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A quantum spin Hall strip where different edges are contacted by s-wave superconductors with
a phase difference φ supports Majorana bound states protected by time-reversal symmetry. We
study signatures of these states in a four-terminal setup where two Josephson junctions are built on
opposite edges of the strip and the phase difference between superconductors can be controlled by
an external flux. Applying a voltage bias across the quantum spin Hall strip results in a sequence of
conductance peaks from multiple Andreev reflections. We find that this so-called subharmonic gap
structure is very sensitive to the phase difference and displays a phase-controlled even-odd effect,
where all odd spikes disappear when the Majorana states are formed for φ = π. Moreover, the
remaining even spikes split when the superconductors forming the junction have different gap size.
We explain these features by showing that any midgap bound states enhance the transmission of
the even order multiple Andreev reflections, while the reduced density of states at the gap edges
suppresses the odd order ones.

I. INTRODUCTION.

The quantum spin Hall insulator (QSHI)1–6 is a promi-
nent topological material that is recently attracting sig-
nificant attention. Its defining feature is the emergence of
helical, or spin-momentum locked, edge states where dif-
ferent spins circulate in opposite directions. These helical
edge states have been measured in experiments7,8 and
provide a pathway to develop novel quantum phenom-
ena and functionalities9. For example, QSHIs are pre-
dicted to host Majorana bound states with revolutionary
prospects in fault-tolerant quantum computations10–18.
Such topological superconductivity can be generated in
helical states with or without time-reversal invariance.
Breaking time-reversal symmetry, a single helical edge
can be proximitized by ferromagnets and superconduc-
tors so that Majorana modes appear at the boundaries
between them19–21. However, combining ferromagnets
with superconductors in QSHIs is experimentally chal-
lenging due to the detrimental effects of the magnetic ex-
change on the proximity-induced gap. Therefore, efforts
are devoted to propose platforms without magnetic ma-
terials that realize time-reversal invariant topological su-
perconductors with Kramers pairs of zero-energy Majo-
rana bound states. These so-termed Majorana Kramers
pairs (MKPs) are twofold degenerate22, leading to a
quantized conductance of 4e2/h23 and mirror fractional
Josephson effect24 as experimental signatures.

In one approach to realize MKPs, the two opposite
edges of a QSHI strip are coupled to superconducting
leads with a phase difference of π25–27. An experimental
signature to detect MKPs in such a Josephson junction
is the subharmonic gap structure (SGS); a series of res-
onant conductance peaks in a voltage-biased Josephson
junction. The SGS is generated by multiple Andreev re-
flections (MAR) when two superconductors are in electric
contact and a voltage bias drives sequential Andreev re-
flections of quasiparticles at the interface between them.

Incident quasiparticles gain or lose an energy eV as they
travel across the interface, until escaping to the reservoirs
for energies above the superconducting gap. In conven-
tional Josephson junctions, the peaks in the SGS come
from the singular density of states at the superconducting
energy gap edges hosting incident and escaping quasipar-
ticles28. The conductance peaks are thus positioned at
eVn = 2∆0/n, with ∆0 the superconducting gap and n
an integer number29–34. By contrast, due to the presence
of Majorana modes in topological Josephson junctions,
new resonant channels form in the middle of the energy
gap leading to an anomalous SGS with only even integer
peaks. That is, the conductance resonances are located
at eVm = 2∆0/m where m is now an even integer35–38.
Anomalous SGSs have been predicted in Josephson junc-
tions mediated by the edge states of a QSHI, which were
interpreted as a parity-changing process in a topological
Josephson junction35. Angle-resolved SGS have also been
explored in two-dimensional Josephson junctions for de-

FIG. 1. Schematic diagram of the device layout to detect a
topological transition. Terminals 1 and 2 (3 and 4) connect to
the left (right) superconducting electrodes and the supercon-
ducting phase difference between terminals is controlled by a
magnetic flux. The band structure of low-energy quasiparti-
cles near the Fermi surface in each region is shown below.

http://arxiv.org/abs/2301.09114v2


2

tecting chiral Majorana states39. However, such setups
require breaking time-reversal symmetry by Zeeman cou-
pling from a magnetic material at the QSHI edges, thus
hindering their possible experimental implementation.

In this paper we consider a time-reversal invariant
QSHI strip with no magnetic elements to simplify these
experimental challenges in the search for Majorana
states. In our approach, two opposite strip edges are cov-
ered by superconductors with a tunable phase difference,
see Fig. 1. Importantly, the strip width is such that the
edge states are not decoupled. Consequently, the edge
states hybridize and their characteristic Dirac-like linear
dispersion becomes gapped by 2α, with α the inter-edge
coupling strength. The inter-edge coupling opens a reflec-
tion channel between particles at opposite edges, without
breaking time-reversal symmetry. The resulting tunnel
Josephson junction has variable transmission controlled
by α. We then consider a bias voltage at terminals 1 and
2 that injects a current collected by terminals 3 and 4
(Fig. 1). At the same time, the phase difference φ be-
tween superconductors can be controlled by a magnetic
flux. For φ= π the system preserves time-reversal sym-
metry and hosts MKPs.

Interestingly, the SGS for this junction can be tuned
by φ in stark contrast to conventional Josephson junc-
tions. For φ = 0, the junction behavior is in good
agreement with conventional BCS Josephson junctions40:
the SGS features peaks at eVm = 2∆L/R/m and eVn =
(∆L+∆R)/n, withm and n being, respectively, even and
odd integers, and ∆L (∆R) the left (right) pair poten-
tial. As a result, only the even spikes of the SGS split for
asymmetric junctions with ∆L 6= ∆R. By contrast, when
time-reversal invariant MKPs emerge for φ = π, the junc-
tion behavior is very anomalous: only the even resonant
peaks (eVm = 2∆L/R/m) appear, and all spikes split for
asymmetric junctions. We explain this anomalous be-
havior by showing that midgap bound states from MKPs
are only connected to even order MAR, while odd order
processes are only sensitive to the gap edges. Since the
emergence of MKPs is associated with an enhanced den-
sity of states at zero energy and a reduction of it at the
gap edges, only even MAR survive for φ = π, while both
even and odd conductance peaks appear otherwise. The
proposed time-reversal invariant multi-terminal Joseph-
son junction can thus help circumvent some of the ex-
perimental challenges in the search for Majorana bound
states on QSHI-based superconducting heterostructures.

The rest of the paper is organized as follows. In Sec-
tion II, we describe the model. We present the trans-
port properties of symmetric and asymmetric junctions
in Section III and Section IV, respectively. Finally, we
conclude this work with a brief summary in Section V.
We also present the tunneling conductance of a normal-
superconductor junction and further details of our calcu-
lations in the Appendix.

II. MODEL AND FORMALISM.

The low-energy effective edge state Hamiltonian is
given by H = H0 +HS with

H0 =

∫

dxΨ̂† [−i~vσ̂z ŝz∂x + ασ̂x − µ] Ψ̂, (1)

HS = ∆

∫

dx
[

Ψ̂†1,↑Ψ̂
†
1,↓ + eiφΨ̂†−1,↑Ψ̂

†
−1,↓

]

+ h.c., (2)

and basis Ψ̂ = (Ψ̂†1,↑, Ψ̂
†
1,↓, Ψ̂

†
−1,↑, Ψ̂

†
−1,↓)

T . Here, the sub-

script σ ∈ {1,−1} labels the different edges and the
Pauli matrices σ̂i and ŝi, with i ∈ {x, y, z}, act on
edge and spin spaces, respectively. The chemical po-
tential is µ (x) = µ [Θ (−x) + Θ (x− L)], with Θ (x)
being the Heaviside step function and L the junction
length, and α is the coupling strength between opposite
edges41. We further assume that the chemical poten-
tial for the insulating region (0 < x < L) is tuned to
the middle of the gap, but remains large (µ ≫ α) for
the S regions, thus forming a tunnel junction of vari-
able transmission D = tt∗ with t = 1/ cosh (αL/v). It
can be seen that D is tunable by changing the junc-
tion length L with a fixed α. We define the pair po-
tential ∆ (x) = ∆LΘ(−x) + ∆RΘ(x− L). Using the

Bogoliubov transformation Ψ̂σ,s =
∑

N uNσ,sγ̂N +vN,∗
σ,s γ̂

†
N ,

we derive the Bogoliubov-de Gennes (BdG) Hamiltonian
H = H1 ⊕H2, with

Hη=1,2 =

(

ĥi ∆̂i

∆̂†i −ĥi

)

, (3)

and

ĥ1(2) =

(

∓i~v∂x − µ α
α ±i~v∂x − µ

)

, (4)

∆̂1(2) =

(

±∆ 0
0 ±∆eiφ

)

, (5)

where H1 (H2) acts on (uN1,↑, u
N
−1,↑, v

N
1,↓, v

N
−1,↓)

T

[(uN1,↓, u
N
−1,↓, v

N
1,↑, v

N
−1,↑)

T ] space. The wavefunctions can
be found in Appendix A.
The time-dependent wavefunctions at the central scat-

tering region, (0, L), for an incident quasiparticle from
terminal 1 read

Φx=0− =
∑

n

e−i
(ǫ+2neV )t

~









(J
(1)
ǫ δn,0 + aL,2nAn)

Bn

An

aL,2ne
−iφBn









, (6)

Φx=L+ =
∑

n

e−i
[ǫ+(2n+1)eV ]t

~







Cn

aR,2n+1e
iφDn

aR,2n+1Cn

Dn






, (7)

where aL/R,n ≡ aL/R (ǫ+ neV ) with

aL/R (ǫ) =











ǫ−sgn(ǫ)(ǫ2−∆2
L/R)

1/2

∆L/R
, |ǫ| > ∆L/R

ǫ−i(∆2
L/R−ǫ

2)
1/2

∆L/R
, |ǫ| < ∆L/R.

, (8)
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and J
(1)
ǫ =

√

1− |aL(ǫ)|2 being the amplitude of the

incident quasiparticle from terminal 1 into the scattering
region. The wavefunctions Φ0− and ΦL+ are connected
by the scattering matrices

Se = S∗h =

[

r t
t −r∗t/t∗

]

, (9)

with r = −i tanh (αL/v). Here, we have assumed that
α ≫ ∆L/R and thus the scattering matrices can be ap-
proximated as energy independent. Consequently, the

coefficients An, Bn, Cn, and Dn are related by

(

Bn

Cn

)

= Se

(

J
(1)
ǫ δn,0 + aL,2nAn

aR,2n+1e
iφDn

)

, (10)

(

An

Dn−1

)

= Sh

(

aL,2ne
−iφBn

aR,2n−1Cn−1

)

. (11)

Solving Eqs. (10) and (11), we obtain the following re-
currence relations for An and Bn

A1,n+1 − aR,2n+1aL,2nA1,n = |r|aL,2n+2e
−iφB1,n+1 − |r|aR,2n+1B1,n + aR,1J

(1)
ǫ δn,0, (12)

DaL,2n+2aR,2n+1

1− a2R,2n+1e
iφ

B1,n+1 −
[

Da2R,2n+1e
iφ

1− a2R,2n+1e
iφ

+
Da2L,2ne

−iφ

1− a2R,2n−1e
iφ

− e−iφa2L,2n + 1

]

B1,n +
DaR,2n−1aL,2n

1− a2R,2n−1e
iφ
B1,n−1

= −|r|J (1)
ǫ δn,0, (13)

Next, from the continuity equation ∂
∂t ρ̂ + ∂xĴ = 0, with ρ̂ = e

∑

σ(Ψ
†
σ,↑Ψσ,↑ + Ψ†σ,↓Ψσ,↓), we define the current

operator Ĵ =
∑

σ
evσ
~
(Ψ†σ,↑Ψσ,↑ −Ψ†σ,↓Ψσ,↓). The average electric current in terminal 1, cf. Eq. (6), is defined as

I1 = 〈Ĵ 〉 = e

h

∑

k,n

ei
2keV t

~

∫ +∞

−∞

dǫ
[(

J (1)
ǫ δn+k,0 + a∗L,2(n+k)A

∗
1,n+k

)(

J (1)
ǫ δn,0 + aL,2nA1,n

)

−B∗1,n+kB1,n

]

fǫ

+
e

h

∑

k,n

ei
2keV t

~

∫ +∞

−∞

dǫ
[

aL,2na
∗
L,2(n+k)B

∗
1,n+kB1,n −A∗1,n+kA1,n

]

f−ǫ, (14)

where fǫ = (eǫ/kBT +1)−1 is the Fermi-Dirac distribution
function. The dc component of the current corresponds
to the k = 0 harmonic in Eq. (14). Similarly, we can ob-
tain the currents for the other terminals, Ii=2−4, and ob-
tain the total current as I =

∑

i Ii (see Appendix C). In
the numerical calculations, we solved Eq. (13) by choos-
ing an appropriate cut-off value |n| = N , and normalize it
in units of GN∆/e, where GN is the conductance when
all electrodes are in the normal state. The differential
conductance is thus obtained as G = ∂I/∂V .

III. SUBHARMONIC GAP STRUCTURE OF

SYMMETRIC JUNCTIONS

We calculate the current and conductance in Fig. 2
for different junction transmissivity D = tt∗. We focus
on the dc current which experimentally relates to the
average electric current in the long time limit. Our for-
malism can be applied to arbitrary value of φ, but, for
clarity, we focus on the time-reversal invariant junction
with φ = 0 and φ = π. In Fig. 2, we consider a sym-
metric junction with ∆L = ∆R = ∆0, and show the
current and differential conductance for different values
of the transmission. For φ = 0, the current character-

istic is that of s-wave superconductors, where the con-
ductance displays peaks at eVn = 2∆0/n (n being an
integer), see Fig. 2(a,b). By contrast, the SGS becomes
2∆0/m (m an even integer) for φ = π, see Fig. 2(c,d).
A SGS with only even resonances was already predicted
for time-reversal breaking topological Josephson junc-
tions with zero-energy states35–37. The exotic SGS can
be understood as follows. In the topological supercon-
ducting phase, the density of states at the gap edges is
suppressed, in contrast to the divergent density for trivial
superconductors, see Appendix B. Thus, MAR processes
where quasiparticles transmit from the lower gap edge at
−∆0 to the upper one at ∆0 will not necessarily give rise
to conductance peaks. By contrast, when the MAR tra-
jectory passes through the midgap MKPs, the resonant
channel will boost the MAR transmission and therefore
a conductance peak appears. Consequently, the presence
of zero-energy states (now MKPs) when φ = π plays an
important role in forming the SGS. It is also interesting
to compare our results with previous works on phase-
tuned MAR in multi-terminal superconductors42–45. In
a conventional 3-terminal s-wave superconducting inter-
ferometer, the phase difference changes the visibility, in-
stead of the shape of the SGS. However, in our setup, the
phase difference directly changes the characteristic of the
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SGS.

To further show how the SGSs evolve with the phase
difference, we plot the conductance spectra with equal
pair potential ∆L = ∆R = ∆0 in Fig. 3. Apart from the
previously analyzed cases with φ = 0 and π, the position
of the resonant peaks in the SGS is not straightforward
to identify. However, it is clear that the odd order reso-
nances gradually disappear by increasing φ from 0 to π.
Thus, as the phase reaches φ = π, only the even order
resonant peaks remain in the SGS.

IV. ASYMMETRIC JUNCTIONS

Next, we explore the SGS in asymmetric junctions
where ∆L and ∆R can be different. We focus on the time
reversal invariant cases φ = 0, π and compare them to the
symmetric case. In Fig. 4(a), we consider a trivial junc-
tion with φ = 0 and change the gap ratio r = ∆L/∆R.
For ∆L 6= ∆R, the odd order resonant conductance peaks
remain at eVn = (∆L+∆R)/n (n odd), while the even or-
der ones at eVm = 2∆L/R/m (m even) split into two, see
shaded area in Fig. 4(a). To illustrate this difference, we
sketch the second (n = 2) and third (n = 3) order MAR
processes in Fig. 4(b). Since the SGS appears when MAR
connect with two band edges, for odd integers (green
lines) quasiparticles climb up the same energy ∆L +∆R

via MAR. Thus the SGS for eV3 = (∆L +∆R)/3 does
not split. For even order MAR, however, the two possi-
ble paths for quasiparticles gain different energy as indi-
cated by the blue and red lines. Therefore, the second

FIG. 2. Electric current and differential conductance at tem-
perature kBT = 0.2∆0 as a function of the voltage, for φ = 0
(a,b) and φ = π (c,d), for transmissions D = 0.9, 0.7, 0.5. In
all cases, ∆L = ∆R = ∆0. The dashed vertical lines indicate
the positions of the resonant spikes.

FIG. 3. Differential conductance as a function of the voltage
at temperature kBT = 0.2∆0 for (a) φ = 0, (b) φ = π/3, (c)
φ = π/2, (d) φ = 2π/3, and (e) φ = π. The dashed vertical
lines mark the n-th order SGS at 2∆0/n for n = 1, 2, 3, 4, 5, 6.
In all cases, we choose ∆L = ∆R = ∆0 and D = 0.6.

order MAR contribute double peaks at eVn = ∆L and
eVn = ∆R to the conductance spectra.

Next, we consider the nontrivial case with φ = π and
keep the other parameters unchanged. As for symmet-
ric junctions, the odd order MAR resonances disappear
[Fig. 4(c)] due to the reduced density of states at the gap
edges. As explained above, MAR processes connecting
two gap edges only give rise to SGS when a zero-energy
state resides in its trajectory. It explains why the odd
order gray MAR trajectories sketched in Fig. 4(d) do not
contribute to SGS. However, the even order blue and red
MAR processes satisfy the resonant condition and thus
enhance the onset current leading to the appearance of
conductance peaks. This analysis of the SGS is also valid
for time-reversal broken topological superconductors.

It is worth highlighting that the different SGSs be-
tween φ = 0 and π are directly connected to the absence
or presence, respectively, of zero-energy bound states.
Since time-reversal symmetry is preserved in both cases,
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FIG. 4. Differential conductance at temperature kBT = 0.2∆0 for D = 0.6 as the gap ratio r = ∆L/∆R varies for (a) φ = 0
and (c) φ = π. (b) and (d) show the schematic trajectories of the third-order (first and second panels) and the second-order
(third and fourth panels) MAR. For φ = 0 (b), both cases result in a conductance peak, since they connect the gap edges with
divergent density of states. However, for φ = π (d), the density of states is reduced at the gap edges and the third-order MAR
will not generate a conductance peak (gray lines). By contrast, the second-order MAR is assisted by MKPs (red and blue lines)
leading to a conductance peak.

the emergence of zero-energy bound states should always
come in degenerate pairs (MKPs) according to Kramers
theorem22. In Appendix B, we test such Kramers degen-
eracy by proposing a different setup configuration with
only one superconductor loop. There, we show the cor-
rect conductance quantization of 4e2/h as corresponds to
a pair of spin degenerate Majorana bound states.

V. CONCLUSIONS

We have studied the charge transport properties of
quantum spin Hall strips, with coupled edge states, con-
nected to several superconducting electrodes. Such a
setup supports time-reversal invariant Majorana bound
states, known as Majorana Kramers pairs, that appear
when the phase difference at the Josephson junctions is
φ = π. We find that the current characteristics strongly
change with the phase difference between superconduc-
tors at opposite edges. Consequently, the subharmonic
gap structure, a sequence of resonant conductance peaks
appearing in voltage-biased Josephson junctions due to
multiple Andreev processes, is very sensitive to this phase
difference. For φ = π, due to the presence of zero-energy

Majorana Kramers pairs, the odd order multiple Andreev
processes do not contribute to the current, and only the
even order ones appear in the subharmonic gap structure.
Moreover, when the superconductors forming the junc-
tion have different gap sizes, all the (even) conductance
peaks split, a signature without counterpart in conven-
tional junctions.

We now briefly discuss the feasibility of our experimen-
tal proposal to reveal time-reversal invariant Kramers
pairs of Majoranas. The most common quantum spin
Hall insulator is based on HgTe/CdTe quantum wells,
where it has been reported46 that the separation between
edge channels is reached for d ∼ 400nm. The coupling
strength α between the edge channels with this value of
d was estimated to be about 10µeV. The superconduct-
ing gap ∆ induced by proximity effect was estimated to
be less than 20µeV. In our geometry, we assume a large
chemical potential µ, which can be easily satisfied by
tuning a top gate8. We also consider ∆ smaller than α,
which could also be realized by reducing the coupling be-
tween the superconducting leads and the quantum spin
Hall edges. Our proposal does not require magnetic ma-
terials, thus further simplifying its experimental realiza-
tion, and is highly tunable by an external magnetic flux.
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Based on these estimations and the recent advances im-
plementing superconducting electrodes on semiconductor
quantum wells46–50, we are confident that our proposal
is within experimental reach.
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Appendix A: Wavefunctions

In the superconducting side, we can transform the Hamiltonian using the unitary transformation

U =
1√
2







1 1 0 0
1 −1 0 0
0 0 −1 −1
0 0 −1 1






, (A.1)

and H̃1(2) = UH1(2)U
† becomes

H̃1(2) =







−µ+ α ∓i∂x ∓γξc∆ ∓iγξs∆
∓i∂x −µ− α ±iγξs∆ ±γξc∆

∓γ∗ξc∆ ∓iγ∗ξs∆ µ− α ∓i∂x
±iγ∗ξs∆ ±γ∗ξc∆ ∓i∂x µ+ α






, (A.2)

with ξc = cos φ
2 , ξs = sin φ

2 , and γ = ei
φ
2 . It can be seen that α is negligible in H̃1(2) in the limit α≪ µ, and if φ 6= 0

or π there are mixed singlet- and triplet-pairings. The wavefunction ψ of H1(2) can be obtained by U †ψ̃, where ψ̃ is

the solution of H̃1(2). The wavefunctions of H1 in the superconducting side are

ψe,→
1,S =







u
0
v
0






eikx;ψe,←

1,S =







0
u
0

ve−iφ






e−ikx;ψh,→

1,S =







0
veiφ

0
u






e−ikx;ψh,←

1,S =







v
0
u
0






eikx, (A.3)

and the wavefunctions of H2 in the superconducting side are

ψe,→
2,S =







0
u
0

−ve−iφ






eikx;ψe,←

2,S =







u
0
−v
0






e−ikx;ψh,→

2,S =







−v
0
u
0






e−ikx;ψh,←

2,S =







0
−veiφ

0
u






eikx, (A.4)

where u and v are the coherent factors

u (v) =

[

1

2
±

√
ǫ2 −∆2

2ǫ

]
1
2

. (A.5)

In the central scattering region 0 < x < L, the wavefunctions are given by

ψe,1
1,c =







i
1
0
0






e−κx;ψe,2

1,c =







−i
1
0
0






eκx;ψh,1

1,c =







0
0
i
1






e−κx;ψh,2

1,c =







0
0
−i
1






eκx, (A.6)

and

ψe,1
2,c =







−i
1
0
0






e−κx;ψe,2

2,c =







i
1
0
0






eκx;ψh,1

2,c =







0
0
−i
1






e−κx;ψh,2

2,c =







0
0
i
1






eκx, (A.7)

with κ = α/v.
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FIG. 5. Schematic diagram of the normal-superconductor junction. Terminals 1 and 2 connect to a normal-state injection
electrodes, while terminals 3 and 4 connect to superconducting leads. The superconducting phase difference between terminals
is controlled by a magnetic flux. Schematic band structures of low-energy quasiparticles near the Fermi surface in each region
are shown on the right.

Appendix B: Tunneling spectroscopy of a normal-superconductor junction

The emergence of a time-reversal invariant topological superconductor becomes apparent in the tunneling spec-
troscopy of a junction with superconductors present only on the right region. For φ = π, the system preserves
time-reversal symmetry and can host MKPs. As a result, the zero-bias normal-superconductor conductance is quan-
tized to 4e2/h.
To show this, we now calculate the differential conductance dI/dV following Ref. 51. We define the pair potential

∆ (x) = ∆0Θ(x− L) for the normal-superconductor junction, see Fig. 5. As a result, the wavefunction for an incident
electron from the normal side is

Φ =
∑

η=1,2

[

ψe,→
η,N + bηψ

e,←
η,N + aηψ

h,←
η,N

]

. (B.1)

The conductance can be obtained as51

G = G0

∑

η

[

1− |bη|2 + |aη|2
]

, (B.2)

with G0 = e2/h being the conductance quantum.
The conductance spectra as a function of phase difference φ and the bias voltage eV is shown in Fig. 6(a), with

transmissivity D = tt∗ = 0.5. The subgap resonance peaks vary with φ and cross at φ = π, where the topological
phase transition takes place. For φ = 0, the conductance reaches the value G = 4e2/h at eV = ±∆0, see Fig. 6(b),
which indicates a perfect Andreev reflection at the gap edges52. Indeed, the conductance for φ = 0 behaves like an
s-wave superconductor where the subgap values reduce by decreasing the transmissivity D51 [Fig. 6(c)]. As expected,
these quantized peaks merge at eV = 0 for φ = π where the MKPs appear, i.e., a single Majorana bound state
contributes 2e2/h to the conductance. Moreover, the conductance quantization remains robust against D for φ = π,
exhibiting the celebrated zero-biased conductance peak due to Majorana states53–70 [Fig. 6(d)]. At the same time,
the π-difference decreases the local density of states at the gap edges eV = ±∆0.

Appendix C: Recursive relations and currents in the Josephson junction

In the main text, we have derived the current from injected quasiparticles in terminal 1. We now provide the
calculation of currents induced by injection from the other three terminals. The recursive equations for a quasiparticle
incident from terminal 2 are

A2,n+1 − aR,2n+1aL,2nA2,n = |r|aL,2n+2e
iφB2,n+1 − |r|aR,2n+1B2,n + aR,1J

(2)
ǫ δn0, (C.1)

DaL,2n+2aR,2n+1

1− a2R,2n+1e
−iφ

B2,n+1 −
[

Da2R,2n+1e
−iφ

1− a2R,2n+1e
−iφ

+
Da2L,2ne

iφ

1− a2R,2n−1e
−iφ

− eiφa2L,2n + 1

]

B2,n +
DaR,2n−1aL,2n

1− a2R,2n−1e
−iφ

B2,n−1

= −|r|J (2)
ǫ δn0. (C.2)
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FIG. 6. Conductance of a normal-superconductor junction: (a) Contour plot of the conductance G/G0, with G0 = e2/h, as a
function of the phase φ and bias voltage eV . The transmissivity is D = 0.5. Conductance in (a) vs bias voltage for different
phase differences φ = 0 (black), π/2 (red), and π (blue). (c) Conductance with the phase φ = 0 for D = 1 (black), 0.7 (red)
and 0.5 (blue). (d) Same as (c) for φ = π.

For an incident quasiparticle from terminal 3, the relations are

Ā3,n+1 − āL,2n+1āR,2nĀ3,n = |r|āR,2n+2e
iφB̄3,n+1 − |r|āL,2n+1B̄3,n + āL,1J

(3)
ǫ δn0, (C.3)

DāL,2n+1āR,2n+2

1− ā2L,2n+1e
−iφ

B̄3,n+1 −
[

DāL,2n+1e
−iφ

1− ā2L,2n+1e
−iφ

+
DāR,2ne

iφ

1− ā2L,2n−1e
−iφ

− eiφā2R,2n + 1

]

B̄3,n +
DāL,2n−1āR,2n

1− ā2L,2n−1e
−iφ

B̄3,n−1

= −|r|J (3)
ǫ δn0. (C.4)

And for terminal 4, they are

Ā4,n+1 − āL,2n+1āR,2nĀ4,n = |r|āR,2n+2e
−iφB̄4,n+1 − |r|āL,2n+1B̄4,n + āL,1J

(4)
ǫ δn0, (C.5)

DāL,2n+1āR,2n+2

1− āL,2n+1eiφ
B̄4,n+1 −

[

DāL,2n+1e
iφ

1− ā2L,2n+1e
iφ

+
Dā2R,2ne

−iφ

1− ā2L,2n−1e
iφ

− e−iφā
2

R,2n + 1

]

B̄4,n +
DāL,2n−1āR,2n

1− ā22n−1e
iφ

B̄4,n−1

= −|r|J (4)
ǫ δn0. (C.6)

Here, ā is defined as āL/R,n = aL/R(ǫ−neV ). The current sources J
(i)
ǫ are given by J

(2)
ǫ =

√

1− |aL (ǫ)|2 and J
(3)
ǫ =

J
(4)
ǫ =

√

1− |aR (ǫ)|2. We have defined An = A(n, eV ), Bn = B(n, eV ), Ān = A(n,−eV ) and B̄n = B(n,−eV ). The

resulting currents I2, I3, and I4 are derived as

I2 =
e

h

∑

k
ei

2keV t
~

∫ +∞

−∞

dǫ
∑

n

[(

J (2)
ǫ δn+k,0 + a∗L,2(n+k)A

∗
2,n+k

)(

J (2)
ǫ δn,0 + aL,2nA2,n

)

−B∗2,n+kB2,n

]

fǫ

+
e

h

∑

k
ei

2keV t
~

∫ +∞

−∞

dǫ
∑

n

[

aL,2na
∗
L,2(n+k)B

∗
2,n+kB2,n −A∗2,n+kA2,n

]

f−ǫ, (C.7)

I3 =
e

h

∑

k
ei

2keV t
~

∫ +∞

−∞

dǫ
∑

n

[

−
(

J (3)
ǫ δn+k,0 + ā∗R,2(n+k)Ā

∗
3,n+k

)(

J (3)
ǫ δn,0 + āR,2nĀ3,n

)

+ B̄∗3,n+kB̄3,n

]

fǫ

+
e

h

∑

k
ei

2keV t
~

∫ +∞

−∞

dǫ
∑

n

[

−āR,2na
∗
R,2(n+k)B̄

∗
3,n+kB̄3,n + Ā∗3,n+kĀ3,n

]

f−ǫ, (C.8)

I4 =
e

h

∑

k
ei

2keV t
~

∫ +∞

−∞

dǫ
∑

n

[

−
(

J (4)
ǫ δn+k,0 + ā∗R,2(n+k)Ā

∗
4,n+k

)(

J (4)
ǫ δn,0 + āR,2nĀ4,n

)

+ B̄∗4,n+kB̄4,n

]

fǫ

+
e

h

∑

k
ei

2keV t
~

∫ +∞

−∞

dǫ
∑

n

[

−āR,2na
∗
R,2(n+k)B̄

∗
4,n+kB̄4,n + Ā∗4,n+kĀ4,n

]

f−ǫ. (C.9)



9

1 C. L. Kane and E. J. Mele, “Quantum spin hall effect in
graphene,” Phys. Rev. Lett. 95, 226801 (2005).

2 C. L. Kane and E. J. Mele, “Z2 topological order and the
quantum spin hall effect,” Phys. Rev. Lett. 95, 146802
(2005).

3 B. A. Bernevig, T. L. Hughes, and S. C. Zhang, “Quantum
spin Hall effect and topological phase transition in HgTe
quantum wells,” Science 314, 1757 (2006).

4 Chaoxing Liu, Taylor L. Hughes, Xiao-Liang Qi, Kang
Wang, and Shou-Cheng Zhang, “Quantum spin Hall effect
in inverted type-II semiconductors,” Phys. Rev. Lett. 100,
236601 (2008).

5 Congjun Wu, B Andrei Bernevig, and Shou-Cheng Zhang,
“Helical Liquid and the Edge of Quantum Spin Hall Sys-
tems,” Phys. Rev. Lett. 96, 106401 (2006).

6 Cenke Xu and J. E. Moore, “Stability of the quantum spin
hall effect: Effects of interactions, disorder, and ̥2 topol-
ogy,” Phys. Rev. B 73, 045322 (2006).

7 Andreas Roth, Christoph Brüne, Hartmut Buhmann, Lau-
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