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ABSTRACT
We present a model for the transport of anisotropic turbulence in an accretion disc.
The model uses the Reynolds stress tensor approach in the mean field approximation.
To study the role of convection in a protoplanetary disc, we combine the turbulence
model with a radiative transfer calculation, and also include convection using the
mixing length approximation. We find that the turbulence generated by convection
causes the angular momentum of the accretion disc to be directed outwards. We also
confirm the conclusions of other authors that turbulent convection is unable to provide
the observed disc accretion rates as well as a heat source sufficient for the convection to
be self-sustaining. The reasons for the latter are the strong anisotropy of the turbulence
together with the low efficiency of the energy transfer from the background velocity
shear to the turbulent stress tensor.

Key words: accretion, accretion discs – protoplanetary discs – convection – instabilities
– turbulence

1 INTRODUCTION

The theory of disc accretion is used in astrophysics to ex-
plain a wide range of observed sources and phenomena: ac-
tive galactic nuclei, the evolution and variability of close
binary systems, the formation of jets and bipolar outflows,
the structure of protoplanetary discs, the formation of plan-
etary systems, and many others, see for example Shakura
(2018); Hartmann (2009); Armitage (2015). In all these ob-
jects, accretion takes place under different physical condi-
tions, varying in temperature, density, degree of ionisation,
magnetic induction, radiation field, presence of dust, and
so on. However, the processes that influence accretion have
common consequences: this is the redistribution and removal
of angular momentum, which allows matter to accrete from
the disc to the central object.

Turbulence is thought to play an important role in many
accretion processes. The classical approach to describe tur-
bulent accretion relies on the formalism of turbulent viscos-
ity, which is mathematically equivalent to molecular viscos-
ity. In the Shakura & Sunyaev (1973) model, this formalism
is reduced to the setting of an alpha parameter that relates
the coefficient of turbulent viscosity to the speed of sound
and the scale height of the disc. This phenomenological ap-
proach has proved extremely useful for describing the struc-
ture and evolution of astrophysical discs, but the question

⋆ E-mail: kurbatov@inasan.ru

of the causes and properties of the turbulence itself remains
beyond its scope.

Currently, one of the most active areas of astrophysical
research is the study of protoplanetary discs (PPDs) around
young stars. This interest is stimulated by the progress in ob-
servational techniques providing the means to obtain direct
images of the discs at different wavelengths (see the review
by Andrews 2020). The high angular and spectral resolu-
tion allows, among other things, the reconstruction of the
detailed distribution of the turbulent gas velocity across the
disc, with the estimates varying greatly for different sources
(see Flaherty et al. 2017; Guilloteau et al. 2012). In this con-
text, protoplanetary discs can be considered as a convenient
natural laboratory for studying the physics of accretion and
turbulence in general.

It is widely accepted that turbulence in the disc arises
due to some instability. In protoplanetary discs, the pos-
sible triggers of turbulence could be gravitational, thermal,
magneto-rotational, baroclinic, streaming, vertical shear and
other instabilities (see the reviews by Armitage 2015; Bae
et al. 2022; Lesur et al. 2022). These instabilities appear
at different dynamical and thermodynamical conditions in
the disc, (see, e.g., Pfeil & Klahr 2019). Each instability is
the subject of extensive research. For example, in Klahr &
Hubbard (2014) the authors considered the effects of radial
buoyancy in discs. It was shown that in a rotating flow,
radial buoyancy together with centrifugal force can cause
epicyclic oscillations with increasing amplitude (Latter 2016;
Volponi 2016), the phenomenon named convective oversta-
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bility. In the nonlinear regime, this instability can lead to a
subcritical baroclinic instability (Lyra 2014), as well as to
the growth of large-scale vortices, which may play a role in
planet formation (Raettig et al. 2021).

In the present work we are interested in the convec-
tive instability. The link between convection, turbulence and
angular momentum redistribution has been investigated in
many studies. The idea that convection in protoplanetary
discs can not only transfer heat but also provide viscosity
and thus influence the evolution of the disc was formulated
by Cameron (1978) and Lin & Papaloizou (1980). This idea
has generated a lot of interest, but after several decades of
research the role of convection in the transfer of angular
momentum is still controversial, see a detailed historical re-
view in Klahr (2007), and also the recent papers by Held
& Latter (2018, 2021). A representative example is that in
early numerical models, convection was found to cause the
transfer of angular momentum towards the accretor (Stone
& Balbus 1996), which would correspond to a negative al-
pha parameter. In later work, using high-resolution numer-
ical schemes, it was shown that the angular momentum of
the accreting matter is transferred outwards (see Held &
Latter 2021, and discussion therein). Held & Latter (2018)
presented the results of 3D modelling of convection in a
disc, illustrating the emergence of convective cells, eddies
and other coherent structures upon the initiation of convec-
tion. At the same time, they noted that they could not ob-
tain a self-sustaining convection regime in the disc. Held &
Latter (2021) showed that the interaction of convective and
magneto-rotational instabilities ensures the periodic nature
of accretion in the disc. Pavlyuchenkov et al. (2020) and
Maksimova et al. (2020) also showed that convective insta-
bility in a protoplanetary disc can lead to irregular accre-
tion onto a star. This result is relevant in the context of the
search for physical mechanisms to confirm the scenario of
episodic accretion in protoplanetary discs (Hartmann 2009),
which is important for solving the problem of observed ac-
cretion luminosities and for explaining the nature of young
stellar objects with luminosity outbursts, such as FU Ori
and EX Lup type stars. However, the key approximation
of the model presented in Pavlyuchenkov et al. (2020) is the
assumption that the emerging convection is accompanied by
high turbulent viscosity.

The relationship between convection, turbulence and
accretion in the disc layer is pictured in Fig. 1, which is based
on the energy circulation scheme. Let us suppose that there
is an initial heating source in the medium. Thermal energy
is transferred by radiative diffusion and is eventually emit-
ted as infrared radiation. Certain conditions can lead to the
development of convection, which not only transfers some of
the heat, but also excites the turbulence. The dissipation of
the turbulence eventually converts the kinetic energy back
into thermal energy. In addition to this cycle, the turbulence
may be intensified by the background shear flow, which dis-
sipates its kinetic energy and replenishes the heat budget,
providing another energy source for convection. This way,
the turbulence converts the gravitational energy of the gas
into the thermal energy. In this scheme, the fundamental
question is how significant is the contribution of the energy
of the differential rotation to the turbulence strength.

Fig. 1 mentions a source of extra heating outside the
energy cycle. This source is necessary to trigger the con-
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Figure 1. Energy circulation in an accretion disc with a convective

turbulence source.

vection, but its underlying physical mechanisms may vary.
As an example, one can suggest the heating due to den-
sity waves excited by the disc self-gravity (Cossins, Lodato,
& Clarke 2009). Another possible sources are the magneto-
rotational instability (Held & Latter 2018) or dissipation of
large scale magnetic field (Béthune & Latter 2020). Cosmic
rays, which can penetrate quite deep into the disc, can also
be considered as a source of heating (D’Alessio et al. 1998).
In addition, there are factors that directly prevent convec-
tion. For example, the heating of the disc by stellar and
interstellar radiation helps to establish a positive tempera-
ture gradient in the upper layers of the disc, making it stable
against convection.

Although direct numerical simulations can produce very
realistic results, a complete self-consistent three-dimensional
calculation of the accretion disc evolution with a sufficiently
high spatial and temporal resolution remains a challenging
task. Even if the full-scale numerical model is assumed to be
sufficiently resolved and accurate, there remains the prob-
lem of interpretation, i.e. the assessment of the importance of
one or another physical factor that influences the gas dynam-
ics, transport processes, etc. In this paper, we implement a
non-isotropic turbulent transport model (in the mean-field
approximation), together with a calculation of the convec-
tive flow (in the mixing-length approximation) and radia-
tive transport to study the problem of turbulent convection
and its role in the redistribution of angular momentum. The
mean-field approach makes the calculations simpler than the
full three-dimensional hydrodynamic calculations, while al-
lowing the most important physical processes to be empha-
sized. Thus we can explicitly determine the contribution of
different factors involved in the energy cycle to the dynamics
of turbulence.

We base our modelling on the mean field turbulence
model proposed by Canuto (1992, 1993, 1997) for stellar
atmospheres. This model relies on the momentum represen-
tation to describe the fields of velocity, density and pressure
fluctuations up to the fourth order moments. It is quite com-
plex and has never been fully implemented for astrophysical
applications. We formulate a reduced version of the Canuto
model, where only the dynamics of the turbulent stress ten-
sor is calculated explicitly, while the remaining closures are
implemented in the gradient or algebraic approximations.
As in the original model of Canuto, the only seed of the tur-
bulence is the convective flux. However, the turbulence can
grow or decay due to interaction with the background shear
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flow. The second component of our model is infrared (IR)
radiative transfer for PPDs by Pavlyuchenkov et al. (2020).
It uses temperature-dependent opacities for a mixture of
graphite and silicate dust grains, which makes it possible
to realistically simulate the conditions for the development
of the convective instability. This model also takes into ac-
count the absorption of the radiation from the central star
and the interstellar medium.

In Section 2, we present the mean-field turbulence trans-
fer equations, as well as the closures and the convective flux.
In Section 3, the full turbulent convection and the radiative
transfer model is formulated in the one-dimensional cylin-
drical frame. We also perform the test calculations and im-
plement the model for a vertical column in a protoplanetary
disc. Discussion and conclusions are presented in Sections 4
and 5, respectively.

2 MEAN FIELD TURBULENCE MODEL

2.1 Mean field and turbulence transfer equations

As mentioned in the introduction, in this paper we use the
mean-field approach to model the turbulence. In this ap-
proach, we can distinguish two methods for the descrip-
tion of the turbulence: the filter method and the statistical
method. The former uses a spatial and temporal filter, then
the details of the sub-scale flow are only approximated by
averaging on the filter scale. This approach is implemented
in the class of subgrid models and in the Large Eddy Simu-
lation (LES, Leonard 1975; Meneveau et al. 1996). Another
approach is to introduce a statistical ensemble for the tur-
bulent fluctuations, assuming that they are stochastic. The
properties of the fluctuations are then formulated in terms
of the statistical moments of this ensemble (see e.g. the ref-
erences in Canuto 1997). Since there is only one realisation
of the flow in any given problem, the LES method may seem
more physically justified. In addition, this method can ex-
plicitly describe non-local effects, such as the interaction of
subgrid and supergrid scale structures (Leonard 1975; Stew-
art 1976). The statistical approach, in turn, greatly simplifies
the computations, as it allows the use of empirical informa-
tion on the amplitudes of the fluctuations and their mutual
correlations. We are interested in the effect of the turbu-
lence on the mean flow rather than in the detailed spatial
and temporal structure of the turbulence, so we describe its
properties in terms of the statistical moments of the velocity,
density and pressure fluctuations.

We will only provide the final expressions for the tur-
bulent transfer model of Canuto (1992, 1997) (see also ref-
erences therein), without the detailed derivation. We write
the equations in arbitrary curvilinear coordinates with the
metric tensor κij . Later on, the model will be implemented
in cylindrical frame. Let us define the variables that charac-
terise turbulent flow: volume density ρ, velocity vi, pressure
p, internal energy e, and the Reynolds stress tensor wij .
These quantities satisfy the dynamic equations:

∂ρ

∂t
+∇k(ρv

k) = 0 , (1)

∂(ρvi)

∂t
+∇k(ρv

ivk) = −∇ip−∇kw
ik + ρgi , (2)

∂(ρe)

∂t
+∇k(ρev

k)

= − p∇kv
k + q −∇kF

k
conv − Bk

k

2
+

Πk
k

2
+ ϵ ,

(3)

∂wij

∂t
+∇k(w

ijvk) +∇kw
ijk

= −
(
wik∇kv

j + wjk∇kv
i)+Bij −Πij − 2

3
ϵκij .

(4)

In addition to the quantities listed above, these equations
also include gravitational acceleration gi, heat source q, con-
vective flow F i

conv, and several closures to the equation for
the Reynolds stress tensor (wijk, Bij , Πij , and ϵ), which will
be defined later.

Thermodynamical variables are related to each other
via the ideal gas equation of state:

p =
R
µ

ρT , e = cvT , (5)

cp =
γ

γ − 1

R
µ

, cv =
1

γ − 1

R
µ

, (6)

where T is the temperature; µ is the weight of a gas particle
in hydrogen atom mass units, mH; R = kB/mH = 8.25 ×
107 ergg−1K−1 is the gas constant; γ is the adiabatic index;
cp and cv are the specific heat at constant pressure and
volume, respectively.

2.2 Closures

The closures in the r.h.s. of the Eqs. (3) and (4) are 2nd
and 3rd-order statistical moments of turbulent fluctuations.
It is also possible to formulate dynamic equations for these
moments. However, since the model already contains a large
number of parameters, we will use algebraic closures. Making
the model more complex will only make the results more
difficult to interpret.

A valuable quantity in the algebraic closures is the tur-
bulence correlation time. Under accretion disc conditions,
Keplerian time appears to be a natural time scale for turbu-
lence correlation. An estimate obtained by Stewart (1976)
by analysing an equation similar to Eq. (2) leads to an ex-
pression for the correlation time of the form

tT =
(
1 +M−2

T

)1/2 |Ω|−1 , (7)

where |Ω| is the angular velocity of the gas rotation; MT is
a turbulent Mach number, it depends on the local speed of
sound c2s :

M2
T =

wk
k

ρc2s
. (8)

Mach numbers estimated from the non-thermal broaden-
ing of spectral lines in protoplanetary discs range from
0.06 (Flaherty et al. 2017) to 0.5 (Guilloteau et al. 2012),
which gives estimates for turbulence correlation time within
0.3 ≲ |Ω| tT/(2π) ≲ 2.7.

The Bij tensor is responsible for buoyancy effects. It
can be expressed in terms of the convective flux:

Bij = − 1

cpT

(
∇ip

ρ
F j
conv +

∇jp

ρ
F i
conv

)
. (9)

The buoyancy tensor is the seed of turbulence in the present
model. Note that the r.h.s of Eq. (3) contain the convective
source Bk

k . In an accretion disc, one can expect the pressure
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gradient to be directed towards the disc mid-plane, while
the convective flow is directed away from it. Hence we can
conclude that Bk

k ⩾ 0, which means that convection takes
away the thermal energy of the mean flow.

It is widely accepted that pressure fluctuations play a
key role in the development of turbulence. In the Πij tensor
these effects manifest themselves in isotropising the turbu-
lence (“return-to-isotropy”), buoyancy and interacting with
the background flow. The following form of this tensor was
derived from symmetry and dimension considerations (see
references in Launder 1974; Speziale 1991; Canuto 1997):

Πij =
CΠ1

tT
bij − CΠ2

(
bikU j

k + bjkU i
k − 2

3
bklUklκij

)
− CΠ3κkl

(
bikV jl + bjkV il)− (

U ij − U l
l

3
κij

)
2wk

k

5

+ (1 − CB)B
ij , (10)

where bij characterises the deviation from isotropy,

bij = wij − wk
k

3
κij . (11)

U ij and V ij are the symmetric and asymmetric parts of the
strain rate tensor of the background flow, respectively,

U ij =
1

2

(
∇jvi +∇ivj

)
, (12)

V ij =
1

2

(
∇jvi −∇ivj

)
. (13)

Note that the expression (10) depends linearly on the com-
ponents of the Reynolds tensor, except for the last term.

The variable ϵ is related to the dissipation of turbulent
energy. This process takes place on small scales where the
anisotropy is on average weak. For this reason, we use the
classical isotropic closure

ϵ =
K

tT
, (14)

and K = (1/2)wk
k is the turbulent kinetic energy volume

density.
To write out a closed expression for the third-order ve-

locity momentum wijk, we use the gradient approximation:

wijk = − νT
(
∇iwjk +∇jwki +∇kwij) . (15)

The factor νT is interpreted as the turbulent kinematic vis-
cosity coefficient. It can be written as follows

νT = CνtT
K

ρ
. (16)

The dimensionless factor Cν is usually set equal to 0.09
(Launder 1974; Speziale 1991). As can be seen, the tensor
wijk describes the diffusion of turbulence.

The constants in the expressions (10) and (16) were ob-
tained experimentally (see papers by Launder 1974; Speziale
1991; Canuto 1992, 1993, and references therein):

Cν = 0.09 , CB = 0.6 ,

CΠ1 = 3.5 , CΠ2 = 0.61 , CΠ3 = 0.44 .
(17)

Finally, let us consider the gas energy balance. Taking

the trace of Eq. (4), one can get

∂K

∂t
+∇k

(
Kvk +

1

2
κijw

ijk

)
= − wjk∇kvj +

Bk
k

2
− Πk

k

2
− ϵ . (18)

Here one can see that the Bk
k source enters the r.h.s. with

a positive sign. By the comparison with Eq. (3), we can
conclude that convection converts the thermal energy of the
mean flow into the turbulent energy.

Projecting Eq. (2) onto the velocity vector gives the
equation for the kinetic energy of the mean flow:

∂

∂t

(
ρ|v|2

2

)
+∇k

(
ρ|v|2

2
vk

)
= − vk∇kp− vj∇kw

jk + ρvjg
j . (19)

Combining Eqs. (3), (18) and (19), we get the equation for
the total energy:

∂

∂t

(
ρ|v|2

2
+K + ρe

)
+∇k

[(
ρ|v|2

2
+K + ρe+ p

)
vk + wjkvj

+
1

2
κijw

ijk + F k
conv

]
= ρvjg

j + q . (20)

This equation is completely conservative except for external
sources. This means that the thermal, kinetic and turbulent
energy of the medium can only transform to each other.

2.3 Convective flux and conditions for instability

In Mixing Length Theory (MLT), heat is transferred by con-
vective elements formed by convective instability. It is usu-
ally assumed that the elements move with a characteristic
velocity vconv under the effect of the buoyancy force and that
they transfer the excess heat ρcp∆T to the surroundings.
The convective flux can be written as ρcp∆Tvconv. Different
versions of the theory differ in the way the quantities ∆T
and vconv are estimated. In this way, the radiative heat losses
of the convective element along its path, its viscous decelera-
tion, and the spreading of convection beyond the convective
zone (overshooting) (Canuto 1992) can be considered.

The conditions for convective instability are fulfilled in
the regions where the temperature gradient exceeds the adi-
abatic (more precisely, the isentropic) gradient in the direc-
tion opposite to the gravitational acceleration. Let us denote
the excess temperature gradient as

βi = −
[
nink∇kT − (∇iT )ad

]
, (21)

where ni is the unit vector in the direction of the gravita-
tional acceleration gi (note that the centrifugal acceleration
also contributes to the value of gi). The adiabatic gradient
is also expressed in terms of the acceleration vector,

(∇iT )ad =
gi

cp
. (22)

The instability condition is −gkβ
k > 0.

Let us write down the results given in Hansen &
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Kawaler (1994) for the problem of stellar convection, with-
out going into a detailed derivation. The characteristic pa-
rameter of the theory is the length of the mixing path ℓ. This
is the distance traveled by the convective element before it
mixes with the surrounding matter. Another characteristic
parameter is the growth rate of the convective instability
(Hansen & Kawaler 1994, Chap. 5),

ω = − νmol + νrad
2ℓ2

+

[
(νmol + νrad)

2

4ℓ4
+ |N |2

]1/2

, (23)

where νmol and νrad are the molecular (collisional) and
radiative thermometric conductivities, respectively, cm2/s
cm2 s−1; N is the Brunt-Väisälä frequency, it is defined as

N 2 =
gkβ

k

T
. (24)

In a convectively stable medium (gkβ
k > 0), N is the fre-

quency at which the gas element oscillates due to buoy-
ancy and gravity. In the limit of weak convection, |N | ≪
(νmol+νrad)/(2ℓ

2), the increment is ω ≈ ℓ2|N |2/(νmol+νrad).
In the opposite limit the increment is saturated as ω ≈ |N |.

The collisional thermometric conductivity coefficient for
neutral atoms is

νmol =
1

ρcp

µmHcvvth
3σnn

, (25)

where vth = (3RT/µ)1/2 is the mean thermal velocity of
the molecules; σnn = 3 × 10−16 cm2 is the collision cross
section for neutral hydrogen. The radiative thermometric
conductivity coefficient has the form

νrad =
1

ρcp

4caradT
3

3ρκR
, (26)

here c is the speed of light; arad = 7.56×10−15 ergcm−3K−4

is the radiation density constant; κR is the Rosseland mean
opacity. It should be noted that in many astrophysical ap-
plications, the collisional mechanism of the heat conduction
can be neglected.

The speed of the convective element and the excess tem-
perature are estimated as follows:

viconv = ωℓni , (27)

∆T =
ω2

|N |2 ℓ |β| , (28)

where |β| is the magnitude of the vector βi, Eq. (21). As a
result, the convective energy flux takes the form

F i
conv = ρcp

ω3

|N |2 ℓ2βi . (29)

The MLT has one free parameter, the mixing path
length ℓ. The convective flux (29) is very sensitive to this
parameter: from ℓ8 in weak convection to ℓ2 in strong con-
vection. The pressure scale height of a star is usually adopted
as the mixing length in stellar convective shells models. Un-
der the accretion disc conditions, the thermal scale height of
the disc can be taken as the mixing length.

3 MODEL OF TURBULENT CONVECTION IN A
PROTOPLANETARY DISC

3.1 Final system of equations

Consider a cylindrical coordinate system1 (r, ϕ, z) and a ro-
tational axisymmetric flow in a narrow radial annulus of
radius r. Our requirement is that all quantities are inde-
pendent of the azimuthal angle. It will be assumed that the
disc is close to a mechanical equilibrium. In this case, the
gradients can be estimated as

∂

∂r
≲

∂

∂z
∼ 1

H
∼ |Ω|

cs
, (30)

where H is the vertical thermal scale in the disc; Ω = vϕ/r
is the angular velocity of the gas rotation. If no luminosity
outbursts are considered in the disc, then the radial and
vertical velocities of the gas in typical accreting discs become
essentially subsonic:

|vr| ∼ |vz| ≡ Mcs , (31)∣∣∣∣∂vr∂r

∣∣∣∣ ∼ ∣∣∣∣∂vr∂z

∣∣∣∣ ∼ ∣∣∣∣∂vz∂r

∣∣∣∣ ∼ ∣∣∣∣∂vz∂z

∣∣∣∣ ∼ Mcs
H

∼ M|Ω| . (32)

where M ≪ 1 is the Mach number for the radial and vertical
background gas velocities. In this approximation the advec-
tion terms in the expressions (2)–(4) can be neglected, ex-
cept for the centrifugal force in the Euler equation, as well as
the corresponding components in the turbulence transport
equation. For all quantities except the background gas an-
gular velocity, the radial dependence is neglected. We also
neglect the self-gravity of the disc and consider only the
gravity of the star. Finally, the system of equations (2)–(4)
takes the following form:

∂p

∂z
= ρΩ2

Kz −
∂wzz

∂z
, (33)

ρcv
∂T

∂t
= −∂Fconv

∂z
− CB

2
Bzz + ϵ+ q , (34)

∂wrr

∂t
=

∂

∂z

(
νT

∂wrr

∂z

)
−Πrr + 4Ωwrϕ − 2ϵ

3
, (35)

∂wϕϕ

∂t
=

∂

∂z

(
νT

∂wϕϕ

∂z

)
−Πϕϕ − 2

r

∂(r2Ω)

∂r
wrϕ − 2ϵ

3
,

(36)

∂wzz

∂t
=

∂

∂z

(
3νT

∂wzz

∂z

)
−Πzz +Bzz −

2ϵ

3
, (37)

∂wrϕ

∂t
=

∂

∂z

(
νT

∂wrϕ

∂z

)
−Πrϕ − 1

r

∂(r2Ω)

∂r
wrr + 2Ωwϕϕ ,

(38)

∂wrz

∂t
=

∂

∂z

(
2νT

∂wrz

∂z

)
−Πrz + 2Ωwϕz , (39)

∂wϕz

∂t
=

∂

∂z

(
2νT

∂wϕz

∂z

)
−Πϕz −

1

r

∂(r2Ω)

∂r
wrz − Ωwϕz .

(40)

In Eq. (33), ΩK is the Keplerian angular velocity at the
radius r; νT is the turbulent viscosity coefficient (16).

Due to the chosen approximation, only the z-component

1 Further, all vector and tensor quantities will be written in local

Cartesian projections.
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of the convective flux vector (29) remains non-zero providing
the only non-zero component of the buoyancy tensor:

Bzz = − 2

CpρT

∂p

∂z
Fconv . (41)

The components of the isotropisation tensor are now

Πrr =
CΠ1

tT
brr −

(
2CΠ2

3
Urϕ − 2CΠ3Vrϕ

)
brϕ , (42)

Πϕϕ =
CΠ1

tT
bϕϕ −

(
2CΠ2

3
Urϕ + 2CΠ3Vrϕ

)
brϕ , (43)

Πzz =
CΠ1

tT
bzz +

4CΠ2

3
Urϕbrϕ + (1− CB)Bzz , (44)

Πrϕ =
CΠ1

tT
brϕ − CΠ2Urϕ (brr + bϕϕ)

− CΠ3Vrϕ (brr − bϕϕ)−
4

5
UrϕK , (45)

Πrz =
CΠ1

tT
brz − (CΠ2Urϕ − CΠ3Vrϕ) bϕz , (46)

Πϕz =
CΠ1

tT
bϕz − (CΠ2Urϕ + CΠ3Vrϕ) brz , (47)

where

brr =
1

3
(2wrr − wϕϕ − wzz) , (48)

bϕϕ =
1

3
(2wϕϕ − wrr − wzz) , (49)

bzz =
1

3
(2wzz − wrr − wϕϕ) , (50)

brϕ = wrϕ , brz = wrz , bϕz = wϕz , (51)

K =
1

2
(wrr + wϕϕ + wzz) , (52)

Urϕ =
r

2

∂Ω

∂r
, Vrϕ = − 1

2r

∂(r2Ω)

∂r
. (53)

As can be seen from the expressions (35)–(40), the con-
vective heat flux is the seed of turbulence. The background
flow is only involved in the amplification or weakening of
different wij components. For the MLT flux (29) we take
the mixing length to be equal to the vertical thermal scale
of the disc, ℓ ≡ H = cs/|Ω|.

There are several sources on the r.h.s. of the heat bal-
ance equation (34): the first one is responsible for convective
heat transfer, the second one describes the consumption of
thermal energy for convective motions, the third one pro-
vides energy input due to turbulence dissipation. The last
source, q, accounts for heating by stellar and interstellar ra-
diation, exchanging energy with its own IR radiation, and
may also include an additional heat source. The model for q
is given in Section 3.3.

The Eqs. (35)–(40) require boundary conditions. At the
upper boundary of the disc, it is natural to set each of wij to
zero. In the disc mid-plane (z = 0), the boundary conditions
are as follows:

∂wrr

∂z
=

∂wϕϕ

∂z
=

∂wzz

∂z
=

∂wrϕ

∂z
= 0 , (54)

wrz = wϕz = 0 . (55)

It can be seen that in the system (35)–(40), the last two
equations do not contain any energy source or sink and only
govern the redistribution of the turbulent energy between
the components wrz and wϕz. Given the boundary condi-
tions, this means that if these components are initially zero,

they will remain zero in the future. Thus, the equations for
the wrz and wϕz are not considered further.

3.2 Testing the model of turbulent transfer

Here we will briefly analyse the turbulent transfer model
and try to reveal the role of the free parameters CΠ1–CΠ3

defined in Eq. (17). From Eqs. (42)–(45) one can see that
CΠ1/tT is the inverse characteristic time of Reynolds stress
tensor isotropisation. The parameters CΠ2 and CΠ3, in turn,
are the coupling constants between the turbulence and the
background shear flow (its symmetric and asymmetric parts,
respectively, see Eqs. (12) and (13)). Finally, CBBzz/2 is the
heat loss per unit time due to the excitation of turbulence
by the convection channel.

Let us convert the field variables to the dimensionless
form:

wij 7→ w̃ij =
wij

ρc2s
, (56)

t 7→ τ = |Ω| t , (57)

tT 7→ τT = |Ω| tT =
(1 +M2

T)
1/2

MT
, (58)

M2
T = 2K̃ , K̃ ≡ 1

2
(w̃rr + w̃ϕϕ + w̃zz) , (59)

Bzz 7→ B̃zz ≡ Bzz

|Ω| ρc2s
. (60)

We simplify the model by neglecting turbulent diffusion,
which is applicable to the conditions deep within the convec-
tive zone. In this case the equations (35)–(38) are reduced to
a system of ODEs. The local background shear velocity pro-
file is assumed to be in general form, rather than Keplerian,
Ω ∝ r−q. It is important to note that Ω is the projection
of the angular velocity vector onto the OZ axis. It can be
shown that the wrϕ component always enters the equations
in a combination sign(Ω)wrϕ. Thus, the inversion of the an-
gular velocity leads to a change of the sign of wrϕ (and also
of wrz and wϕz, see Eqs. (38)–(40) and the corresponding
equations for Πij). Without loss of generality we assume
Ω > 0.

It is useful to regroup the dimensionless equations to
the following representation:

d(w̃rr + w̃ϕϕ)

dτ
= − CΠ1

τT
(w̃rr + w̃ϕϕ) +

CΠ1 − 1

3τT
4K̃

+

(
1− CΠ2

3

)
2qw̃rϕ ,

(61)

d(w̃rr − w̃ϕϕ)

dτ
= − CΠ1

τT
(w̃rr − w̃ϕϕ)

+
[
CΠ3 (2− q) + 4− q

]
2w̃rϕ ,

(62)

dw̃rϕ

dτ
= − CΠ1

τT
w̃rϕ +

(
CΠ2

3
− 1

5

)
2qK̃

− CΠ2

2
q (w̃rr + w̃ϕϕ)−

CΠ3

2
(2− q) (w̃rr − w̃ϕϕ) ,

(63)

dK̃

dτ
= − K̃

τT
+ qw̃rϕ +

CB

2
B̃zz . (64)

It is seen here that the component w̃rϕ is coupled to w̃rr +
w̃ϕϕ by CΠ2 and to w̃rr − w̃ϕϕ by CΠ3.
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In a steady state limit, the energy equation gives

qw̃rϕ =
K̃

τT
− CB

2
B̃zz . (65)

The w̃rϕ component is therefore determined by the difference
between the amount of dissipated turbulent energy and the
energy supplied by the convective source. Despite that con-
vection is the seed of energy for turbulence in our model, the
background velocity shear is also important. Once the con-
vection is able to produce the turbulence, the velocity shear
starts to amplify the components of the Reynolds stress ten-
sor (through the coupling constants CΠ2 and CΠ3), making
the r.h.s. of the Eq. (65) non-zero. Since the w̃rϕ component
is responsible for the angular momentum transfer in the disc,
the efficiency of the transfer is clearly related to the energy
balance. When there is no background shear, q = 0, the pa-
rameter w̃rϕ is decoupled from the turbulent energy K̃, so
there is no transfer of angular momentum.

Let us assume w̃rr = w̃ϕϕ. Then it can be shown from
Eqs. (61)–(63) that in the steady-state limit all the turbu-
lence components are zero. Since this derivation is indepen-
dent of the source of the turbulence (in r.h.s. of the Eq. (64)),
this is true not only for convection-generated turbulence, but
also in the general case of rotational shear flows. The lat-
ter means that turbulence is always anisotropic in accretion
discs (at least in the no-diffusion approximation).

We have performed calculations of the model (61)–(64)
with a fixed convective source B̃zz = 0.01 and fixed values
of the constants CB , CΠ1, CΠ2 and CΠ3 from the Eq. (17).
Fig. 2 shows that after a monotonic growth phase lasting 1–3
disc periods, the turbulence reaches a steady state. Varying
the velocity profile index q by 10%–15% significantly affects
the turbulence intensity, in particular the w̃rϕ component
changes by a factor of two. Simulations with high velocity
profile indices revealed that qw̃rϕ ∼ K̃/τT ∼ K̃ for q ≳ 3
(not shown in Fig. 2). Negative values of q leads to the neg-
ative values of w̃rϕ, though the dependence on q is weaker.

It is interesting to see how the choice of constant pa-
rameter values affects turbulence. For random sets of the
constant parameters and various velocity profile indices, we
ran a ensemble of test calculations, starting from zero initial
conditions. The convective source was fixed to B̃zz = 0.01 as
it only determines the value of the turbulence energy in the
steady state limit, see Eq. (65). The constants were chosen
randomly from the intervals 0 ≤ CΠ1 ≤ 5, 0 ≤ CΠ2 ≤ 2, and
0 ≤ CΠ3 ≤ 2 (blue dots in Fig. 3). The velocity profile index
q was set to 1.5. Two qualitative indicators of the solutions
are shown in Fig. 3. The first indicator, min{w̃rr, w̃ϕϕ, w̃zz}
declares physical constraints: the quadratic velocity corre-
lators should not be negative. Solutions that satisfy this
constraint leave this indicator at zero value. It is seen that
the physically allowed values of CΠ1 cannot be lower than
∼ 1. The allowed values of CΠ2 are bounded in a quite
narrow range around the experimental value (17). Varying
CΠ3 within the considered limits does not violate the phys-
ical constraints. The second indicator in Fig. 3, min w̃rf ,
shows under which conditions the direction of the angu-
lar momentum flux changes. Note that only the physically
allowed solutions are shown here, i.e. the solutions with
min{w̃rr, w̃ϕϕ, w̃zz} = 0. The sign of the off-diagonal com-
ponent w̃rϕ is not sensitive to CΠ1 and CΠ3, however, it
is sensitive to CΠ2. Surprisingly, the experimental value of

0 1 2 3 4 5
/(2 )

10 4

10 3

10 2 wrr

w

wzz

wr

0 1 2 3 4 5
/(2 )

0.000

0.001

0.002

0.003

0.004
K/ T

qwr

BBzz/2

Figure 2. Components of the Reynolds stress tensor and related

quantities in the dimensionless local model (Sec. 3.2). Different

values of the velocity profile indices were explored: q = 1.5 (solid
curves), q = 1.65 (dashed), q = 1.25 (dot-dashed).

CΠ2 from Eq. (17) only slightly exceeds the lower limit of
the range where min w̃rϕ ≥ 0. The above boundaries have
been estimated from the considered ensemble runs and are
shown in more detail in Fig. 4.

Fig. 5 shows the effect of the outlying values of the con-
stant parameters on the qualitative behavior of the model.
Assigning CΠ1 a value below the acceptable range leads to
the negative steady-state limit in w̃rr and w̃ϕϕ. On the other
hand, the assignment of CΠ2 to the outlying value results in
oscillating (including negative) solutions but positive limits.
Interestingly, in these calculations the turbulence energy is
always positive and quite stable.

3.3 Combining the turbulent convection model with the
radiative transfer model

We calculate radiative transfer and heat balance using the
thermal model of Vorobyov & Pavlyuchenkov (2017) and
Pavlyuchenkov et al. (2020). The model considers the en-
ergy exchange between the gas and the IR radiation, the
UV heating by stellar and interstellar radiation (SUV), and
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Figure 3. Qualitative indicators of the solutions to system (61)–(64), for q = 1.5. Top row: Minimum values of the components of the

Reynolds tensor diagonal over the whole simulation time. Bottom row: Minimum values of the off-diagonal component w̃rϕ over the
simulation time. Each dot is a simulation for some set of the constant parameters. The pictures in the bottom row show only the points

corresponding to solutions with a non-negative diagonal, i.e. physically allowed solutions. The set of blue dots is obtained by uniformly
sampling all three parameters: 0 ≤ CΠ1 ≤ 5, 0 ≤ CΠ2 ≤ 2, 0 ≤ CΠ3 ≤ 2. The orange dots are obtained by sampling only the constant

parameter that labels the horizontal axis, while the other two parameters are fixed at their experimental values (17). The latter are also

marked with the thick dots.
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Figure 4. Solid lines: Limits of the allowed values of the CΠ1 (blue
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to physical constraint min{w̃rr, w̃ϕϕ, w̃zz} ≥ 0, depending on the
velocity profile index. Dashed lines: Lower limits for CΠ1 (blue)

and CΠ2 (orange), according to the condition min w̃rϕ ≥ 0. The
dotted orange line is the experimental value of CΠ2.

an additional heat source (Sext):

q = cρκP (Erad − aradT
4) + ρSUV + ρSext , (66)

where Erad is the energy volume density of the IR radiation;
κP is the Planck mean absorption coefficient. The Sext source
can be associated with some dissipation processes that are
not explicitly included in our model (see below in this sec-
tion). The heating due to the stellar and interstellar irradi-
ation, SUV, is calculated by a direct integration of the ra-
diative transfer (Vorobyov & Pavlyuchenkov 2017). The IR
radiative transfer is simulated by means of the Eddington
approximation, which is reduced to the following system of
equations:

∂Erad

∂t
+

∂Frad

∂z
= − cρκP (Erad − aradT

4) , (67)

Frad = − c

3ρκR

∂Erad

∂z
, (68)

where Frad is the IR radiation flux; κR is the Rosseland
mean absorption coefficient. The radiation flux boundary
conditions in the mid-plane and at the upper boundary zmax

are of the form

Frad

∣∣
z=0

= 0 , (69)

∂Frad

∂z

∣∣∣∣
z=zmax

=
c

2

(
Erad

∣∣∣
z=zmax

− aradT
4
CMB

)
, (70)

where TCMB = 2.73 K. An important feature of the disc ther-
mal model is the use of temperature dependent Rosseland
and Planck mean opacities, as it has been found that an in-
crease in opacity with temperature is necessary for the onset
of convection (Lin & Papaloizou 1980). The opacities have
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Figure 5. Local turbulent convection model with q = 1.5, where different constant parameters are tested. Black lines: The experimental

values of the constants, see Eq. (17). Coloured lines: One of the constants is varied (see the legend in the first plot).

been taken from Pavlyuchenkov et al. (2020) where they
were obtained for a mixture of graphite and silicate dust
grains. The solution of the subsystem of the radiative trans-
fer equations (66)–(68) is found by an implicit method. The
details and tests are described in the appendix of Vorobyov
& Pavlyuchenkov (2017).

We noted above that in our model, convection is the
seed of turbulence. To initiate convection, an external heat
source is required. It is included in the heat energy equation
as Sext in Eq. (66). We define the external energy injection
rate by using the accretion rate Ṁ as a measure (Shakura
& Sunyaev 1973):

Sext =

∣∣∣∣dlnΩdln r

∣∣∣∣ ṀΩ2

4πΣ
, (71)

where Σ is the local surface density of the disc.
Figure 6 shows the thermal structure of a protoplane-

tary disc obtained in the 1+1-dimensional framework using
the radiation transfer model without convection and turbu-
lence. By 1+1 formalism, we mean that self-consistent den-
sity and temperature distributions in vertical direction (the
first ‘1’-dimension) are obtained separately for each radial
position (the second ‘1’-dimension ) of the disk. In our cal-
culations, the surface density distribution and stellar heating
depend on the radial position, but the columns do not affect
each other. The purpose of this calculation was to locate
the strongest convective instability. This model includes all
the heating sources from the one-dimensional model above,
along with the external heating Sext. The parameters of the
model are: the stellar mass 1 M⊙, the star effective tempera-
ture 5780 K, the accretion rate onto the star 10−7 M⊙ yr−1,
the density 103 gcm−2 at a radius of 1 au, assuming a power
law of the surface density Σ ∝ r−1. The convective flow

was included in this calculation, but was not involved in
the formation of the disc thermal structure. The last two
plots in the Fig. 6 show the region of convective instability
(∇−∇ad > 02). The convection is concentrated in a rather
shallow torus near the mid-plane (not reaching it due to
symmetry constraints). The maximum value of the convec-
tive flux is reached in the inner part of the computational
domain, r ≈ 1 au, and drops by three orders of magnitude
at r ≈ 3 au. Note that the flux distribution has two peaks,
(cf. with Pfeil & Klahr 2019, Fig. 10).

We have performed several runs considering different
radial positions of the disc column. We have chosen the col-
umn at a radius of 3.34 au for two reasons. First, as the av-
erage temperature of the disc decreases with distance from
the star, the role of radiative heat transfer within the con-
vective zone is reduced in favour of convective heat transfer.
Second, the thickness of the convective zone decreases with
radial distance. This choice allows us to see the effect of
turbulent diffusion in detail.

3.4 Numerical solution scheme

The solution of the full system of equations (33)–(40) for
each time step was divided in two stages. In the first stage,
the heat balance, radiative transfer and hydrostatic equa-
tions were solved jointly with the given sources SUV, Sext

and wij . Within a time step, the heat balance equation was

2 This is the excess temperature gradient with respect to the

pressure: ∇−∇ad ≡ dT/dp− (dT/dp)ad. This gradient is calcu-
lated along the direction of the buoyancy force (in our case along

the OZ axis).
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Figure 6. The structure of a protoplanetary disc with no convective energy transport and no turbulence. From left to right: gas number
density, temperature, temperature gradient excess, and the magnitude of the convective flux.

linearised in temperature and the hydrostatic equation was
linearised in density. In the radiative transfer equation, the
spatial derivative operator was discretised using a standard
scheme and expressed by a tridiagonal matrix. This system
of equations was solved using a completely implicit iterative
scheme. The detailed scheme of the solution is described in
Vorobyov & Pavlyuchenkov (2017) and Pavlyuchenkov et al.
(2020).

In the second stage, the turbulence transfer equations
were solved. This was done by discretisation the spatial
derivative operator and solving the entire system of equa-
tions on the spatial grid as a system of ODEs in time. The
solution was performed using an explicit-implicit scheme
LSODA.3

3.5 Disc column with turbulent convection

The vertical structure of the disc column was modelled in
the one-dimensional turbulent disc convection approach. We
set the values of the external heat source Sext by parameter-
ising it with the accretion rate, Eq. (71): Ṁ = 10−7 M⊙yr−1

(Model A) and Ṁ = 10−4 M⊙ yr−1 (Model B). These op-
tions correspond to a quiescent and outburst state of the
disc, respectively (Audard et al. 2014; Fischer et al. 2022).

Previously, we ran a 1+1-dimensional disc model in or-
der to find the location of the convective zone and to se-
lect the most interesting conditions for a full calculations
including turbulent convection. However, that model did not
take the convective heat transfer into account. As a result,
the density and temperature distributions were unstable and
therefore not physical. As will be seen later, the account of
the convective heat transfer significantly changes the steady
state of the disc. We start the full model with the same ini-
tial conditions as in the previous model, namely assuming
an isothermal disc with a temperature of 100 K. The main
parameters of the model are listed in Table 1. Calculations
were continued until steady states were reached. In total,

3 The model was implemented on Python 3.7 (Van Rossum &
Drake 2009) + Numpy (Harris et al. 2020) + Scipy (Virtanen

et al. 2020) + Numba (Lam et al. 2015) + Numbalsoda (Wogan

& Rackauckas 2022). The solution of the turbulence transfer equa-
tion was carried out according to an explicit-implicit scheme using

the LSODA algorithm (Petzold 1983).

Table 1. Parameters of disc models with turbulent convection

Stellar mass Ms 1 M⊙
Stellar radius Rs 1 R⊙
Stellar effective temperature Ts 5780 K

Radial distance of the column r 3.34 au

Gas molecular weight µ 2.3
Gas adiabatic exponent γ 7/5

Disc surface density Σ 542 g cm−2

Gas number density
at the external boundary next 103 cm−3

ISM radiation temperature TISR 104 K

Accretion rate (Model A) Ṁ 10−7 M⊙ yr−1

(Model B) Ṁ 10−4 M⊙ yr−1

Model A was run for 127 Keplerian orbits, and the Model
B was run for eight orbits. We also run each model without
convection (hence, without turbulence) to have a baseline to
compare our convective models to. The model without con-
vection consists of the hydrostatic (33), heat transfer (34),
and radiative transfer (66)–(68) equations, only: all the con-
vection and turbulence terms (wzz, Fconv, Bzz, and ϵ) have
been omitted in this model.

Using the proposed model, it is interesting to evaluate
how effectively the convective turbulence utilizes external
heating and background shear flow. It is also important to
investigate whether the energy cycle (Fig. 1) can be self-
sustaining without external heating, leading to steady con-
vection and turbulence. The purpose of this modelling is to
quantify the effective accretion rate and the dissipation rate
of turbulence.

3.5.1 Model A (Ṁ = 10−7 M⊙ yr−1)

The results for Model A are shown in Fig. 7. As can be
seen, the convective zone extends upward to approximately
one and a half thermal scale heights. In a significant part
of the convective zone, the convective flow turns out to be
comparable in magnitude to the radiative flow. Thus, con-
vection provides about half of the total heat flow. The total
energy flux is only a few percent higher than the energy flux
in the calculation without convection (dashed lines). This,
however, is enough to reduce the temperature of the inner
layers of the disc, within the thermal scale, by about 25 K.
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Figure 7. The Model A results, Ṁ = 10−7 M⊙ yr−1. Top row, from left to right: density, temperature, bulk radiation density. Middle

row: Rayleigh number, energy flux, volumetric heat source (yellow dashed line denotes negative ρSconv values). Bottom row: turbulent
stress tensor components, turbulent Mach number and volumetric force density. The blue dashed lines indicate the results of the model

without taking into account convection. Dotted orange vertical lines mark the top boundary of the convective zone. Dotted black vertical

lines mark the thermal scale of the disc.

In our model, the convective flow is directed along the
OZ axis, so the convection only excites the wzz component
of the Reynolds tensor directly. The remaining components
of this tensor arise from wzz due to the pressure tensor Πij ,
then amplify through interaction with the background flow.
Note that wzz dominates in magnitude, it exceeds wrr and
wϕϕ by 3–5 times and exceeds wrϕ by two or more orders of
magnitude. The intensity of turbulence and the correspond-
ing contribution to the width of the observed spectral lines
is determined by the diagonal sum of the Reynolds tensor,∑

k wkk. Due to the turbulent diffusion, the region of devel-
oped turbulence is almost twice as thick as the convective
zone. In the bulk of the disc material, the turbulent Mach
number MT varies in the range 0.03–0.08, which is in good
agreement with the estimates obtained from observations
(Flaherty et al. 2017).

The rate of angular momentum removal due to the tur-
bulence and the corresponding accretion rate (which we will
call the effective accretion rate) depend on the off-diagonal

component wrϕ (Shakura & Sunyaev 1973):

Ṁeff =
2π

|Ω| Wrϕ , (72)

Wrϕ = 2

∫ zmax

0

wrϕ dz . (73)

The effective accretion rate can also be estimated in terms
of the alpha parameter:

αeff =
Wrϕ

P
, (74)

P = 2

∫ zmax

0

R
µ

ρT dz. (75)

due to the fact that wrϕ ≪
∑

k wkk (see Fig. 7 and the Table
2), one cannot draw a correct conclusion about the accretion
rate from the turbulent kinetic energy, or, equivalently, from
the width of the spectral lines. In the Model A, the effective
accretion rate is Ṁeff = 1.7× 10−10 M⊙ yr−1, which is 1000
times less than the accretion rate Ṁ that determines the
heating of the layer.
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Fig. 7 (middle row, right column) shows the distribution
of external heating sources ρ(Sext + SUV), as well as the
source associated with convection ρSconv and with turbulent
dissipation, ρSturb:

ρSconv = −∂Fconv

∂z
− CB

2
Bzz , (76)

ρSturb = ϵ . (77)

In the inner layers of the disc, z < 0.5 au, the external source
ρSext dominates among all sources, except for a narrow re-
gion near the top boundary of the convective zone, where the
convective source ρSconv is more important. Heating from
the convective source is comparable to external heating in
absolute value, but its role is to redistribute and slightly
reduce thermal energy. The source ρSturb associated with
turbulence dissipation is smaller than ρSext by one or two
orders of magnitude everywhere in the disc. The integrated
values of each of the sources (Q = 2

∫ zmax

0
ρS dz) are given in

Table 2. Also note that in the Model A even more energy is
spent to start convection than is returned to the heat budget
from dissipation: |Qconv| > Qturb.

3.5.2 Model B (Ṁ = 10−4 M⊙ yr−1)

The Model B results are shown in Fig. 8. Steady state was
reached in eight Keplerian orbits, i.e. much faster than in
the Model A. This is due to higher temperature of the gas in
the Model B (∼ 2000 K) comparing to the Model A (∼ 200
K), hence the shorter thermal time scale. The radiative time
scale may be estimated using a well known approximation
derived for an optically thick layer, see e.g. Wu & Lithwick
(2021):

trad ∼ cv
car

κR

T 3
Σ2 . (78)

Since κR ∝ T (Pavlyuchenkov et al. 2020), an order of mag-
nitude increase in temperature results in two order of mag-
nitude reduction of the characteristic radiation time.

In case of higher heating power Qext, which corresponds
to the accretion rate Ṁ = 10−4 M⊙ yr−1, the convection
is also developed. The magnitude of the convective flow in
the Model B is much higher than in the Model A, but is
much lower than the radiative flow and does not affect the
thermal structure of the layer. The maximum amplitude
of turbulent fluctuations, which is reached near the upper
boundary of the vertical thermal scale, exceeds 0.2 cs. How-
ever, the wrϕ tensor component responsible for the trans-
fer of angular momentum is two orders of magnitude lower
than the wzz component, as in the quiescent model. In the
Model A Ṁeff/Ṁ = 1.7 × 10−3, while in the Model B
Ṁeff/Ṁ = 1.7× 10−4.

4 DISCUSSION

In this paper we have used the idea that convection in proto-
planetary discs is turbulent. In general, this is not necessarily
the case. In order to quantify the transition of the convec-
tive flow between the laminar and turbulent regimes, let us
use an empirical criterion based on the Reynolds number
Re = V L/νmol, where V is the flow velocity, L is its charac-
teristic scale, and νmol is the molecular kinematic viscosity

Table 2. Main results of Models A and B. Ṁ is the accretion rate

parameterising the external heat source Qext; Ṁeff is the effec-
tive accretion rate; QUV is stellar UV radiation source; Qconv is

the source associated with the convection; Qturb is the turbulent

energy dissipation rate; Wij are the z-integrated components of
the Reynolds stress tensor; αeff is the effective Shakura-Sunyaev

parameter.

Quantity Units Model A Model B

Ṁ M⊙ yr−1 10−7 10−4

Ṁeff M⊙ yr−1 1.7× 10−10 1.7× 10−8

Qext erg s−1 cm−2 1.1× 103 1.1× 106

QUV erg s−1 cm−2 1.8× 104 1.8× 104

Qconv erg s−1 cm−2 −4.3× 101 −3.9× 103

Qturb erg s−1 cm−2 4.0× 101 4.2× 103

Ṁeff/Ṁ 1.7× 10−3 1.7× 10−4

Qturb/Qext 3.7× 10−2 3.9× 10−3

Wrϕ/(
∑

i Wii) 3.5× 10−3 7.9× 10−3

αeff 1.6× 10−5 1.5× 10−4

coefficient. When Re exceeds a critical value Recr, the flow
becomes turbulent. Different values of the critical Reynolds
number correspond to different types of flow: from tens for
rotational flows to 103 and even 105 in the special cases of
the flow in a tube (Landau & Lifshitz 1959). We can apply
these empirical considerations to the parameters of the con-
vective flow. Let us determine V as the convective element
velocity ωℓ, Eq. (27), and L to be equal to the mixing length
ℓ. After substitution of the weak convection limit for ω, see
Eq. (23), the Reynolds number becomes

Re =
|g|βℓ4

Tνmolνrad
. (79)

This expression is actually the Rayleigh number Ra (Canuto
1992; Held & Latter 2021). We may therefore speculate that
for the laminar-turbulent transition of the convective flow,
the critical Rayleigh number should be of the order of the
critical Reynolds number. Typically we had Ra ≳ 109 in our
calculations, see Figures 7 and 8, which is high enough for
turbulence to develop.

The efficiency of convection in driving accretion has long
been debated. At one point, a number of papers appeared
which argued that the convection that develops in an accre-
tion disc could not lead to an outward transfer of angular
momentum. Stone & Balbus (1996) proposed some analyti-
cal arguments to support the idea that in the accretion disc
with convective turbulence the angular momentum flux is di-
rected inward. Their argument was based on the assumption
that angular variations of pressure in axisymmetric turbu-
lent flows are subdominant compared to the radial varia-
tions (see their comments below the Eq. (11)). This is not
the case in our model, since the radial and angular com-
ponents of the isotropisation tensor Πij are comparable in
magnitude. Previously, Held & Latter (2021) noted that in
the high-resolution numerical model the hydrodynamic con-
vection can transport angular momentum outwards (Lesur
& Ogilvie 2010; Held & Latter 2018).

The models based on the mean-field approach in-
evitably depend on free parameters. Given the conventional,
experiment-based values of the parameters, Eq. (17), the an-
gular momentum in our model is transferred outwards. The
numerical experiments with a local model (Sec. 3.2) have
shown that the direction of the angular momentum trans-
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Figure 8. The Model B results, Ṁ = 10−4 M⊙ yr−1. Line designations are the same as in Fig. 7

port depends crucially on the value of the parameter CΠ2.
The assumed value of CΠ2 is quite close to a critical value,
below which the angular momentum flux changes its sign.

Our motivation for studying convection in protoplane-
tary discs was particularly inspired by the idea that turbu-
lent convection could arrange irregular accretion from the
disc to a star, as proposed by Pavlyuchenkov et al. (2020);
Maksimova et al. (2020). The importance of convection has
also been mentioned in other studies, e.g. by Hirose (2015);
Held & Latter (2021), when considering high accretion states
of MRI active protoplanetary discs. However, our results in-
dicate that turbulent convection is a weak mechanism for
angular momentum transfer in the protoplanetary disc. In
fact, we support the results of Lesur & Ogilvie (2010) and
Held & Latter (2018) that the turbulence generated by con-
vection does not provide the observed disc accretion rates
and sufficient heat influx for convection to be self-sustaining.
There are two reasons for this: the anisotropy of the turbu-
lence, and the fact that convection is too weak a source of
turbulence.

The first reason is that the wzz element of the isotropic
part of the Reynolds tensor is the only element excited by
convection, while wrϕ is the only element responsible for the

removal of angular momentum from the disc. The energy
exchange between Reynolds stress tensor elements is not ef-
ficient enough, so wrϕ is more than two orders of magnitude
smaller than wzz.

To estimate the importance of the second factor, we
can look at the turbulence in the steady state near the max-
imum of wij in Fig. 7 or 8 (bottom row, left). Under these
conditions, the diffusion term disappears from the equations
(35)–(38), while the system of linear algebraic equations re-
mains. The only inhomogeneous term in this system is Bzz.
Thus, the solution of the resulting system is proportional
to the value of this convective source, see Section 3.2. To
make the effective accretion rate Ṁeff formally equal to the
given Ṁ , it is necessary to increase the convective flux by
three orders of magnitude in the Model A and by four orders
of magnitude in the Model B. This is hardly possible, even
considering the uncertainty of the mixing length ℓ.

We note that convection might still play an important
role in facilitating angular momentum transport if turbu-
lence is excited not by convection alone, but by the collec-
tive effects of different instabilities. For example, the papers
by Hirose et al. (2014); Coleman et al. (2018); Scepi et al.
(2018) and Held & Latter (2021) present calculations of 3D
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MHD models showing that the joint action of convection
and magneto-rotational instability can increase α to the ob-
served values.

It would be interesting to apply our mean field model to
other instabilities, such as vertical shear instability, stream-
ing instability, etc. (see the reviews by Bae et al. 2022; Lesur
et al. 2022). For example, Stoll et al. (2017) used numerical
simulations to show that vertical shear instability leads to
the appearance of anisotropic turbulence.

5 CONCLUSIONS

In this study, we have presented a model for the transport of
anisotropic turbulence in a protoplanetary disc. The model
includes time-dependent heat transfer by radiative diffusion
and convection, developing on the background of hydrostatic
equilibrium. The time-dependent turbulent transport model
is based on the mean-field approach formulated in terms of
Reynolds stresses. The seed of turbulence in our model is
the convective instability, hence the convection flux. In ad-
dition, the turbulence interacts with the background shear
flow, which increases the amplitude and anisotropy of the
turbulence. The advantage of this model is that it allows
to explicitly measure the contribution of different factors in-
volved to the cycle of thermal and turbulent energy (Fig. 1).
At the same time, it should be noted that this approach
does not allow the study of the detailed spatial and tempo-
ral structure of turbulence, but only its effect on the mean
flow.

The aforementioned model was used to study turbu-
lence driven by convection in accretion discs. Two mod-
els of protoplanetary discs have been examined, one for
the quiescent state and one for the outburst state. We can
agree with the results presented in Held & Latter (2018)
that convection-induced turbulence results in the outward
transfer of angular momentum. The amplitude of the turbu-
lence (Mach number ∼ 0.1) is in agreement with the es-
timates from molecular line observations (Flaherty et al.
2017, 2018). However, the turbulence is found to be too
weak to either reproduce the heat flux through the dissi-
pation channel (Qturb/Qext = 3.7 × 10−2 in Model A) to
support self-sustaining convection, or to generate sufficient
torque to drive the accretion rate and the associated heat-
ing source (Ṁeff/Ṁ = 1.7 × 10−3 in Model A). A possible
explanation for this is that convection only excites the ver-
tical component of the Reynolds stress tensor, wzz, directly,
while angular momentum transfer is controlled by the mixed
component wrϕ. The latter is weak because of weak coupling
of the turbulence and background velocity shear. It would
be worth investigating instabilities occurring in both the ra-
dial and azimuthal directions as a potential source of mixed
component excitation. For example, subcritical baroclinic in-
stability, magneto-rotational instability and others.
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