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THE GYSIN BRAID FOR S 3-ACTIONS ON MANIFOLDS

JOSÉ IGNACIO ROYO PRIETO AND MARTINTXO SARALEGI-ARANGUREN

April 29, 2024

Abstract. In a previous work, we constructed a Gysin sequence that relates the cohomology of a manifold M to that of the

orbit space M{S 3, where the sphere S 3 acts smoothly on M. This sequence includes an exotic term that depends on MS 1
, the

subset of points fixed by the action of the subgroup S 1.

The orbit space is a stratified pseudomanifold, which is a type of singular space where intersection cohomology can be

applied. When the action is semi-free, the second author has already constructed a Gysin sequence that relates the cohomology

of M to the intersection cohomology of M{S 3.

However, what happens when the action is not semi-free? This is the main focus of this work. The situation becomes more

complex, and we do not find just a Gysin sequence. Instead, we construct a Gysin braid that relates the cohomology of M to

the intersection cohomology of M{S 3. This braid also contains an exotic term that depends on the intersection cohomology of

the fixed point subset MS 1
.

Given a smooth free action of the sphere S 3 on a smooth manifold M, we have a sphere bundle and the Gysin sequence

(1) ¨ ¨ ¨ // H
˚´1

pMq // H
˚´4`

M{S 3
˘

// H
˚`

M{S 3
˘

// H
˚

pMq // ¨ ¨ ¨

which relates the cohomologies of the manifold M and that of its orbit space M{S 3 (see for example [9, 2]). In the case

of a semi-free action, we do not have a sphere bundle, but we have the Gysin sequence

(2) ¨ ¨ ¨ // H
˚´1

pMq // H
˚´4

´
M{S 3,MS 3

¯
// H

˚`
M{S 3

˘
// H

˚
pMq // ¨ ¨ ¨ .

In the general case, an exotic term appears:

(3) ¨ ¨ ¨ // H
˚´1

pMq // H
˚´4`

M{S 3,Σ{S 3
˘

‘
´

H
˚´3

´
MS 1

¯¯´Z
2 // H

`
M{S 3

˘
// H

˚
pMq // ¨ ¨ ¨

(cf. [13]). In this context, Σ Ă M denotes the subset of points in M whose isotropy group is infinite. The group Z2 acts

on MS 1
by j P S 3.

When the action is free, the orbit space is a manifold. In the more general case, it is a pseudomanifold. The second

author constructed in [15] the following exact sequence

(4) ¨ ¨ ¨ // H
˚´1

pMq // H
˚´4

p´e

`
M{S 3

˘
// H

˚

p

`
M{S 3

˘
// H

˚
pMq // ¨ ¨ ¨

This sequence establishes a connection between the cohomology of the space M and the intersection cohomology of its

orbit space M{S 3 in the case of a semi-free action. This exact sequence holds when 0 ď p ď t. The Euler perversity e

takes the value 4 on singular strata. In the special case where p “ 0, the exact sequence (4) simplifies to (2).

In this paper, we establish a connection between the cohomology of a manifold M and the intersection cohomology

of its orbit space M{S 3, for any smooth action Φ : S 3 ˆ M Ñ M. Of particular interest is the case where the action has

three-dimensional orbits, also known as a mobile action.
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Given a mobile action, we obtain the following Gysin braid which relates the cohomologies H
˚

pMq and H
˚

p

`
M{S 3

˘

H
˚

p

`
M{S 3

˘

➃
❑❑

❑❑
❑❑

%%❑
❑❑

❑❑

➀
**

H
˚

pMq

➀
◗◗

◗◗
◗◗

◗◗
◗

((◗
◗◗

◗◗
◗◗

➂
++

H
˚´3

p´e

`
M{S 3

˘

➂
▲▲

▲▲
▲▲

%%▲
▲▲

▲▲

➁ --

à

S PS1

H
˚´1´2pS

PS

ˆ
S

S 1
˙´p´1qpS Z

2

H
˚
´

K
¨

p
pMq

¯
➂♠♠♠♠♠♠♠

66♠♠♠♠♠♠♠♠♠

➃
◗◗

◗◗
◗◗

((◗
◗◗◗

H
˚
´

G
¨

p
pMq

¯
➁sssss

99ssssss

➀
❑❑

❑❑
❑

%%❑
❑❑

❑❑
❑

H
˚`1

´
K

¨

p
pMq

¯
➃♠♠♠♠♠♠♠

66♠♠♠♠

➂
◗◗

◗◗
◗◗

◗

((◗
◗◗

◗◗
◗◗

◗

H
˚´4

p´e

`
M{S 3

˘
➂ssssss

99sssss

➁
11

à

S PS1

H
˚´2pS ´2

PS

ˆ
S

S 1
˙´p´1qpS Z

2

➁♠♠♠♠

66♠♠♠♠♠♠

➃

33
H

˚`1

p

`
M{S 3

˘
➃rrrrrr

99rrrrr

➀

33
H

˚`1
pMq,

where

- S1 (resp. S3) is the family of singular strata S of M with dim S 3
x “ 1 (resp. 3) for any x P S . Here S 3

x denotes

the isotropy subgroup.

- the Euler perversity e takes the value 4 (resp. 2) on the strata of S1 (resp S3),

- the perversity p lies between 0 and the top perversity t on M,

- the number pS denotes the integer part of ppS q{2,

- the perversity PS on the filtered space S
S 1

is defined by PS pQq “ ppQq ´ 2pS ´ 2 for any Q P S3 with Q Ă S ,

- the Gysin term G
˚

p
pMq represents the cokernel of the map induced by the natural projection π : M Ñ M{S 3 and

- the co-Gysin term K
˚

p
pMq denotes the kernel of the map induced by integrating along the fibers of π

(see Theorem C). The braid consists of four long exact sequences, denoted by ➀, ➁, ➂, and ➃. All the triangles and

diamonds in the braid are commutative. The top and bottom sequences in the braid are semi-exact and both have the

same exactness defaults (cf. Remark 4.3 (c)). The cohomologies of the Gysin and co-Gysin terms are interconnected

through the long exact sequences of Remark 4.3 (b).

Let’s analyze the four exact sequences that make up the Gysin braid.

In the classical framework of a free action, there exist two methods for constructing the Gysin Sequence (1). One

approach involves employing the pullback induced by the natural projection π : M Ñ M{S 3, while the other entails

integrating along the fibers of π. Remarkably, both methodologies yield identical outcomes, resulting in the Gysin

sequence. Meanwhile, the Gysin sequence (3) is derived via the former method.

In the broader context of this paper’s discussion on mobile actions, we utilize both techniques, and they yield distinct

results. This fundamental difference is the primary reason why the Gysin braid appears instead of a Gysin sequence.

‚ The pull back associated to the projection π induces the long exact sequence ➀:

¨ ¨ ¨ // H
˚´1

pMq // H
˚´1

´
G

¨

p
pMq

¯
// H

˚

p

`
M{S 3

˘
// H

˚
pMq // ¨ ¨ ¨

where the Gysin term G
˚

p
pMq is the cokernel of π˚. This is the first Gysin sequence associated to the action Φ.

We can determine the cohomology of the Gysin-term through the sequence ➁, which employs integration

along the fibers of π. This method is employed in [13], where we implicitly work with the perversity p “ 0.

In this context, we obtain the Gysin sequence (3) since the sequence ➁ splits at the position of the connecting

map. However, it’s important to note that for other perversities, the sequence ➁ may not necessarily split as

demonstrated by the example in Remark 4.3 (d).

‚ Employing the integration along the fibers of π, we obtain the long exact sequence ➂:

¨ ¨ ¨ // H
˚´1

pMq // H
˚´4

p´e

`
M{S 3

˘
// H

˚
´

K
¨

p
pMq

¯
// H

˚
pMq // ¨ ¨ ¨ ,

where the co-Gysin term K
˚

p
pMq is the kernel of the integration operator along the fibers of π. This is the second

Gysin sequence associated to the action Φ.
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We compute the cohomology of the co-Gysin term using the sequence ➃, which employs the pullback operator

induced by π. It’s important to note that unlike the previous case, sequence ➂ does not necessarily split, even for

the perversity p “ 0, as demonstrated in the example in Remark 4.3 (d).

‚ If the exotic term
à

S PS1

H
˚

PS

ˆ
S

S 1
˙´p´1qpS Z

2

vanishes, then the Gysin braid simplifies to the sequence (4). In

particular, this happens when the action Φ is semi-free, as noted in Remark 4.3 (a).

‚ Another approach to constructing a Gysin sequence involves utilizing the Leray-deRham spectral sequence.

Recall that in the case of a differentiable action Φ : G ˆ M Ñ M of a connected compact Lie group G on a

manifold M, there exists a spectral sequence E
i, j

r
converging to H

i` j

pMq, where E
i, j

2
“ H

i

pM{Gq b H
j

pGq. When

G “ S 3 and the action is free, almost-free, or semifree, this spectral sequence degenerates into a Gysin sequence

(cases (1), (2), and (4)). This is because the second term of the spectral sequence contains only two levels:

j “ 0, 3. However, the situation becomes significantly more complex when the action is not free, and computing

the second term of this spectral sequence becomes challenging (see [14, 16]).

In the case of a mobile action of S 3, and using singular cohomology, we have shown in [13] that the second

term of the spectral sequence possesses three levels ( j “ 0, 2, 3) and that the spectral sequence degenerates into

the Gysin sequence (3). In this paper, we prove that that this phenomenon persists within the framework of

intersection cohomology. The Leray-deRham spectral sequence
p
E

i, j

r
depends on a perversity 0 ď p ď t on M

and satisfies the following properties.

‹ It converges:
p
E

i, j

r
ñ Hi` jpMq.

‹ The second page is given by

p
E

i, j

2
“

$
’’’’’&
’’’’’%

H
i

p

`
M{S 3

˘
if j “ 0

à

S PS1

H
i´2pS

PS

ˆ
S

S 1
˙´p´1qpS Z

2

if j “ 2

H
i

p´e

`
M{S 3

˘
if j “ 3.

It is 0 otherwise.

‹ The Gysin term appears in this spectral sequence through the long exact sequence ➁

¨ ¨ ¨ // H
i´1
´

G
¨

p
pMq

¯
//

p
E

i´4,3

2

d2 //
p
E

i´2,2

2
// H

i
´

G
¨

p
pMq

¯
// ¨ ¨ ¨ .

‹ This spectral sequence degenerates at the third page and produces the long exact sequence ➀.

In other words, the information in the Leray-deRham spectral sequence beyond page
p
E

2
is contained within the

Gysin braid.

‚ The non-mobile actions are simpler, and we obtain H
˚

pMq “ H
˚

p

`
M{S 3

˘
‘ H

˚´2

p´2

´
MS 1

¯´Z
2

(see Section 5).

In the following, we consider a smooth action Φ : S 3 ˆ M Ñ M, where M is a second countable, Hausdorff, smooth

manifold of dimension m without boundary. For the definitions and properties related to compact Lie group actions, we

refer the reader to [2].

The first section of this work is devoted to studying the intersection cohomology of the orbit space M{S 3. We demon-

strate how to compute this cohomology using differential forms defined on an open subset of M. The complex of invariant

intersection forms of M is a key tool for constructing the Gysin braid, which is discussed in the second section. The final

two sections of this work focus on constructing and analyzing the Gysin braid associated to the action. This braid arises

from integrating along the orbits of the action discussed in section three.
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1. Intersection cohomology

The intersection cohomology of the orbit space M{S 3 is originally defined using singular simplices. In this section, we

demonstrate an alternative method for computing this cohomology by utilizing differential forms defined on the regular

part of M.

1.1. Filtered spaces [6]. The orbit type stratification S of M is the partition obtained by defining an equivalence

relation in M as follows:

x „ y ô dim S 3
x “ dim S 3

y .

This condition is equivalent to pS 3
xq0 and pS 3

yq0 being conjugated, where p´q0 denotes the connected component con-

taining the unity. The elements of S are called strata, and they correspond to the connected components of the partition

induced by „.

There are four possible isotropy subgroups of a point in M, up to conjugacy: a finite subgroup of S 3, S 1, the normalizer

N “ NpS 1q of S 1 in S 3, and S 3 itself (cf. [2, Th. 9.5,pag.153 ]). Recall that N “ S 1 \ j S 1
� Op2q.

We define S “ S0 \ S1 \ S3 as follows:

S0 “ tS P S
ˇ̌

dim S 3
x “ 0, x P S u S1 “ tS P S

ˇ̌
dim S 3

x “ 1, x P S u S3 “ tS P S
ˇ̌

dim S 3
x “ 3, x P S u

Mobile strata Semi-mobile strata Fixed strata

The action is considered mobile if S0 , H. If S0 “ H and S1 , H, we say that the action is semi-mobile. The

remaining case is the trivial action. The set of singular strata is denoted by S sing. If the action is mobile, then S sing “
S1 \ S3. If the action is semi-mobile, then S sing “ S3.

We define F3 “ \S PS3
S “ MS 3

and F1 “ \S PS1
S , which are S 3-invariant submanifolds of M1. Note that F1 is

actually the twisted product S 3 ˆN MS 1
, where S 3 acts on the left of the left factor. Furthermore, if S P S1 we have

S “ S 3 ˆN S S 1

.

The union of singular strata is Σ “ F1 \ F3 (resp. F3) when the action is mobile (resp. semi-mobile).

Filtered spaces provide the essential framework for defining singular intersection cohomology, which is the dual of the

intersection homology introduced in [8] (see, for example, [5]).

Proposition 1.1. The strata of S are invariant submanifolds. For each integer i we define Mi “ \
 

S P S
ˇ̌

dim S ď i
(

.

The filtration

H “ M´1 Ă M0 Ď ¨ ¨ ¨ Ď Mi Ď ¨ ¨ ¨ Ď Mn “ M.

defines a filtered space.

For each integer i we define
`

M{S 3
˘

i
“ \

 
πpS q

ˇ̌
S P S and dim πpS q ď i

(
, where π : M Ñ M{S 3 denotes the

canonical projection. The filtration

H “
`

M{S 3
˘

´1
Ă
`

M{S 3
˘

0
Ď ¨ ¨ ¨ Ď

`
M{S 3

˘
i

Ď ¨ ¨ ¨ Ď
`

M{S 3
˘

m
“ M{S 3

defines a filtered structure in M{S 3.

1The next Proposition shows that they are manifolds, in fact, these manifolds may have connected components with different dimensions.
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Proof. Let S be a stratum of S . Each point x P S possesses an open neighborhood S 3-equivariantely diffeomorphic

to the twisted product S 3 ˆH R
a where the isotropy subgroup H “ S 3

x acts orthogonally on Ra. The point x becomes

the class x1, 0y. Recall that the isotropy subgroup of a point xg, uy P S 3 ˆH R
a is gHug´1. So, the trace of S in tis

neighborhood is S 3 ˆH R
b, where Rb “ tu P Ra

ˇ̌
dim Hu “ dim Hu “ tu P Ra

ˇ̌
H0 ¨ u “ uu. The stratum S is an

invariant submanifold with dim S “ 3 ` b ´ dim H.

It remains to prove that each Mi and
`

M{S 3
˘

i
are closed subsets. It suffices to verify that the maps dim: M Ñ Z and

i : M Ñ Z, defined by dimpxq “ dim S and ipxq “ dim πpS q “ dim S {S 3 “ dim S ` dim S 3
x ´ 3, with S P S and x P S ,

are lower semi-continuous. Since the problem is a local question then we can suppose that M is S 3 ˆH R
a. We prove

that the functions dim and i are bigger than dimpxq and ipxq respectively. Notice that the map xg, uy ÞÑ ´ dim S 3
xg,uy

is a

lower semi-continuous map since ´ dim S 3
xg,uy

“ ´ dim Hu ě ´ dim H “ ´ dim S 3
x. So, it remains to study the function

dim.

Considering the G-equivariant covering S 3ˆH0
R

a Ñ S 3ˆHR
a, we can suppose that H is connected. Let Ra “ RbˆRc

be the H-equivariant orthogonal decomposition of Ra. This gives S 3 ˆH R
a “ R

b ˆ
`
S 3 ˆH R

c
˘
. Given a point

y “ xg, uy P S 3 ˆH R
a we consider Q P S the stratum containing this point. In fact, Q “ Rb ˆ

`
S 3 ˆH R

d
˘

where

R
d “ tv P Ra

ˇ̌
dim Hv “ dim Huu. We have finished since dimpyq “ dim Q “ b ` 3 ` d ´ dim H ě b ` 3 ´ dim H “

dim S “ dimpxq. �

The dimension m of the filtered space M is dim M. The dimension n of the filtered space M{S 3 is m ´ 3 (resp. m ´ 1)

when the action is mobile (resp. semi-mobile).

Brylinski-Goresky-MacPherson showed how to compute intersection cohomology with differential forms (cf. [4]). To

this effect, they use the Thom-Mather systems.

1.2. Thom-Mather systems. Since F1 and F3 are S 3-invariant sub-manifolds of M, we can consider τk : Tk Ñ Fk

two S 3-invariant tubular neighborhoods of Fk in M, k “ 1, 3. Associated to these tubular neighborhoods we have the

following maps:

 The radius map νk : Tk Ñ r0,8r s defined fiberwise by u ÞÑ }u}. This map is invariant and smooth.

 The dilatation map Bk : r0,8rˆTk Ñ Tk, defined fiberwise by pt, uq ÞÑ t ¨ u. It is a smooth equivariant map.

Given S P S contained in Fk for k “ 1, 3, we can define TS “ τ´1
k

pS q and τS : TS Ñ S as the restriction of τk. We

can define the maps νS and BS analogously. The soul of TS is defined as the open subset DS “ ν´1
S

pr0, 2rq.

The family of tubular neighborhoods TM “ T1, T3 is called a Thom-Mather system of M when:

"
τ3 “ τ3˝τ1
ν3 “ ν3˝τ1

*
on T1 X T3 “ τ´1

1
pT3 X F1q

We have proved in [13] that there exists an S 3-invariant Thom-Mather system of M.

Consider the induced maps rτk : Tk{S 3 Ñ Fk{S 3, rνk : rTk Ñ r0,8r and rBk : r0,8rˆTk{S 3 Ñ Tk{S 3. The family of

tubular neighborhoods TM{S 3 “ tT1{S 3, T3{S 3u is a Thom-Mather system of M{S 3.

We need a more precise description of the atlas of the bundle τ3. The open tubular neighborhood T3 can be chosen

as a disjoint union T3 “ \tTS

ˇ̌
S P S3u with TS X TS 1 “ H if S , S 1. There exists an S 3-equivariant atlas

A “ tϕ : τ´1
S

pUq Ñ U ˆRb`1u relatively to an orthogonal action ΦS : S 3 ˆRb`1 Ñ Rb`1, having the origin as the only

fixed point.

1.3. Intersection differential forms on M. The perverse degree of a differential form ω P Ω
˚

pMzΣq relatively to a

singular stratum S P S is the number

||ω||S “ min
 
ℓ P N

ˇ̌
ωpv0, . . . , vℓ,´q “ 0 where v0, . . . , vℓ are vectors tangent to the fibers of τS : DS Ñ S

(

if ω , 0 on DS . If ω “ 0 on DS we define ||ω||S “ ´8. The condition ||ω||S “ ||dω||S “ 0 is equivalent to stating that

the restriction of ω to DS is a τS -basic form.

We shall need the following properties of the perverse degree:

(5)
||ω||S ď |ω|, degree of ω, ||dω||S ď ||ω||S ` 1 ||g˚ω||S “ ||ω||S for each g P S 3.

||ω` η||S ď maxp||ω||S , ||η||S q ||ω^ η||S ď ||ω||S ` ||η||S ||iXω||S ď ||ω||S or each vector field X
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These properties come directly from the definition of perverse degree. We have also used the fact that the Thom-Mather

system is S 3-invariant.

A perversity is a map p : S sing Ñ Z “ Z \ t´8,8u. The constant perversity is ℓpS q “ ℓ, with ℓ P Z, for any

singular stratum. The top perversity is defined by tpS q “ codim S ´ 2 for any singular stratum S .

The complex of intersection differential forms of M, relatively to the perversity p is defined by

Ω
˚

p
pMq “

!
ω P Ω

˚
pMzΣq

ˇ̌
maxp||ω||S , ||dω||S q ď ppS q @S P S

)
.

The complex Ω
˚

p
pMq computes the cohomology H

˚
pMq for Goresky-MacPherson perversities [4] or for perversities

verifying 0 ď p ď t [1, 17]. The cohomology of this complex is H
˚

pM,Σq (resp. H
˚

pMzΣq) when p ă 0 (resp. p ą t).

We can compute the intersection cohomology of the orbit space M{S 3 by using differential forms defined on MzΣ.

To see how, first notice that the natural projection π establishes a bijection between the strata of M and those of M{S 3.

Therefore, a perversity p on M{S 3 determines a perversity p on M as well, which we will still denote by p, following the

formula ppS q “ ppS {S 3q. The reverse is also true. Throughout this work, we will consider all perversities on M. Let us

set such a perversity as p. Its dual perversity is Dp “ t ´ p.

A differential form ω P Ω
˚

pMzΣq is a basic form if it verifies the following condition: ωpv,´q “ dωpv,´q “ 0 for

each vector tangent v to the fibers of π : MzΣÑ pMzΣq{S 3. It has been proved in [18] that the sub-complex Ω
˚

p

`
M{S 3

˘

of basic forms of Ω
˚

p
pMq computes the intersection cohomology H

˚

Dp

`
M{S 3

˘
. Notice that this cohomology does not

depend on the Thom-Mather system we have chosen.

Given two perversities q ď p on M the step complex Ω
˚

p{q

`
M{S 3

˘
is the quotient Ω

˚

p

`
M{S 3

˘
{Ω

˚

q

`
M{S 3

˘
and its

cohomology is denoted by H
˚

p{q

`
M{S 3

˘
(cf. [11]).

1.4. Closure of a stratum. The exotic term of the Gysin braid we construct in this work uses a particular filtered space

we describe now. Consider a non-closed stratum S P S1. The closure of S is of the form S “ S \ℓPJ Qℓ where

tQℓ P S3

ˇ̌
ℓ P Ju “ tQ P S3

ˇ̌
Q Ă S u. It is a filtered space whose regular stratum is S . Any perversity p on M induces

a perversity on S , still denoted by p, which is defined by the numbers ppQℓq, ℓ P J. The Thom-Mather system TM of M

induces the Thom-Mather system T
S

“ tTQℓ X S
ˇ̌
ℓ P Ju.

In fact, we need to go a step further and consider the space S
S 1

which is the union S S 1
\ℓPJ Qℓ. It is a filtered

space whose regular part is S S 1
. Any perversity p on M induces a perversity on S

S 1

, still denoted by p, which is

defined by the numbers ppQℓq, ℓ P J. The Thom-Mather system TM of M induces the Thom-Mather system T
S

S 1 “
"

TQℓ X S
S 1 ˇ̌
ℓ P J

*
.

The complex of intersection differential forms of S
S 1

, relatively to the perversity p, can be defined as in the previous

Section. It computes the intersection cohomology H
˚

p

ˆ
S

S 1
˙

. Since j2 “ ´1 P S 1, the group Z2 acts on S
S 1

by

g ¨ x “ jpxq, where g denotes the generator of Z2 . Then he group Z2 also acts on this cohomology. We shall use the

notation

H
˚

p

ˆ
S

S 1
˙´Z

2

“

"
ω P H

˚

p

ˆ
S

S 1
˙ ˇ̌

g ¨ ω “ ´ω

*
.

In fact, we are going to use a particular perversity on this space. Associated to any perversity p on M we have the

perversity PS on S
S 1

defined by

PS pQq “

"
ppQq ´ 2pS ´ 2 if Q “ Qℓ for some ℓ P J.

0 otherwise

where pS is the integer part of ppS q{2.

1.5. S 1-actions. A similar study can be done for a smooth action Ψ : S 1 ˆ M Ñ M. In this case the orbit stratification

type is S “ S0 \ S1 where

S0 “ tS P S
ˇ̌

dim S 1
x “ 0, x P S u S1 “ tS P S

ˇ̌
dim S 1

x “ 1, x P S u
Mobile strata (regular strata) Fixed strata (singular strata)
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We suppose that the action is mobile, meaning S0 ,H or non trivial.

The family of singular strata is denoted by S sing and its union is Σ. The manifold M and the orbit space M{S 1 are

filtered spaces. Thom-Mather systems also exist. In this case TM “ tTS

ˇ̌
S P S1u where each τS : TS Ñ S is a S 1-fiber

bundle. The elements of TM can be chosen to be disjoint.

We need a more precise description of the atlas of the bundle τS . There exists an S 1-equivariant atlasA “ tϕ : τ´1
S

pUq Ñ

U ˆ R2b`2u relatively to an orthogonal action ΦS : S 1 ˆ R2b`2 Ñ R
2b ` 2, b ě 0, having the origin as the only fixed

point.

A perversity is a map p : S sing Ñ Z. The top perversity is defined by tpS q “ codim S ´ 2 on S1. The dual perversity

of p is the perversity Dp “ t ´ p.

The perverse degree || ´ ||S , S P S1, is defined relatively to this Thom-Mather system. The complex

Ω
˚

p
pMq “ tω P Ω

˚
pMzΣq

ˇ̌
maxp||ω||S , ||dω||S q ď ppS qu

computes the cohomology H
˚

pMq, where p is a perversity verifying 0 ď p ď t (cf. [17]). On the other hand, the complex

Ω
˚

p

`
M{S 1

˘
“ tω P Ω

˚`
pMzΣq{S 1

˘ ˇ̌
maxp||ω||S , ||dω||S q ď ppS qu,

where Ω
˚`

pMzΣq{S 1
˘

“ tω P Ω
˚

pMzΣq
ˇ̌
ωpv,´q “ ωpv,´q “ 0 for each vector tangent v to the fibers of π : MzΣÑ

pMzΣq{S 1u, basic forms, computes the intersection cohomology H
˚

Dp

`
M{S 1

˘
. Notice that this cohomology does not

depend on the Thom-Mather system chosen.

Given two perversities q ď p on M the step complex Ω
˚

p{q

`
M{S 1

˘
is the quotient Ω

˚

p

`
M{S 1

˘
{Ω

˚

q

`
M{S 1

˘
and its

cohomology is denoted by H
˚

p{q

`
M{S 1

˘
(cf. [11]). This cohomology fits into the long exact sequence

(6) ¨ ¨ ¨ // H
ℓ

q

`
M{S 1

˘
// H
ℓ

p

`
M{S 1

˘
// H
ℓ

p{q

`
M{S 1

˘
// H
ℓ`1

q

`
M{S 1

˘
// ¨ ¨ ¨ .

1.6. N-actions. A smooth action Θ : N ˆ M Ñ M induces a circle action Ψ : S 1 ˆ M Ñ M. Since the stratification S1

of this last action is N-invariant then we can choose an N-invariant Thom-Mather system TM “ tTS

ˇ̌
S P S1u, that is,

the map g : TS Ñ TgpS q is an S 1-morphism bundle for each g P N.

Since j2 “ ´1 P S 1, the singular part of the S 1-action Σ “ \tS P S1u is Z2-invariant relatively to the action

g ¨ x “ jpxq. Also, the union S Y jpS q is Z
2
-invariant for any S P S1. Notice that we have two possibilities jpS q “ S or

jpS q X S “ H.

The induced family TM{S 1 “ tTS {S 1
ˇ̌

S P S1u is a Thom-Mather system on the orbit space M{S 1. The element

j P S 3 induces the map j : M{S 1 Ñ M{S 1 preserving TM{S 1 . So, it induces the map j˚ : Ω
˚

p

`
M{S 1

˘
Ñ Ω

˚

p

`
M{S 1

˘
.

Since j2 “ ´1 P S 1 then j˚ ˝ j˚ is the identity. So, the group Z2 acts on Ω
˚

p

`
M{S 1

˘
by g ¨ ω “ j˚ω. We shall write

Ω
˚

p

`
M{S 1

˘´Z
2 “ tω P Ω

˚

p

`
M{S 1

˘ ˇ̌
g ¨ ω “ ´ωu.

The space H
˚

p

`
M{S 1

˘´Z
2 is defined in a similar way.

2. Invariant differential forms

A key ingredient in this paper is the complex of S 3-invariant forms of Ω
˚

p
pMq. It is a simpler sub-complex computing

the same cohomology.

For the rest of this Section we assume that the action Φ : S 3 ˆ M Ñ M is a mobile action. In particular, the action of

S 3 on MzΣ is almost free, that is, the isotropy subgroup of any point of MzΣ is finite.

2.1. The Lie algebra sup2q. We shall consider tu1, u2, u3u an orthogonal basis of the Lie algebra sup2q of S 3, relatively

to a bi-invariant metric κ of S 3, where

- u1 generates the Lie algebra of the subgroup S 1.

- ru1, u2s “ u3, ru2, u3s “ u1, ru3, u1s “ u2 and

- Ad p jq u1 “ ´u1,Ad p jq u2 “ u2,Ad p jq u3 “ ´u3.
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Consider the action Ψ : S 3 ˆ S 3 Ñ S 3, defined by Ψpg, kq “ k ¨ g´1. We have on S 3 the fundamental vector fields Yi

associated to ui, i “ 1, 2, 3. They are left invariant vector fields verifying j˚Y1 “ ´Y1, j˚Y2 “ Y2 and j˚Y3 “ ´Y3.

We shall write γi P Ω
1`

S 3
˘

the dual form of Yi relatively to the metric κ: γi “ iYi
κ, i “ 1, 2, 3. They are left

invariant differential forms verifying j˚γ1 “ ´γ1, j˚γ2 “ γ2 and j˚γ3 “ ´γ3. The differentials verify dγ1 “ γ2 ^ γ3,

dγ2 “ ´γ1 ^ γ3 and dγ3 “ γ1 ^ γ2.

2.2. Fundamental vector fields and characteristic forms. The fundamental vector field associated to u P sup2q is

Xu. For the sake of simplicity, we shall write Xi “ Xui
with i “ 1, 2, 3. This vector field is defined on M but we are

going to work with its restriction to MzΣ. Since the action is mobile then these vector fields are non-vanishing on MzΣ.

Moreover, the family tX1pxq, X2pxq, X2pxqu is a basis of the tangent space of the orbit S 3pxq for any x P MzΣ. We have

the equalities: j˚X1 “ j˚Xu1
“ XAd p jqu1

“ ´Xu1
“ ´X1 and j˚X2 “ X2, j˚X3 “ ´X3 in the same way.

An adapted metric on MzΣ is a S 3-invariant Riemannian metric µ on MzΣ verifying

(7) µpXv1
pxq, Xv2

pxqq “ κpv1, v2q @x P MzΣ and v1, v2 P sup2q.

It always exists since the fundamental vector fields are non-vanishing.

We denote by χu “ iXu
µ P Ω

1
pMzΣq the characteristic form associated to u P sup2q. Notice that, for each g P S 3, we

have

(8) g˚χ
u “ χAd pg´1q¨u.

For the sake of simplicity, we shall write χi “ χui
, for i “ 1, 2, 3. Since LXu

χ
v “ χru,vs, for each u, v P sup2q, then we

have

(9)
LX1
χ1 “ LX2

χ2 “ LX3
χ3 “ 0, LX1

χ2 “ ´LX2
χ1 “ ´χ3

LX1
χ

3 “ ´LX3
χ

1 “ χ2 LX2
χ

3 “ ´LX3
χ

2 “ ´χ1.

Since χkpXℓq “ µpXℓ, Xkq “ δℓk, each differential form ω P Ω
˚

pMzΣq possesses a unique writing,

(10) ω “ ω0 ` χ1 ^ω1 ` χ2 ^ω2 ` χ3 ^ω3 ` χ1 ^ χ2 ^ω12 ` χ1 ^ χ3 ^ω13 ` χ2 ^ χ3 ^ω23 ` χ1 ^ χ2 ^ χ3 ^ω123,

where the coefficients ω‚ P Ω
˚

pMzΣq are horizontal forms, that is, they verify iXℓω‚ “ 0 for each ℓ “ 1, 2, 3. This is the

canonical decomposition of ω.

The canonical decomposition of the differential of a characteristic form is

(11) dχ1 “ e1 ` χ2 ^ χ3 dχ2 “ e2 ´ χ1 ^ χ3 dχ3 “ e3 ` χ1 ^ χ2

for some horizontal forms e1, e2, e3 P Ω
2
pMzΣq, called the Euler forms. Notice that

(12) j˚e1 “ ´e1 j˚e2 “ e2 j˚e3 “ ´e3.

2.3. Invariant differential forms. A differential form ω of MzΣ is an invariant form when g˚ω “ ω for each g P S 3

or, equivalently, L
Xℓ
ω “ 0 for each ℓ “ 1, 2, 3. In fact, invariant differential forms are characterized by the following

conditions:

ω0 and ω123 are basic forms, LXℓωℓ “ 0, ℓ “ 1, 2, 3 LX1
ω23 “ LX2

ω13 “ LX3
ω12 “ 0

LX1
ω2 “ ´LX2

ω1 “ ´ω3 LX1
ω3 “ ´LX3

ω1 “ ω2, LX2
ω3 “ ´LX3

ω2 “ ´ω1,

LX1
ω13 “ LX2

ω23 “ ω12 LX1
ω12 “ ´LX3

ω23 “ ´ω13 LX2
ω12 “ LX3

ω13 “ ´ω23

(see (9)).

The complex of invariant forms is denoted by Ω
˚

pMzΣq. The complex of invariant intersection differential forms is

Ω
˚

p
pMq “ Ω

˚
pMzΣq X Ω

˚

p
pMq. Some cohomological computations are simpflied by replacing the complex Ω

˚

p
pMq by

its subcomplex Ω
˚

p
pMq, since proceeding as in [9, Theorem I, pag. 151], we have

Proposition 2.1. The inclusion Ω
˚

p
pMq ãÑ Ω

˚

p
pMq is a quasi-isomorphism for any perversity p.

Notice that Ω
˚

p

`
M{S 3

˘
“ tω P Ω

˚

p
pMq

ˇ̌
iXℓω “ 0 for each ℓ “ 1, 2, 3u.
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2.4. Perverse degree of characteristic forms. Notice that, for any singular stratum S P S sing, we have:

(13) ||ω||S “ max
 

||ω0||S , ||χℓ ^ ωi||S , ||χℓ ^ χk ^ ωℓk||S , ||χ1 ^ χ2 ^ χ3 ^ ω123||
ˇ̌

1 ď ℓ ă k ď 3
(

for any ω P Ω
˚

pMzΣq (cf. (5)). When S P S3 is a fixed stratum then the orbits of the action are tangent to the fibers of

τS : DS Ñ S . So, we have

(14) ||χℓ ^ α||S ´ 1 “ ||χℓ ^ χk ^ α||S ´ 2 “ ||χ1 ^ χ2 ^ χ3 ^ α||S ´ 3 “ ||α||S ,

for each α P Ω
˚

pMzΣq and each 1 ď ℓ ă k ď 3.

In order to control the perverse degree of characteristic forms relatively to mobile strata we need richer metrics than

adapted metrics.

Definition 2.2. An adapted metric µ on MzΣ is an adjusted metric if

(15) µpXvpxq,wq “ 0

whenever

‚ x P D
S
zΣ for some S P S1,

‚ w is a vector tangent to the fibers of τ
S

: D
S
zΣÑ S at x, and

‚ v P sup2q belongs to the κ-orthogonal of sup2qy, Lie algebra of S 3
y with y “ τ

S
pxq.

Proposition 2.3. Every mobile action admits an adjusted metric.

Proof. A convex combination of adapted metrics is an adapted metric. So, by using partitions of unity, we can reduce the

problem to the following two cases:

‚ M “ TS for some S P S1. In this case, Σ “ S . We set µ1 an adapted metric on TS zS .

We put K (resp. G) the sub-bundle of TS zS tangent to the fibers of τS (resp. the orbits of the action). The bundle

GXK is of constant rank equal to one. In fact, we have

Gx XKx “ tXvpxq
ˇ̌

v P sup2qyu

for each x P TS zΣ with y “ τS pxq. Let us consider the S 3-invariant decomposition

T pTS zΣq “ D‘K ‘ pG`KqKµ1 ,

whereD “ pGXKqKµ1 XG. Since µ1 “ κ on G (cf. (7)) then we haveDx “ tXvpxq
ˇ̌
v P sup2qK

y u for each x P TS zΣ with

y “ τS pxq. We denote by µ1
1
, µ1

2
, and µ1

3
the restrictions of µ to each term of the above decomposition. The Riemannian

metric µ defined by:

µ “ µ1
1 ` µ1

2 ` µ1
3,

is an adapted metric. It also satisfies (15) since w P Kx and Xvpxq P Dx.

‚ M “ TQ for some Q P S3. The open subset TQzΣ is S 3-equivariantly diffeomorphic to pDQzΣqˆs0,8r. The action

of S 3 on DQzΣ has no fixed points. The previous step gives an adjusted metric µ on DQzΣ. As the tubular neighborhood

TS of any stratum S P S1 is the product TS XpDQzΣqˆs0,8r, the metric µ` dr2 is an adjusted metric on TQzΣ. �

For a such metric we can compute the terms appearing in formula (13).

Proposition 2.4. Let us suppose that MzΣ is endowed with an adjusted metric. Given a stratum S P S1 and a horizontal

form α P Ω
˚

pMzΣq we have

(16) ||χℓ ^ α||S “ ||χℓ ^ χk ^ α||S “ ||χ1 ^ χ2 ^ χ3 ^ α||S “ ||α||S ` 1,

for each 1 ď ℓ ă k ď 3.

Proof. Without loss of generality, we can suppose M “ TS and Σ “ S . We proceed in two steps.

Step ď. Following (5) it suffices to prove that ||χℓ ^ χk||S ď 1 and ||χ1 ^ χ2 ^ χ3||S ď 1. We deal with the first

inequality, the second one can be approached in the same way. If ||χℓ ^ χk||S “ 2 then there exists x P TS zS and

v,w P Kx with χℓ ^ χkpv,wq , 0. Since dimtuℓ, uku2 “ 2 “ dim sup2qK
y and dim sup2q “ 3, then there exist v1 P sup2qK

y

and v2 P sup2q with χv1
^ χv2

pv,wq , 0. This is impossible since χv1
pvq “ χv1

pwq “ 0 (cf. (15)).

2Notation t´u stands for the vector subespace generated by v.
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Step ě. Since the result is clear for α “ 0. Let us suppose ||α||S “ a ą 0. So, there exist x P TS zΣ and

tw0, . . . ,wa´1u Ă Kx, with αpw0, . . . ,wa´1,´q , 0. Here, K denotes the sub-bundle of TpTS zS q tangent to the fibers

of τS as defined on the proof of the previous Proposition. Since the perverse degree is S 3-invariant, we can suppose that

S 3
y“τS pxq

Ą S 1 (cf. (5)). This gives sup2qy “ tu1u and therefore X1pxq P Kx.

The adjoint map associated to the group S 3 is the covering S 3 Ñ S Op3q. Since there exists a rotation sending u1

to uℓ then there exists g P S 3 with Ad pgqpu1q “ uℓ. Since the perverse degree is S 3-invariant then it suffices to prove

||χ1 ^ α||S ě a ` 1, ||χ1 ^ χu ^ α||S ě a ` 1 and ||χ1 ^ χu ^ χv ^ α||S ě a ` 1, where u, v P sup2q (cf. (5) and (8)).

Without loss of generality we can suppose that u, v P tu1uK. The inequality comes from:

0 , αpw0, . . . ,wa´1,´q “ pχ1 ^ χu ^ χv ^ αqpX1pxq, Xupxq, Xvpxq,w0, . . . ,wa´1,´q

“ pχ1 ^ χu ^ αqpX1pxq, Xupxq,w0, . . . ,wa´1,´q “ pχ1 ^ αqpX1pxq,w0, . . . ,wa´1,´q,

since tw0, . . . ,wa´1, X1pxqu Ă Kx.

If a “ 0, we just have αp´q , 0 and the same argument applies by just omitting the vectors w0, . . . ,wa´1. �

2.5. Circle actions. In [10] a Gysin sequence is obtained for any mobile smooth circle action by doing a similar study

and using more restrictive perversities. For the convenience of the reader, in this section we obtain that Gysin sequence

for general perversities in a shorter way, using the techniques and presentation to be applied later for the case of mobile

S 3-actions.

Fix a mobile smooth action Ψ : S 1 ˆ M Ñ M. Here, we just have a fundamental vector field X and a characteristic

form χ relatively to an adapted metric (the notion of adjusted metric does not apply here). This form is S 1-invariant and

verifies ||χ||S “ 1 on S1 (the family of fixed strata). Its differential e “ dχ, the Euler form, belongs to Ω
2

e

`
M{S 1

˘
where

the Euler perversity e is defined by epS q “ 2 on S1. We also use the characteristic perversity χ defined by χpS q “ 1 on

S1.

For any perversity p, the complex Ω
˚

p
pMq is

(17)

"
α` χ^ β

ˇ̌
α P Ω

˚`
pMzΣq{S 1

˘
, β P Ω

˚

p´χ

`
pMzΣq{S 1

˘
with

"
||α|| ď ppS q, and

||dα` e ^ β||S ď ppS q
@S P S1

*
.

The integration operator is the differential operator
>

: Ω
˚

p
pMq Ñ Ω

˚

p´χ

`
M{S 3

˘
defined by

>
ω “ iXω, that is,

>
pα `

χ^ βq “ β. Associated to this operator, we have the short exact sequence

0 Ñ K
˚

p
pMq “ Ω

˚

p

`
M{S 1

˘
Ñ Ω

˚

p
pMq Ñ I

˚

p
pMq Ñ 0,

which induces the following Gysin sequence (see [10]).

Proposition 2.5. For each perversity 0 ď p ď t we have the long exact sequence

¨ ¨ ¨ Ñ H
˚

p

`
M{S 1

˘
Ñ H

˚
pMq Ñ H

˚´1

p´e

`
M{S 1

˘
Ñ H

˚`1

p

`
M{S 1

˘
Ñ ¨ ¨ ¨ .

Proof. For each β P Ω
˚

p´e

`
M{S 1

˘
we have χ^β P Ω

˚

p
pMq. Since

>
pχ^βq “ β then it suffices to prove that the inclusion

I : Ω
˚

p´e

`
M{S 1

˘
ãÑ I

˚

p
pMq is a quasi-isomorphism. Notice that

I
˚

p
pMq “ tβ P Ω

˚

p´χ

`
M{S 1

˘ ˇ̌
Dα P Ω

˚
pMzΣq with ||α|| ď ppS q, and ||dα ` e ^ β||S ď ppS q@S P S1u.

We proceed in three steps.

‚ Step 1: S1 “ H. The action is almost-free. In this case Σ “ H and therefore Ω
˚`

pMzΣq{S 1
˘

“ Ω
˚

p

`
M{S 1

˘
Ă

I
˚

p´e
pMq Ă Ω

˚

p´χ

`
M{S 1

˘
“ Ω

˚`
pMzΣq{S 1

˘
. In other words, the map I itself is an isomorphism.

‚ Step 2: M “ TS for some S P S1. Recall that τS : TS Ñ S is an S 1-invariant smooth bundle whose fiber is R2b`2

for some b ě 0. In fact, the group S 1 acts trivially on S and orthogonally on the fiber R2b`2 having the origin as the only

fixed point. Notice that the action of S 1 on the unit sphere S 2b`1 is almost-free.

Consider a good covering U of S and t fU
ˇ̌

U P Uu a subordinated partition of unity. The family tτ´1
S

pUq,
ˇ̌

u P Uu

is an open covering of TS having t fU ˝ τS
ˇ̌

U P Uu a subordinated partition of unity. These maps are S 1-invariant

smooth maps constant on the fibers of τS . This last property implies that || fU ˝ τS ||S “ ||dp fU ˝ τS q||S “ 0. So, the

covering U possesses a subordinated partition of unity living in Ω
˚

0
pMq.
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By applying Bredon’s trick [3, p. 289], we can reduce the problem to the case where M “ Rdim S ˆ R2b`2, with τS
being the projection onto the first factor. The action of the group S 1 is trivial on the first factor.

Contracting this factor to a point, we reduce the problem to the case M “ R2b`2 “ c̊S 2b`1 “ pS 2b`1ˆr0,8rq{pS 2b`1ˆ

t0uq. Here, the stratum S is the apex of the cone. We have χpS q “ 1 and epS q “ 2. The number p P Z is defined by

ppS q “ p. We need to prove that the inclusion

(18) I : Ω
˚

p´e

`
c̊S 2b`1{S 1

˘
ãÑ I

˚

p

`
c̊S 2b`1

˘
“ tiZω

ˇ̌
ω P Ω

˚`1

p

`
c̊S 2b`1

˘
u

is a quasi-isomorphism. Notice first that

Ω
˚ăp´2

p´e

`
c̊S 2b`1{S 1

˘
“ Ω

˚ăp´2``
S 2b`1{S 1

˘
ˆs0,8r

˘

Ω
p´2

p´e

`
c̊S 2b`1{S 1

˘
“

!
β P Ω

p´2``
S 2b`1{S 1

˘
ˆs0,8r

˘ ˇ̌
dβ ” 0 on

`
S 2b`1{S 1

˘
ˆs0, 2r

)
,

Ω
˚ąp´2

p´e

`
c̊S 2b`1{S 1

˘
“ Ω

˚ąp´2``
S 2b`1{S 1

˘
ˆs0,8r,

`
S 2b`1{S 1

˘
ˆs0, 2r

˘
,

I
˚ăp´1

p

`
c̊S 2b`1

˘
“

!
iXω

ˇ̌
ω P Ω

˚`1ăp`
S 2b`1ˆs0,8r

˘)
“p1q Ω

˚ăp´1``
S 2b`1{S 1

˘
ˆs0,8r

˘

I
p´1

p

`
c̊S 2b`1

˘
“

!
iXω

ˇ̌
ω P Ω

p`
S 2b`1ˆs0,8r

˘ ˇ̌
dω ” 0 on S 2b`1ˆs0, 2r

)
, and

I
˚ąp´1

p

`
c̊S 2b`1

˘
“

!
iXω

ˇ̌
ω P Ω

˚`1ąp`
S 2b`1ˆs0,8r, S 2b`1ˆs0, 2r

˘)

“p2q Ω
˚ąp´1``

S 2b`1{S 1
˘

ˆs0,8r,
`
S 2b`1{S 1

˘
ˆs0, 2r

˘
,

where “p1q is given by the previous step and “p2q comes from the fact that β ” 0 on
`
S 2b`1{S 1

˘
ˆs0, 2r implies

ω “ χ ^ β ” 0 on S 2b`1ˆs0, 2r. Since Ω
p´2

p´e

`
c̊S 2b`1{S 1

˘
X d´1p0q “ I

p´2

p

`
c̊S 2b`1

˘
X d´1p0q then it suffices to study

the degrees ˚ ě p ´ 1.

˚ “ p ´ 1 Since H
p´1

p´e

`
c̊S 2b`1{S 1

˘
“ 0 then we need to prove H

p´1
´

I
˚

p

`
c̊S 2b`1

˘¯
“ 0, that is:

#
ω P Ω

p`
S 2b`1ˆs0,8r

˘

with dω ” 0 on S 2b`1ˆs0, 2r and diXω “ 0
ùñ

#
Dη P Ω

p´1`
S 2b`1ˆs0,8r

˘

with iXω “ diXη.

If p “ 0 then we can consider η “ 0 since ω is constant. Let us suppose p ě 1. Consider η1 “
ş´

1
ω.

It is an element of Ω
p´1`

S 2b`1ˆs0,8r
˘

since the action of S 1 on the s0,8r-factor is trivial. A straightfor-

ward calculation gives ω “ pr ˚ ωp1q ` dη1 `
ş´

1
dω. Here, ωp1q is the restriction of ω to S 2b`1 ˆ t1u and

pr : S 2b`1ˆs0,8rÑ S 2b`1 ˆ t1u is the map defined by pr px, tq “ px, 1q. A straightforward calculation gives

iXω “ iX pr ˚ ωp1q ` iXdη1 ` iX

ż ´

1

dω “ iX pr ˚ ωp1q ´ diXη
1 ´

ż ´

1

diXω “ iX pr ˚ ωp1q ´ diXη
1.

By hypothesis the differential form pr ˚ ωp1q is a cycle of Ω
p`

S 2b`1ˆs0,8r
˘
. Condition p ď t implies p ď

codim S ´ 2 “ 2b. Since p ě 1, this gives the existence of η2 P Ω
p´1`

S 2b`1ˆs0,8r
˘

with pr ˚ ωp1q “ dη2. We

end the proof taking η “ ´η1 ´ η2.

˚ ě p Since H
˚ěp

p´e

`
c̊S 2b`1{S 1

˘
“ 0 then we need to prove H

˚ěp
´

I
˚

p

`
c̊S 2b`1

˘¯
“ 0, that is:

#
ω P Ω

˚`1ěp`1`
S 2b`1ˆs0,8r, S 2b`1ˆs0, 2r

˘

with diXω “ 0
ùñ

#
Dη P Ω

˚ěp`
S 2b`1ˆs0,8r

˘

with dη ” 0 on S 2b`1ˆs0, 2rand iXω “ diXη.

Same proof as before with ωp1q “ 0.

‚ Final Step. Consider the invariant open covering V “ tTS

ˇ̌
S P S1u \ tMzΣu of M. We fix a smooth map

λ : r0,8rÑ r0, 1s verifying λ “ 1 on r0, 2s and λ “ 0 on r3,8r. The map fS : TS Ñ r0,8r is defined by fS pxq “
λpνS pxqq. It is an S 1-invariant smooth map, constant on the fibers of τS : DS Ñ S , which gives || fS ||S “ ||d fS ||S “ 0.

So, the family t fS
ˇ̌

S P S1u \ t1 ´
ř

fS u is a partition of unity, subordinated toV , living in Ω
˚

0
pMq. Now, it suffices

to apply Bredon’s trick [3, pag. 289] and the previous cases. �
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Remark 2.6. In fact, we have proved that the operator

f : pΩ
˚

p

`
M{S 1

˘
‘ Ω

˚´1

p´e

`
M{S 1

˘
,Dq ÝÑ pΩ

˚

p
pMq, dq,

defined by f pτ, λq “ τ` χ^ λ, where Dpτ, λq “ pdτ` e ^ λ,´dλq, is a quasi-isomorphism.

2.6. Twisted product. The model of the tubular neighborhood of a semi-mobile stratum is given by twisted products.

We present this notion. First of all, we consider a smooth action Θ : N ˆ E Ñ E of the normalizer N on a manifold E. It

induces the action Φ : S 3 ˆ
`
S 3 ˆN E

˘
Ñ

`
S 3 ˆN E

˘
defined by g ¨ 〈k, x〉 “ 〈g ¨ k, x〉 .

This action is a mobile action and the strata are of the form S 3 ˆN S with S P S , stratification induced by Θ. A

perversity p on E determines a perversity on the twisted product, still denoted p, defined by p
`
S 3 ˆN S

˘
“ ppS q.

Given an N-invariant Thom-Mather system TE “ tTS

ˇ̌
S P S1u on E we can consider the following Thom-Mather

systems

- TS 3ˆE “ tpS 3 ˆ TS q
ˇ̌

S P S1u on the product, and

- TS 3ˆN E “ tpS 3 ˆN TS q
ˇ̌

S P S1u on the twisted product.

Relatively to these Thom-Mather systems we have the equality

||Π˚ω||S 3ˆS “ ||ω||S 3ˆN S

where S P S1, ω P Ω
˚`

S 3 ˆN pEzΣqE

˘
and Π : S 3 ˆ E Ñ S 3 ˆN E is the canonical projection. This map is an N-bundle

and verifies πpg, xq “ πpg ¨ h´1, h ¨ xq where pg, xq P S 3 ˆ E and h P N.

The goal of this Section is to write the S 3-invariant intersection forms of the twisted product S 3 ˆN E in terms of the

intersection forms of E.

First we establish some notation.

(a) Yu P XpS 3q is the fundamental vector field associated to u P sup2q relatively to the right action: S 3 ˆ S 3 Ñ
S 3; pg, kq ÞÑ k ¨ g´1. It is a left invariant vector field . For the sake of simplicity we shall write Yuℓ “ Yℓ for

ℓ P t1, 2, 3u.

(b) Z P XpEq is the fundamental vector field of the action: Ψ : S 1 ˆ E Ñ E, induced by Θ. It verifies j˚Z “ ´Z. Let

ρ be an N-invariant metric on E. The characteristic form ζ “ ιZρ verifies j˚ζ “ ´ζ and the associated Euler form

e “ dζ verifies j˚e “ e.

(c) Let γu P Ω
1`

S 3
˘

be the dual form of Yu, that is, γu “ iYu
κ, u P sup2q. Notice that κpu, vq “ γupYvq. These forms are

invariant by the left action of S 3. For the sake of simplicity we shall write γuk
“ γk for ℓ P t1, 2, 3u. They verify

LY1
γ1 “ 0, LY1

γ2 “ ´γ3, LY1
γ3 “ γ2, dγ1 “ γ2 ^ γ3, dγ2 “ ´γ1 ^ γ3 and dγ3 ´ γ1 ^ γ2 (cf. (9)).

(d) The group N acts on the complex of differential forms Ω
˚`

S 3
˘

by the left. So, the group Z
2

“ N{S 1 acts on the

complex of S 1-left invariant forms of S 3, which is
Ź˚pγ1, γ2, γ3q. This action is given by

(19) g ¨ γℓ “ p´1qℓγℓ,

for ℓ “ 1, 2, 3.

Proposition 2.7. Using the natural projection Π we get the identification

Ω
˚

p

`
S 3 ˆN E

˘
“

"
ω P

ľ˚
pγ1, γ2, γ3q b Ω

˚

p
pEq

ˇ̌ iY1
ω “ ´iZω

LY1
ω “ ´LZω

*Z
2

Proof. Since the map Π is S 3-invariant then Π˚ induces a monomorphism between

Π
˚ : Ω

˚`
S 3 ˆ E

˘
“ tω P Ω

˚`
S 3 ˆ E

˘ ˇ̌
g˚ω “ ω @g P S 3u “

ľ̊
pγ1, γ2, γ3q bΩ

˚
pEq

and

Ω
˚`

S 3 ˆN E
˘

“ tω P Ω
˚`

S 3 ˆN E
˘ ˇ̌

g˚ω “ ω @g P S 3u.

So, we can identify Ω
˚`

S 3
N

ˆ E
˘

with
$
&
%ω P

ľ˚
pγ1, γ2, γ3q b Ω

˚
pEq

ˇ̌ iY1
ω “ ´iZω

LY1
ω “ ´LZω

g˚ω “ ω

,
.
- “

"
ω P

ľ˚
pγ1, γ2, γ3q b Ω

˚
pEq

ˇ̌ iY1
ω “ ´iZω

LY1
ω “ ´LZω

*Z
2

A similar identification is obtained for EzΣE instead E. Using (2.6) we get (2.7). �
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Corollary 2.8. We have the identification

Ω
˚

p

`
S 3 ˆN E

˘
“ Ω

˚

p
pEqZ2 ‘Ω

˚´2

p
pEq´Z

2 ‘ tξ P Ω
˚´1

p
pEq´Z

2

ˇ̌
L

Z
L

Z
ξ “ ´ξu.

where the differential becomes D1pα, β, ξq “ pdα, dβ ´ iZα,´dξq. The third term of this direct sum is acyclic.

Proof. The equality (2.7) gives that an element of Ω
˚

p

`
S 3 ˆN E

˘
is of the form

α´ γ1 ^ iZα` γ2 ^ LZξ ` γ3 ^ ξ ` γ1 ^ γ2 ^ iZLZξ ` γ1 ^ γ3 ^ iZξ ` γ2 ^ γ3 ^ β´ γ1 ^ γ2 ^ γ3 ^ iZβ.

with α P Ω
˚

p
pEq, β P Ω

˚´2

p
pEq, ξ P Ω

˚´1

p
pEq, g ¨ α “ α, g ¨ ξ “ ´ξ, g ¨ β “ ´β, and L

Z
L

Z
ξ “ ´ξ. For the calculation of

D we compute the differential of the previous expression:

dα ´ γ1 ^ iZdα´ γ2 ^ LZdξ ´ γ3 ^ dξ ´ γ1 ^ γ2 ^ piZ LZdξ ` ξq ` γ1 ^ γ3 ^ pLZξ ´ iZdξq`

γ2 ^ γ3 ^ pdβ´ iZαq ` γ1 ^ γ2 ^ γ3 ^ iZdβ.

We verify the the acyclicity property. Let ξ P Ω
˚

p
pEq´Z

2 be a cycle. The differential form η “ iZLZξ P Ω
˚

pEzΣq

verifies

- g ¨ η “ j˚η “ j˚iZ LZξ “ ´iZ j˚LZξ “ iZ LZ j˚ξ “ ´iZLZξ “ ´η.
- LZLZη “ LZLZ iZLZξ “ iZ LZLZLZξ “ ´iZLZξ “ ´η.
- dη “ diZ LZξ “ LZLZξ “ ´ξ, since dξ “ 0.

- If Q is a singular stratum of E
S

we have ||η||Q “ ||iZ LZξ||Q

(5)
ď ||ξ||Q ď ppQq.

So, the complex tξ P Ω
˚´1

p
pEq´Z

2

ˇ̌
L

Z
L

Z
ξ “ ´ξu is acyclic. �

The following calculations will be used in the next Section. We use the N-action presented in Section 1.6.

Corollary 2.9. Let Θ : N ˆ M Ñ M be a smooth action. We have

H
˚

p{p´e

`
M{S 1

˘´Z
2 “ H

˚´2q

pΣq´p´1qq
Z

2 .

where

- p is a constant perversity p on M{S 1 verifying 0 ď p ď t,

- q denotes the integer part of p{2, and

- Σ is the singular part of the induced S 1-action,

Proof. Consider an N-invariant Thom-Mather system (cf. Section 1.6). Using Mayer-Vietoris, we can suppose M “
TS X T jpS q, for some S P S1. We write τ “ τS Y τ jpS q. Since Σ “ S Y jpS q is Z

2
-invariant the we can consider the

operator

J : Ω
˚´2q

pΣq´p´1qq
Z

2 ÝÑ Ω
˚

p{p´e

`
M{S 1

˘´Z
2 ,

defined by Jpαq “ă τ˚
S
α ^ eq ą, where e is the Euler form of the induced S 1-action relatively to an N-invariant

Riemannian metric on M. This metric always exists since the group N is compact. It is a well defined differential

operator since

‚ ||τ˚α^ eq||S ď ||τ˚α||S ` ||eq||S ď 0 ` ||eq||S ď2b`1 2q ď ppS q, and similarly ||τ˚α^ eq||S ď pp jpS qq,

‚ dpτ˚dα^ eqq “ τ˚dα^ eq and the operator is a differential operator,

‚ iXpτ˚α^ eqq “ iXdpτ˚α^ eqq “ 0, which gives τ˚α^ eq P Ω
˚`

pMzS q{S 1
˘
, and

‚ j˚e “ ´e.

This last property comes from j˚X “ ´X, where X is the fundamental vector field of the circle action Ψ.

We claim that this operator is a quasi-isomorphism. Proceeding as in the proof of the Proposition 2.5 we can reduce

the question to the case where the stratum S (resp. jpS q) is the apex v (resp. w) of the cone TS “ c̊vS
2b`1 (resp. T jpS q “

c̊wS
2b`1) where the circle S 1 acts orthogonally and almost freely on the sphere S 2b`1. We also have H

˚`
S 2b`1{S 1

˘
“

H
˚`
CPb

˘
. Recall that epS q “ 2 and ppS q “ p. We distinguish two cases.

˚ ď p ´ 2 or ˚ ą p . We have the equality Ω
˚

p´e

`
c̊vS

2b`1{S 1
˘

“ Ω
˚

p

`
c̊vS

2b`1{S 1
˘
, similarly for w, and there-

fore Ω
˚

p{p´e

`
pTS Y T jpS qq{S 1

˘
“ 0 “ Ω

˚´2q

ptv, wuqp´1qq
Z

2 “ Ω
˚´2q

pS Y jpS qqp´1qq
Z

2 .
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˚ “ p ´ 1 or p . This gives

H
˚´2q

pS Y jpS qq´p´1qq
Z

2 “

#
H

0
pS q´p´1qq

Z
2 “ 0 (if q even) or R (if q odd) if jpS q “ S

H
0
pS q “ R if jpS q X S “ H

In the R-case the cohomology is generated by 1 in each term. On the other hand, the typical conical calculations

of the intersection cohomology (see for example [5]) and the sequence (6) give H
˚

p{p´e

`
c̊vS

2b`1{S 1
˘

“ H
2q`
CPb

˘

generated by eq, since 0 ď p “ ppS q ď tpS q “ 2b. And similarly for w. So,

H
˚

p{p´e

`
pc̊vS

2b`1 Y c̊vS
2b`1q{S 1

˘´Z
2 “

#
H

2q`
CPb

˘´Z
2 “ 0 (if q even) or R (if q odd) if jpS q “ S

H
2q`
CPb

˘
“ R if jpS q X S “ H.

We get that J is a quasi-isomorphism. �

3. The integration operator
>

.

The main tool we use in this work is the integration operator?
: Ω

˚

p
pMq ÝÑ Ω

˚´3

p´χ

`
M{S 3

˘
,

defined by
>

3
ω “ p´1qdegω i

X3
i

X2
i

X1
ω, where χ is the characteristic perversity defined by χpS q “

"
1 if S P S1

3 if S P S3
.

The operator
>

is a well defined differential operator since

- LAiB “ iBLA ` irA,Bs when A, B are vector fields of MzΣ and

- ppS q ě ||ω||S
(10),(13)

ě ||χ1 ^ χ2 ^ χ3 ^ i
X3

i
X2

i
X1
ω||S

(14),(16)
““ ||i

X3
i

X2
i

X1
ω||S ` χpS q “ ||

>
ω||S ` χpS q for each

S P S ,

where we have considered an adjusted metric µ on MzΣ.

The goal of this Section is the computation of the cohomology of the complexes I
˚

p
pMq and K

˚

p
pMq. For the first one,

we need to introduce the Euler perversity e, defined by epS q “

"
2 if S P S1

4 if S P S3.

For the sake of simplicity we shall write

ker

?
“ K

˚

p
pMq “

!
ω P Ω

˚

p
pMq

ˇ̌
iX3

iX2
iX1
ω “ 0

)

Im

?
“ I

˚

p
pMq “

!
iX3

iX2
iX1
ω
ˇ̌
ω P Ω

˚`1

p
pMq

)
.

Proposition 3.1. Let p ď t be a perversity on M. The natural inclusion I : Ω
˚

p´e

`
M{S 3

˘
ãÑ I

˚

p
pMq is a quasi-

isomorphism.

Proof. The inclusion makes sense if we prove that χ1 ^ χ2 ^ χ3 ^ α P Ω
˚

p
pMq for each α P Ω

˚´3

p´e

`
M{S 3

˘
. This comes

from

LXℓpχ1 ^ χ2 ^ χ3 ^ αq “ 0 for each ℓ P t1, 2, 3u (cf. (9)),

and for each S P S1 \ S3:

||χ1 ^ χ2 ^ χ3 ^ α||S
(14),(16)

“ ||α||S ` χpS q ď ppS q ´ epS q ` χpS q ď ppS q

||dpχ1 ^ χ2 ^ χ3 ^ αq||S
(10),(13)

ď maxp||χ1 ^ χ2 ^ χ3 ^ dα||S , ||dpχ1 ^ χ2 ^ χ3q ^ α||S q ď maxpppS q, ||α||S

`||dpχ1 ^ χ2 ^ χ3q||S q
(9)
ď maxpppS q, ppS q ´ epS q ` ||χ1 ^ χ2 ^ χ3||S ` 1q

(14),(16)
ď maxpppS q, ppS q ´ epS q ` epS qq “ ppS q

(cf. (5)).

In order to prove that I is a quasi-isomorphism, we proceed in several steps. We use the S 3-invariant Thom-Mather

system of Section 1.2.
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‚ Step 1: S1 “ S3 “ H. The action is almost-free. In this case Σ “ H and therefore Ω
˚`

pMzΣq{S 1
˘

“

Ω
˚

p

`
M{S 1

˘
Ă I

˚

p´e
pMq Ă Ω

˚

p´χ

`
M{S 1

˘
“ Ω

˚`
pMzΣq{S 1

˘
. In other words, the map I itself is an isomorphism.

‚ Step 2: M “ TS for some S P S1. We have seen that S “ S 3 ˆN S S 1
. The restriction τS : ES “ τ´1

S
pS S 1

q Ñ S S 1

is a N-invariant bundle. Notice that ES is a filtered space whose singular strata are the connected component of S S 1
. The

fiber of this bundle is an R2b`2, for some b P N. The group S 1 acts trivially on S S 1
and S 1 orthogonally on R2b`2 having

the origin as the only fixed point. Notice that the action of S 1 on the unit sphere S 2b`1 is almost-free.

We identify TS with the twisted product S 3 ˆN ES and we use the calculations of Section 2.6. We have

(20) Ω
˚

p

`
M{S 3

˘
“ Ω

˚

p
pES {Nq “ Ω

˚

p

`
ES {S 1

˘Z
2

for any perversity p. The integration
>

becomes the map

(21)

?
: Ω

˚

p

`
S 3 ˆN ES

˘
ÝÑ Ω

˚´3

p´χ

`
ES {S 1

˘Z
2 ,

defined by pα, β, ξq ÞÑ ´iZβ (cf. Corollary 2.8). The map I becomes the inclusion

(22) I : Ω
˚

p´e

`
M{S 3

˘
“ Ω

˚

p´e

`
ES {S 1

˘Z
2 ÝÑ I

˚

p
pMq “

!
iZβ

ˇ̌
β P Ω

˚`1

p
pES q´Z

2

)

since for each λ P Ω
˚´3

p´e

`
ES {S 1

˘Z
2 we have ζ ^ λ P Ω

˚´2

p
pES q´Z

2 and iZpζ ^ λq “ λ.

Consider now a good coveringU of S S 1
and t fU

ˇ̌
U P Uu a subordinated partition of unity. The family tτ´1

S
pUq,

ˇ̌
u P

Uu is an open covering of ES having tτS ˝ fU
ˇ̌

U P Uu a subordinated partition of unity. These maps are N-invariant

smooth maps constant on the fibers of τS . This last property implies that || fU ˝ τS ||S “ ||dp fU ˝ τS q||S “ 0. So, the

covering U possesses a subordinated partition of unity living in Ω
˚

0
pES q.

Using Bredon’s trick [3, pag. 289] one reduces the problem to the case ES “ Rdim S S 1

ˆR2b`2. where τS becomes the

projection on the first factor. The action of the group S 1 is trivial on the first factor.

Contracting this factor to a point, we reduce he problem to the case ES “ R2b`2 “ c̊S 2b`1 “ pS 2b`1ˆr0,8rq{pS 2b`1ˆ
t0uq as filtered space. Here, S is the apex of the cone. We have χpPq “ 1, epPq “ 2 and ppPq “ ppS q “ p, for any

connected component P of S S 1
and p P Z. We need to prove that the inclusion

I : Ω
˚

p´e

`
c̊S 2b`1{S 1

˘Z
2 ãÑ I

˚

p

`
c̊S 2b`1

˘
“
!

iZβ
ˇ̌
β P Ω

˚`1

p

`
c̊S 2b`1

˘´Z
2

)
,

is a quasi-isomorphism. This comes directly from (18) with the equality j˚Z “ ´Z (cf. Section 2.6 (b)).

‚ Step 3: S3 “ H. Consider the invariant open covering V “ tTS

ˇ̌
S P S1u \ tMzF1u of M. We fix a smooth

map λ : r0,8rÑ r0, 1s verifying λ “ 1 on r0, 2s and λ “ 0 on r3,8r. The map fS : TS Ñ r0,8r is defined by fS pxq “
λpνS pxqq. It is an S 3-invariant smooth map, constant on the fibers of τS : DS Ñ S , which gives || fS ||S “ ||d fS ||S “ 0.

So, the family t fS
ˇ̌

S P S1u \ t1 ´
ř

fS u is a partition of unity, subordinated toV , living in Ω
˚

0
pMq. Now, it suffices

to apply the Bredon’s trick [3, pag. 289] and the previous cases.

‚ Step 4: M “ TQ for some Q P S3. Recall that τQ : TS Ñ Q is an S 3-invariant smooth bundle whose fiber is R f `1

for some f ě 3. In fact, the group S 3 acts trivially on S and orthogonally on the fiber R f `1 having the origin as the only

fixed point. Notice that the action of S 3 on the sphere S f is a mobile action.

Consider now a good coveringU of Q and t fU
ˇ̌

U P Uu a subordinated partition of unity. The family tτ´1
Q

pUq,
ˇ̌

u P

Uu is an open covering of TQ having t fU ˝ τQ

ˇ̌
U P Uu a subordinated partition of unity. These maps are S 3-invariant

smooth maps constant on the fibers of τQ. This last property implies that || fU ˝ τQ||S “ ||dp fU ˝ τQq||S “ 0 for each

singular stratum S (cf. (1.2)).

Using the Bredon’s trick [3, pag. 289] one reduces the problem to the case M “ Rdim Q ˆ R f `1. The action of the

group S 3 is trivial on the first factor.

Contracting this factor to a point, we reduce the problem to the case M “ R f `1 “ c̊S f “ pS f ˆ r0,8rq{pS f ˆ t0uq.

Here, the stratum Q is the apex of the cone. We have χpQq “ 3 and epQq “ 4. The number p P Z is defined by ppQq “ p.

We need to prove that the inclusion

I : Ω
˚

p´e

`
c̊S f {S 3

˘
ãÑ I

˚

p

`
c̊S f

˘
“
!

iX3
iX2

iX1
ω
ˇ̌
ω P Ω

˚`3

p

`
c̊S f

˘)
.
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is a quasi-isomorphism. Notice first that

Ω
˚ăp´4

p´e

`
c̊S f {S 3

˘
“ Ω

˚ăp´4

p´e

``
S f {S 3

˘
ˆs0,8r

˘

Ω
p´4

p´e

`
c̊S f {S 3

˘
“

!
β P Ω

p´4

p´e

``
S f {S 3

˘
ˆs0,8r

˘ ˇ̌
dβ ” 0 on

`
S f {S 3

˘
ˆs0, 2r

)
,

Ω
˚ąp´2

p´e

`
c̊S f {S 3

˘
“ Ω

˚ąp´2

p´e

``
S f {S 3

˘
ˆs0,8r,

`
S f {S 3

˘
ˆs0, 2r

˘
,

I
˚ăp´3

p

`
c̊S f

˘
“

!
iX3

iX2
iX1
ω
ˇ̌
ω P Ω

˚`3ăp

p

`
S f ˆs0,8r

˘)

I
p´3

p

`
c̊S f

˘
“

!
iX3

iX2
iX1
ω
ˇ̌
ω P Ω

p

p

`
S f ˆs0,8r

˘ ˇ̌
dω ” 0 on S f ˆs0, 2r

)
, and

I
˚ąp´3

p

`
c̊S f

˘
“

!
iX3

iX2
iX1
ω
ˇ̌
ω P Ω

˚`3ąp

p

`
S f ˆs0,8r, S f ˆs0, 2r

˘)
.

Since Ω
p´4

p´e

`
c̊S f {S 3

˘
X d´1p0q “ Ω

p´4

p´e

``
S f {S 3

˘
ˆs0,8r

˘
X d´1p0q then Step 3 gives that I˚ : H

˚

p´e

`
c̊S f {S 3

˘
Ñ

H
˚
´

I
¨

p

`
c̊S f

˘¯
is an isomorphism for ˚ ě p ´ 3.

˚ “ p ´ 3 Since H
p´3

p´e

`
c̊S f {S 3

˘
“ 0 (cf. [17]) then we need to prove H

p´3
´

I
˚

p

`
c̊S f

˘¯
“ 0, that is:

#
ω P Ω

p

p

`
S f ˆs0,8r

˘

with dω ” 0 on S f ˆs0, 2r and diXω “ 0
ùñ

#
Dη P Ω

p´1

p

`
S f ˆs0,8r

˘

with iXω “ diXη.

If p “ 0 then we can consider η “ 0 since ω is constant. Let us suppose p ě 1. Consider η1 “
ş´

1 ω. It is an

element of Ω
p´1`

S f ˆs0,8r
˘

since the action of S 3 on the s0,8r-factor is trivial. A straightforward calculation

gives

ω “ pr ˚ ωp1q ` dη1 `

ż ´

1

dω.

Here, ωp1q is the restriction of ω to S f ˆ t1u and pr : S f ˆs0,8rÑ S f ˆ t1u is the map defined by pr px, tq “
px, 1q. A well known calculation gives

iX3
iX2

iX1
ω “ iX3

iX2
iX1

pr ˚ ωp1q ` iX3
iX2

iX1
dη1 ` iX3

iX2
iX1

ż ´

1

dω

“ iX3
iX2

iX1
pr ˚ ωp1q ´ diX3

iX2
iX1
η1 ´

ż ´

1

diX3
iX2

iX1
ω “ iX3

iX2
iX1

pr ˚ ωp1q ´ diX3
iX2

iX1
η1.

By hypothesis the differential form pr ˚ ωp1q is a cycle of Ω
p

p

`
S f ˆs0,8r

˘
. Condition p ď t implies p ď

codim Q ´ 2 “ f ´ 1. This gives the existence of η2 P Ω
p´1`

S f ˆs0,8r
˘

with pr ˚ ωp1q “ dη2. We need the

proof taking η “ ´η1 ´ η2.

˚ ě p ´ 2 . Since H
˚ěp´2

p´e

`
c̊S f {S 3

˘
“ 0 (cf. [17]) then we need to prove H

˚ěp´2
´

I
˚

p

`
c̊S f

˘¯
“ 0, that is:

#
ω P Ω

˚`3ěp`1

p

`
S f ˆs0,8r

˘
with diX3

iX2
iX1
ω “ 0

and ω ” 0 on S f ˆs0, 2r
ùñ

#
Dη P Ω

˚`2ěp

p

`
S f ˆs0,8r

˘
with iX3

iX2
iX1
ω “ diX3

iX2
iX1
η

and dη ” 0 on S f ˆs0, 2r.

Same proof as before with ωp1q “ 0.

‚ Final Step. Consider the invariant open covering V “ tTQ

ˇ̌
Q P S3u \ tMzF3u of M. We fix a smooth map

λ : r0,8rÑ r0, 1s verifying λ “ 1 on r0, 2s and λ “ 0 on r3,8r. The map fQ : TQ Ñ r0,8r is defined by fQpxq “
λpνQpxqq. It is an S 3-invariant smooth map, constant on the fibers of τQ : DQ Ñ Q, which gives || fQ||S “ ||d fQ||S “ 0

for each singular stratum S (cf. (1.2)). So, the family t fQ

ˇ̌
Q P S3u \ t1 ´

ř
fQu is a partition of unity, subordinated

toV , living in Ω
˚

0
pMq. Now, it suffices to apply the Bredon’s trick [3, pag. 289] and the previous cases. �

Let us study the complex K
˚

p
pMq. Since the complex Ω

˚

p

`
M{S 3

˘
is included in ker

>
we have the short exact sequence

0 Ñ Ω
˚

p

`
M{S 3

˘
ãÑ K

˚

p
pMq Ñ

K
˚

p
pMq

Ω
˚

p
pM{S 3q

Ñ 0.
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This allows us to compute the the cohomology of K
˚

p
pMq in terms of the intersection cohomology H

˚

p

`
M{S 3

˘
and the

cohomology of the complex C
˚

p
pMq “

K
˚

p
pMq

Ω
˚

p
pM{S 3q

. In fact, we are going to prove that this cohomology is residual

relatively to the strata of S1. The calculation of H
˚
´

C
¨

p
pMq

¯
is carried out in several steps through the following

restrictions

M ///o/o/o TQ \ TS
///o/o/o Q \ TS

///o/o/o Q \ S S 1
“ S

S 1

where S ranges over the strata of S1 and Q P S3 with Q Ă S . We proceed in several steps.

Lemma 3.2. Let Φ : S 3 ˆ M Ñ M be a mobile action with S3 “ H. For any perversity p on M with 0 ď p ď t we have

H
˚
´

C
¨

p
pMq

¯
“

à

S PS1

H
˚´2pS ´2

´
S S 1

¯´p´1qpS Z
2
,

where the number pS denotes the integer part of ppS q{2.

Proof. We proceed in several steps.

‚ Step 1: S1 “ H. We do no have any singular stratum. We need to prove that the LHS of the equality (3.2) is 0. Let

xωy be a cycle of C
˚

p
pMq. The canonical decomposition of ω is

ω “ ω0 ` χ1 ^ ω1 ` χ2 ^ ω2 ` χ3 ^ ω3 ` χ1 ^ χ2 ^ ω12 ` χ1 ^ χ3 ^ ω13 ` χ2 ^ χ3 ^ ω23

(cf. (10)). The differential form η “ ´χ1 ^ ω23 ` χ2 ^ ω13 ´ χ3 ^ ω12 belongs to K
˚

p
pMq since η P Ω

˚
pMzΣq (cf. (9)

and (2.3)), and iX3
iX2

iX1
η “ 0.

The differential form ω1 “ ω ´ dη verifies ω1
12

“ ω1
13

“ ω1
23

“ ω1
123

“ 0. Since dω1 “ dω P Ω
˚

p

`
M{S 3

˘
then

ω1
1

“ ω1
2

“ ω1
3

“ 0 and therefore ω1 “ ω1
0

P Ω
˚

p

`
M{S 3

˘
. So, rxωys “ rxω1ys “ r0s “ 0.

‚ Step 2: M “ TS for some S P S1. In this case S1 “ tS u where S is a closed stratum. Using (21) we get

K
˚

p
pMq “ Ω

˚

p
pES qZ2 ‘

!
β P Ω

˚´2

p
pES q´Z

2

ˇ̌
iZβ “ 0

)
‘
!
ξ P Ω

˚´1

p
pES q´Z

2

ˇ̌
L

Z
L

Z
ξ “ ´ξ

)

(17)
“ Ω

˚

p
pES qZ2 ‘ Ω

˚´2

p

`
ES {S 1

˘´Z
2 ‘

!
ξ P Ω

˚´1

p
pES q´Z

2

ˇ̌
L

Z
L

Z
ξ “ ´ξ

)

and Ω
˚

p

`
M{S 3

˘ (20)
“ Ω

˚

p

`
ES {S 1

˘Z
2 . Following Proposition 2.8 it suffices to compute the cohomology of the quotient

Ω
˚

p
pES qZ2 ‘Ω

˚´2

p

`
ES {S 1

˘´Z
2

Ω
˚

p
pES {S 1qZ2

,

relatively to the differential D2xpα, βqy “ xpdα, dβ ´ iZαqy. Following Remark 2.6 (a) this complex is quasi-isomorphic

to

Ω
˚

p

`
ES {S 1

˘Z
2 ‘ Ω

˚´1

p´e

`
ES {S 1

˘´Z
2 ‘ Ω

˚´2

p

`
ES {S 1

˘´Z
2

Ω
˚

p
pES {S 1qZ2

“ Ω
˚´1

p´e

`
ES {S 1

˘´Z
2 ‘ Ω

˚´2

p

`
ES {S 1

˘´Z
2

endowed with the differential D2pλ, βq “ p´dλ, dβ ´ λq. This complex is quasi-isomorphic to Ω
˚´2

p{p´e

`
ES {S 1

˘´Z
2 . The

induced action Θ : N ˆES Ñ ES and the induced perversity p on ES verify the conditions of Corollary 2.9, with Σ “ S S 1

and q “ pS . So, we get H
˚´2

p{p´e

`
ES {S 1

˘´Z
2 “ H

˚´2pS ´2
´

S S 1
¯´p´1qpS Z

2
.

‚ Final step. Using Mayer-Vietoris as in the the Step 3 of the proof of the Proposition 3.1. �

The first step of (3) comes from the following result.

Lemma 3.3. Let Φ : S 3 ˆ M Ñ M be a mobile action. For any perversity p on M with 0 ď p ď t the restriction induces

the quasi-isomorphism C
˚

p
pMq Ñ C

˚

p
pTΣ1

Y TΣ3
q.
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Proof. Consider the invariant open covering tU “ TΣ1
Y TΣ3

,V “ Mz
`
ν´1

1
pr0, 3{4sq Y ν´1

3
pr0, 3{4sq

˘
u of M. We have

the Gysin sequence:

0 // C
˚

p
pMq // C

˚

p
pUq ‘ C

˚

p
pVq // C

˚

p
pU X Vq // 0

Following Lemma 3.2 we know that the complexes C
˚

p
pVq and C

˚

p
pU X Vq are acyclic. So, the restriction C

˚

p
pMq Ñ

C
˚

p
pUq is a quasi-isomorphism. �

The term Q \ TS appearing in (3) is not a manifold, but it is possible to define the complex C
˚

p
p´q on it using the

following notion.

Definition 3.4. Let Φ : S 3 ˆ M Ñ M be a mobile action. We consider a perversity p on M. For each open subset U Ă M

we define

Ξ
˚

p
pUq “ tω P Ω

˚

p
pUzΣ3q

ˇ̌
ω and dω verify condition (23)u,

where this condition is

(23) ωpv0, . . . , vppQq,´q “ 0 where v0, . . . , vppQq are vectors tangent to the fibers of τQ : pDQ X Uq Ñ Q,

for each Q P S3. We analogously define Ξ
˚

p

`
U{S 3

˘
if U Ă M is an S 3-invariant open subset.

We define

pC˚

p
pTS q “

pK˚

p
pTS q “ K

˚

p
pTS q X Ξ

˚

p
pTS q

Ξ
˚

p
pTS {S 3q

.

We clearly have Ξ
˚

p
pUq “ Ω

˚

p
pUq and pC˚

p
pUq “ C

˚

p
pUq if U Ą TΣ3

or if S3 “ H. In particular, we have

(24) C
˚

p
pTΣ1

Y TΣ3
q “ pC˚

p
pTΣ1

Y TΣ3
q.

Lemma 3.5. Let Φ : S 3 ˆ M Ñ M be a mobile action. For any perversity p on M with 0 ď p ď t the restriction induces

the quasi-isomorphism pC˚

p
pTΣ3

Y TΣ1
q Ñ pC˚

p
pTΣ1

q.

Proof. Using Mayer-Vietoris, it suffices to prove that the restriction pC˚

p
pTΣ3

q Ñ pC˚

p
pTΣ3

X TΣ1
q is a quasi-isomorphism.

Proceeding as in the Step 4 of the proof of Proposition 3.1 we can suppose that TΣ3
“ c̊S f where S 3 acts orthogo-

nally without fixed points on the sphere S f and trivially on the radius of the cone. The subset Σ3 is the apex v of the

cone. Moreover, we have pC˚

p
pTΣ3

q “ pC˚

p

`
S f ˆs0,8r

˘
and pC˚

p
pTΣ3

X TΣ1
q “ pC˚

p

`
s0,8rˆpS f X TΣ1

q
˘
. In this context,

condition (23) becomes

ωpv0, . . . , vp,´q “ 0 where v0, . . . , vp are vectors of pS f zΣ1qˆs0, 2r (resp. ppS f X TΣ1
ˆs0, 2rqzΣ1q).

Here, p “ ppvq. In order to prove that the restriction pC˚

p

`
S f ˆs0,8r

˘
Ñ pC˚

p

`
pS f X TΣ1

qˆs0,8r
˘

is a quasi-isomorphism

we notice that

pC˚ăp

p

`
S f ˆs0,8r

˘
“ C

˚ăp

p

`
S f ˆs0,8r

˘

pC p

p

`
S f ˆs0,8r

˘
“

!
xβy P C

˚ăp

p

`
S f ˆs0,8r

˘ ˇ̌
dβ ” 0 on

`
S f {S 3

˘
ˆs0, 2r

)
,

pC˚ąp

p

`
S f ˆs0,8r

˘
“ C

˚ąp

p

`
S f ˆs0,8r, S f ˆs0, 2r

˘
,

Let us consider the operator pr : C
˚

p

`
S f

˘
Ñ C

˚

p

`
S f ˆs0,8r

˘
induced by the canonical projection. Following (3) we get

xωy “ pr xωp1qy ` dx
ş1

´ ωy ` x
ş1

´ dωy. We get that the operator pr : τpC
˚

p

`
S f

˘
“ C

ăp

p

`
S f

˘
‘ pC

p

p

`
S f

˘
X d´1p0qq Ñ

pC˚

p

`
S f ˆs0,8r

˘
, induced by the canonical projection, is a quasi-isomorphism. In a similar way we prove that the operator

(25) pr : τpC
˚

p

`
pS f X TΣ1

q
˘

Ñ pC˚

p

`
pS f X TΣ1

qˆs0,8r
˘
,

induced by the canonical projection, is a quasi-isomorphism. So, the question becomes to prove that the restriction

τpC
˚

p

`
S f

˘
Ñ τp

pC˚

p

`
S f X TΣ1

˘
induces a quasi-isomorphism, which is granted by Lemma 3.2. �

By the definition of the complex pC˚

p
p´q we have the equality pC˚

p
pTΣ1

q “ ‘S PS1
pC˚

p
pTS q.
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Lemma 3.6. Let Φ : S 3 ˆ M Ñ M be a mobile action. For any perversity 0 ď p ď t on M and any stratum S P S1 we

have

H
˚
´
pC¨

p
pTS q

¯
“ H

˚´2pS ´2

PS

ˆ
S

S 1
˙´p´1qpS Z

2

.

Proof. Consider the family Q “ tQ P S3

ˇ̌
Q Ă S u. Recall that S

S 1

(cf. Section 1.4) is a filtered space. The regular part

(resp. singular strata) of S
S 1

is S S 1
(resp. are Q P Q). So,

Ω
˚

PS

ˆ
S

S 1
˙

“
!
α P Ω

˚
´

S S 1
¯ ˇ̌
α and dα verify condition (23) for PS pQq “ ppQq ´ 2pS ´ 2 where Q P Q

)
.

Let us define the operator

JS : Ω
˚´2pS ´2

PS

ˆ
S

S 1
˙´p´1qpS Z

2

Ñ pC˚

p
pTS q

by

(26) JS pαq “
〈

γ1 ^ γ2 ^ τ˚Sα^ ζ
pS

S

〉

,

where ζS P Ω
2

2

`
ES {S 1

˘´Z
2 the Euler form of the S 1-action on ES relatively to an N-invariant metric on TS (cf. Sec-

tion 2.6).

‚ Step 1: The operator JS is well defined. Since τS : TS Ñ S S 1
is an S 3-equivariant map then we have τ˚

S
α P

Ω
˚´2pS ´2

pES q´p´1qpS Z
2 for each α P Ω

˚´2pS ´2

PS

ˆ
S

S 1
˙´p´1qpS Z

2

and therefore τ˚
S
α^ζ

pS

S
P Ω

˚´2

pES q´Z
2 . For the perverse

degree, we have

||τ˚Sα^ ζ
pS

S
||S ď ||ζ

pS

S
||S ď 2pS ď ppS q,

and similarly for the differential dpτ˚
S
α^ ζ

pS

S
q “ τ˚

S
dα^ ζ

pS

S
. We conclude that τ˚

S
α^ ζ

pS

S
P Ω

˚

p
pES q´Z

2 . Applying (2.8)

we get that γ2 ^ γ3 ^ τ˚
S
α^ e

pS

S
P Ω

˚

p

`
TS “ S 3 ˆN ES

˘
with

>
γ2 ^ γ3 ^ e

pS

S
^ τ˚

S
α “ 0.

It remains to prove that the differential form η “ γ2^γ3^τ˚
S
α^e

pS

S
and its differential dη “ γ2^γ3^τ˚

S
dα^e

pS

S
verify

condition (23) for ppQq, where Q P Q. Consider a family v0, . . . , vppQq of vectors tangent to the fibers of τQ : pDQ X
pTS zS qq Ñ Q. Up to a reordering we get that ηpv0, . . . , vppQqq is a multiple of αpτS ,˚pv0q, . . . , τS ,˚pvppQq´2pS ´2qq.

Condition (1.2) implies that the vectors τS ,˚pv‚q are tangent to the fibers of τQ : DQ X S Ñ Q. Since α verifies condition

(23) for PS pQq the we get αpτS ,˚pv0q, . . . , τS ,˚pv
ppQq´2pS ´2“PS pQqqq “ 0. So, η verifies condition (23) for ppQq. Same

argument applies to dη.

We conclude that γ2 ^ γ3 ^ τ˚
S
α^ e

pS

S
P ker

>
. The operator JS is well defined.

‚ Step 2: The operator JS is a quasi-isomorphism when M “ TQ for some Q P S3 with Q Ă S . Proceeding as in

the Step 4 of the proof of Proposition 3.1 we can suppose that M “ TQ “ c̊S f where S 3 acts orthogonally without fixed

points on the sphere S f and trivially on the radius of the cone. Notice that the action of S 3 on the sphere S f is a mobile

action. The stratum Q is the apex v of the cone.

Since S “ c̊pS X S f q and S
S 1

“ c̊pS S 1
X S f q then JS becomes

JS : Ω
˚´2pS ´2

PS

´
c̊pS S 1

X S f q
¯´p´1qpS Z

2
Ñ pC˚

p

`
pS f X TS qˆs0,8rq

˘

is a quasi-isomorphism. We know from [17] that the operator pr : τqΩ
˚

PS

´
S S 1

X S f
¯

Ñ Ω
˚

PS

´
c̊pS S 1

X S f q
¯

, induced

by the canonical projection, is a quasi-isomorphism. Here, q “ PS pQq “ ppvq ´ 2pS ´ 2 “ p ´ 2pS ´ 2. Using (25) we

conclude that it suffices to prove that

JS : Ω
˚´2pS ´2

PS

´
S S 1

X S f
¯´p´1qpS Z

2
Ñ C

˚

p

`
S f X TS

˘

is a quasi-isomorphism. Following Lemma 3.2, we get the claim.

‚ Final step. Consider the invariant open covering V “
 

TS X T3, TS zν´1
3

pr0, 2sq
(

of TS . We fix a smooth map

λ : r0,8rÑ r0, 1s verifying λ “ 1 on r0, 3s and λ “ 0 on r4,8r. The map f : TS Ñ r0,8r is defined by f pxq “ λpν3pxqq.
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It is an S 3-invariant smooth map, constant on the fibers of τ3 : D3 Ñ Σ3, which gives || f ||S “ ||d f ||S “ || f ||Q “

||d f ||Q “ 0 for each Q P S3 with Q Ă S . So, the family t f , 1 ´ f u is a partition of unity, subordinated to V , living in

Ω
˚

0
pTS q. Now, it suffices to apply the Bredon’s trick [3, pag. 289] and the previous cases. �

Proposition 3.7. Let Φ : S 3 ˆ M Ñ M be a mobile action. For any perversity 0 ď p ď t on M we have

H
˚
´

C
˚

p
pMq

¯
“

à

S PS1

H
˚´2pS ´2

PS

ˆ
S

S 1
˙´p´1qpS Z

2

.

Proof. It suffices to consider Lemma 3.3, (24), Lemma 3.5 and Lemma 3.6. �

4. Gysin braid for a mobile action

We construct two Gysin sequences associated with a mobile action Φ : S 3 ˆ M Ñ M. These sequences establish a

relationship between the cohomology of the manifold M and the intersection cohomology of the orbit space M{S 3. The

existence of two distinct approaches to the cohomology of M by the intersection cohomology of M{S 3 gives rise to two

separate sequences: one from the left, and one from the right.

The first version, the left one, uses the short exact sequence

0 Ñ Ω
˚

p

`
M{S 3

˘
Ñ Ω

˚

p
pMq Ñ

Ω
˚

p
pMq

Ω
˚

p
pM{S 3q

Ñ 0,

where p is a perversity on M. The quotient G
˚

p
pMq “

Ω
˚

p
pMq

Ω
˚

p
pM{S 3q

is the Gysin term.

Theorem A. Let Φ : S 3 ˆ M Ñ M be a mobile action. For any perversity 0 ď p ď t on M we have the long exact

sequence, known as a Gysin Sequence,

¨ ¨ ¨ // H
˚´1

pMq // H
˚´1

´
G

¨

p
pMq

¯
// H

˚

p

`
M{S 3

˘
// H

˚
pMq // ¨ ¨ ¨ .

The cohomology of the Gysin term is determinated by the long exact sequence

(27) ¨ ¨ ¨ // H
˚´1

´
G

¨

p
pMq

¯
// H

˚´4

p´e

`
M{S 3

˘
//
à

S PS1

H
˚´2pS ´2

PS

ˆ
S

S 1
˙´p´1qpS Z

2
// H

˚
´

G
¨

p
pMq

¯
// ¨ ¨ ¨ .

Proof. The first long exact sequence comes from (4) and from the fact that the complexΩ
˚

p
pMq computes the cohomology

of M since 0 ď p ď t (cf. Section 1.3 and Proposition 2.1). We now consider the the short exact sequence

(28) 0 // C
˚

p
pMq // G

˚

p
pMq

>
// I

˚´3

p
pMq // 0,

where
>

xωy “
>
ω. The second long exact sequence comes from the fact that the cohomology of I

˚

p
pMq is H

˚

p´e

`
M{S 3

˘

(cf. Proposition 3.1) and from Proposition 3.7. �

The second version, the right one, uses the short exact sequence

(29) 0 Ñ K
˚

p
pMq Ñ Ω

˚

p
pMq Ñ I

˚´3

p
pMq Ñ 0.

By symmetry, we say that the complex K
˚

p
pMq is the co-Gysin term of the action.

Theorem B. Let Φ : S 3 ˆ M Ñ M be a mobile action. For any perversity 0 ď p ď t on M we have the long exact

sequence, known as a Gysin Sequence,

(30) ¨ ¨ ¨ // H
˚´1

pMq // H
˚´4

p´e

`
M{S 3

˘
// H

˚
´

K
¨

p
pMq

¯
// H

˚
pMq // ¨ ¨ ¨
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The cohomology of the co-Gysin term is determinated by the long exact sequence

(31) ¨ ¨ ¨ // H
˚´1

´
K

˚

p
pMq

¯
//
À

S PS1
H

˚´3´2pS

PS

ˆ
S

S 1
˙´p´1qpS Z

2
// H

˚

p

`
M{S 3

˘
// H

˚
´

K
˚

p
pMq

¯
// ¨ ¨ ¨ .

Proof. The first long exact sequence is derived from (29) and the following two facts:

‚ The complex Ω
˚

p
pMq computes the cohomology of M, since 0 ď p ď t (cf. Section 1.3 and Proposition 2.1).

‚ The cohomology of the complex I
p
pMq is H

p´e

`
M{S 3

˘
(cf. Proposition 3.1).

The second long exact sequence is derived from the short exact sequence

(32) 0 Ñ Ω
˚

p

`
M{S 3

˘
Ñ K

˚

p
pMq Ñ C

˚

p
pMq Ñ 0

and Proposition 3.7. �

Four previous long exact sequences (A), (27), (30) and (31) can be gathered through in an exact braid diagram.

Definition 4.1. Let us consider six chain complexes A˚, B˚,C˚,D˚, E˚ and F˚. A braid is a diagram of chain maps of

the form

A˚

➃

❊❊
❊❊

""❊
❊❊

➀
$$

B˚

➀

❇❇
❇

  ❇
❇❇

➂
$$

C˚

➂

●●
●●

##●
●●

➁
''

D˚`1

➁

●●
●●

##●
●●

➃
&&

Ak`2

E˚

➂⑤⑤⑤

>>⑤⑤⑤

➃

❇❇
❇

  ❇
❇❇

F˚

➁②②②

<<②②②②

➀

❊❊
❊❊

""❊
❊❊

T xirikorda E˚`1

➃✇✇✇

;;✇✇✇✇

➂

●●
●●

##●
●●

F˚`1

➀✈✈✈

;;✈✈✈✈

➁
❍❍

❍❍

##❍
❍❍

C˚´1

➂②②②

<<②②②②

➁

;;D
˚

➁
⑤⑤⑤

>>⑤⑤⑤

➃

;;A
˚`1

➃✇✇✇

;;✇✇✇✇

➀

99B
˚`1

➀✇✇✇

;;✇✇✇✇

➂

99C
˚`1.

It is a commutative braid when all the triangles and diamonds are commutative. If the long sequences ➀, ➁, ➂ and ➃

are exact we say that braid is an exact braid.

An exact and commutative braid possesses the two following properties.

B1- The following long sequence

¨ ¨ ¨ // E˚
p➂,➃q

// B˚ ‘ D˚ ➀´➁
// F˚ ➂➁ // E˚`1 // ¨ ¨ ¨

is exact (see for example [7, pag. 39-41]).

B2- The top and bottom sequences of the braid are semi-exact sequences and both have the same exactness defaults:

ker ➂{ Im ➀ “ ker ➃{ Im ➁, . . . (see for example [12, pag.148]).

Theorem C. LetΦ : S 3ˆM Ñ M be a mobile action. For any perversity 0 ď p ď t on M we have the exact commutative

braid, the Gysin braid:

H
˚

p

`
M{S 3

˘

➃
❑❑

❑❑
❑❑

%%❑
❑❑

❑❑

➀
**

H
˚

pMq

➀
◗◗

◗◗
◗◗

◗◗
◗

((◗
◗◗

◗◗
◗◗

➂
++

H
˚´3

p´e

`
M{S 3

˘

➂
▲▲

▲▲
▲▲

%%▲
▲▲

▲▲

➁ --

à

S PS1

H
˚´1´2pS

PS

ˆ
S

S 1
˙´p´1qpS Z

2

H
˚
´

K
¨

p
pMq

¯
➂♠♠♠♠♠♠♠

66♠♠♠♠♠♠♠♠♠

➃
◗◗

◗◗
◗◗

((◗
◗◗◗

H
˚
´

G
¨

p
pMq

¯
➁sssss

99ssssss

➀
❑❑

❑❑
❑

%%❑
❑❑

❑❑
❑

H
˚`1

´
K

¨

p
pMq

¯
➃♠♠♠♠♠♠♠

66♠♠♠♠

➂
◗◗

◗◗
◗◗

◗

((◗
◗◗

◗◗
◗◗

◗

H
˚´4

p´e

`
M{S 3

˘
➂ssssss

99sssss

➁
11

à

S PS1

H
˚´2pS ´2

PS

ˆ
S

S 1
˙´p´1qpS Z

2

➁♠♠♠♠

66♠♠♠♠♠♠

➃

33
H

˚`1

p

`
M{S 3

˘
➃rrrrrr

99rrrrr

➀

33
H

˚`1
pMq,

Proof. In [19], a braid is constructed from a triple. We follow this method to construct a braid associated with the

following three complexes: Ω
˚

p

`
M{S 3

˘
Ă K

˚

p
pMq Ă Ω

˚

p
pMq. Recall that the cohomology of Ω

˚

p
pMq is H

˚
pMq (cf.

Section 1.3). To recognize the relative terms, we can do the following:
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‚ The quotient
Ω

˚

p
pMq

Ω
˚

p
pM{S 3q

is the Gysin term G
¨

p
pMq.

‚ We can determine the cohomology of
Ω

˚

p
pMq

K
˚

p
pMq

by referring to (29) and Proposition 3.1. It is given by H
˚

p´e

`
M{S 3

˘
.

‚ The cohomology of
K

˚

p
pMq

Ω
˚

p
pM{S 3q

is
À

S PS1
H

˚´2pS ´2

PS

ˆ
S

S 1
˙´p´1qpS Z

2

, as stated in Proposition 3.7. (cf. Proposi-

tion 3.7).

�

In some cases, the sequence (27) splits and the sequence (A) is closer to the classical Gysin sequence. In particular,

we find the Gysin sequence (3) of [13].

Corollary 4.2. Let Φ : S 3 ˆ M Ñ M be a mobile action. When p “ 0 the long exact sequence (27) splits on the

connecting homomorphism and we have the long exact sequence

¨ ¨ ¨ // H
˚´1

pMq // H
˚´4`

M{S 3,Σ{S 3
˘

‘ H
˚´3

´
MS 1

¯´Z
2 // H

˚`
M{S 3

˘
// H

˚
pMq // ¨ ¨ ¨ .

Proof. Since p “ 0 then pS “ 0 and PS “ ´2 for each S P S1. We have,

à

S PS1

H
˚´2pS ´3

PS

ˆ
S

S 1
˙´p´1qpS Z

2

“
à

S PS1

H
˚´3

´2

ˆ
S

S 1
˙´Z

2
[5, Prop. 13.5 ]

“
à

S PS1

H
˚´3

ˆ
S

S 1

, S
S 3
˙´Z

2

(33)

“ H
˚´3

´
MS 1

,MS 3
¯´Z

2
“ H

˚´3
´

MS 1
¯´Z

2

since H
˚´3

´
MS 3

¯´Z
2

“ 0.

Consider a cycle ω P I
˚

0
pMq and compute the connecting homomorphism δrωs of the sequence (27). We have seen in

the proof of Proposition 3.1 that χ3 ^ χ2 ^ χ1 ^ ω P Ω
˚`3

p
pMq with

>
pχ3 ^ χ2 ^ χ1 ^ ωq “ ω. Using (11) we get

dpχ3 ^ χ2 ^ χ1q ^ ω “ pe2
1 ` e2

2 ` e2
3q ^ ω´ dppe3 ^ χ3 ` e2 ^ χ2 ` e1 ^ χ1q ^ ωq.

Since ω P Ω
˚

0´χ

`
M{S 3

˘
then ω vanishes on D1 \ D3 and therefore, so does any multiple of ω. So, pe2

1
` e2

2
` e2

3
q ^ ω P

Ω
˚

0´χ

`
M{S 3

˘
and pe3 ^ χ3 ` e2 ^ χ2 ` e1 ^ χ1q ^ ω P Ω

˚

0
pMq. This gives

dxχ3 ^ χ2 ^ χ1 ^ ωy “ xdpχ3 ^ χ2 ^ χ1q ^ ωy “ xpe2
1 ` e2

2 ` e2
3q ^ ω´ dppe3 ^ χ3 ` e2 ^ χ2 ` e1 ^ χ1q ^ ωy

“ ´xdpe3 ^ χ3 ` e2 ^ χ2 ` e1 ^ χ1 ^ ωqy

which gives δrωs “ 0. Now, the sequence (4.2) comes from (A) (cf. [5, Proposition 13.4)]), (28) and (33). �

Remark 4.3. .

paq The exotic term
à

S PS1

H
˚

PS

ˆ
S

S 1
˙´p´1qpS Z

2

. When the exotic terms vanishes the Gysin Braid becomes the long

exact sequence (4). This happens when S1 “ H, for example, when the acion Φ is almost-free (i.e., S1 “ S3 “ H) or

semi-free.

We have seen in the proof of the above Corollary that the exotic term can be simplified when p “ 0. In this case we

have
À

S PS1
H

˚

PS

ˆ
S

S 1
˙´p´1qpS Z

2

“ H
˚
´

MS 1
¯´Z

2
.

The isotropy subgroup of a point of MS 1
zMS 3

is conjugated to S 1 or N. Let us suppose that the first situation does not

appear, that is, the group Z2 acts trivially on MS 1

. This implies that H
˚
´

MS 1
¯´Z

2
“ 0.

Equality (33) is still true when p “ 4p, 4p ` 1 mod 4 on S1, p “ q on S3 and q ´ 4p ď 1.

We have

H
˚
´

MS 1
¯´Z

2
“ H

˚
´

MS 1
¯

{H
˚`

M{S 3
˘
,
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since H
˚
´

MS 1
¯

“ H
˚
´

MS 1
¯Z

2
‘ H

˚
´

MS 1
¯´Z

2
“ H

˚
´

MS 1
{Z

2

¯
‘ H

˚
´

MS 1
¯´Z

2
“ H

˚`
M{S 3

˘
‘ H

˚
´

MS 1
¯´Z

2
.

Notice that
à

S PS1

H
˚

PS

ˆ
S

S 1
˙´p´1qpS Z

2

“
à

S PS1

H
˚
´

S S 1
¯´p´1qpS Z

2
when S3 “ H.

pbq Property B1 yields the following two long exact sequences:

¨ ¨ ¨ // H
˚
´

K
¨

p
pMq

¯
// H

˚
´

G
¨

p
pMq

¯
// H

˚´3

p´e

`
M{S 3

˘
‘ H

˚`1

p

`
M{S 3

˘
// H

˚`1
´

K
¨

p
pMq

¯
// ¨ ¨ ¨

¨ ¨ ¨ // H
˚´1

´
G

¨

p
pMq

¯
// H

˚
´

K
¨

p
pMq

¯
// H

˚
pMq ‘

à

S PS1

H
˚´2pS ´2

PS

ˆ
S

S 1
˙´p´1qpS Z

2

// H
˚
´

G
¨

p
pMq

¯
// ¨ ¨ ¨

relating the cohomologies of the Gysin and co-Gysin terms.

pcq Consider the case p “ 0. Since the bottom map ➁ of the Gysin braid vanishes (cf. Corollary 4.2) a diagram

chasing gives the short exact sequence

0 // Im ➀top
�

�

// ker ➂top
➁

´1
˝➀ // ker ➃bottom

// 0,

(cf. B2).

pdq The splitting property given by this Corollary is not a general one as the following example shows.

Let us consider the manifold M “ S a ‹ S 2 ‹ S 3 “ S a`7 with a ě 1. The action Φ : S 3 ˆ M Ñ M is defined in each

factor:

‚ S 3 acts trivially on S a.

‚ S 3 acts on the left of the homogeneous space S 2 “ S 3{S 1.

‚ S 3 acts on the left of S 3 by multiplication on S 3.

We put tb1, b2u the two points of S 2 whose isotropy subgroup is S 1.

We have S3 “ tQ “ S au and S1 “ tS “ pS a ‹ S 2qzS au. Notice that

MS 1

“ S
S 1

“
`
S a ‹ S 2

˘S 1

“ S a ‹
`
S 2

˘S 1

“ S a ‹ tb1, b2u,

the action of g P Z
2

interchanges both points.

The orbit space M{S 3 is the filtered space S a ‹
`
S 2 ‹ S 3

˘
{S 3 “ S a ‹ ΣS 2 “ S a`4 endowed with the filtration

S a Ă S a ‹ tPu Ă S a ‹ ΣS 2 “ S a`4 where P is one of the two apices of ΣS 2.

The perversity p is given by two numbers pp1, p3q “ pppS q, ppQqq. Since dim M “ a`7, dim Q “ a and dim S “ a`3

then the condition 0 ď p ď t becomes p0, 0q ď pp1, p3q ď p2, 5q. In particular, the perversities 0 “ p0, 0q and e “ p2, 4q

satisfy this condition. If p “ 0 (resp. e ) then PS “ ´2 (resp. 0).

A straightforward calculation using [5, Proposition 13.5] gives

` HipMq = R if i “ 0, a ` 7,

` H
i

´e

`
M{S 3

˘
“ H

i`
S a`4, S a ‹ tPu

˘
= R if i “ a ` 4

` H
i

0

`
M{S 3

˘
“ H

i`
S a`4

˘
= R if i “ 0, a ` 4 ,

` H
i

e

`
M{S 3

˘
“ H

i`
S a`4zpS a ‹ tPuq

˘
= R if i “ 0,

` H
i

0

ˆ
S

S 1
˙´Z

2

“ H
i`

S a`1zS a
˘´Z

2 = R if i “ 0

` H
i

´2

ˆ
S

S 1
˙Z

2

“ H
i`

S a`1, S a
˘Z

2 = R if i “ a ` 1

and 0 for the other values of i.

One easily checks that the sequence the long exact sequence (27) does not split on the connecting homorphism when

p “ e. Also, this example shows that the long exact sequence (31) does not split on the connecting homorphism, even in

the case p “ 0.
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We end the Section by studying the behaviour of the Gysin and co-Gysin terms when the perversity changes.

Proposition 4.4. Let Φ : S 3 ˆ M Ñ M be a mobile action. For any perversities 0 ď p ď q ď t on M we have the exact

commutative braids,

H
˚

p

`
M{S 3

˘

➃
▼▼

▼▼
▼

&&▼
▼▼

▼▼

➀
))

H
˚

pMq

➀
▼▼

▼▼
▼▼

&&▼
▼▼

▼

➂
**

H
˚
´

G
¨

q
pMq

¯

➂
▼▼

▼▼

&&▼
▼▼

▼▼

➁
**

H
˚`1

q{p

`
M{S 3

˘

H
˚

q

`
M{S 3

˘
➂rrrrr

99rrrrrr

➃
▲▲

▲▲
▲

%%▲
▲▲

▲▲

H
˚
´

G
¨

p
pMq

¯
➁qqqq

88qqqq

➀
▼▼

▼▼

&&▼
▼▼

▼▼

H
˚`1

q

`
M{S 3

˘
➃qqqqq

88qqqqq

➂
▼▼

▼▼
▼

&&▼
▼▼

▼▼

H
˚´1

´
G

¨

q
pMq

¯
➂qqqq

88qqqqq

➁

44
H

˚

q{p

`
M{S 3

˘
➁qqqqq

88qqqq

➃

44
H

˚`1

p

`
M{S 3

˘
➃qqqqq

88qqqqq

➀

44
H

˚`1
pMq,

and

H
˚
´

K
¨

p
pMq

¯

➃
▼▼

▼▼

&&▼
▼▼

▼

➀
**

H
˚

pMq

➀
❖❖

❖❖
❖❖

❖

''❖
❖❖

❖❖
❖

➂
++

H
˚´3

q´e

`
M{S 3

˘

➂
◆◆

◆◆
◆

''◆
◆◆

◆◆

➁
++

H
˚´3

pq´eq{pp´eq

`
M{S 3

˘

H
˚
´

K
¨

q
pMq

¯
➂♦♦♦♦♦

77♦♦♦♦♦♦♦

➃
❖❖

❖❖
❖

''❖
❖❖

❖❖
❖

H
˚´3

p´e

`
M{S 3

˘
➁♣♣♣♣♣

88♣♣♣♣♣

➀
◆◆

◆◆
◆

&&◆
◆◆

◆◆

H
˚`1

´
K

¨

q
pMq

¯
➃♥♥♥♥♥

77♥♥♥♥♥♥

➂
PP

PP
P

''P
PP

PP
P

H
˚´4

q´e

`
M{S 3

˘
➂qqqqq

88qqqq

➁

33
H

˚´4

pq´eq{pp´eq

`
M{S 3

˘
➁♦♦♦♦♦♦

77♦♦♦♦♦♦

➃

33

H
˚`1

´
K

¨

p
pMq

¯
➃♣♣♣♣♣

77♣♣♣♣♣

➀

44
H

˚`1
pMq,

Proof. The paper [19] presents a method for constructing a braid from a triple. We will use this method to construct two

braids associated with the following pairs of triples: Ω
˚

p

`
M{S 3

˘
Ă Ω

˚

q

`
M{S 3

˘
Ă Ω

˚

q
pMq and K

˚

p
pMq Ă K

˚

q
pMq Ă

Ω
˚

q
pMq. It is important to recall that the cohomology of Ω

˚

p
pMq or Ω

˚

q
pMq is H

˚
pMq (cf. Section 1.3). To identify the

relative terms, we consider the following schema

Ω
˚

q
pM{S 3q

Ω
˚

p
pM{S 3q

Ω
˚

q
pMq

Ω
˚

q
pM{S 3q

Ω
˚

q
pMq

Ω
˚

p
pM{S 3q

K
˚

q
pMq

K
˚

p
pMq

Ω
˚

q
pMq

K
˚

q
pMq

Ω
˚

q
pMq

K
˚

p
pMq

Ω
˚

q{p

`
M{S 3

˘
G

˚

q
pMq G

˚

p
pMq Ω

˚´4

pq´eq{pp´eq

`
M{S 3

˘
Ω

˚

q´e

`
M{S 3

˘
Ω

˚

p´e

`
M{S 3

˘

The first two columns are actually equalities. In the other columns, we have complexes with the same cohomology.

To prove this fact for the third column, we use the equality Ω
˚

q
pMq X Ω

˚

p

`
M{S 3

˘
“ Ω

˚

q

`
M{S 3

˘
and the fact that the

inclusion Ω
˚

p
pMq ãÑ Ω

˚

q
pMq induces an isomorphism in cohomology, as shown in [1, 17] (this is property (a)).

For column 4, we use (29) and Proposition 3.1. Column 5 comes from the equality K
˚

q
pMq X Ω

˚

p
pMq “ K

˚

p
pMq and

property (a). The last column comes from the short exact sequence 0 Ñ K
˚

p
pMq Ñ Ω

˚

p
pMq Ñ I

˚´3

p
pMq Ñ 0, property

(a), and finally Proposition 3.1. �

5. Gysin sequence for a non-mobile action

”In this section, we consider a non-mobile non-trivial action Φ : S 3 ˆ M Ñ M. The family of regular strata (resp.

singular strata) is S1 , H (resp. S3). A perversity is a map p : S3 Ñ Z, that is, a family of numbers tppQq
ˇ̌

Q P

S3u Ă Z. We consider on M{S 3,MS 1
the induced filtered space structure. Notice that the family of singular strata is still

S3.

Theorem D. Let Φ : S 3 ˆ M Ñ M be a non-mobile non-trivial action. For any perversity 0 ď p ď t on M we have

(34) H
˚

pMq “ H
˚

p

`
M{S 3

˘
‘ H

˚´2

p´2

´
MS 1

¯´Z
2
.
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Proof. Since the action of S 3 on MzΣ has no fixed points, the assignment pg, xq ÞÑ g ¨ x, establishes an S 3-equivariant

diffeomorphism between the twisted product S 3 ˆN

´
MS 1

zΣ
¯

and MzΣ. Here, Σ “ MS 3
is the union of singular strata.

Following Corollary 2.8 we have

Ω
˚

pMzΣq “ Ω
˚
´

MS 1

zΣ
¯Z

2
‘ Ω

˚´2
´

MS 1

zΣ
¯´Z

2
,

since Z “ 0. A differential form ω P Ω
˚

pMzΣq is α` γ2 ^ γ3 ^ β with pα, βq P Ω
˚
´

MS 1
zΣ
¯Z

2
‘Ω

˚´2
´

MS 1
zΣ
¯´Z

2
. It

remains to compute the perverse degree ||ω||Q.

We consider an S 3-invariant Thom-Mather system TM “ tTQ

ˇ̌
Q P S3u. It induces the N-invariant Thom-Mather

system T
MS 1 “ tTQ X MS 1 ˇ̌

Q P S3u on MS 1
(cf. Section 1.6). Notice that TQzQ “ S 3 ˆN

´
pTQ X MS 1

qzQ

¯
. The

map τQ : TQzQ Ñ Q becomes xg, xy ÞÑ τQpxq. So, the fiber of τQ over a point y P Q is S 3 ˆN

´
pτ´1

Q
pyq X MS 1

qzQ

¯
.

This gives ||ω||Q “ maxt||α||Q, 2 ` ||β||Qu and therefore

H
˚

pMq “ H
˚
´
Ω

¨

p
pMq

¯
“ H

˚

p

´
MS 1

¯Z
2

‘ H
˚´2

p´2

´
MS 1

¯´Z
2
,

since the complex Ω
˚

p
pMq computes the cohomology of M for the perversity 0 ď p ď t (cf. Section 1.3 and Proposi-

tion 2.1). Finally, we get (34) from pMS 1
zΣq{Z

2
“ pMzΣq{S 3. �

Remark 5.1. Considering the perversity p “ 0 we get

H
˚

pMq “ H
˚`

M{S 3
˘

‘ H
˚´2

´
MS 1

¯´Z
2

(cf. (33) and [5, Proposition 13.4)]).
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