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ABsTRACT. In a previous work, we constructed a Gysin sequence that relates the cohomology of a manifold M to that of the
orbit space M/S?3, where the sphere S3 acts smoothly on M. This sequence includes an exotic term that depends on M ', the
subset of points fixed by the action of the subgroup S''.

The orbit space is a stratified pseudomanifold, which is a type of singular space where intersection cohomology can be
applied. When the action is semi-free, the second author has already constructed a Gysin sequence that relates the cohomology
of M to the intersection cohomology of M/S 3.

However, what happens when the action is not semi-free? This is the main focus of this work. The situation becomes more
complex, and we do not find just a Gysin sequence. Instead, we construct a Gysin braid that relates the cohomology of M to
the intersection cohomology of M/S?3. This braid also contains an exotic term that depends on the intersection cohomology of
the fixed point subset MS" .

Given a smooth free action of the sphere S on a smooth manifold M, we have a sphere bundle and the Gysin sequence
0 = H"' (M) —= H" " (M/S?) — H" (M/S?) — H" (M) —

which relates the cohomologies of the manifold M and that of its orbit space M/S 3 (see for example [9, 2]). In the case
of a semi-free action, we do not have a sphere bundle, but we have the Gysin sequence

2) i (M) —— 1 (M/S3, M53> > H*(M/S$3) — H* (M) — - -- .

In the general case, an exotic term appears:

7Z2

3) m—>H*_'(M)—>H*_4(M/S3,Z/S3)ea<H*_3<MS])) — H(M/S?) —= H* (M) — - --

(cf. [13]]). In this context, ¥ = M denotes the subset of points in M whose isotropy group is infinite. The group Z, acts
on MS' by je S3.

When the action is free, the orbit space is a manifold. In the more general case, it is a pseudomanifold. The second
author constructed in [15] the following exact sequence

(4) o ——=HT (M) — H::: (M/S3) —= H (M/S?) —=H" (M) — - --

This sequence establishes a connection between the cohomology of the space M and the intersection cohomology of its
orbit space M/S? in the case of a semi-free action. This exact sequence holds when 0 < P < 7. The Euler perversity e
takes the value 4 on singular strata. In the special case where p = 0, the exact sequence (@) simplifies to ().

In this paper, we establish a connection between the cohomology of a manifold M and the intersection cohomology
of its orbit space M/S3, for any smooth action ®: S x M — M. Of particular interest is the case where the action has
three-dimensional orbits, also known as a mobile action.
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Given a mobile action, we obtain the following Gysin braid which relates the cohomologies H * (M) and H; (M /S 3)

% /,'CD\ # //'®\ %3 /f—®\) £—1-2pg —S (=rsz
H: (/s") H () ) ()5”) @u- (7))
\@ — \® ®/ \ :36//’
™~ _— ~ e \ —
(K (M)) H* (G;,)(M)) B (K%(M))
/®/ T~ o P — N /@/ \®\

(-1ysz
*—4 3 —2pg— < *+1 3 *+1
H (M/S?) &) H_ (S ) H " (M/S?) H" (M),

where

- .7 (resp. %) is the family of singular strata S of M with dimS? = 1 (resp. 3) for any x € S. Here S denotes
the isotropy subgroup.

- the Euler perversity e takes the value 4 (resp. 2) on the strata of .7} (resp -73),

- the perversity p lies between 0 and the top perversity 7 on M,

- the number pg denotes the integer part of p( )/2,

- the perversity Ps on the filtered space S is defined by Pg(Q) = p(Q) — 2ps — 2 forany Q € .3 with Q c §,
- the Gysin term GF (M) represents the cokernel of the map induced by the natural projection 7: M — M/S?3 and

- the co-Gysin term K; (M) denotes the kernel of the map induced by integrating along the fibers of 7

(see Theorem [C). The braid consists of four long exact sequences, denoted by @, @, ®, and @. All the triangles and
diamonds in the braid are commutative. The top and bottom sequences in the braid are semi-exact and both have the
same exactness defaults (cf. Remark [4.3] (c)). The cohomologies of the Gysin and co-Gysin terms are interconnected
through the long exact sequences of Remark 4.3](b).

Let’s analyze the four exact sequences that make up the Gysin braid.

In the classical framework of a free action, there exist two methods for constructing the Gysin Sequence (). One
approach involves employing the pullback induced by the natural projection 7: M — M/S?>, while the other entails
integrating along the fibers of n. Remarkably, both methodologies yield identical outcomes, resulting in the Gysin
sequence. Meanwhile, the Gysin sequence () is derived via the former method.

In the broader context of this paper’s discussion on mobile actions, we utilize both techniques, and they yield distinct
results. This fundamental difference is the primary reason why the Gysin braid appears instead of a Gysin sequence.

e The pull back associated to the projection 7 induces the long exact sequence @:
o H" (M) —H" (G‘F(M)) —— H' (M/S3) —= H" (M) — -

where the Gysin term G: (M) is the cokernel of 7*. This is the first Gysin sequence associated to the action ®.

We can determine the cohomology of the Gysin-term through the sequence @, which employs integration
along the fibers of 7. This method is employed in [13], where we implicitly work with the perversity p = 0.
In this context, we obtain the Gysin sequence (3)) since the sequence @ splits at the position of the connecting
map. However, it’s important to note that for other perversities, the sequence @ may not necessarily split as
demonstrated by the example in Remark [4.3] (d).

¢ Employing the integration along the fibers of 7, we obtain the long exact sequence ®:

o ——=H"(M) —>H (M/S ) —H" <K[;’(M)> — = H" (M) — -,
where the co-Gysin term K; (M) is the kernel of the integration operator along the fibers of 7. This is the second
Gysin sequence associated to the action .
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We compute the cohomology of the co-Gysin term using the sequence @, which employs the pullback operator
induced by 7. It’s important to note that unlike the previous case, sequence @ does not necessarily split, even for
the perversity p = 0, as demonstrated in the example in Remark 4.3](d).

—(=Drsz
. <S! 2 . . Sy
e If the exotic term @ H; <S > vanishes, then the Gysin braid simplifies to the sequence ). In
SE,,yl 5
particular, this happens when the action @ is semi-free, as noted in Remark [4.3](a).

e Another approach to constructing a Gysin sequence involves utilizing the Leray-deRham spectral sequence.
Recall that in the case of a differentiable action ®: G x M — M of a connected compact Lie group G on a
manifold M, there exists a spectral sequence £ converging to H™ (M), where E’ = H (M/G)®H'(G). When
G = S? and the action is free, almost-free, or semifree, this spectral sequence degenerates into a Gysin sequence
(cases (), @), and @)). This is because the second term of the spectral sequence contains only two levels:
j = 0,3. However, the situation becomes significantly more complex when the action is not free, and computing
the second term of this spectral sequence becomes challenging (see [14}[16]).

In the case of a mobile action of S3, and using singular cohomology, we have shown in [13]] that the second
term of the spectral sequence possesses three levels (j = 0,2, 3) and that the spectral sequence degenerates into
the Gysin sequence (B). In this paper, we prove that that this phenomenon persists within the framework of
intersection cohomology. The Leray-deRham spectral sequence ﬁE:J depends on a perversity 0 < p < fon M
and satisfies the following properties.

* It converges: _E" = H'V/(M).

* The second page is given by

H_(M/S?) if j=0
—(-1ysz
ij i—2pg —S] 2 . .
E = @HH (S ) if j=2
SEyl
i 3 . .
H _(M/S?) if j =3.

It is O otherwise.
*= The Gysin term appears in this spectral sequence through the long exact sequence @
i—43 do i—22

- H (G;_)(M)) E ET—H (G;_)(M)) .

P2

= This spectral sequence degenerates at the third page and produces the long exact sequence @.

In other words, the information in the Leray-deRham spectral sequence beyond page _E, is contained within the
Gysin braid.

_ -z
e The non-mobile actions are simpler, and we obtain H" (M) = H; (M/S3) & H ; (MS l) * (see Section [3).
5

In the following, we consider a smooth action @ S3 x M — M, where M is a second countable, Hausdorff, smooth
manifold of dimension m without boundary. For the definitions and properties related to compact Lie group actions, we
refer the reader to [2]].

The first section of this work is devoted to studying the intersection cohomology of the orbit space M/S 3. We demon-
strate how to compute this cohomology using differential forms defined on an open subset of M. The complex of invariant
intersection forms of M is a key tool for constructing the Gysin braid, which is discussed in the second section. The final
two sections of this work focus on constructing and analyzing the Gysin braid associated to the action. This braid arises
from integrating along the orbits of the action discussed in section three.



4 J.I. ROYO PRIETO AND MARTINTXO SARALEGI-ARANGUREN

CONTENTS
[l Intersection cohomology 4
b1 ; 1iff ol £ l 7
3. The integration operator £) 14
4. Gysin braid for a mobile action 20

% fiﬁls sequence for a non-mobile action] 24
25

1. INTERSECTION COHOMOLOGY

The intersection cohomology of the orbit space M/S? is originally defined using singular simplices. In this section, we
demonstrate an alternative method for computing this cohomology by utilizing differential forms defined on the regular
part of M.

1.1. Filtered spaces [6]. The orbit type stratification . of M is the partition obtained by defining an equivalence
relation in M as follows:

x ~ y<dimS; =dimS;.

This condition is equivalent to (S7)o and (S3)o being conjugated, where (—)o denotes the connected component con-
taining the unity. The elements of . are called strata, and they correspond to the connected components of the partition
induced by ~.

There are four possible isotropy subgroups of a point in M, up to conjugacy: a finite subgroup of S3, !, the normalizer
N =N(S") of S'in §3, and 3 itself (cf. [2, Th. 9.5,pag.153 ]). Recall that N = S' i j S! = O(2).

We define . = A u ¥ U Y5 as follows:

F={SeS|dimS}=0,xeS} A ={Se.s|dmSi=1,xeS} S ={Se.s|dimS}=3, xeS}

Mobile strata Semi-mobile strata Fixed strata

The action is considered mobile if A # . If S = J and ./ # J, we say that the action is semi-mobile. The
remaining case is the trivial action. The set of singular strata is denoted by .#*"¢_ If the action is mobile, then .58 =
S U . If the action is semi-mobile, then .75"8 = ..

We define F3 = LisesnS = M5 and F 1 = UsewS, which are § 3_invariant submanifolds of Mﬂ Note that F is
actually the twisted product S 3y MS 1, where S3 acts on the left of the left factor. Furthermore, if S € .%; we have

S =83 xySS.

The union of singular strata is ¥ = F; u F3 (resp. F3) when the action is mobile (resp. semi-mobile).
Filtered spaces provide the essential framework for defining singular intersection cohomology, which is the dual of the
intersection homology introduced in [8] (see, for example, [3]).

Proposition 1.1. The strata of .7 are invariant submanifolds. For each integer i we define M; = L {S e ’ dimS$ < i}.
The filtration

G=M_jcMy<c---CM,Cc---CM,=M.

defines a filtered space.
For each integer i we define (M/S?), = u{n(S)|S €.# and dim=(S) < i}, where n: M — M/S? denotes the
canonical projection. The filtration

g =(M/S?)_ = (M/S?), << (M/S?), <= (M/S?) =M/S>

defines a filtered structure in M/S3.

I'The next Proposition shows that they are manifolds, in fact, these manifolds may have connected components with different dimensions.
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Proof. Let S be a stratum of .. Each point x € S possesses an open neighborhood S 3-equivariantely diffeomorphic
to the twisted product §3 x z R¢ where the isotropy subgroup H = S3 acts orthogonally on R“. The point x becomes
the class (1,0). Recall that the isotropy subgroup of a point (g, u) € S xy R is gH,g~!. So, the trace of § in tis
neighborhood is 3 x 5 R?, where R” = {u € R* | dimH, = dimH} = {u € R* | Hy - u = u}. The stratum S is an
invariant submanifold with dimS =3 + b — dim H.

It remains to prove that each M; and (M /S 3)1. are closed subsets. It suffices to verify that the maps dim: M — Z and
i: M — Z, defined by dim(x) = dim S and i(x) = dim7(S) = dimS/S? = dimS +dimS? — 3, with S € . and x€ S,
are lower semi-continuous. Since the problem is a local question then we can suppose that M is S* x; R*. We prove

that the functions dim and 7 are bigger than dim(x) and i(x) respectively. Notice that the map (g, u) — —dim S gg 0 isa

lower semi-continuous map since — dim § 2g’u> = —dimH, > —dimH = —dim S )36 So, it remains to study the function
dim.

Considering the G-equivariant covering S x z,R% — S§3 x yR%, we can suppose that H is connected. Let R = R? xR¢
be the H-equivariant orthogonal decomposition of R%. This gives 3 xy R* = R? x (§3 xy R¢). Given a point
y = (g, u) € S* xy R* we consider Q € .7 the stratum containing this point. In fact, Q = R? x (S3 X | Rd) where
RY = {v e R*| dim H, = dim H,}. We have finished since dim(y) = dimQ =b+3+d —dimH > b + 3 —dimH =
dimS = dim(x). o

The dimension m of the filtered space M is dim M. The dimension n of the filtered space M/S3 is m — 3 (resp. m — 1)
when the action is mobile (resp. semi-mobile).

Brylinski-Goresky-MacPherson showed how to compute intersection cohomology with differential forms (cf. [4]). To
this effect, they use the Thom-Mather systems.

1.2. Thom-Mather systems. Since F; and F3 are S3-invariant sub-manifolds of M, we can consider 7;: Ty — Fj
two S3-invariant tubular neighborhoods of Fj in M, k = 1,3. Associated to these tubular neighborhoods we have the
following maps:

~» The radius map vi: Ty — [0, 00[ s defined fiberwise by u — |ul|. This map is invariant and smooth.

~» The dilatation map J: [0, 0[x Ty — Ty, defined fiberwise by (¢, u) — ¢ - u. It is a smooth equivariant map.

Given S € .% contained in Fy, for k = 1,3, we can define Tg = T;l(S) and 75 : Ty — S as the restriction of 7. We
can define the maps vs and s analogously. The soul of Ts is defined as the open subset Dg = vgl ([0,2]).

The family of tubular neighborhoods T, = T, T3 is called a Thom-Mather system of M when:

{ T3 = T30T]

1
Vs = vaory }onTlmT3—T1 (T5 N Fy)

We have proved in [[13] that there exists an S 3-invariant Thom-Mather system of M.

Consider the induced maps 7¢: T4/S3 — F/S3, vi: Ty — [0,00[ and 0 : [0, 0[x Ty/S? — T}/S3. The family of
tubular neighborhoods ¥;/53 = {T1/S 3,T3/S3} is a Thom-Mather system of M/S?.

We need a more precise description of the atlas of the bundle 73. The open tubular neighborhood 73 can be chosen
as a disjoint union T3 = wL{Ty ‘ S € Ay withTg nTgr = Fif § # S’. There exists an S3—equivariant atlas
A= {¥: Tgl (U) — U x RP*1} relatively to an orthogonal action ®g : §3 x R?T! — R?*! having the origin as the only
fixed point.

1.3. Intersection differential forms on M. The perverse degree of a differential form w € Q" (M\X) relatively to a
singular stratum § € . is the number

||lw||s = min{¢ € N | w(vo,...,ve,—) =0 where vy, ...,V are vectors tangent to the fibers of 7 : Dg — S }

ifw # 0on Dyg. If w = 0 on Dg we define ||w||s = —o0. The condition ||w||s = ||dw]||s = 0 is equivalent to stating that
the restriction of w to Dy is a Tg-basic form.
We shall need the following properties of the perverse degree:

llw|ls < |wl|,degree of w, |ldw||s < ||w||s +1 llg*w||s = ||wl||s foreach ge S3.

®)

llw+nlls < max(l|w]ls, [[nlls) [l nlls < llwlls +[lnlls  [lixwlls < [lolls or each vector field X
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These properties come directly from the definition of perverse degree. We have also used the fact that the Thom-Mather
system is S 3-invariant.
A perversity is amap p: ./*" — Z = Z U {—o0,0}. The constant perversity is £(S) = ¢, with £ € Z, for any
singular stratum. The top perversity is defined by 7(S) = codim S — 2 for any singular stratum ..
The complex of intersection differential forms of M, relatively to the perversity p is defined by
*

Q' (M) = {we Q" (M\2) | max(lw]]s, |[dols) < F(S) VS €7}

7

The complex Q: (M) computes the cohomology H™ (M) for Goresky-MacPherson perversities [4] or for perversities
verifying 0 < p < 7 [1L[17]]. The cohomology of this complex is H" (M,2) (resp. H" (M\X)) when p < 0 (resp. p > 7).

We can compute the intersection cohomology of the orbit space M/S> by using differential forms defined on M\X.
To see how, first notice that the natural projection 7 establishes a bijection between the strata of M and those of M/S?3.
Therefore, a perversity p on M/S?3 determines a perversity p on M as well, which we will still denote by p, following the
formula (S) = (S /S?). The reverse is also true. Throughout this work, we will consider all perversities on M. Let us
set such a perversity as p. Its dual perversity is Dp =t — p.

A differential form w € Q" (M\X) is a basic form if it verifies the following condition: w(v, —) = dw(v, —) = 0 for
each vector tangent v to the fibers of 7: M\X — (M\Z)/S?. It has been proved in [18] that the sub-complex Q:: (M/S?)

of basic forms of Q: (M) computes the intersection cohomology H:ﬁ (M /S3). Notice that this cohomology does not
depend on the Thom-Mather system we have chosen.
Given two perversities g < p on M the step complex QF

cohomology is denoted by HF . (M/S3) (cf. [T10).

. . * * .
e (M/S?) is the quotient Q (M/S3)/Qq (M/S?) and its

1.4. Closure of a stratum. The exotic term of the Gysin braid we construct in this work uses a particular filtered space
we describe now. Consider a non-closed stratum § € ;. The closure of S is of the form § = § Lie; Q¢ where
{Qre S ’ telJ} ={0Q¢€ ‘ QO c §}. Itis a filtered space whose regular stratum is S. Any perversity p on M induces

a perversity on S, still denoted by 7, which is defined by the numbers 5(Q;), £ € J. The Thom-Mather system T, of M
induces the Thom-Mather system ¥ = {Tp, N S | € € J}.

. =S!
In fact, we need to go a step further and consider the space S which is the un10n ss' Lees Q. It is a filtered

space whose regular part is S st Any perversity p on M induces a perversity on S , still denoted by p, which is
defined by the numbers p(Qy), ¢ € J. The Thom-Mather system T, of M induces the Thom-Mather system ‘Igsl =

—s!
{TQmS ]feJ}.
_ ¢l

S . S . .
The complex of intersection differential forms of S, relatively to the perversity p, can be defined as in the previous

. : . <! . . 5!
Section. It computes the intersection cohomology H; (S > Since j = —1 € S, the group Z, acts on S~ by

g+ x = j(x), where g denotes the generator of Z,. Then he group Z, also acts on this cohomology. We shall use the

notation
% [ =51 —Z % [ =81
Hﬁ(S > :{a)eHﬁ<S )‘gwu:cu}.

In fact, we are gomg to use a particular perversity on this space. Associated to any perversity p on M we have the

perversity Pg on S defined by

— P(Q) —2ps —2 if Q = Qg for some £ € J.
0 otherwise

where pyg is the integer part of p(S)/2.
1.5. S!'-actions. A similar study can be done for a smooth action ¥: S! x M — M. In this case the orbit stratification
type is . = .S L ¥ where

F={Ses|dimSLl=0,xeS} S ={Ses|dimSl=1, xeS}

Mobile strata (regular strata) Fixed strata (singular strata)
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We suppose that the action is mobile, meaning .% # ¢ or non trivial.

The family of singular strata is denoted by .*"¢ and its union is . The manifold M and the orbit space M/S' are
filtered spaces. Thom-Mather systems also exist. In this case Ty = {Ts | S € S} whereeachtg: Ts — SisaS I_fiber
bundle. The elements of T, can be chosen to be disjoint.

We need a more precise description of the atlas of the bundle 7. There exists an S '-equivariant atlas A = {¢: TS_1 (U) —
U x R?*2} relatively to an orthogonal action ®g: S' x R?*2 — R? 4 2, b > 0, having the origin as the only fixed
point.

A perversity is amap p: .78 — Z. The top perversity is defined by #(S) = codim S —2 on .#]. The dual perversity
of p is the perversity Dp =t — P.

The perverse degree || — ||s,S € .7, is defined relatively to this Thom-Mather system. The complex

*

Q' (M) = {we Q" (M\T) | max(||w]ls, ldw|ls) < B(S)}

P

computes the cohomology H * (M), where p is a perversity verifying 0 < p < 1(cf. [T7]). On the other hand, the complex
* * —
Q (M/s") = {we Q (M\2)/S") | max(||wlls. [|dolls) < P(S)}.

where Q" (M\Z)/ST) ={we Q" (M\3) | w(v,—) = w(v,—) = 0 for each vector tangent v to the fibers of 7: M\X —
(M\Z)/S'}, basic forms, computes the intersection cohomology H; (M/S"). Notice that this cohomology does not
depend on the Thom-Mather system chosen.

Given two perversities § < p on M the step complex Q;q (M/S') is the quotient Q: (M/sh) /Q; (M/S') and its
cohomology is denoted by H:/a (M /S 1) (cf. [[L1]]). This cohomology fits into the long exact sequence

£ 1 ¢ 1 £ 1 1 1
(6) o —=H (M/S') —=H (M/S') —=H _(M/S') —=H (M/S') — -
1.6. N-actions. A smooth action ®: N x M — M induces a circle action ¥: S! x M — M. Since the stratification .#}
of this last action is N-invariant then we can choose an N-invariant Thom-Mather system Ty = {T ] S € .}, that is,
the map g: Ts — Tyg(s) is an S '-morphism bundle for each g € N.

Since j> = —1 € S, the singular part of the S'-action T = L{S € .#} is Z,-invariant relatively to the action
g-x = j(x). Also, the union S U j(S) is Z,-invariant for any S € .#}. Notice that we have two possibilities j(S) = S or
JS)ns =a.

The induced family Ty, 51 = {Ts/S' | S € .#} is a Thom-Mather system on the orbit space M/S'. The element
j € 83 induces the map j: M/S' — M/S' preserving Tpyst- So, it induces the map j*: Q: (M/Sh) — Q; (M/Sh).
Since j> = —1 € S! then j* o j* is the identity. So, the group Z, acts on Q; (M/Sl) by ¢ - w = j*w. We shall write

Q:(M/Sl)7Z2 ={we Q:(M/Sl) g w=—w}

The space H: (M /81 ) %2 is defined in a similar way.

2. INVARIANT DIFFERENTIAL FORMS

A key ingredient in this paper is the complex of §3-invariant forms of Q: (M). Tt is a simpler sub-complex computing
the same cohomology.

For the rest of this Section we assume that the action ®: §3 x M — M is a mobile action. In particular, the action of
S3 on M\X is almost free, that is, the isotropy subgroup of any point of M\ is finite.

2.1. The Lie algebra su(2). We shall consider {u;, u, u3} an orthogonal basis of the Lie algebra su(2) of 3, relatively
to a bi-invariant metric « of S3, where

- u; generates the Lie algebra of the subgroup S'.
- [u1, w2] = u3, [uz, u3] = uy, [uz,u1] = up and
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Consider the action W: S* x §3 — §3, defined by W(g,k) = k- g~!. We have on S* the fundamental vector fields Y;
associated to u;, i = 1,2, 3. They are left invariant vector fields verifying j.Y, = =Y, j.Y> = Y and j,. Y3 = —Y3.

We shall write y; € Q' (S3) the dual form of Y; relatively to the metric x: y; = iyk, i = 1,2,3. They are left
invariant differential forms verifying j*y; = —vy1, j*y2 = v and j*y3; = —y3. The differentials verify dy; = y2 A y3,
dy» = —y1 Ayzand dy; = y1 A ¥

2.2. Fundamental vector fields and characteristic forms. The fundamental vector field associated to u € su(2) is
X,. For the sake of simplicity, we shall write X; = X,, with i = 1,2,3. This vector field is defined on M but we are
going to work with its restriction to M\X. Since the action is mobile then these vector fields are non-vanishing on M\X.
Moreover, the family {X;(x), X»(x), X2(x)} is a basis of the tangent space of the orbit §3(x) for any x € M\X. We have
the equalities: j.X| = j«X,, = Xad (i = —Xuy = —X3 and j. X, = X5, j:X3 = —X3 in the same way.

An adapted metric on M\X is a S 3-invariant Riemannian metric u on M\X verifying

(7) w(Xy, (x), Xy, (%)) = &(vi,v2) Vx e M\X and vi,v; € su(2).

It always exists since the fundamental vector fields are non-vanishing.
We denote by X, = ix u € Q' (M\Z) the characteristic form associated to u € su(2). Notice that, for each g € S3, we
have
(®) g*)(u = XAd(g—])-u'
For the sake of simplicity, we shall write X; = X,,, fori = 1,2,3. Since Ly, X, = X[}, for each u,v € s1(2), then we
have
Lx X1 = Lx,X2» = Ly, X3 = 0, Lx X, = —Lx,X1 = —X3
)
Lx X3 = —LxX1 =X» Lx X3 = —Lx X, = —X.
Since X¢(X¢) = u(X¢, Xx) = 6, each differential form w € QF (M\X) possesses a unique writing,
(10) w=wo+X1 AW +X2AwWr+X3AW3+X1 AX2 AW +X1 AX3 AWz +X2 AX3 AWz +X1 AX2 AX3 A W23,

where the coefficients w, € Q" (M\Z) are horizontal forms, that is, they verify ix,w, = 0 for each £ = 1,2,3. This is the
canonical decomposition of w.
The canonical decomposition of the differential of a characteristic form is

(11) dXi1 =e1 + X2 A X3 dX, = ex — X1 A X3 dXz =e3 +X1 A X2
for some horizontal forms eq, es, e3 € QZ(M\Z), called the Euler forms. Notice that
(12) jfer = —e jfer=e jre3 = —es.

2.3. Invariant differential forms. A differential form w of M\X is an invariant form when g*w = w for each g € S
or, equivalently, fow = 0 for each ¢ = 1,2,3. In fact, invariant differential forms are characterized by the following
conditions: '

wo and w13 are basic forms, Ly,w,=0,=1,2,3 Lx, w3 = Lx,w13 = Lx,wip =0
Lx,wy = —Lx,w1 = —w3 Lx,w3 = —Lx;w1 = wy, Lx,w3 = —Lx;ws = —wi,
Lx, w13 = Lx,w23 = wi2 Lx,wip = —Lx,wy3 = —w13 Lx,w12 = Lx,w13 = —w)3

(see @)).

The complex of invariant forms is denoted by Q" (M\). The complex of invariant intersection differential forms is
9: (M) = QF (M\X) N Q: (M). Some cohomological computations are simpflied by replacing the complex Q: (M) by

its subcomplex Qf (M), since proceeding as in [9, Theorem I, pag. 151], we have
D
Proposition 2.1. The inclusion Q" (M) — Q; (M) is a quasi-isomorphism for any perversity p.
P

Notice that @ (M/S?) = {w e Q" (M) | ix,w = 0 for each ¢ = 1,2, 3}.
D —D



GYSIN BRAID 9

2.4. Perverse degree of characteristic forms. Notice that, for any singular stratum § € . sing we have:
(13) ||CL)||S = maX{||a)0||5, HX{ A a),-||5, HX{ AXe A wgk||5, HXI AX2 AX3 A cu123|| ’ 1<t<k< 3}

for any w € Q" (M\X) (cf. (3)). When S € .3 is a fixed stratum then the orbits of the action are tangent to the fibers of
7g: Dg — S. So, we have

(14) HXg A CL’HS —1= ||/\/[ AXr A a/HS -2 = ||X1 ANX2 AX3 /\a/HS —3= Ha/HS,

for each @ € Q" (M\Z) and each 1 < £ < k < 3.
In order to control the perverse degree of characteristic forms relatively to mobile strata we need richer metrics than
adapted metrics.

Definition 2.2. An adapted metric u on M\X is an adjusted metric if
(15) 1(Xy(x),w) =0
whenever

e x € D,\X for some S € ./,
e w is a vector tangent to the fibers of T, : D\X — S at x, and
e v € su(2) belongs to the k-orthogonal of su(2),, Lie algebra ong withy = 74(x).

Proposition 2.3. Every mobile action admits an adjusted metric.
Proof. A convex combination of adapted metrics is an adapted metric. So, by using partitions of unity, we can reduce the

problem to the following two cases:

e M = Ts for some S € .. In this case, £ = §. We set ¢’ an adapted metric on Ts\S .
We put K (resp. G) the sub-bundle of 7s\S tangent to the fibers of 75 (resp. the orbits of the action). The bundle
G n K is of constant rank equal to one. In fact, we have

G 0Ky = {X,(x) | v € su(2)y}
for each x € Ts\Z with y = 75 (x). Let us consider the S>-invariant decomposition
T(Ts\2) =D@KD(G+K)™,

where D = (GNK)™ A G. Since i’ = kon G (cf. (@) then we have D, = {X,(x) | v € su(2);} for each x € T \E with
y = 75 (x). We denote by ), i}, and 1 the restrictions of u to each term of the above decomposition. The Riemannian
metric u defined by:

/ / /
M=y + fy + 3,
is an adapted metric. It also satisfies (I3) since w € K and X, (x) € D;.

e M = T, for some Q € .%5. The open subset Tp\Z is S *-equivariantly diffeomorphic to (D\Z)x]0, o[. The action
of §3 on Do\X has no fixed points. The previous step gives an adjusted metric u on Dg\X. As the tubular neighborhood
Ts of any stratum S € .77 is the product Ts ~(p,\x) x |0, o[, the metric u + dr? is an adjusted metric on Tp\X. m|

For a such metric we can compute the terms appearing in formula (I3)).

Proposition 2.4. Let us suppose that M\X is endowed with an adjusted metric. Given a stratum S € 1 and a horizontal
form a € Q* (M\Z) we have
(16) IWenalls = [We nXi nalls = [X1 AXa AXz Aalls = lalls +1,

foreach 1 <€ <k <3.

Proof. Without loss of generality, we can suppose M = Ts and £ = §. We proceed in two steps.

Step <. Following (@) it suffices to prove that |[X; A Xi||s < 1 and |[JX1 A X2 A X3]|ls < 1. We deal with the first
inequality, the second one can be approached in the same way. If ||X; A Xi||s = 2 then there exists x € Ts\S and
v,w € Ky with Xz A Xg(v,w) # 0. Since dim|ug, ux I = 2 = dim su(2); and dim su(2) = 3, then there exist v; € EsLl(Z)yL
and v, € su(2) with X,, A X,,(v,w) # 0. This is impossible since X,, (v) = X,, (w) = 0 (cf. (I3)).

ZNotation | —| stands for the vector subespace generated by v.
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Step >. Since the result is clear for @ = 0. Let us suppose ||a|ls = a > 0. So, there exist x € Tg\X and
{wo, ..., w1} < Ky, with a(wo, ..., ws—1,—) # 0. Here, K denotes the sub-bundle of 7'(7s\S ) tangent to the fibers
of 75 as defined on the proof of the previous Proposition. Since the perverse degree is S >-invariant, we can suppose that

S;:TS 0 2 S (cf. (@)). This gives su(2), = |u | and therefore X (x) € K.

The adjoint map associated to the group S3 is the covering S3 — SO(3). Since there exists a rotation sending u;
to u, then there exists g € S3 with Ad (g)(u1) = u,. Since the perverse degree is S3-invariant then it suffices to prove
i Aealls =za+ 1, |1 AXynalls =a+ 1and |[X] AX, AX, A a|ls = a+ 1, where u,v € su(2) (cf. (3) and (8)).
Without loss of generality we can suppose that u, v € [ule. The inequality comes from:

0 # a(wo,....wa1,—) = X1 AXy AX, A @)(X1(X), Xu(X), X0 (X), w0, ..., Wa—1, —)
= X1 AXy A @) (X (%), Xu(X), w0, ..o sWae1,—) = X1 A @)(X1(X), Wy e v o Wae1, —),

since {wo, ..., ws—1, X1 (%)} < K.
If a = 0, we just have a(—) # 0 and the same argument applies by just omitting the vectors wy, ..., w,_1. i

2.5. Circle actions. In [10] a Gysin sequence is obtained for any mobile smooth circle action by doing a similar study
and using more restrictive perversities. For the convenience of the reader, in this section we obtain that Gysin sequence
for general perversities in a shorter way, using the techniques and presentation to be applied later for the case of mobile
S 3-actions.

Fix a mobile smooth action ¥: S! x M — M. Here, we just have a fundamental vector field X and a characteristic
form X relatively to an adapted metric (the notion of adjusted metric does not apply here). This form is S !'-invariant and
verifies |[||s = 1 on .#] (the family of fixed strata). Its differential e = dy; the Euler form, belongs to Q. (M/S') where
the Euler perversity e is defined by €(S) = 2 on .#]. We also use the characteristic perversity y defined by ¥(S) = 1 on
A.

For any perversity p, the complex Q; (M) is
laf| < P(S). and
s < P(S)
The integration operator is the differential operator f : Q; (M) — Q;_; (M/S?) defined by f w = ixw, that is, f (@ +
X A B) = pB. Associated to this operator, we have the short exact sequence

0— K (M) =Q (M/s") HQZ(M) — I (M) -0,

(17) {a +X ABlaeQ (M\Z)/S"),peQ ((M\T)/S') with {

X llda +e A B VSeyl}.

which induces the following Gysin sequence (see [[10]).

Proposition 2.5. For each perversity 0 < p < t we have the long exact sequence
o

c— H_ (M/S") — H" (M) —>H;‘ (M/sYy - H™ (M) — -

7
. (M/S') wehave y A € Q; (M). Since f (x AB) = B then it suffices to prove that the inclusion

Proof. Foreachf e Q
;(M ) is a quasi-isomorphism. Notice that

. * 1
1.Q° (M/S') —
I(M)={BeQ (M/S')|3ae Q" (M\T)with||e|| <B(S), and [|da + e A Blls < P(S)VS € A1},

We proceed in three steps.
o Step 1: /1 = . The action is almost-free. In this case ¥ = f and therefore Q" ((M\X)/S!) = Q; (M/S) <

I:_E(M) c Q:_)_( (M/S') = Q" ((M\Z)/S"). In other words, the map I itself is an isomorphism.

o Step 2: M = Ty for some S € ;. Recall that 75 : Ts — S is an S '-invariant smooth bundle whose fiber is R?’*2
for some b > 0. In fact, the group S acts trivially on S and orthogonally on the fiber R?**2 having the origin as the only
fixed point. Notice that the action of S ! on the unit sphere S?**! is almost-free.

Consider a good covering U of S and { fy ] U € U} a subordinated partition of unity. The family {Ts_l (U), |lue U}
is an open covering of Ts having {fy o 7s ’ U € U} a subordinated partition of unity. These maps are S '-invariant

smooth maps constant on the fibers of 75. This last property implies that || fy o 75||s = ||d(fv o 7s)||s = 0. So, the

covering U possesses a subordinated partition of unity living in Qf (M).
0
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By applying Bredon’s trick [3, p. 289], we can reduce the problem to the case where M = RY™S x R?*2 with 7g
being the projection onto the first factor. The action of the group S is trivial on the first factor.

Contracting this factor to a point, we reduce the problem to the case M = R?*+2 = ¢§20+1 = (§20+1[0, o) /(S 2P+ 1 x
{0}). Here, the stratum S is the apex of the cone. We have ¥(S) = 1 and ¢(S) = 2. The number p € Z is defined by
P(S) = p. We need to prove that the inclusion

(18) 1:Q° (es™71/s") = [(es™"!) = {izw | we @ (e}
is a quasi-isomorphism. Notice first that
Q:‘<P 2( S2b“/S ) - Q*<P*2((S2b+1/sl) x]O,oo[)
Q(esPHSY) = {ﬁeQ” *(($2+1/51) x]0,50[) | dB =0 on ($20+1/$1) x]o,z[},
*>p—2 k>p—2
QT (esPHs)y = (8PS x]o, o0, (8P4 /ST) x]0,2[),
=7 (es2H) - {zxw lwe @™ (s2Hx ]o,oo[)} =y Q7 ((5271/s1) x]0, o)
I (g2 — x| we @ (s**1x]0,%[) | do = 0on $%+1x]0,2[}, and
I;>p71 (et = {lxw |lwe Q" ($20+1%]0, oo[, § 20! x]O,Z[)}

=) Q7T((SPH1/sT) x]0,c0[, (SPH1/sT) x]0,2),

where =(1) is given by the previous step and =(;) comes from the fact that 5 = 0 on (S b+l /g 1) x]0,2[ implies
w=x AB=00n5"""x]0,2[. Since T (es?rsY) A dm(0) = I}_f*z(c":Sﬂ’“) n d~1(0) then it suffices to study
the degrees « > p — 1.

Since H, (cSZb“/S ) = 0 then we need to prove H" ' <I; (E’:SZb“)) = 0, that is:

{ we Q" (§2%+1x]0,0]) { e’ (524110, 0)
—

with dw = 0 on §2°*1x]0,2[ and dixw = 0 with iyw = dixn.

If p = 0 then we can consider 5 = 0 since w is constant. Let us suppose p > 1. Consider 1/ = Sl_ w
It is an element of 9,,—1 ($20+1x]0, o) since the action of S! on the ]0, co[-factor is trivial. A straightfor-

ward calculation gives w = pr*w(1) + di/ + §; dw. Here, w(1) is the restriction of w to $**! x {1} and
pr: §20+1%]0, c0[— S?+! x {1} is the map defined by pr (x,) = (x,1). A straightforward calculation gives

ixa) = ixpr*w(l) + ixd?]/ + ixf dw = ixpr*w(l) — dix?]/ — f dixa) = ixpr*cu(l) — dixf]/.
1

1
By hypothesis the differential form pr* w(1) is a cycle of Q" (S%*!x]0,0[). Condition p < 7 implies p <

codim § —2 = 2b. Since p > 1, thls gives the existence of 77 € Q' (S 2611570, 00[) with pr* w(1) = dn”. We
end the proof taking n = —i — "’

Since H:ip (¢$%*+1/$1) = 0 then we need to prove H*’ <I;< (&S 2b+1)) = 0, that is:

{ w EQ$+l>p+l(S2b+l><]0,00[,52b+1X]O,ZD { 37769*2P(S2b+1x]0’oo[)
—

with dixw = 0 with dn = 0 on S%**1 x]0,2[and ixw = dix.

Same proof as before with w(1) = 0.

e Final Step. Consider the invariant open covering V = {Ts | S € %} u {M\Z} of M. We fix a smooth map
A: [0,00[— [0, 1] verifying A = 1 on [0,2] and 2 = 0 on [3,00[. The map fs: Ts — [0,00[ is defined by fs(x) =
A(vs(x)). Ttis an S '-invariant smooth map, constant on the fibers of 75 : Dg — S, which gives ||fs||s = ||dfs]||s = 0.
So, the family {fs | S € #1} u {1 — 3] fs} is a partition of unity, subordinated to V', living in Q" (M). Now, it suffices
to apply Bredon’s trick [3} pag. 289] and the previous cases. ’ O
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Remark 2.6. In fact, we have proved that the operator
f(@ (M/s") @@ (M/s).D) — (@ (M),d),

1
defined by f(t,1) = 7+ x A A, where D(1,1) = (dt + e A A, —dQ), is a quasi-isomorphism.

2.6. Twisted product. The model of the tubular neighborhood of a semi-mobile stratum is given by twisted products.
We present this notion. First of all, we consider a smooth action ®: N x E — E of the normalizer N on a manifold E. It
induces the action @: S3 x (S3 X N E) — (S3 X N E) defined by g - ¢k, x) = (g - k, x) .
This action is a mobile action and the strata are of the form S3 xy S with S € ., stratification induced by 0. A
perversity p on E determines a perversity on the twisted product, still denoted p, defined by p (S 3%y S) =7(S).
Given an N-invariant Thom-Mather system Tp = {7 ’ S € .71} on E we can consider the following Thom-Mather
systems
- Tgsxg = {(S° x Ts) | S € .} on the product, and
- Tgaye = {83 xy Ts) | S € 1} on the twisted product.
Relatively to these Thom-Mather systems we have the equality
M wlls3xs = llwlls3xys
where S € .7, we Q° (S3 xy (E\Z)g) and I1: S3 x E — §3 x y E is the canonical projection. This map is an N-bundle
and verifies (g, x) = n(g - h~',h - x) where (g,x) € S* x Eand h e N.
The goal of this Section is to write the S3-invariant intersection forms of the twisted product S x y E in terms of the

intersection forms of E.
First we establish some notation.

(@) Y, € X(S?) is the fundamental vector field associated to u € su(2) relatively to the right action: §3 x §3 —
S3 (g,k) — k-g~'. Ttis aleft invariant vector field . For the sake of simplicity we shall write ¥,, = Y, for
te{l1,2,3}.

(b) Z € X(E) is the fundamental vector field of the action: ¥: S' x E — E, induced by ®. It verifies j.Z = —Z. Let
p be an N-invariant metric on E. The characteristic form { = 1zp verifies j*¢ = —( and the associated Euler form
e = d{ verifies j*e = e.

(c) Lety, € Q' (S3) be the dual form of Y,, that is, y,, = iy k, u € su(2). Notice that x(u,v) = y,(Y,). These forms are
invariant by the left action of S3. For the sake of simplicity we shall write y,, = y; for £ € {1,2,3}. They verify
Ly,y1 = 0,Ly,y2 = =3, Ly,y3 = v2,dy1 = 2 A y3, dy2 = —y1 A ys and dys — y1 A y2 (cf. ).

(d) The group N acts on the complex of differential forms QF (S 3) by the left. So, the group Z, = N/S! acts on the
complex of S !-left invariant forms of 3, which is A *(y1,7v2,¥3). This action is given by

(19) g ve= (=1,
for{ =1,2,3.
Proposition 2.7. Using the natural projection 11 we get the identification
. . zZ
*Q3 _ * * ly,w = —lzw 2
Q (S° xyE) = {we /\ (r1,72.73) ®Q_(E) | Ly,w = —Lyw }

Proof. Since the map IT is S 3-invariant then IT* induces a monomorphism between
E3

I Q*(S3 x E) = {a)EQ*(S3 x E) ’g*a)za)VgES3} = /\(yl,yz,y3)®Q*(E)

and
Q*(S3 xnyE) = {weQ*(S3 xn E) |g*w:ngeS3}.

So, we can identify Q" (3 x E) with

iyla) = *l.Za) . o . z,
* * * * ly w = —lzw
we /\ (71,72, 73) ®Q (E) | é:;)w_:w—sz = {a) € /\ (71,72.73) @ Q" (E) | L;/la) - Lo }

A similar identification is obtained for E\Xg instead E. Using (2.6) we get (2.7). m|
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Corollary 2.8. We have the identification

QST xnE) =@ (E)2 0Q (B) 2@ {fe Q) (B) 2 |LLE= ¢}
where the differential becomes D' (a,,&) = (da,dB — iza, —d€). The third term of this direct sum is acyclic.
Proof. The equality (2.7) gives that an element of Q: (S 3xNE ) is of the form

a—yiNiza+y2 ANLZE+ Y3 NEF YL A2 NiZLzE VI A Y3 N iZEF Y2 A3 AB =YL AY2 A Y3 A iZP.
with a € Q:(E),ﬂ € 9:72(E), e Q;H (E),g-a=a,g-&=—&g-B=—PB,and L,L,& = —¢. For the calculation of
D we compute the differential of the previous expression:
da —y; Nigda —yy A Lzdé —y3 A dE —y1 A ya A (izLzdé + &) + y1 Ay A (Lzé — izd€)+

Y2 A Y3 A (dB —iza) +y1 Aya Ays A lzdp.
We verify the the acyclicity property. Let & € Q; (E) "% be a cycle. The differential form n = izL;¢ € Q" (E\)
verifies
-8 n=j'n=jlizlzé = —izj Lz&E = izLzj ¢ = —izlzE = —n.
LzLzn = LzLzizLz¢ = izLzLzL76 = —izLzE = —n.
d?] = dl'szf = Lszf = —é‘:, since dé‘: =0.

If Q is a singular stratum ofE we have ||n||o = ||zZLZ§||Q l€llo < P(Q).
So, the complex {£ € QF ( ] ,L,& = —&} is acyclic. i

The following calculations will be used in the next Section. We use the N-action presented in Section

Corollary 2.9. Let ®: N x M — M be a smooth action. We have

* —Z

H _ _(M/S")

2 _ M (- 102
g —H () 2,

where
- P is a constant perversity p on M/S ' verifying 0<p<i,
- g denotes the integer part of p/2, and
- X is the singular part of the induced S '-action,

Proof. Consider an N-invariant Thom-Mather system (cf. Section [L.6). Using Mayer-Vietoris, we can suppose M =
Ts N Tjs), for some S € .#1. We write 7 = 75 U 7j(5). Since L = § U j(S) is Z,-invariant the we can consider the

operator
-z

7:Q7E) R 0t (MysT) T,
defined by J(a) =< 7ia A e? >, where e is the Euler form of the induced § I_action relatively to an N-invariant
Riemannian metric on M. This metric always exists since the group N is compact. It is a well defined differential
operator since
%@ neflls < [ltalls + |lef]ls < 0+ [lef]ls <**' 2 < P(S). and similarly ||7*a A e?||s < P(j(S)).
d(t*da A e?) = 7" da A e and the operator is a differential operator,

ix(t*a A e?) = ixd(t*a A e?) = 0, which gives T*a A ¢7 € Q" (M\S)/S"), and
o jfe = —e.

This last property comes from j.X = —X, where X is the fundamental vector field of the circle action P.

We claim that this operator is a quasi-isomorphism. Proceeding as in the proof of the Proposition we can reduce
the question to the case where the stratum S (resp. j(S)) is the apex v (resp. w) of the cone Ts = &,82**! (resp. Tis) =
&,S20+1) where the circle S acts orthogonally and almost freely on the sphere S2?*!. We also have H * (S b+l /g 1) =
H™ (CP). Recall that (S ) = 2 and p(S) = p. We distinguish two cases.

‘ <p—2orx> p‘ We have the equality Q;E (&,8241/s1) = Q° ((°: §2b+1/81), similarly for w, and there-

fore Q,/ ,((TS uTjs))/S ) —0= Q*’”’({v,w})(*l)qzz — 0% 2q(S U J(S))(*l)qz2.
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‘*zp—lorp‘.Thisgives

H'(S) =R if j(S)nS =g
In the R-case the cohomology is generated by 1 in each term. On the other hand, the typical conical calculations
of the intersection cohomology (see for example [5]) and the sequence (@) give H:/FE (&,82b+1/sT) = H” (cpP)
generated by ¢, since 0 < p = p(S) < #(S) = 2b. And similarly for w. So,

H” (cpb) %2 — ) (if ¢ even) or R (if ¢ odd) if js)=S
H'(CP’) =R if j(S)nS =g.

We get that J is a quasi-isomorphism. O

0 ,(,1)112 o . . r s .
B U )" { H'(S) 2 = 0 (if g even) or R (if g odd) if j(S) = §

/2

I’ ((EVSZbH U &vS2b+1)/S1)*Zz _ {

3. THE INTEGRATION OPERATOR JC .

The main tool we use in this work is the integration operator
. * N *—3 3
JC 1 Q (M) Q (M/s?),

defined by Jg w = (—1)dee iy, Iy, Iy, @, Where X is the characteristic perversity defined by Y(S) = { é iig i ﬁl .
- : 3
The operator f is a well defined differential operator since
- Laip = ipLa + ija,p] when A, B are vector fields of M\X and

— (10, (3 Co . oL - v
BS) = lells = W AXa aXs Ay iy olls TBE i iy wlls +X(S) = || folls +X(S) for each

S e,
where we have considered an adjusted metric u on M\X.
The goal of this Section is the computation of the cohomology of the complexes I; (M) and K; (M). For the first one,

2 if S 65”1

we need to introduce the Euler perversity e, defined by e(S) = { 4 ifS e
3.

For the sake of simplicity we shall write

kerJ[ - K (M) = {w € Q;(M) | i iy i, 0 = 0}

ImJ[ - I'(M) = {iXSiX2ina) | weg’f“(M)}.
P
Proposition 3.1. Let p < t be a perversity on M. The natural inclusion I: Q:_? (M /S3) — I;(M) is a quasi-

isomorphism.

Proof. The inclusion makes sense if we prove that X; A X» A X3 A @ € Q" (M) for each @ € Q;H
P -

from

(M/S?). This comes

e

Ly, (X1 AX2 AX3 A @) = 0 for each ¢ € {1,2,3} (cf. @),
and for each S € ./ L . ¥5:
{@.{16) - — - - _
X1 AXa AX3 A a]s = l|la|ls +X(S) <P(S)—e(S)+X(S)<Pp(S)
(. (3

[ldX1 A X2 AX3 A aQ)|ls < max(|X) AXa AXs Adalls, ||dXT AX2 AX3) A alls) < max(p(S),||e|s

() _ -
+HdX1 AXa AX3)|ls) < max(p(S), P(S) —e(S) + [X1 AX2 AXslls +1)
(), (16 e — _ - -
< max(p(S),p(S) —e(S) +e(S)) = p(S)
(cf. @).
In order to prove that I is a quasi-isomorphism, we proceed in several steps. We use the S>-invariant Thom-Mather
system of Section [.2]
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o Step 1: .} = 3 = . The action is almost-free. In this case ¥ = (& and therefore QF ((M\Z)/Sl) =
Q: (M/s) < I:_E(M) c Q: (M/s') = Q" ((M\Z)/S"). In other words, the map I itself is an isomorphism.

¥
o Step 2: M = Ty for some S € .%;. We have seen that S = S3 xy S5'. The restriction 75 : Eg = Tgl(SSl) — g8
is a N-invariant bundle. Notice that E is a filtered space whose singular strata are the connected component of S S'. The
fiber of this bundle is an R%*2, for some b € N. The group S ! acts trivially on %' and S ! orthogonally on R?2+2 having

the origin as the only fixed point. Notice that the action of S! on the unit sphere §2*! is almost-free.
We identify T's with the twisted product S 3 x v Eg and we use the calculations of Section We have

® 3\ _ AF _OF 1\Z,
(20) Q (M/S°) =Q (Es/N) =Q (Es/S")
for any perversity p. The integration f becomes the map
A a3 N *—3 N\ Z,
21) f Q ($¥xyEs) —Q (Es/S')™,
defined by (@, 8,¢&) — —izB (cf. Corollary [2.8). The map I becomes the inclusion

(22) 1: 9 _(M/S?) = Q:_E(ES/SI)Zz — I;(M) = {izﬂ |Be QZH(ES)_ZZ}

*
p—

since for each A € Q;:; (ES/SI)Zz wehave { A A € Qf_z(ES)fZz and iz({ A A) = A

D
Consider now a good covering U of 5" and { f | U € U} asubordinated partition of unity. The family {TS_1 (0),

U} is an open covering of Eg having {5 o fy | U € U} a subordinated partition of unity. These maps are N-invariant
smooth maps constant on the fibers of 7g. This last property implies that || fy o 75||s = ||d(fu o 7s)||s = 0. So, the
covering U possesses a subordinated partition of unity living in Qf (Es).

0

uec

Using Bredon’s trick [3} pag. 289] one reduces the problem to the case Eg = R4™S g x R?*2, where g becomes the
projection on the first factor. The action of the group S! is trivial on the first factor.

Contracting this factor to a point, we reduce he problem to the case Eg = R?**2 = ¢§20+1 = (520410, o0[) /(S 2+ x
{0}) as filtered space. Here, S is the apex of the cone. We have y(P) = 1,e(P) = 2 and p(P) = p(S) = p, for any
connected component P of § ' and p € Z. We need to prove that the inclusion

o (&SZbJrl/Sl)Zz N I: (e520+1) = {izﬂ FE 9*“ (&SZbH)—Zz} ’

—p—e D
is a quasi-isomorphism. This comes directly from (I8) with the equality j.Z = —Z (cf. Section (b)).

o Step 3: .#3 = (. Consider the invariant open covering V = {Ts | S € %} u {M\F,} of M. We fix a smooth
map A: [0,00[— [0, 1] verifying A = 1 on [0,2] and A = 0 on [3, 0. The map fs: Ts — [0, 0] is defined by fs(x) =
A(vs (x)). It is an S3-invariant smooth map, constant on the fibers of 75 : Ds — S, which gives ||fs||s = ||dfs||s = 0.
So, the family {fs | S € #1} b {1 — Y] fs} is a partition of unity, subordinated to V', living in Q; (M). Now, it suffices
to apply the Bredon’s trick [3, pag. 289] and the previous cases.

o Step 4: M = Tg for some Q € /3. Recall that 7p: Tg — Qisan§ 3_invariant smooth bundle whose fiber is R/ !
for some f > 3. In fact, the group S acts trivially on S and orthogonally on the fiber R/*! having the origin as the only
fixed point. Notice that the action of S on the sphere S/ is a mobile action.

Consider now a good covering U of Q and {fy | U € U} a subordinated partition of unity. The family {Tél (0),

ue
U} is an open covering of T having {fy o 7o ’ U € U} a subordinated partition of unity. These maps are S 3-invariant
smooth maps constant on the fibers of 7. This last property implies that ||fyy o pl|s = ||d(fuv © Tg)||s = 0 for each
singular stratum S (cf. (L2)). _

Using the Bredon’s trick [3, pag. 289] one reduces the problem to the case M = RYIMC x R/*! The action of the
group S is trivial on the first factor.

Contracting this factor to a point, we reduce the problem to the case M = R/+! = &S/ = (S/ x [0,0[)/(S/ x {0}).
Here, the stratum Q is the apex of the cone. We have y'(Q) = 3 and e(Q) = 4. The number p € Z is defined by p(Q) = p.
We need to prove that the inclusion

* 0o * o L *43 g
1:Q° (es7/5%) — I (e87) = {ixsininw | we @ (es7)}.

e
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is a quasi-isomorphism. Notice first that
Q7 (es 7))
Q(es7/s?)
Q:>” *(esf/s?)
) -
I;fS(ESf)
U es) =

Since Q (ch/S ) nd1(0) = Q;_:((Sf/S ) x]0,00[) N d~'(0) then Step 3 gives that I*: H:_E(&Sf/S3) —

H < E(ch)) is an isomorphism for * > p — 3.

Since H (ch/S ) = 0 (cf. [17]]) then we need to prove H~ <I; (E’:Sf)) = 0, that is:

we Q' (S7x]0,0[) e’ (S7x]0,0)
P _— P
with dw = 0 on S/ x]0,2[ and dixw = 0

Q7 ((s7/8%) x]o. o)
{ Q- 4((Sf/S ) x]0,00[) [dB=0o0n (S//S3) ><]O,2[},
o 2((Sf/S ) x]0, 0, (§//53) x]0.2[),

ix,ix,ix, W ’ wE Q*Hq( fx]O,ooD}

{zxgzxztx]w lweQ (Sfx]O [) | dw = 0 on S/ x]0, 2[}, and

ix,ix,ixw | we Q*+3>p( I'x]0, oo[,Sfx]0,2D} .

with iyw = dixn.

If p = 0 then we can consider n = 0 since w is constant. Let us suppose p > 1. Consider 1/ = Sf w. Itis an

element of 9,,_1 (Sf x]0, oo[) since the action of 3 on the ]0, co[-factor is trivial. A straightforward calculation
gives

w = pr*w(l) +dn'+f dw.
1

Here, w(1) is the restriction of w to S/ x {1} and pr: §/x]0,0[— S/ x {1} is the map defined by pr (x,) =
(x,1). A well known calculation gives

. . . . . . * . . . / . . .
ix,ix,ix,w = Ixyixyix, pr* w(l) + ixyix,ix,dn + ix,ix,ix, f dw
1

.. . % . .. / . .. .. . * . .. /
ix;ix,ix, pr* w(1) — dix,ix,ix,n — J dix,ix,ix,w = ix,ix,ix, pr* w(1) — dix;ix,ix,n .
1

By hypothesis the differential form pr* w(1) is a cycle of 9; (S/x]0,00[). Condition p < 7 implies p <

codim Q — 2 = f — 1. This gives the existence of " € Q' (S/x]0,00[) with pr* w(1) = dn’. We need the
proof taking p = —n’ — 7"’

. Since H}j_ipiz (€S7/S3) = 0 (cf. [[17]) then we need to prove v <I;k (&s f)) = 0, that is:

we Q**””“ (S7x10,00[) with dix;ix,ix,w = 0 Ine Q*“”(
—

anda)EOOnSfx]O,2[ and dn = 0 on S/ x]0,2].

Same proof as before with w(1) = 0.

8710, 00[) with ix,ix,ix,w = dix,ix,ix,n

e Final Step. Consider the invariant open covering V = {To | Q € .3} L {M\F3} of M. We fix a smooth map
A: [0,00[— [0, 1] verifying A = 1 on [0,2] and A = 0 on [3,00[. The map fp: Tgp — [0, 0] is defined by fp(x) =
A(vo(x)). Ttis an S3-invariant smooth map, constant on the fibers of 79: Do — Q, which gives ||fplls = ||dfolls =0
for each singular stratum S (cf. (L2). So, the family {fp | Q € .#3} L {1 — 3] fo} is a partition of unity, subordinated

to V, living in 9; (M). Now, it suffices to apply the Bredon’s trick [3] pag. 289] and the previous cases. O

Let us study the complex K; (M). Since the complex Q; (M /S 3) is included in ker f we have the short exact sequence

. . K (M)
0= 0 (M/5%) = K (M) = ot s —
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This allows us to compute the the cohomology of K; (M) in terms of the intersection cohomology H; (M /S 3) and the
K (M)

P

cohomology of the complex C* (M) = —2———
¥ Plex & (M) = (a7 )

. In fact, we are going to prove that this cohomology is residual

relatively to the strata of .#}. The calculation of H" <CF(M)> is carried out in several steps through the following
restrictions

_ ¢l
M~sTouTs ~=QuTs ~=QuSS =5
where § ranges over the strata of .| and Q € .3 with Q — §. We proceed in several steps.

Lemma 3.2. Let ®: S3 x M — M be a mobile action with .3 = . For any perversity p on M with 0 < p < T we have
* . - *—2pg —2 sl —(_I)I’S Zz
H'(C (M) = D H (55" :
SE,,yl

where the number pg denotes the integer part of p(S)/2.

Proof. We proceed in several steps.
e Step 1: .1 = . We do no have any singular stratum. We need to prove that the LHS of the equality (3.2)) is 0. Let
{w) be a cycle of C; (M). The canonical decomposition of w is

W=w)g+X1 AW +XoAwWr+X3AwW3+X1 AXo AW X1 AX3 A w1z +X2 AX3 A w3

(cf. (IQ)). The differential form n = —X| A wy3 + X2 A w13 — X3 A w12 belongs to K; (M) since n € Q* (M\Y) (cf. @)

and 2.3)), and ix,ix,ix,n = 0.

The differential form o' = w — dp verifies |, = W}, = w); = w),; = 0. Since dw' = dw € Q: (M/S3) then

| = w) = w} = 0 and therefore &’ = wf € Q" (M/S?). So, [(w)] = [(w)] = [0] = 0.
o Step 2: M = T for some S € /. In this case . = {S} where § is a closed stratum. Using 1)) we get

KI(M) = Q(Es)>@{peQ " (Es) ™ i =0} @{¢e Q) (Es) ™| L,Lé - ¢}

D Q' (B> 00 (Bs/s") P @ {ee @ (Bs) ™ | 1,16 - —¢}

and Q; (M/S3) @ Q; (Es/S 1)22. Following Proposition 2.8 it suffices to compute the cohomology of the quotient

z,

Q' (Es)> @@ (Es/S')”
QF (Es /S1)™

relatively to the differential D"{(a,B)) = {(da, dB — iza)). Following Remark 2.6 (a) this complex is quasi-isomorphic

to

Q; (Es/s")™ @Q;: (Es/sV) ™™ @Q;_Z(ES/Sl)*Zz

1
e

Q (Es/S1)™

Z,

. *—1 1\—2 *—2 N —
=Q _(Es/S') "@Q (Es/S')

*—2

endowed with the differential D”(1,8) = (—dA,dB — A). This complex is quasi-isomorphic to Q° " (Egs/S") % The

P/p—¢
induced action ®: N x Eg — Eg and the induced perversity p on Eg verify the conditions of Corollary withy = S5
_ _ opg— —(=1)sz
and g = ps. So, we get H:m;(Es/Sl) Zy _ ppts 2(55') .
e Final step. Using Mayer-Vietoris as in the the Step 3 of the proof of the Proposition 3.1l O

The first step of (3) comes from the following result.

Lemma 3.3. Let ®: S3 x M — M be a mobile action. For any perversity p on M with 0 < p < 1 the restriction induces
the quasi-isomorphism C; (M) — C:(Tz1 U Ts,).
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Proof. Consider the invariant open covering {U = T, u Tx,,V = M\ (vl_1 ([0,3/4]) U vy (o, 3/4]))} of M. We have
the Gysin sequence:

0—C (M) —=C.(U)®C. (V) —=C.(UnV) —=0

Following Lemma [3.2] we know that the complexes C: (V) and C: (U n V) are acyclic. So, the restriction C; (M) —
C: (U) is a quasi-isomorphism. O

The term Q i Ts appearing in (3) is not a manifold, but it is possible to define the complex C;: (—) on it using the
following notion.

Definition 3.4. Let ®: S3 x M — M be a mobile action. We consider a perversity p on M. For each open subset U © M

we define
*

E(U)={we Q:(U\Zg) | w and dw verify condition 23)},

P
where this condition is

23) w(vo, ..., V5(0)> —) = 0 where vy, .. -» Vj(Q) are vectors tangent to the fibers of Tp: (Dg N U) - 0,

(
for each Q € 5. We analogously define EZ (U /S 3) if U M is an S3-invariant open subset.
We define

;(TS) = K;(TS) N E:(TS)

C(Ts) =

We clearly have EZ (U) = Q" (U) and 6;(U) = C; (U)if U o Ty, orif .3 = . In particular, we have

3

(24) C(Tg, UTs,) = C (Ts, U Ts,).

Lemma 3.5. Let ®: S3 x M — M be a mobile action. For any perversity p on M with 0 < p < 1 the restriction induces
the quasi-isomorphism C; (Ty, v Ty,) — C: (Tx,).

Proof. Using Mayer-Vietoris, it suffices to prove that the restriction 6; (Ts,) — (/A’: (Ts, N Tx,) is a quasi-isomorphism.
Proceeding as in the Step 4 of the proof of Proposition 3.1 we can suppose that Ty, = &S / where S3 acts orthogo-
nally without fixed points on the sphere S/ and trivially on the radius of the cone. The subset X3 is the apex v of the
cone. Moreover, we have 6;(T23) = 6; (S/x]0,0[) and 6;(T23 NTs,) = 6; (10,00[x (S/ A T,)). In this context,
condition (23]) becomes

w(vo,...,vp,—) = 0 where vy, ..., v, are vectors of (S/\Z;)x]0,2[ (resp. ((S/ N Ts, x]0,2[)\Z1)).

Here, p = p(v). In order to prove that the restriction 6; (S7x]0,0[) — 6: ((S” n Tx,)x]0, o0[) is a quasi-isomorphism
we notice that

C(s7x]0,[) = C7"(87x]0,0])
Cl(s/x10,0l) = {Bre T (s7x]0.0]) [dB =0on ($7/5%) x]0.2[},
C*>I’ (Sfx]() OOD _ C*>p (Sf ]0,00[,Sfx]O,ZD,

Let us consider the operator pr : C - (S f ) — C>l< ( x 0, oo[) induced by the canonical projection. Following (3) we get
(W) = préw(1)) + d(§" w)y + (- dw> We get that the operator pr : T,,C (87) = C<p (shHe (C; (87) nd=1(0)) —
6; (S fx]0, oo[), induced by the canonical projection, is a quasi-isomorphism. Ina 51m11ar way we prove that the operator

(25) pr:7,C (87 nTs,)) = C. (S n Tx,)x]0, ),
induced by the canonical projection, is a quasi-isomorphism. So, the question becomes to prove that the restriction
T,,C (87) — T,,C (S N Ty,) induces a quasi-isomorphism, which is granted by Lemma[3.2] O

By the definition of the complex 6: (—) we have the equality 6; (Ts,) = ®sen,C (TS)



GYSIN BRAID 19

Lemma 3.6. Ler ®: S3 x M — M be a mobile action. For any perversity 0 < p < t on M and any stratum S € %} we

have ,
® [ A x—2pg—2 [ =81 —(=D™z,
H (Cﬁ(TS)> —H S .

N

—_ _ ¢l
Proof. Consider the family Q = {Q € .¥3 ‘ QO < S}. Recall that S s (cf. Section[L4)) is a filtered space. The regular part

_ql
(resp. singular strata) of S s is§S' (resp. are Q € Q). So,
—g! —
Qj_ (SS > = {(x eQ” (SSI> ’ « and da verify condition (23) for Ps(Q) = p(Q) — 2ps — 2 where Q € Q} )
N

Let us define the operator

by
(26) Js(@) = <y1 AY2 ATea A §§S>,

where /5 € Q; (Es/S 1)_22 the Euler form of the S '-action on Eg relatively to an N-invariant metric on T (cf. Sec-
tion [2.6)).
e Step 1: The operator Jg is well defined. Since 15: Ts — S S' is an S3—equivariant map then we have T?cg €
_(—1)Ps
9*72” 72(ES)7(71)1)S % foreach @ € Q;jps - (fsl) s and therefore ta A (§° € 9*72 (Es )% For the perverse
degree, we have
lrsa A &P ls < |1Z5°[ls < 2ps < P(S),

and similarly for the differential d(tia A £5°) = Thda A £§°. We conclude that Tia A £5° € Q" (Es)™%. Applying (Z8)
[7
ps

s

It remains to prove that the differential form 7 = y2 Ay3 AT @ A eg’s and its differential dn = y, Ayz ATgda A eg’s verify
condition 23) for p(Q), where Q € Q. Consider a family vy, ..., v5(g) of vectors tangent to the fibers of 7g: (Dg N
(Ts\S)) — Q. Up to a reordering we get that 1(vo, ..., Vp(g)) is a multiple of a(7s.«(v0), ..., Ts.x(V5(0)—2ps—2))-
Condition (L2]) implies that the vectors 7s . (v,) are tangent to the fibers of 7o: Dgp NS — Q. Since « verifies condition
@3) for Ps(Q) the we get a(ts.+(vo), - .. T8, (V(0)—2ps —2=F5(0))) = 0- So, 17 verifies condition (23) for p(Q). Same
argument applies to dn.

We conclude that y2 A y3 A Téa A e’SJS € ker f The operator Js is well defined.

we get that y, A 3 /\T§a’/\egs EQ;(TS =53 xNES) withfyz Ays Aes ATia =0.

e Step 2: The operator Js is a quasi-isomorphism when M = Tg for some Q € /3 with Q < S. Proceeding as in
the Step 4 of the proof of Proposition 3.1l we can suppose that M = Ty = &S/ where S3 acts orthogonally without fixed
points on the sphere S/ and trivially on the radius of the cone. Notice that the action of S3 on the sphere S/ is a mobile
action. The stratum Q is the apex v of the cone.

_ ~ el
Since S = ¢&(S nS/) and 50 = &(SS" ~ §7) then Jg becomes

*—2pg —2

—(=1)szZ ~
Js: Q (a(ss‘ me)) =0 T C (87 0 Ts)x]0,0]))

Ps
is a quasi-isomorphism. We know from [17]] that the operator pr : TqQ::_ (S St A sf > — Qj_ (&(S St A sf )), induced
S S
by the canonical projection, is a quasi-isomorphism. Here, g = Ps(Q) = p(v) —2ps —2 = p —2ps — 2. Using (23) we
conclude that it suffices to prove that
. *—2pg—2 S] —(—])PS22 *
Js: @ (53 A s) — (ST A Ts)
is a quasi-isomorphism. Following Lemma[3.2] we get the claim.
e Final step. Consider the invariant open covering V = {Ts n T3, Ts\v; ([0, 2])} of Ts. We fix a smooth map
A: [0, 00[— [0, 1] verifying A = 1 on [0,3] and A = O on [4, c0[. Themap f: Ts — [0, co[ is defined by f(x) = A(v3(x)).
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It is an S3-invariant smooth map, constant on the fibers of 73: D3 — X3, which gives ||f]ls = ||dflls = ||fllo =
lldf|lo = 0 for each Q € .5 with Q  S. So, the family {f, 1 — f} is a partition of unity, subordinated to V', living in
Q" (Ts). Now, it suffices to apply the Bredon’s trick [3] pag. 289] and the previous cases. O

0
Proposition 3.7. Let ®: S3 x M — M be a mobile action. For any perversity 0 < p < t on M we have
H <C* (M)> =@ st (§S'> —(=)™z,
g SeS g .
Proof. Tt suffices to consider Lemma[3.3] (24)), Lemma[3.5] and Lemma 3.6 m]

4. GYSIN BRAID FOR A MOBILE ACTION

We construct two Gysin sequences associated with a mobile action ®: S° x M — M. These sequences establish a
relationship between the cohomology of the manifold M and the intersection cohomology of the orbit space M/S?3. The
existence of two distinct approaches to the cohomology of M by the intersection cohomology of M/S? gives rise to two
separate sequences: one from the left, and one from the right.

The first version, the left one, uses the short exact sequence

0 Q" (M/S? - Q" (M —QZ(M) 0
=@, (M/S) = )_)Q;(M/S3)_) ’
here P i i M. Th ient G- (M) g;(M) is the Gysi
where p is a perversity on M. The quotient G_ = = o5 18 the Gysin term.
1 QF (M/S7)

Theorem A. Let ®: S3 x M — M be a mobile action. For any perversity 0 < p < t on M we have the long exact
sequence, known as a Gysin Sequence,

e (M) e B (G (M) e H) (MS%) e (M) —— -
The cohomology of the Gysin term is determinated by the long exact sequence

—(=Drsz
*—1 . *—4 3 x—2p5—2 (=1 2 % < .
Q7 ---—H <GF(M)> —H (M/S?) — @ H,_ <S ) —H G},}(M)) — ..

S E,,yl
Proof. The first long exact sequence comes from (4)) and from the fact that the complex Q: (M) computes the cohomology

of M since 0 < p < 7 (cf. Section[[.3]and Proposition 2.1)). We now consider the the short exact sequence

(28) 0 —=C (M) —= G (M) 4, 1;‘3(M) —0,
where ¥<w> = fw. The second long exact sequence comes from the fact that the cohomology of I; (M) is H;; (M/S?)
(cf. Proposition [3.1)) and from Proposition 3.7 i

The second version, the right one, uses the short exact sequence

3

(29) 0— K (M) — 9;‘ (M) — I (M) — 0.

By symmetry, we say that the complex K; (M) is the co-Gysin term of the action.

Theorem B. Let ®: S° x M — M be a mobile action. For any perversity 0 < p < 1 on M we have the long exact
sequence, known as a Gysin Sequence,

(30) oo —=H" (M) —H_ [ (M/S?) —=H" (K(M)) — = H" M) — -

P
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The cohomology of the co-Gysin term is determinated by the long exact sequence

(31) . ‘>H*7] (K* (M)) o @Seyl H*73—2p5 (§SI>(1)”SZ2 . H; (M/S3) .yt (K: (M)) o

P Ps

Proof. The first long exact sequence is derived from (29) and the following two facts:
e The complex Q; (M) computes the cohomology of M, since 0 < p < 7 (cf. Section [[3]and Proposition 2.1)).
e The cohomology of the complex Iﬁ(M ) is H_, (M/S?) (cf. Proposition 3.1).
The second long exact sequence is derived from the short exact sequence

*

(32) 0—Q (M/S*) — K (M) — C_(M) >0
and Proposition 3.7 O
Four previous long exact sequences (Al), (27), (30) and (31) can be gathered through in an exact braid diagram.

Definition 4.1. Let us consider six chain complexes A*, B*,C*,D*,E* and F*. A braid is a diagram of chain maps of
the form

D
A* B* c*

D*+] Ak+2
AN @ ®/ AN © ®/ AN ® @/’ AN ® ®/
NS NS ~ - ~ -~
E* F* Txirikorda E*+] F*Jrl
7N SN N AN
/® @\ /@ (D\ /@ ®\ /(D ®\
*

A*+1 B*+l C*+1

Ci\@/l)\@/ ~ . T~

It is a commutative braid when all the triangles and diamonds are commutative. If the long sequences ©, @, @ and ®
are exact we say that braid is an exact braid.

An exact and commutative braid possesses the two following properties.

B1- The following long sequence

is exact (see for example [7, pag. 39-41]).

B2- The top and bottom sequences of the braid are semi-exact sequences and both have the same exactness defaults:
ker®/Im @ = ker@/Im @, ... (see for example [12] pag.148]).

Theorem C. Let ®: S3 x M — M be a mobile action. For any perversity 0< D < ton M we have the exact commutative
braid, the Gysin braid:

//—CD\ //-®\ 4 //—®\> o /s —(=1)szZ,
H: (M/S3) H* (M) H;F' (M/S3) @ HK 2ps (S )
Se.
\@ ®/ \® @/ \@ o
©) @. @ @ @ ®
/ S~ 1 7(71){SZ2 / \
H;:f (M/Sg) @ H;:Zns—z (EY ) H;H (M/S3) e (M),
T g o T

Proof. In [19], a braid is constructed from a triple. We follow this method to construct a braid associated with the
following three complexes: Q: (M/S?) < K;(M ) < 9; (M). Recall that the cohomology of 9; (M) is H* (M) (cf.
Section [L3)). To recognize the relative terms, we can do the following:
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Q_ (M) :
e The quotient m is the Gysin term GI_J(M ).
P o
e We can determine the cohomology of ;i oD by referring to (29) and Proposition 3.1} It is given by H:_E (M/S3).
7
K; (M) . *—2pg —2 —Sl _(_l)ps 22 - .. .
e The cohomology of m is Py, 7 Hﬁ S , as stated in Proposition 3.7l (cf. Proposi-

tion [3.7).

O

In some cases, the sequence ([27) splits and the sequence (Al is closer to the classical Gysin sequence. In particular,
we find the Gysin sequence (3)) of [13].

Corollary 4.2. Let ®: S3 x M — M be a mobile action. When p = 0 the long exact sequence @7T) splits on the
connecting homomorphism and we have the long exact sequence

zZ,

e B M) —— H (MY 3N @ H (M) e (M) —— H (M) —— -

Proof. Since p = 0 then pg = 0 and Ps = —2 for each S € .%;. We have,

x—2pg—3 [ =S —(=10mz, =3 [ =81 2 {53l Prop. 13.5] x—3 [ =81 —§3 —Z
(33) @ H_ S = @H_|(S =" @H (S.S
S -

SeS SeS Se.

H*73 (MSI, Msz)*zz _ H*73 (M51>*Zz
_ -z
since H* ™ (MS3> )
Consider a cycle w € 16>X< (M) and compute the connecting homomorphism §[w] of the sequence (27]). We have seen in

the proof of Proposition 3.1lthat y3 A x2 A 1 A W E Q:+3(M) with f(/\q A X2 A X1 A w) = w. Using (L) we get

dys Axa Axi)) Aw= (el +es+e3) Aw—d((es Axs+ernxaternxl)nw).

Since w € Q;_; (M/S?) then w vanishes on Dy L1 D3 and therefore, so does any multiple of w. So, (¢2 + €3 + €3) A w €
Q:_; (M/S3) and (e3 Axy3+ e Ax2+el Axl) AWE 9; (M). This gives
dis Axa Axi Awy = {dxs A xa Axi) /\a)>=<(e%+e§+e§) Aw—d((esrnys+e Ax2+er Axl)Aw)
= —{dlesAxys+eAxrs+er Ayl Aw))
which gives 6[w] = 0. Now, the sequence (4.2)) comes from (A (cf. [5, Proposition 13.4)]), (28) and (33). m|
Remark 4.3.

—(=Drsz
. =51 2 . . . .
(a) The exotic term (—B H; <S ) . When the exotic terms vanishes the Gysin Braid becomes the long
SE,,yl 5
exact sequence (). This happens when ./ = &, for example, when the acion ® is almost-free (i.e., /| = 3 = ) or
semi-free. 3
We have seen in the proof of the above Corollary that the exotic term can be simplified when p = 0. In this case we

¥ [=S! —(=)wz, # 1\ ~Z,
have Dse., Hﬁ(s ) —H (M)

The isotropy subgroup of a point of MS I \M % s conjugated to S' or N. Let us suppose that the first situation does not

appear; that is, the group Z, acts trivially on M® ', This implies that H * (MS I>_ P =0.
Equality 33) is still true when'p = 4p,4p +1 mod 4on %, p =qgon 3 and g —4p < 1.
We have
H* <MS1)—Zz _ H* <MS1)/H* (M/S3),
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since H <MS]) _ iy (MS|>ZZ o H* <MS])7ZZ _y (MS]/ZZ> oH* <M51)*Zz _ oy (M/s%) oH" <M5I>*Zz.
—(=1yrsz

el —(—1)”522
Notice that () H:_(SS > =P H (SSI) * when 75 = (.
S

Se SeA
(b) Property B1 yields the following two long exact sequences:

H(M/s?) @ H." (M/s?)

o H" (K;)(M)) —H (G‘F(M)) B <K%(M)) —.

N (15 Z
T (G%(M)) —H (K%(M)) —H' Mo P H"T (ES > —H (G‘

_(M)) I
Pg P
Se.

relating the cohomologies of the Gysin and co-Gysin terms.

(¢) Consider the case p = 0. Since the bottom map @ of the Gysin braid vanishes (cf. Corollary B2) a diagram
chasing gives the short exact sequence

0

Im @, ker @y,

ker @bottom Oa

(cf- B2).
(d) The splitting property given by this Corollary is not a general one as the following example shows.
Let us consider the manifold M = S* x S? » S3 = ST with a > 1. The action ®: S x M — M is defined in each
factor:
o S3 acts trivially on S°.
e S3 acts on the left of the homogeneous space S*> = S3/S .
o S3 acts on the left of S® by multiplication on S?.
We put {b1,b>} the two points of S? whose isotropy subgroup is S .
We have .5 = {Q = 8%} and .71 = {S = (S%* S?)\S}. Notice that
st _ §Sl _ (Sa *5‘2)5l — G, (SZ)S] — §9 {b1,b2},
the action of g € Z, interchanges both points.
The orbit space M/S? is the filtered space S° (S xS ) /83 = S% %« X852 = §%* endowed with the filtration
S S {P} < 4% 2S% = S * where P is one of the two apices 0f282
The perversity p is given by two numbers (p1, p3) = (p(S ), p(Q)). Since dim M = a+7, dim Q = aand dim S = a+3
then the condition 0 < p < T becomes (0,0) < < (p1,p3) < (2,5). In particular, the perversities 0=(0,0)ande = (2,4)
satisfy this condition. If p = 0 (resp. e ) then Ps = —2 (resp. 0).
A straightforward calculation using |3, Proposition 13.5] gives
+ H'(M) = R ifi=0,a+7,

+H _(M/S%) = H (744,59« {P}) R ifi=a+4
+ H(M/S%) = H (5+)

R ifi=0,a+4,

~o|

H,(M/S%) = H' (S“*\(S*+ {P})) = R ifi=0,
+H(SSI> — H'(S4HN\§9) = = R ifi=0
+H (‘ > —H (S 59" = R jfi—a+]1

and O for the other values of i.

One easily checks that the sequence the long exact sequence 7)) does not split on the connecting homorphism when
D = e. Also, this example shows that the long exact sequence (31) does not split on the connecting homorphism, even in
the case p = 0.
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We end the Section by studying the behaviour of the Gysin and co-Gysin terms when the perversity changes.

Proposition 4.4. Let ®: S3 x M — M be a mobile action. For any perversities 0 < p < g < 1 on M we have the exact
commutative braids,

/@\ /-@)\ /_®\
™ _ o /
~ . ° . _°
e (/5°) " (a,n) i (u)s”)
TN 7 ~ T
A ®\ /® “ P N
(GJ(M)> H(;(M/Sg) *“(M/S ) H*“(M)
and
/__®\ //__®\ /_@\
H* (K (M)) H*(M) HT;(M/S’X) H(*;,:;/(, (M/S )
\@ @/ \@ @/7 \@ @/f
H' (K () H_(M/S?) u (K ()
H::; (M/Sg) H(*ﬁ:i),’(f—?) (M/S3) ) aas (KF(M)) T (M),

Proof. The paper [19]] presents a method for constructing a braid from a triple. We will use this method to construct two

braids associated with the following pairs of triples: Q; (M/S3) < Q; (M/S3) < g;"(M) and K;(M) c K;(M) c
9; (M). Tt is important to recall that the cohomology of 9: (M) or Q; (M) is H* (M) (cf. Section[I3). To identify the

relative terms, we consider the following schema

*

S
s
[
%

Q (m/s?) Q; (M) Q; (M) K; (M)

- (o)
of (u/s?) | QF(m/s¥) | oF (/) K™ (M)

[
[

>
¥
=

K> (M)

=
S

Q' (Mys?) | Ty | GROn) | QT (s | @l (uys?) | @t (m/sY)

P (g—2)/(p—2)

The first two columns are actually equalities. In the other columns, we have complexes with the same cohomology.
To prove this fact for the third column, we use the equality Q; (M) Q; (M/S3) = Q; (M/S?) and the fact that the

inclusion Q; (M) — Q; (M) induces an isomorphism in cohomology, as shown in [1}[17] (this is property (a)).
%

For column 4, we use (29) and Proposition 3.1l Column 5 comes from the equality K; (M) n Q: (M) = K (M) and

property (a). The last column comes from the short exact sequence 0 — K: (M) — Q: (M) — 1;73 (M) — 0, property
(a), and finally Proposition 3,11 m|

5. GYSIN SEQUENCE FOR A NON-MOBILE ACTION

”In this section, we consider a non-mobile non-trivial action ®: §3 x M — M. The family of regular strata (resp.
singular strata) is .7 # J (resp. .#3). A perversity is a map p: .3 — Z, that is, a family of numbers {p(Q) ’ Qe

S} Z. We consider on M /83, M5 the induced filtered space structure. Notice that the family of singular strata is still
A3.

Theorem D. Let ®: S3 x M — M be a non-mobile non-trivial action. For any perversity 0 < p < 1 on M we have

*

(34) (M) = H (M/s*) @ H (m*) =

p
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Proof. Since the action of S* on M\Z has no fixed points, the assignment (g, x) — g - x, establishes an §3-equivariant
diffeomorphism between the twisted product §3 x y <MS ]\Z) and M\X. Here, X = M5 is the union of singular strata.
Following Corollary 2.8 we have

Q (M) = Q° (MS ‘\2) =0t (MS'\2> &

z _ -z
since Z = 0. A differential form w € Q" (M\Z) is @ + y2 A y3 A B with (a,8) € Q" <MS]\Z) ‘@Q" <MS]\Z) Tt
remains to compute the perverse degree ||wl|o.

We consider an S3-invariant Thom-Mather system Ty, = {To ‘ Q € .#3}. It induces the N-invariant Thom-Mather

system T, 51 = {Tg N M | Qe A} on MS' (cf. Section[L6). Notice that To\Q = S? xy <(TQ N MSI)\Q). The

map 7g: Tp\Q — Q becomes (g, x) — To(x). So, the fiber of 7o over a point y € Q is §3 xy ((Tél (y) n MSI)\Q).
This gives ||w||o = max{||e||g,2 + ||8]|o} and therefore

. Z _ -Z
H (M) =H (Q_(M)) —H (MS‘) ‘o H" ;<MS|) ’,
p p—

i
since the complex 9: (M) computes the cohomology of M for the perversity 0 < p < 7 (cf. Section [[.3and Proposi-
tion 2.1). Finally, we get (34) from (MSI\Z)/Z2 = (M\Z)/S3. o

Remark 5.1. Considering the perversity p = 0 we get

*

H (M) = H* (M/S*) @ H*™ (M5'>_Z2

(cf- (33) and [5), Proposition 13.4)]).
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