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Abstract. Recent diffusion models have exhibited great potential in generative
modeling tasks. Part of their success can be attributed to the ability of training
stable on huge sets of paired synthetic data. However, adapting these models to
real-world image deraining remains difficult for two aspects. First, collecting a
large-scale paired real-world clean/rainy dataset is unavailable while regular con-
ditional diffusion models heavily rely on paired data for training. Second, real-
world rain usually reflects real-world scenarios with a variety of unknown rain
degradation types, which poses a significant challenge for the generative model-
ing process. To meet these challenges, we propose RainDiff, the first real-world
image deraining paradigm based on diffusion models, serving as a new standard
bar for real-world image deraining. We address the first challenge by introduc-
ing a stable and non-adversarial unpaired cycle-consistent architecture that can
be trained, end-to-end, with only unpaired data for supervision; and the second
challenge by proposing a degradation-conditioned diffusion model that refines
the desired output via a diffusive generative process conditioned by learned pri-
ors of multiple rain degradations. Extensive experiments confirm the superiority
of our RainDiff over existing unpaired/semi-supervised methods and show its
competitive advantages over several fully-supervised ones.

Keywords: RainDiff · Unpaired learnining · Degradation-conditioned diffusion
model

1 Introduction

Image deraining is an ill-posed problem. By learning from massive synthetic clean/rainy
image pairs, the performance of learning-based techniques is substantially improved
[11,51], compared to the traditional prior wisdom, such as sparse coding [29], Gaussian
Mixture Model [27], and low-rank representation [3]. Despite their successes, these
fully supervised methods achieve sub-optimal performance on real-world rainy images,
because of i) the existence of the domain gap between synthetic and real-world rainy
images, and ii) the difficulty to collect large-scale real-world clean/rainy image pairs.

To alleviate the aforementioned problems, semi-supervised deraining techniques,
leverage paired synthetic data for good initialization and unpaired real-world data for
generalization [45, 52, 53]. But the transferability is still limited since the rain patterns
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(a) Real rainy image (b) CycleGAN (c) DerainCycleGAN

(d) DCD-GAN (e) NLCL (f) Ours

Fig. 1: Image deraining results on a real-world rainy image. From (a) to (f): (a) the real-world
rainy image, the deraining results of (b) CycleGAN [59], (c) DerainCycleGAN [46], (d) DCD-
GAN [5], (e) NLCL [54] and (f) our RainDiff. RainDiff generates both rain-free and perceptually
more pleasing results.

of synthetic images are fixed while the rain patterns of real-world images are dynam-
ically changing. Furthermore, the introduction of CycleGAN [59] makes Generative
Adversarial Networks (GANs) the preferred model family for real-world image de-
raining tasks, as they avoid the need for paired data [5, 16, 22, 47, 58]. However, these
unpaired deraining methods are known as being difficult to train due to their complex
adversarial objectives. As a result, they are susceptible to a series of problems, such as
premature convergence, model collapse, and optimization instability. Moreover, these
methods, limited only to single rain degradation cases, may not be optimal for multiple
degradations in real-world rainy conditions, leading to image degradation including the
loss of image details, remnant rain, halo artifacts, and/or color distortion.

More recently, diffusion models [19, 37, 39] have garnered significant attention for
their effectiveness in a wide range of generative modeling tasks, such as image inpaint-
ing [30], image restoration [31], and image super-resolution [35]. Compared to GANs,
diffusion models offer a stable training process and exhibit greater efficacy in mod-
eling the pixel distribution of images. However, no work to-date explores what will
happen when unpaired learning meets diffusion models for real-world image deraining.
We identify two major obstacles to their practical application in real-world image de-
raining. First, real-world rainy images lack corresponding clean images, which poses
a challenge for existing diffusion models that typically prioritize synthetic degradation
scenarios, where generating large-scale paired synthetic data is easier than for real-
world examples. Models trained on paired synthetic data struggle to effectively handle
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unpaired real-world data. Second, real-world rain presents diverse degradation types,
including but not limited to rain streaks, raindrops, rainy haze, and a combination of
them (also called the mixture of rain), which usually changes over time, especially in
heavy rain conditions. Thus, models primarily designed for single-degradation image
processing may not be well generalized to multiple real-world rain degradations.

We propose RainDiff, a new standard bar for real-world image deraining. Rain-
Diff utilizes an effective unpaired cycle-consistent architecture with a degradation-
conditioned diffusion model that achieves the desired deraining results under real-world
rain scenarios with multiple rain degradations (see Fig. 1).

Why is the unpaired cycle-consistent architecture? The unpaired cycle-consistent
architecture fully takes advantage of the circulatory architecture to overcome the chal-
lenge of training without paired data. Instead of popular adversarial learning architec-
tures for unpaired data, the proposed method offers a stable and non-adversarial training
process that better facilitates real-world rain removal.

Why is the degradation-conditioned diffusion model? The degradation-conditioned
diffusion model adds additional degradation-conditioned controls to the diffusion model,
making it possible to handle diverse rain degradations. Such degradation-conditioned
controls precisely express the space differences among various types of rain degrada-
tions, that enable finer diffusive generative processes in real-world rain conditions.

Why does RainDiff serve as a new standard bar for real-world image deraining?
RainDiff is an implementation of the idea of “solving real-world image deraining in
an unpaired learning manner ”, such as DerainCycleGAN [46] and DCD-GAN [5]. At
the macro level, it is the first time to form an idea of applying the popular diffusion
model to real-world image deraining; it solves several challenges encountered during
the practical application process. At the micro level, RainDiff introduces stable training
of unpaired real-world data, rather than weakly adversarial training; It also learns priors
of multiple rain degradations to enhance its performance in real-world deraining.

Extensive experiments show that RainDiff outperforms existing unpaired/semi-supervised
methods and achieves comparable performance against fully-supervised ones. Overall,
our contributions are as follows:

– We propose a novel unpaired learning paradigm via a degradation-conditioned dif-
fusion model, called RainDiff, to generate quality real-world deraining results.

– We propose an unpaired cycle-consistent architecture to provide a non-adversarial
training process for unpaired data, where rain-related and clean-cue features can
facilitate rain removal.

– We propose a degradation-conditioned diffusion model to provide powerful diffu-
sive progress for image deraining, where the learned priors of multiple rain degra-
dations boost the generalization of deraining for diverse real-world rain scenarios.

2 Related Work

Single Image Deraining. Images captured under complicated rainy scenarios inevitably
suffer from the noticeable degradation of visual quality. This degradation causes detri-
mental impacts on many vision tasks, including segmentation [28], object detection
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[49], and video surveillance [40]. Thus, it is indispensable to develop effective algo-
rithms to recover quality rain-free images, which is referred to as image deraining. Early
single image deraining methods employ hand-crafted priors, such as low-rank represen-
tation [3, 6], sparse coding [12, 43], and Gaussian mixture model [27], to restore rainy
images. Recently, deep learning based methods have been substantiated to be effective
in image deraining [9]. The pioneering work [9] introduces an end-to-end residual con-
volutional neural network (CNN) for simplifying the learning process. Network mod-
ules, such as dense block [25, 41], recursive block [8, 26] and dilated convolution [7],
and structures, such as RNN [26, 33], GAN [5, 57] and multi-stream networks [51, 56],
are validated to be effective in image deraining. Despite the promising deraining re-
sults on synthetic datasets, these methods trained on such synthetic images generalize
poorly to real-world images, typically because of the obvious domain gap between syn-
thetic and real-world rainy images. To solve this issue, several semi-supervised frame-
works have been proposed [45,52,53] to achieve improved generalization performance.
However, these supervised/semi-supervised methods still require paired data, which is
challenging or even impossible to obtain in real-world rainy scenes. Motivated by the
success of CycleGAN [59], a popular image-to-image translation architecture, recent
works [5, 22, 46, 58] attempt to exploit the improved CycleGAN architecture and con-
strained transfer learning to jointly learn the rainy and rain-free image domains. How-
ever, these unpaired deraining methods heavily rely on complex adversarial objectives
to develop their algorithms, which makes it difficult to achieve stable training. Addi-
tionally, they are limited in their ability to handle specific degradations.

Denoising Diffusion Probabilistic Models. Recently, denoising diffusion proba-
bilistic models (DDPM) [19, 37, 39] have exhibited their powerful ability in various
vision tasks, such as image super-resolution [35], text-to-image generation [13], and
image segmentation [1]. More recently, Özdenizci et al. [31] propose patch-based de-
noising diffusion models to demonstrate how diffusion models can be used for image
restoration. However, these architectures have not been applied to real-world image
deraining. They still require paired data for training and are designed for a specific
degradation only. This observation serves as a motivation for us to propose the first
diffusion-based model for real-world image deraining.

3 RainDiff

We start by discussing the necessary background and notation on diffusion models in
Sec. 3.1, and then we introduce our method in Sec. 3.2 and Sec. 3.3.

3.1 Denoising Diffusion Probabilistic Models

Denoising diffusion probabilistic models (DDPM) slowly corrupt the training data with
Gaussian noise and learn to reverse this corruption as a generative model [19, 37, 39].
In the forward process, Gaussian noise is added sequentially onto an input image x0 ∼
q(x0) over T time steps according to the Markovian process:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (1)
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where q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), N (.) is Gaussian distribution, I is an

identity covariance matrix with the same dimensions as the input image x0. An impor-
tant property of this forward process is its ability to directly sample any xt from x0:

xt =
√
αtx0 + ϵt

√
1− αt (2)

where ϵt ∼ N (0, I), αt = 1 − βt and αt =
∏t

i=1 αi. Similarly, reverse diffusion also
adopts a Markov chain from xT onto x0, albeit each step aims to gradually denoise the
samples. Even though the reverse transition probability between xt and xt−1 can be
approximated as a Gaussian distribution under small βt and large T :

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σθ(xt, t)) (3)

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt) (4)

where the reverse process is parameterized by a network to estimate µθ(xt, t) and
σθ(xt, t). Common parametrization focuses on µθ(xt, t) while ignoring σθ(xt, t) [19]:

µθ(xt, t) =
1

√
αt

(xt −
βt√
1− αt

ϵθ(xt, t)) (5)

In this case, the network is used to estimate the added noise ϵt by minimizing the loss:

Lerr = Ex0,t,ϵt∼N (0,I)[||ϵt − ϵθ(
√
αtx0 + ϵt

√
1− αt, t)||2] (6)

During inference, reverse diffusion steps are performed starting from a random sample
xT ∼ N (0, I). For each step t ∈ {T, ..., 1}, µ is derived by Eq. 5 based on the estimated
ϵθ, and xt−1 is sampled based on Eq. 3 as:

xt−1 =
1

√
αt

(xt −
βt√
1− αt

ϵθ(xt, t)) + σtz (7)

where z ∼ N (0, I)) resembling one step of sampling via Langevin dynamics [48].
To achieve high-quality image deraining, we need to learn a conditional reverse

process pθ(x0:T |x̃) without modifying the diffusion process q(x1:T |x0) for x, where
x0 and x̃ represent clean and rainy images, respectively. During the training phase,
we sample (x0, x̃) ∼ q(x0, x̃) from a paired data distribution and learn a conditional
diffusion model. We input x̃ to the reverse process as:

pθ(x0:T |x̃) = p(xT )

T∏
t=1

pθ(xt−1|xt, x̃) (8)

The noise estimators in Eqs. 5-7 are also replaced by ϵθ(xt, x̃, t).
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Fig. 2: The pipeline of RainDiff. It takes unpaired clean/rainy data {C,R} as input and trains an
unpaired cycle-consistent architecture with a degradation-conditioned diffusion model (DCDM).
Once trained, the model can produce high-quality real-world image deraining results, without
access to paired clean images. Please refer to Sec. 3 for details.

3.2 Unpaired Cycle-consistent Architecture

Despite the impressive performance of diffusion models in image-conditional data syn-
thesis and restoration [31,35], their implementation still requires paired clean/rainy im-
ages. We address this issue by designing a new unpaired cycle-consistent architecture
without requiring adversarial training. It incorporates two cycle-consistent circuits with
a degradation-conditioned diffusion model (DCDM) for unpaired training (see Fig. 2).

Given an unpaired rainy image {r ∈ R} and clean image {c ∈ C}, we first employ
two non-diffusive generators with parameters ϕA,B to obtain the initial translation:

cr = GA
ϕ (c), rc = GB

ϕ (r) (9)

where cr and rc refer to the generated rainy image and rain-free image, respectively.
Then, we use such clean/rainy image pairs to train DCDM for a conditional reverse pro-
cess pθ(x0:T |x̃), x̃ ∈ {cr, r} without modifying the diffusion process q(x1:T |x0), x0 ∈
{c, rc}. Finally, we adopt two cycle-consistency loss functions to constrain the unpaired
training procedure of the above cycle-consistent circuits:

Lcyc = Er∼Pdata(r)
[∥r∗ − r∥1 (10)

Lcyc∗ = Ecp∼Pdata(cp)
[∥c∗ − cp∥1 (11)

where r∗ = GA
ϕ (rp) and c∗ = GB

ϕ (cr), cp and rp refer to sampling results from the
DCDM. Especially, we adopt U-Net [34] as our non-diffusive generators. The training
phase of RainDiff is outlined in Algorithm 1.

Difference between Existing Circulatory Structures and Ours. In unpaired learn-
ing, the circulatory structures with cycle-consistency loss functions are commonly used
for model training [5, 46, 59]. The differences between existing circulatory structures
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Fig. 3: The degradation-conditioned diffusion model.

and ours lie in two aspects: 1) RainDiff requires no discriminators for adversarial train-
ing and provides a reliable non-adversarial training process. 2) It involves a degradation-
conditioned diffusion model, which is primarily designed for image deraining. Unlike
generators in existing circulatory structures, our GA

ϕ and GB
ϕ are both only used in the

training phase and remain uninvolved in the testing phase for image deraining.

3.3 Degradation-Conditioned Diffusion Model

In the real world, rain exhibits multiple degradations, e.g., rain streaks, raindrops, rainy
haze, and the mixture of rain, which may change over time. It presents a considerable
challenge in directly implementing diffusion models to perform real-world image de-
raining. Beyond existing fixed-degradation diffusion models, we design a degradation-
conditioned diffusion model (DCDM) to address this problem (see Fig. 3).

Degradation-guided Hypernetwork. As shown in Fig. 3, our idea is to design a
degradation-guided hypernetwork (DG-Hyper) that controls the reverse diffusion pro-
cess using the learned degradation representation. Given a rainy image x̃, we first feed it
into fD to learn the latent degradation representation Z = fD(x̃), where fD represents
two convolutional layers with five dilated residual blocks (DRBs) [55] that helps en-
large the receptive field to capture more comprehensive characteristic of different rain
degradations. We set the dilation rates of these five DRBs as {1, 2, 4, 2, 1}.

As a single type of conditional control for the diffusion model, Z should possess
adaptability to different rain degradations. It means that Z will dynamically change in
accordance with the variations in types of rain degradations, even with the same image
contents. Inspired by contrastive learning [15, 17, 24, 50], we leverage a contrastive
loss function to make Z pull the representation with the same degradation Z+ (called
positive samples), and push apart the representation between negative samples Z− with
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different degradations. The proposed contrastive loss Lcl is reformulated as:

Lcl =

n∑
i=1

ωi •
∥φi(Z

+)− φi(Z) ∥2

∥φi(Z−)− φi(Z) ∥2
, (12)

where φi(·), i = 1, 2, ..., n, refers to extracting the i-th hidden features from the pre-
trained VGG-16 network. We choose the 2-nd, 3-rd, and 5-th max-pooling layers. Sim-
ilar to [50], ωi are weight coefficients with ω1 = 0.2, ω2 = 0.5, and ω3 = 1. Note that
Z+ and Z− are generated by feeding patches from x̃ and other images, respectively.

Based on the learned latent degradation representation Z, we aim to enhance the
adaptability of diffusion models to multiple rain degradations. To achieve it, we use a
meta-learning technique, often referred to as hypernetwork [14], to control the diffusion
model using Z. Especially, we input Z into a series of convolution blocks, consisting of
a 1×1 convolutional layer with channel groups, to generate the part of kernels’ parame-
ters (weights) w̃ = {wr=1, ..., wr=1/4} of the scale noise estimators in the multi-scale
noise estimator (primary network) ϵ̂θ(xr

t , x̃
r, wr, t). Notably, if U-Net [34] is employed

as the scale noise estimator, only two up-convolution and down-convolution layers at
the highest resolution are optimized using these kernel weights. In summary, the in-
troduction of DG-Hyper that learns to modulate the weights of the noise estimator in
order to accurately represent latent degradation enables enhanced generalization of the
diffusion model across various rain degradations.

Multi-scale Noise Estimator. We observe that rain degradations, particularly rain
streaks, exhibit a wide range of characteristics, including but not limited to varying di-
rections, densities, and sizes. These diverse rain patterns demonstrate minimal variation
across different scales. Consequently, we incorporate this correlation of rain across mul-
tiple scales into the diffusion generative process to develop a multi-scale noise estimator
for image deraining (see Fig. 3).

At each time step t, when provided with an intermediate sample xt and a rainy
image x̃, our initial step involves downsampling the original images into various scales,
such as 1/2 and 1/4, as represented by:

{xr
t , x̃

r} = down(xt, x̃), r ∈ {1, 1/2, 1/4} (13)

where r represents the scale of the image. To make full use of multi-scale information
for deraining, we then use attention heads [4] to learn all attention masks αr={1,1/2,1/4}
for each of a fixed set of scales, which can be used to weight the multi-scale features
at each pixel location. For each scale branch, the scale noise estimator ϵ̂θ receives the
intermediate variable xr

t and rainy image x̃r from a single (lower) scale r along with
the time step t as input to predict the noise map ϵ̂rt , and its part of kernels’ weights are
optimized with wr from DG-Hyper:

ϵ̂rt = ϵ̂θ(x
r
t , x̃

r, wr, t) (14)

We combine the noise maps from multiple scales, i.e., ϵ̂r∈{1,1/2,1/4}
t , by multiplying the

attention masks αr={1,1/2,1/4} with the maps in a pixel-wise manner, and then summing
the results across different scales to obtain the final noise map ϵ̂t. The whole multi-scale
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Algorithm 1 The training of RainDiff
Require: Unpaired clean image x, rainy image y.
1: repeat
2: cr = GA

ϕ (c), rc = GB
ϕ (r)

3: t ∼ Uniform ({1, ..., T})
4: ϵ ∼ N (0, I)
5: xT = q(x1:T |x0), x0 ∈ {c, rc}
6: {cp, rp} = pθ(x0:T |x̃), x̃ ∈ {cr, r}
7: c∗ = GB

ϕ (cr), r
∗ = GA

ϕ (rp)
8: Take gradient descent step on
9: ∇θ,ϕ[||ϵ− ϵθ(

√
αtc+ ϵt

√
1− αt, cr, w̃t, t)||2

10: +∇θ,ϕ[||ϵ− ϵθ(
√
αtrc + ϵt

√
1− αt, r, w̃t, t)||2

11: +λcycLcyc + λcyc∗Lcyc∗ + λclLcl]
12: until converged
13: return θ

Algorithm 2 The testing of RainDiff

Require: Rainy image x̃, multi-scale noise estimator ϵθ(xt, x̃, w̃, t), number of implicit sam-
pling iterations T , and DG-Hyper f(.).

1: xt ∼ N (0, I)
2: w̃ = f(x̃)
3: for each i = S, ..., 1 do
4: t = (i− 1) · T/S + 1
5: tnext = (i− 2) · T/S + 1 if i > 1 else 0
6: ϵ̂t = ϵθ(xt, x̃, w̃, t)

7: xt−1 =
√
αtnext(

xt−
√

1−αt·ϵ̂t√
αt

) +
√
1− αtnext · ϵ̂t

8: end for
9: return x0

noise estimator ϵθ(xt, x̃, w̃, t) is expressed as:

ϵθ(xt, x̃, w̃, t) = ϵ̂t =

N∑
i=1

ar ∗ ϵ̂rt (15)

where N denotes the total number of different scales r. Especially, our multi-scale noise
estimator incorporates multi-scale rain information into the diffusion generative process
and introduces an attention mechanism that softly weights the multi-scale features at
each pixel location.

The testing phase of RainDiff is outlined in Algorithm 2. A large T inevitably leads
to costly sampling, e.g., when T = 1000. To address this problem, we use an implicit
sampling strategy [38] to accelerate our sampling process (lines 4-5 in Alg. 2). Implicit
sampling with a multi-scale noise estimator ϵθ(xt, x̃, w̃, t) can be performed by:

xt−1 =
√
αt−1(

xt −
√
1− αt · ϵθ(xt, x̃, w̃, t)√

αt
)

+
√
1− αt−1 · ϵθ(xt, x̃, w̃, t)

(16)
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Table 1: Descriptions of the established mixture dataset.

Type
Synthetic

RS RH RD RDS RHS Total

Train-Set RainDS OTS RainDS RainDS RainCityscapes -
Num 1000 1000 1000 1000 1000 5000

Test-Set RainDS OTS RainDS RainDS RainCityscapes -
Num 200 200 200 200 200 1000

Type
Real-world

RS RH RD RDS RHS Total

Train-Set RainDS RTTS RainDS RainDS GT-Rain -
Num 150 150 150 150 150 750

Test-Set RainDS RTTS RainDS RainDS GT-Rain -
Num 98 98 98 98 98 490

during accelerated sampling we only needs a subsequence τ1, ..., τS of the complete
1, ..., T timestep indices, which can be performed by:

τi = (i− 1) · T/S + 1 (17)

At any denoising time step t, according to Eq. 15, we utilize the multi-scale noise es-
timator ϵθ(xt, x̃, w̃, t) from lines 9-10 in Alg. 1 to estimate the noise map ϵ̂t (line 6 in
Alg. 2). Subsequently, we perform an implicit sampling update utilizing the noise map
ϵ̂t (line 7 in Alg. 2).

4 Experiment

4.1 Experimental Settings

Implementation Details. We implement RainDiff using Pytorch 1.6 on an Nvidia
GeForce RTX 3090 GPU. For optimizing RainDiff, we use the Adam optimizer with a
min-batch size of 4 to train the paradigm, where the momentum parameters β1 and β2

take the values of 0.5 and 0.999, respectively. The initial learning rate is set to 1e−4.
For training, a 128 ×128 patch is randomly cropped from the original image (or its
horizontal flipped version). The balance weights λcyc, λcyc∗ and λcl are both set to 1.

Datasets. We adopt four challenging benchmark datasets to create a mixture dataset
with five different rain degradations for evaluation (see Table 1), i.e., RainDS [32] in-
cludes synthetic and real-world images of rain streaks, raindrops, and the combination
of them as well as their corresponding clean images, RESIDE-β [23] includes syn-
thetic and real-world hazy images (OTS set and RTTS set), RainCityscapes [20] and
GT-Rain [2] include synthetic and real-world images of the combination of rain streaks
and rainy haze, respectively. Take a synthetic train set as an example, each train set
of different rain degradations contains 1000 images to build a whole mixture train set
(including 5000 images). Similarly, the total number of images of synthetic test sets
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Table 2: Comparisons of different deraining methods on the synthetic datasets. Bold and
underline indicate the best and second-best results.

Method Type
Synthetic

RS RH RD RDS RHS
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

DSC [29] Prior-based 13.18/0.456 17.46/0.727 14.54/0.607 13.49/0.482 15.33/0.629
GMM [27] Prior-based 14.64/0.485 18.21/0.718 16.35/0.659 15.92/0.585 16.75/0.683

DDN [10] Supervised 23.79/0.692 22.42/0.882 22.92/0.836 19.74/0.644 18.66/0.790
DID-MDN [56] Supervised 25.26/0.758 22.95/0.887 24.86/0.890 21.56/0.718 20.15/0.803
SPA-Net [42] Supervised 31.09/0.906 25.38/0.915 27.98/0.920 25.82/0.847 23.38/0.898
DRD-Net [7] Supervised 29.97/0.893 25.22/0.904 28.15/0.907 22.43/0.696 21.49/0.864

WeatherDiffusion [31] Supervised 32.15/0.924 26.94/0.922 30.22/0.913 28.09/0.882 23.84/0.892

SIRR [45] Semi-super 29.45/0.878 23.93/0.874 25.93/0.897 24.39/0.833 20.59/0.873
Syn2Real [52] Semi-super 30.33/0.908 24.19/0.918 26.44/0.911 26.97/0.858 21.31/0.901

JRGR [53] Semi-super 30.92/0.909 25.39/0.916 25.58/0.902 26.76/0.864 22.56/0.896

CycleGAN [59] Unpaired 25.08/0.764 23.22/0.911 21.19/0.784 20.58/0.663 22.60/0.888
DerainCycleGAN [46] Unpaired 25.40/0.770 20.14/0.812 20.69/0.799 20.06/0.660 19.06/0.865

DCD-GAN [5] Unpaired 22.80/0.737 21.46/0.789 21.43/0.689 21.07/0.651 22.90/0.829
NLCL [54] Unpaired 24.12/0.808 21.17/0.846 22.37/0.832 21.14/0.719 22.45/0.891

Ours Unpaired 31.30/0.911 27.32/0.928 30.54/0.915 28.41/0.878 24.28/0.906

and real-world train and test sets are 1000, 750, and 490, respectively. To ensure a bal-
anced representation of diverse rain degradations, we carefully select a specific number
of images from RESIDE-β [23], RainCityscapes [20], and GT-Rain [2] based on the
aforementioned criteria to construct the mixture dataset. Notably, we also collect some
real-world rainy images without ground truth from the Internet for testing.

Comparison Methods. We qualitatively and quantitatively compare our method
with two prior-based algorithms (i.e., DSC [29], GMM [27]), five paired supervised
methods (i.e., DDN [10], DID-MDN [56], SPA-Net [42], DRD-Net [7], and Weath-
erDiffusion [31]), three semi-supervised methods (i.e., SIRR [45], Syn2Real [52], and
JRGR [53]), as well as four unpaired methods (i.e., CycleGAN [59], DerainCycle-
GAN [46], DCD-GAN [5] and NLCL [54]). Two popular metrics are used for quan-
titative comparisons, i.e., Peak Signal-to-Noise Ratio (PSNR) [21] and Structure Sim-
ilarity (SSIM) [44]. Higher value of these metrics indicates better performance of the
methods. For fair comparisons, we re-train these methods on the mixture dataset that
consists of the above five distinct rain degradations.

4.2 Comparison with State-of-the-arts

Comparison on Synthetic Datasets. Table 2 presents the quantitative results of differ-
ent methods on five synthetic test sets. We make the following observations: 1) Com-
pared with unpaired deraining methods, our method obtains higher values of PSNR and
SSIM, which verifies the excellent performance of RainDiff. 2) There is an obvious
performance gap between semi-supervised and supervised methods, which can be even
more significant than the gap between RainDiff and supervised ones. 3) Our method is
capable of achieving competitive results to existing supervised ones even without the
paired data for supervision.
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Table 3: Comparisons of different deraining methods on the real-world datasets. Bold and
underline indicate the best and second-best results.

Method Type
Real-world

RS RD RDS RHS
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

DSC [29] Prior-based 15.14/0.496 14.35/0.469 13.51/0.443 14.98/0.517
GMM [27] Prior-based 17.48/0.527 14.77/0.481 14.24/0.475 15.18/0.532

DDN [10] Supervised 18.39/0.608 17.23/0.525 15.67/0.522 17.41/0.590
DID-MDN [56] Supervised 19.74/0.645 17.82/0.554 17.36/0.563 18.98/0.617
SPA-Net [42] Supervised 21.54/0.672 18.95/0.563 19.12/0.608 21.28/0.656
DRD-Net [7] Supervised 22.49/0.716 19.34/0.636 18.96/0.590 20.82/0.629

WeatherDiffusion [31] Supervised 23.78/0.739 20.57/0.648 19.90/0.622 21.08/0.618

SIRR [45] Semi-super 23.42/0.718 20.66/0.610 17.98/0.576 21.04/0.630
Syn2Real [52] Semi-super 23.17/0.691 19.27/0.621 18.54/0.583 21.65/0.642

JRGR [53] Semi-super 23.49/0.712 20.74/0.652 18.13/0.560 20.39/0.618

CycleGAN [59] Unpaired 21.07/0.612 18.24/0.568 17.55/0.515 18.71/0.572
DerainCycleGAN [46] Unpaired 21.08/0.615 18.43/0.565 17.99/0.523 21.06/0.648

DCD-GAN [5] Unpaired 18.81/0.692 17.81/0.553 20.74/0.654 17.84/0.537
NLCL [54] Unpaired 21.71/0.699 19.24/0.606 19.88/0.580 20.18/0.603

Ours Unpaired 24.73/0.770 21.89/0.685 22.18/0.681 22.66/0.694

RS

RH

RD

RDS

RHS

(a) Rainy image (b) CycleGAN (c) DerainCycleGAN (d) DCD-GAN (e) NLCL (f) Ours

Fig. 4: Comparison of deraining performance on real-world rainy images. Our method is more
successful to remove different rain degradations and obtains the cleanest result with clear details.

Comparison on Real-world Datasets. For further general verification in practical
use, we compare RainDiff with different methods on five real-world test sets. Notably,
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Table 4: Ablation study for different models on the real-world RDS test set. Lerr(c, cr) indicates
line 9 in Alg. 1.

Model w/o Lerr(c, cr) w/o Lerr(rc, r) w/o Lcyc w/o L∗
cyc w/o Up w/o Low w/o DG-Hyper Ours

PSNR 20.66 20.98 19.57 19.85 17.48 17.63 18.98 22.18
SSIM 0.671 0.675 0.649 0.654 0.534 0.547 0.634 0.681

Table 5: Ablation analysis for different scales on the real-world RDS test set.

Settings V1 V2 V3 V4
r = 1 ✓ ✓ ✓ ✓

r = 1/2 w/o ✓ w/o ✓
r = 1/4 w/o w/o ✓ ✓

PSNR 20.68 21.75 21.46 22.18
SSIM 0.658 0.679 0.670 0.681

these test sets, except for the hazy set, both contain real-world rainy images along with
their corresponding ground truth for evaluation using the numerical metrics. And we
visualize the real-world haze removal results in Fig. 4. Table 3 demonstrates that our
method achieves superior performance gains to all compared methods. The incorpo-
ration of additional constraints provided by DG-Hyper enables RainDiff to effectively
handle diverse rain degradations in real-world rainy images.

In Fig. 4, we visualize the rain removal results on the collected real-world rainy
images. RainDiff successfully handles diverse rain degradations and achieves superior
visual results than all compared methods. Notably, the deraining results of unpaired
methods may induce color and structure distortion, whereas our method can better pre-
serve the color and structure of the image. More qualitative results are provided in the
supplementary material.

4.3 Ablation Study

Effect of Loss Function. We evaluate the effectiveness of our hybrid loss function on
the real-world RDS test set. Especially, we remove one component to each configura-
tion at one time. For fair comparison, the same training settings are kept for all models
testing. As depicted in Table 4, the full structure of RainDiff exhibits the highest perfor-
mance in both PSNR and SSIM metrics, suggesting that all the components of RainDiff
are advantageous for proficient rain removal.

Effect of DG-Hyper. To show the effectiveness of our DG-Hyper, we conduct an
ablation study on the real-world RDS test set by removing DG-Hyper with the corre-
sponding loss function Lcl. From Table 4, we can see that DG-Hyper can add an addi-
tional constraint for multiple rain degradations, which further improves the real-world
deraining performance of the proposed method. Furthermore, we train it with different
combinations of multiple degradations to analyze how the performance is influenced by
different degradations. The results are provided in the supplementary material.



14 Yiyang Shen, Mingqiang Wei, Yongzhen Wang, Xueyang Fu, and Jing Qin

Table 6: Ablation study for the choice of noise estimator on the real-world RDS test set.

Estimator ResNet-50 VGG-16 U-Net

PSNR / SSIM 21.07/0.629 21.64/0.673 22.18/0.681

Effect of Cycle-consistent Circuits. As shown in Fig. 3, there are two cycle-
consistent circuits in the unpaired cycle-consistent architecture. To further validate their
effectiveness, we remove the upper circuit of rainy to rainy and the lower circuit of rain-
free to rain-free, which are denoted as “w/o Up” and “w/o Low” in Table 4. The result
indicates that both cycle-consistent circuits can enhance clean exemplars and offer sup-
plementary constraints for improved rain removal.

Effect of Different Scale Settings. The multi-scale learning strategy provides the
capability of scale-robust rain removal. We perform an ablation analysis of different
scale settings as shown in Table 5. It is observed that the combination of scales r ∈
{1, 1/2, 1/4} yields the best results.

Choice of Different Noise Estimators. Apart from U-Net [34], we adopt other
baselines as our scale noise estimators in DCDM, such as ResNet-50 [18] and VGG-
16 [36]. Notably, all the kernels’ parameters of ResNet-50 [18] and VGG-16 [36] are
generated by our DG-Hyper. Table 6 indicates that U-Net is a fitting candidate for noise
estimation.

5 Limitations

Although RainDiff shows superiority in five different rain degradations, it is unclear
how its performance in diverse weather conditions, such as snow, low light, etc. In
addition, similar to existing diffusion models [31, 35], it requires comparably longer
runtime compared with end-to-end image restoration models which only require a sin-
gle forward pass for processing without requisite steps involved during sampling. The
time efficiency relies on the choice of algorithm hyper-parameters (e.g., a higher value
of sampling steps increases image quality but also the inference time).

6 Conclusion

In this paper, we propose a new unpaired learning paradigm based on the diffusion
model, called RainDiff, to tackle the unfavorable prevailing problem of real-world im-
age deraining. The core of our method is a non-adversarial unpaired cycle-consistent
architecture that can be trained using only unpaired data. Furthermore, we propose a
degradation-conditioned diffusion model that learns multiple rain degradations for the
diffusive generative process to improve the performance in image deraining for multiple
degradations. Experiments on both synthetic and real-world rainy images demonstrate
the superiority of the proposed framework.
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