance approaches.
MSM metric uses as building blocks three fundamental operations: Move, Split, and Merge, which can be applied
in sequence to transform any time series into any other time series. In our experiments, we use the official code
provided by authors16. There is no hyperparameters need to be tuned for MSM.

• TWED is a distance measure for discrete time series matching with time “elasticity”. It has two vital parameters:
the penalty for deletion operation λ and the elasticity parameter ν. In our experiments, we use the official code
provided by authors17 and set λ = 1 and ν = 0.001. A big limitation of TWED is that its computational complexity
is usually O(n2), in which n is the length of time series.

13. https://drive.google.com/file/d/0BxMIVlhgRmcbN3pRa0dyaHpHV1E/view?resourcekey=0- OdWQfyRKH FHh84bxZLcg
14. http://www.svcl.ucsd.edu/projects/dytex/
15. https://www.ai4europe.eu/research/ai-catalog/dtw-mean
16. https://athitsos.utasites.cloud/projects/msm/
17. http://people.irisa.fr/Pierre-Francois.Marteau/

https://drive.google.com/file/d/0BxMIVlhgRmcbN3pRa0dyaHpHV1E/view?resourcekey=0-_OdWQfyRKH_FHh84bxZLcg
http://www.svcl.ucsd.edu/projects/dytex/
https://www.ai4europe.eu/research/ai-catalog/dtw-mean
https://athitsos.utasites.cloud/projects/msm/
 http://people.irisa.fr/Pierre-Francois.Marteau/

24

TABLE 8
Properties of the datasets (in time series clustering).

Datasets Time series Length Dimension Clusters

Coffee 28 286 1 2
Diatom 306 345 1 4

DistalPhalanxTW 400 80 1 6
ECG5000 469 140 1 2
FaceAll 560 131 1 14

Synthetic control 600 60 1 6

PenDigits 3498 8 2 10
Libras 180 45 2 15
uWave 200 315 3 8

Robot failure LP1 88 15 6 4
Robot failure LP2 47 15 6 5
Robot failure LP3 47 15 6 4
Robot failure LP4 117 15 6 3
Robot failure LP5 164 15 6 5

Traffic 253 42 2304 3
UCLA 92 75 2304 8

• TCK is able to learn a valid kernel function to describe the similarity between pairwise time series. Distinct to
above mentioned measures, TCK is an ensemble approach that combines multiple GMM models, whose diversity
is ensured by training the models on subsamples of data, attributes, and time segment, to capture different levels
of granularity in the data. It is robust to missing values and applies to multivariate time series. There are two
optional parameters for practitioners: the max number of mixture components for each GMM (C) and the number
of randomizations for each number of components (G). In our experiment, we use the default values of C and G
provided by authors18.

C.3.3 A Case Study of Exploratory Data Analysis
This section presents a network modeling example using real data. We use temperature data over 109 cities at US in the
year of 2010, which can be obtained from the US National Oceanic and Atmospheric Administration (NOAA)19. For each
city, we obtain temperature records in each hour and take the daily average over 24 hours, thus forming a univariate time
series of length 364.

We first compute a 109×109 matrix which encodes conditional CS divergence measures over all pairs of time series. We
then obtain a nearest neighbor network over different cities using 5% of the smallest conditional CS divergence measures
(see Fig. 9(a)) and find communities using spectral clustering with the number of clusters set to 2. The result is shown in
Fig. 9(b). We can make two observations: 1) closer cities are more likely to have similar temperature patterns; and 2) the
north-south difference is much more obvious than the east-west difference. Both observations make sense and match well
with recent exploratory data analysis (EDA) package [87].

C.4 Details of divergence to go in Section 5.2
Analogous to Q-learning and its extensions, we employ the divergence-to-go (dtg) metric in a dynamic programming
framework. In short, we replace the reward in Q-learning with the divergence between old states and new counterparts
D(pnew(st+1|st, at); pold(st+1|st, at)). To obtain samples for divergence estimation, we introduce a replay buffer B (of size
2τ) to record 2τ steps of {st+1, st, at} trios. We use trios in the first half of buffer to estimate pold and trios in the second
half of buffer to estimate pnew, such that we can evaluate the corresponding conditional CS divergence using Eq. (56)
(by treating st+1 as variable y and the concatenation of [st, at] as variable x). Same to the initial dtg paper [71], we use
a kernelized version of Q-learning, i.e., Kernel Temporal Difference (KTD) algorithm [88] as the backbone of dtg. More
formally, we have:

δt = D + γmax
a′

[dtgt+1(s
′, a′)]− dtgt(s, a), (84)

and

dtgt(s, a) = α
t∑

j=1

δjκ(z; zj), (85)

where D is the divergence D(pnew(st+1|st, at); pold(st+1|st, at)); κ denotes Gaussian kernel; z := {s, t} denotes the vector
of a state-action pair. Steps in detail are shown in Algorithm 2. In our experiment, the kernel size is fixed to be 0.1. The
length of the buffer B is 2, 000.

18. https://github.com/kmi010/Time-series-cluster-kernel-TCK-
19. https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/city/time-series

 https://github.com/kmi010/Time-series-cluster-kernel-TCK-
https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/city/time-series

25

20°N

30°N

40°N

50°N
La

tit
ud

e

120°W 110°W 100°W 90°W 80°W 70°W

Longitude

 500 mi

 500 km

(a)

20°N

30°N

40°N

50°N

La
tit

ud
e

120°W 110°W 100°W 90°W 80°W 70°W

Longitude

 500 mi

 500 km

(b)

Fig. 9. (a) The nearest neighbor network constructed using 5% of the smallest conditional CS divergences; (b) The detected communities by
conditional CS divergence. Node colors represent communities.

Algorithm 2: The divergence-to-go (DTG) algorithm using conditional Cauchy-Schwarz divergence.

1: Initialize dtg0(s, a) = 0, set learning rate α, discount factor γ, empty first-in-first-out (FIFO) replay buffer B.
2: while not achieve the goal do
3: s← current state.
4: a← argmax

a′
[dtg(s, a′)].

5: Take action a, observe state transition.
6: s′ ← new state.
7: Record trio {s′, s, a} to the buffer B
8: Compute conditional divergence D(pnew(st+1|st, at); pold(st+1|st, at)) with Eq. (56) from trios in the buffer B.
9: δ = D + γmax

a′
[dtg(x′, a′)]− dtg(x, a)

10: dtg(s, a)← dtg(s, a) + α · δ
11: end while

In the following, we also show detailed steps of the standard reward-based Q-learning in Algorithm 3. The major
differences between dtg and Q-learning are highlighted by blue texts. In summary, our dtg algorithm is not reward driven.
Instead of obtaining rewards from environments, our dtg estimates conditional CS divergence using state-action pairs only
(see line 8 in Algorithm 2 and line 7 in Algorithm 3). In order to estimate divergence, we have to introduce a replay buffer
for collecting samples in dtg algorithm. The buffer is not required in original Q-learning though this memory is a popular
trick to conduct mini-batch learning and offline learning.

Algorithm 3: The standard reward-based Q-learning. We highlight the main differences between dtg and Q-
learning with blue texts.

1: Initialize Q0(s, a) = 0, set learning rate α, discount factor γ.
2: while not achieve the goal do
3: s← current state.
4: a← argmax

a′
[Q(s, a′)].

5: Take action a, observe state transition.
6: s′ ← new state.
7: r ← reward given by the environment.
8: δ = r + γmax

a′
[Q(s′, a′)]−Q(s, a)

9: Q(s, a)← Q(s, a) + α · δ
10: end while

Another exploration-based reinforcement learning algorithm, which shares the same motivation to us, is the maximum
entropy exploration (MaxEnt) [69]. Instead of estimating divergence in time series, the goal of MaxEnt is to obtain the
policy which maximizes the entropy of states. In our experiments, we compare to MaxEnt with code in https://github.

https://github.com/abbyvansoest/maxent_base

26

TABLE 9
Hyperparameters in DTG-CS and standard Q-learning in Algorithms 2 and 3.

Hyper-parameter value

discount factor γ 0.99
learning rate α 1e-3
ϵ-greedy ratio 0.1
number of steps to roll out a policy 1000

com/abbyvansoest/maxent base. We keep all hyper-parameters of DTG and MaxEnt identical, as shown in Table 9.

C.5 Detailed Experiment Settings of Unsupervised Domain Adaptation in Section 6

C.5.1 About the Datasets

We apply CS divergence-based domain adaptation to EEG classification on two benchmark real-world datasets, namely
BCI Competition IIIb [74] and SEED [75].

The BCI Competition IIIb focuses on cued motor imagery tasks with online feedback, employing a non-stationary
classifier with two classes (left hand and right hand). It comprises EEG recordings from three subjects (S4, X11, and O3VR)
with 1080, 1080, and 640 trials. The length of each trial is 7s. Due to a mistake, trials 1-160 and 161-320 in O3VR are
repeated. Hence, we only use data from S4 and X11 in the present experiment. EEG data were recorded at a 125 Hz
sampling rate, band-pass filtered between 0.5 and 30 Hz, and converted into the GDF format for analysis, using a bipolar
EEG amplifier from g.tec with additional Notch filtering.

The SEED consists of data from 15 subjects. Curated movie excerpts were specifically selected to elicit three distinct
emotions: positive, neutral, and negative. Each emotion category contains five movie excerpts. All subjects underwent
three EEG recording sessions, with a two-week interval between each session. During each recording session, subjects were
exposed to fifteen four-minute long movie excerpts, each intended to induce one of the specified emotions. Importantly,
the same fifteen movie excerpts were used across all three recording sessions. Thus, the SEED dataset comprises 15 EEG
trials recorded for each subject in each session, with each emotion category consisting of 5 trials. EEG signals were acquired
using a 62-channel ESI NeuroScan device, sampled at a rate of 1000 Hz, and subsequently downsampled to 200 Hz for
analysis [89]. In our experiment, we randomly select 10 pairs of subjects as the source and target domains, and report the
average domain adaptation result.

C.5.2 Competing Baselines and Their Hyperparameters Setting

We compare our method with four representative MMD-based approaches, which include DDC [76], DAN [77], JAN [24],
DJP-MMD [78]. Given a baseline network as shown in Fig. 10, comprising a shared feature extractor, fully connected layers
of depth |L| and a final linear classification layer, all competing methods optimize the following objective:

LCE + αD(ps, pt), (86)

where LCE is the cross-entropy loss on source domain labeled data, D(ps, pt) represents the distributional discrepancy
between the source domain and target domain. However, they vary in their approach to evaluate D(ps, pt).

Specifically, DDC just minimizes the discrepancy in the last layer (i.e., MMD2(z
|L|
s , z

|L|
t)), DAN improves upon DDC

by minimizing the discrepancies in all fully connected layers and replacing the basic MMD with multi-kernel MMD
(MK-MMD):

LCE + α

|L|∑
l=1

MK-MMD2(zls, z
l
t), (87)

in which the kernel function in MK-MMD is expressed as:

κ(zs, zt) =
m∑
i=1

βiκi(zs, zt), s.t. βi > 0,
m∑
i=1

βi = 1. (88)

JAN argues that the |L| constraints in Eq. (87) is independent and does not incorporate the dependence between
different layers. Hence, the authors of JAN minimizes the joint MMD for all fully connected layers:

LCE + α∥C
z
1:|L|
s
− C

z
1:|L|
t
∥⊗|L|

l=1Hl , (89)

in which Cz1:|L| refers to kernel mean embedding for |L| variables using tensor product feature space:

C
z
1:|L|
s

= E
z
1:|L|
s

[
⊗|L|

l=1ϕ
l(zl)

]
. (90)

https://github.com/abbyvansoest/maxent_base
https://github.com/abbyvansoest/maxent_base
https://github.com/abbyvansoest/maxent_base

27

𝒙𝑠, 𝑦𝑠

𝒙𝑡

encoder

ℒCE(𝑦𝑠, ො𝑦𝑠)

𝐷(𝑝𝑠, 𝑝𝑡)

𝒛𝑠
1 𝒛𝑠

|𝐿|

shared parameters

…

…

…

𝒛𝑡
1 𝒛𝑡

|𝐿|…

linear
classifier

Fig. 10. UDA framework.

DJP-MMD aims to minimize the discrepancy on the joint distribution p(z, y), but approximates the joint alignment in
the following way:

D(ps(z, y), pt(z, y)) = D(ps(y|z)ps(z), pt(y|z)pt(z)) ≈ µ1D(ps(z), pt(z)) + µ2D(ps(z|y), pt(z|y)). (91)

Obviously, such approximation simplifies the estimation, but does not obey the chain rule that p(z, y) = p(y|z)p(z)
(rather than p(z|y)).

By contrast, our approach directly optimizes the following objective:

LCE + α [DCS(pt(z); ps(z)) +DCS(pt(ŷ|z); ps(y|z))] , (92)

and approximates yt (the true label in target domain) with its prediction ŷt, which is a common trick in UDA literature.
Our network for domain adaptation is built upon the EEGNet [79]. Additionally, as a common practice, for all methods,

we use a bottleneck subnetwork, comprising two fully connected layers (i.e., |L| = 2) with ReLU activation functions
before the final linear classification layer. Except for JAN which aligns the joint distribution p(z1, z2), all other methods
only takes z2 as the learned feature. The training is performed with PyTorch [90] on a NVIDIA GeForce RTX 3090 GPU.
Adam optimizer is used with learning rate of 1e − 2 and batch size 64. In order to stabilize distribution alignment in
the training phase, we employ a warm-up strategy, initially training without adaptation for the first 10 epochs. For our
method, we normalize the feature and adopt kernel size σ = 1. For other methods, we choose either adaptive kernel size
or fixed size 1, depending on their performances. As for the weight α of the discrepancy term in each method, we perform
a grid search from 1 to 100 with an interval of 10.

	Introduction
	Background Knowledge
	Problem Formulation
	Existing Measures of D(ps (y|x);pt (y|x))

	The Conditional Cauchy-Schwarz divergence
	Extending Cauchy-Schwarz divergence for conditional distributions
	Two special cases of conditional CS divergence
	p(y1|x) with respect to p(y2|x)
	p(y|x1) with respect to p(y|{x1,x2})

	Numerical Simulations on Synthetic Data
	Simulation I
	Simulation II

	Applications to Time Series Data and Sequential Decision Making
	Time Series Clustering
	Uncertainty-Guided Exploration for Sequential Decision Making

	Conclusions and Implications for Future Work
	References
	Appendix A: Background Knowledge
	On Kernel Functions in Multivariate Kernel Density Estimation
	Resubstitution Estimator and Plug-in Estimator
	CS Divergence and its Connection to MMD

	Appendix B: Proofs
	Proof to Proposition 1
	Proof to Proposition 2
	Proof to Proposition 3
	Proof to Proposition 4

	Appendix C: Experimental Details and Additional Results
	Detailed experiment settings of Causal analysis in Section 3.2
	Details of Permutation Test in Section 4.1
	Detailed Experiment Settings and Additional Results of Time Series Clustering in Section 5.1
	More on Dynamic Texture Datasets
	Competing Baselines and Their Hyperparameters Setting
	A Case Study of Exploratory Data Analysis

	Details of divergence to go in Section 5.2
	Detailed Experiment Settings of Unsupervised Domain Adaptation in Section 6
	About the Datasets
	Competing Baselines and Their Hyperparameters Setting

