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A rigorous account of quantum nonlocal effects is paramount for understanding the optical response of metal
nanostructures and for designing plasmonic devices at the nanoscale. Here, we present a scheme for retrieving
the quantum surface response of metals, encapsulated in the Feibelman d-parameters, from electron energy-loss
spectroscopy (EELS) and cathodoluminescence (CL) measurements. We theoretically demonstrate that quantum
nonlocal effects have a dramatic impact on EELS and CL spectra, in the guise of spectral shifts and nonlocal
damping, when either the system size or the inverse wave vector in extended structures approach the nanometer
scale. Our concept capitalizes on the unparalleled ability of free-electrons to supply deeply subwavelength
near-fields and, thus, probe the optical response of metals at length scales in which quantum-mechanical effects
are apparent. These results pave the way for a widespread use of the d-parameter formalism, thereby facilitating
a rigorous yet practical inclusion of nonclassical effects in nanoplasmonics.

The optical response of few-nanometer-scale plasmonic
structures, such as those engineered with state-of-the-art
nanofabrication techniques, can exhibit substantial quantum
nonlocal effects associated with the inherently quantum me-
chanical nature of the plasmon-supporting electron gas in the
involved materials[1–16]. Broadly speaking, the impact of
nonclassical effects becomes non-negligible when either the
characteristic size of the system falls below ∼10 – 20 nm or
the optical response is mediated by field components of large
momenta such as those produced by confined near-field con-
finement. Hence, a quantum nonlocal description of the under-
lying plasmon-mediated light–matter interaction is required in
order to explain experimental data as well as to draw insight
into the elementary processes governing that interaction in the
few-nanometer regime.

Since an all-encompassing quantum-mechanical treatment
of the many-electron system [e.g., using time-dependent
density-functional theory [17] (TDDFT)] is severely con-
strained to few-atom clusters much smaller than the typ-
ical nanoplasmonic systems exploited in experiments, in
practice it is necessary to resort to quantum-informed mod-
els that incorporate dominant quantum effects to leading-
order [1, 18–20]. Among these, the Feibelman d-parameter
formalism [2] is particularly appealing because it simultane-
ously incorporates electron spill-out/spill-in, nonlocality (i.e.,
momentum-dependent response), and surface-enabled Landau
damping through the introduction of two microscopic surface-
response functions, d⊥(ω) =

∫
dz z ρind(z,ω)/

∫
dz ρind(z,ω)

and d‖(ω) =
∫

dz z ∂zJ‖,ind(z,ω)/
∫

dz ∂zJ‖,ind(z,ω), correspond-
ing to the centroids of the induced charge density along the
surface normal ẑ and of the normal derivative of the current
parallel to the interface, respectively. Once they are known
for the planar dielectric–metal interface(s) of interest, these pa-
rameters allow the incorporation of the above-mentioned non-
classical effects in the optical response of metallic nanostruc-
tures using standard electromagnetic solvers upon replacing the
macroscopic boundary conditions [21] by their d-parameter-
corrected counterparts [14, 15, 22–27]. Naturally, this proce-
dure relies on our ability to compute the d-parameters in the
first place using, for example, linear-response TDDFT. How-

ever, while simple metals (e.g., alkali metals or aluminum) can
be well-described by jellium-level TDDFT, for which accu-
rate d-parameter data exist [2, 12, 28–30], noble metals such
as gold and silver require a more demanding atomistic treat-
ment beyond the jellium approximation due to valence-electron
screening from the lower-lying bands [30, 31]. While valence-
band screening may be semiclassically included using screened
jellium models [30, 32] containing a polarizable background
contribution, such approaches still lead to quantitatively un-
satisfactory predictions for the d-parameters (see, for instance,
the discussion in the supplementary information of refs. 12
and 14). As a result of this, and despite the relevance of noble
metals in nanoplasmonics, quantitatively accurate d-parameter
data remains elusive, thus limiting the widespread use of the
d-parameter framework.

Here, we propose and demonstrate a scheme in which
electron-beam (e-beam) spectroscopies [33, 34] are employed
to determine the quantum surface response (i.e., the d-
parameters) of metals directly from experimental spectra
(Fig. 1). To that end, we present a quantum-corrected the-
ory of electron energy-loss spectroscopy [33–35] (EELS) and
cathodoluminescence [33, 34, 36] (CL) based on the aforemen-
tioned quantum surface-response formalism and use it to infer
d⊥ and d‖ from the measured spectra by quantifying the size-
or wave-vector-dependent spectral shifting and broadening
due to quantum nonlocal effects. Crucial to this is the ability
of e-beams to produce broadband and highly confined near-
fields [33], which may be tailored by, for example, varying
the electron kinetic energy or controlling the e-beam trajec-
tory. Such fields contain evanescent components that allow
free electrons to efficiently couple to strongly confined opti-
cal excitations in materials and retrieve sub-nanometer spatial
information, thus rendering them first-class probes of nonclas-
sical effects in nanoplasmonics [6–8, 13]. Our work opens an
powerful route toward a better quantitative understanding of
the nonclassical optical response of metallic nanostructures,
which is instrumental from a fundamental viewpoint and con-
stitutes a key ingredient in the design of nanophotonic devices
operating at the few-nanometer scale.

We begin our analysis by considering the canonical scenario
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Figure 1. Probing quantum effects in nanoplasmonics with electron-beam (e-beam) spectroscopy. (a) Conceptual approach
underpinning the Feibelman d-parameter formalism, wherein a microscopic, quantum mechanical description of a dielectric–metal
interface is mapped onto a mesoscopic one that is tantamount to a classical treatment augmented by a set of quantum surface-response
functions, d⊥ and d‖, encapsulating the leading-order corrections to classicality. (b) Schematics of metallic quantum surface response
encoded in the d-parameters and probed via EELS and CL spectroscopies.

of a swift electron moving with constant velocity v along a
straight-line trajectory re(t) parallel to a metal surface placed
at z = 0. Taking v = v x̂ and re(t) = (v t, 0, b), with b defining
the electron–surface separation, and assuming that the medium
adjacent to the metal is a lossless dielectric with relative per-
mittivity εd, the spectral EELS probability experienced by the
electron after traveling a length L reads [33]

ΓEELS(ω) =
2αL
πc β2

∫ ∞

0

dky

q2 Re

ei2kz,db

k2
y β

2

kz,d
rs −

kz,d

εd
rp


 ,

(1)

where β = v/c is the normalized electron velocity, α ' 1/137

the fine-structure constant, and q =
√
ω2/v2 + k2

y and kz,d =√
εd ω2/c2 − q2 (with Im{kz,d} ≥ 0) stand for the in-plane and

out-of-plane wave vector components, respectively. The quan-
tum surface response enters Eq. (1) through the reflection
coefficients for s- and p-polarized waves, rs ≡ rs(q,ω) and
rp ≡ rp(q,ω), respectively. The EELS probability expressed
in the form of Eq. (1) is thus particularly convenient to in-
corporate quantum nonlocal effects by simply employing the
d-parameter-corrected reflection coefficients [2, 14, 15, 37]
(see Methods) instead of their classical counterparts, which are
reinstated in the d⊥,‖ → 0 limit.

Incidentally, d‖ vanishes for charge-neutral surfaces [2, 30],
thereby leaving d⊥ as the only quantity embodying quantum
mechanical corrections in the present context, where we take
d‖ = 0. We consider both jellium-like and noble metals
(as their nonclassical optical response is distinct), herein rep-
resented, respectively, by a jellium with density parameter
rs = 4 (corresponding to the plasma energy ~ωp ≈ 5.89 eV for
sodium [38]) and silver. For the former, we use the frequency-
dependent d⊥ calculated from TDDFT [12] for an air–jellium
interface (see SI), whereas for silver we incorporate a sur-
rounding dielectric with εd = 2 (simulating SiO2, which pro-
tects it from oxidation) and take d⊥ = (−0.4 + 0.2 i) nm. This

value is estimated by fitting its real part to experimental mea-
surements of size-dependent resonance shifts [7], while its
imaginary part is set so that it reproduces the phenomenolog-
ical Kreibig damping [39] (see SI for details). The classical
optical response of silver is modeled through a Drude-type
dielectric function εm(ω) = εb(ω) − ω2

p/(ω
2 + iγω), where

~ωp = 9.02 eV and ~γ = 22 meV describe the conduction elec-
trons, whereas screening due to bound electrons is included
via εb(ω) = ε

exp
m (ω) + ω2

p/(ω
2 + iγω) with εexp

m (ω) taken from
experimental data [40].

The impact of quantum nonlocal effects imparted on the
EELS spectrum of an electron traveling parallel to a planar
metal surface is presented in Fig. 2 (see panel (a) for a sketch of
the geometry). Notably, while at large electron kinetic energies
Ek the EELS spectra are well-described by classical dielectric
theory, such a description progressively deteriorates as Ek is re-
duced. More precisely, we find that for Ek . 20 keV the impact
of nonclassical effects becomes substantial, imprinting consid-
erable spectral shifts and resonance broadening on the EELS
spectra. The broadening is a direct consequence of surface-
assisted Landau damping, entering via Im{d⊥}, whereas the
observed resonance shifts are produced by the displacement of
the induced charges relative to the classically defined abrupt
interface, which is encoded by Re{d⊥}. The sign of Re{d⊥}
dictates the direction of the frequency shift: toward the red
if positive, reflecting the electron spill-out characteristic of
jellium metals (Fig. 2b–e) [28, 41–44]; or toward the blue
if negative, signaling the electron spill-in observed in silver
(Fig. 2f–i) and other noble metals [4, 6–8, 13, 14, 32, 45, 46].
Furthermore, since the peak in the EELS spectrum is associ-
ated with the excitation of surface plasmon polaritons (SPPs),
the observation that the impact of quantum nonlocal effects
grows with decreasing Ek can be understood as follows: (i) the
main contribution to the EELS probability arises at a lost en-
ergy ~ω for which the wave-vector transfer threshold q = ω/v
intersects that of the SPP; (ii) lower electron velocities lead to
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Figure 2. Nonclassical corrections to the EELS for an aloof electron parallel to a planar metal surface. (a) Schematics of the
configuration under consideration. (b) Classical and quantum EELS spectra for an electron traveling in air (εd = 1) above a planar jellium
surface (rs = 4, with ~ωp ' 5.89 eV and γ = ωp/50) for selected values of the kinetic energy Ek . (c,d) Classical (c) and quantum (d)
EELS spectra for the same air–jellium interface as a function of Ek . The classical SPP result at q = ω/v is indicated by the white-dashed
curves, while the vertical gray-solid lines indicate the classical nonretarded surface plasmon frequency ωcl

SP = ωp/
√

2. (e) Dispersion
relation of SPPs from classical and quantum treatments of the planar air–jellium interface in (b–d). (f–i) Same as (b–e), but for a silver
surface (screened plasma frequency ~ω∗p = 3.82 eV) capped with a dielectric of permittivity εd = 2 (representative of SiO2). We take
b = 5 nm in all cases.

intersections occurring at correspondingly larger wave vectors
(Figs. 2e and 2i), which is precisely where quantum nonlo-
cal effects become sizable (with resonance frequency shifts
∝∼ q Re{d⊥} and nonlocal broadening ∝∼ q Im{d⊥}) [12, 15, 37].
Together, (i) and (ii) provide a simple and intuitive explanation
underpinning the main features observed in Fig. 2.

Metal nanoparticles constitute another quintessential archi-
tecture in which e-beam spectroscopies have played an impor-
tant role (e.g., to map plasmonic fields in real-space with nano-
metric resolution [36, 47, 48]). As we show below, localized
surface plasmon (LSP) resonances in small metal nanoparticles
investigated with EELS and/or CL can be used to quantitatively

probe the nonclassical optical response of metals. Focusing on
metal spheres, the spectrally resolved EELS and CL probabili-
ties associated with an aloof e-beam passing near a sphere of
radius R with impact parameter b > R (see Fig. 3a) are given
by

ΓEELS(ω) =
α

ω
√
εd

∞∑
l=1

l∑
m=−l

K2
m

(
ωb

v γεd

)
×

[
CE

lm(βεd ) Im
{
tEl

}
+ CM

lm(βεd ) Im
{
tMl

}]
,
(2)
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Figure 3. Nonclassical optical response of metallic spheres probed through EELS and CL spectroscopies. (a) Illustration of
the aloof configuration under consideration. (b,c) Calculated EELS (b) and CL (c) spectra for jellium spheres with different radii in air,
contrasting the classical (black dashed curves) and quantum (color-filled solid curves) treatments. (d,e) Same as (b,c), but for silver
spheres in a host dielectric with εd = 2. We take Ek = 50 keV and b = R + 5 nm in all cases.

and

ΓCL(ω) =
α

ω
√
εd

∞∑
l=1

l∑
m=−l

K2
m

(
ωb

v γεd

)
×

[
CE

lm(βεd )
∣∣∣tEl ∣∣∣2 + CM

lm(βεd )
∣∣∣tMl ∣∣∣2] , (3)

respectively, where Km is a modified Bessel function of the
second kind [49], γεd = (1 − β2

εd
)−1/2, and we have defined

βεd =
√
εdv/c. Here, the quantities CE

lm and CM
lm are coupling

coefficients that, for a given pair of angular momentum num-
bers (l, m), depend uniquely on βεd (see Ref. [33] for explicit
expressions). Equations (2) and (3) extend the previously de-
rived results for the interaction of a fast electron with a sphere
in vacuum [33, 50] to a configuration in which the sphere
is embedded in a lossless dielectric medium with arbitrary
εd. The optical response of the sphere enters these equations
through the Mie scattering coefficients tEl and tMl for transverse
magnetic (TM) and transverse electric (TE) waves, respec-
tively. In analogy to the planar interface considered above,
quantum mechanical corrections in the optical response are
straightforwardly accounted for by adopting the generalized
Mie coefficients containing the d-parameters [15] (see Meth-
ods).

Figure 3 compares classical and quantum predictions for the
EELS probability (Figs. 2b,d) and CL (Figs. 2c,e) spectra from
metallic spheres with different radii. In many ways, they echo
the general conclusions discussed above for the planar inter-
face, but in this instance R−1 takes the role previously played
by the in-plane wave vector q. Specifically, the nonclassical
spectral shifts and broadening increase when reducing the par-
ticle radius—qualitatively following ∝∼ l(l + 1) Re{d⊥}/R and
∝∼ l(l + 1) Im{d⊥}/R, respectively [15]—, ultimately leading to
pronounced differences in the spectral peak corresponding to
the dipolar (l = 1) LSP for R . 10 nm. In passing, we note

that higher-order multipoles in larger spheres can still display
deviations from classicality (profiting from the l(l + 1) factor
noted above, which reflects the faster surface oscillations as
l increases), albeit much less recognizable in comparison to
those observed for the dipolar LSP in small spheres. Indeed,
aside from being quenched by nonlocal broadening, dipolar
LSP resonances in jellium (silver) spheres of a few nanome-
ters in size are dramatically red (blue) shifted (by as much
as ∼200 meV) with respect to the classical nonretarded result
ωcl = ωp/

√
εb + 2εd. The breaking of scale-invariance charac-

terizing the classical nonretarded limit is thus lifted within this
investigated regime due to the introduction of the inherently
quantum-mechanical length-scale associated with |d⊥|.

Although nonclassical effects permeate EELS and CL spec-
tra in similar ways, there are some important differences. Being
the result of spontaneous light emission following e-beam ex-
citation, CL is only sensitive to bright LSP modes, whereas
EELS grants us access to dark multipolar LSPs [51, 52] (cf.
the EELS and CL spectra in Fig. 3). In addition, the CL signal
drops considerably for small nanoparticles due to the realiza-
tion of the dipole limit and the concomitantly smaller scattering
cross section. Therefore, EELS is better suited for measuring
the optical response at very small sizes, with EELS measure-
ments of silver particles down to ∼2 nm in diameter having
been reported [6, 8, 13].

Furthermore, focusing on metallic jellium spheres for con-
creteness, we explicitly show in Fig. 4 a scheme to extract
d-parameter data from EELS measurements (for CL the pro-
cedure and results would be the same) using the d-parameter-
corrected theory introduced above (further details on the im-
plementation are provided in Supplementary Section 2). We
emulate experimental EELS data by adding noise to the theo-
retically calculated spectra (Fig. 4a, green curves), while also
accounting for the fact that the EELS signals from smaller
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Figure 4. Retrieval of d⊥(ω) from (simulated) experimental EELS data of metallic jellium spheres in air. (a) EELS spectra for
selected radii (indicated in each panel), showing the theoretically calculated result (corresponding to the “ground truth”, blue curves), the
simulated experimental data (by adding noise to the previously calculated ones, green curves), and the reconstructed spectra by fitting d⊥
(dashed red curves). (b–c) Extracted d⊥-parameter data from EELS spectra of jellium nanospheres of different radii. Each dot (one for
the real part and another one for the imaginary part) corresponds to the fitted value of d⊥ for a specific radius R = 1, 2, 3, 4, 6 nm (each
corresponding to a specific LSP resonance frequency ω0). The dashed lines are obtained from a linear fit for d⊥(ω) using all the data for
different radii. In (b), for each radius, d⊥ is fitted to a constant, whereas in (c) it is fitted to a linear frequency dependence around each ω0.
The solid lines represent the original TDDFT data (same as in Fig. S1) in the spectral window of interest for LSPs in jellium sheres. In all
cases, we take b = R + 5 nm and Ek = 50 keV.

nanoparticles exhibit more noise than those from larger ones
due to the smaller signal-to-noise ratio. We stress that the
simulated experimental spectra mimics well those obtained
from actual EELS measurements [13]. We then use our d-
parameter-corrected theory to extract d⊥ following two alter-
native approaches: a simple one in which we fit a constant
d⊥ value for each particular radius (Fig. 4b), and a more re-
fined one in which we infer the d⊥ dispersion near the LSP
peak to leading order via a linear fit (Fig. 4c). Finally, the
combination of data from spheres of different radii enables the
reconstruction of the complex-valued, frequency-dependent d⊥
across a broad spectral range with extremely good accuracy
(Fig. 4b–c, dashed lines), thereby underscoring the viability
of our proposed scheme. Importantly, such a scheme is ex-
tremely valuable to unravel the quantum surface response of
metals directly from experimental data with high accuracy.
This is particularly relevant for noble metals, for which quan-
titatively accurate d-parameter calculations are not yet avail-
able. In addition, even for simple metals, for which TDDFT
data exist, the determination of the d-parameters using the ap-
proach developed here provides a new path for benchmarking
first-principles calculations (inasmuch as the fidelity of such
methods ultimately depends on the chosen implementation or
functional [53, 54]) directly against experiment. Incidentally,
although we have employed a standard least-squares fitting
procedure to extract the d-parameters (see SI), our approach
could benefit from machine-learning methods, which have been
applied in similar settings, namely, in transmission electron
microscopy [55], scanning near-field optical microscopy [56],

ellipsometry [57, 58], and others [59].

In conclusion, we have demonstrated that EELS and CL
spectroscopies constitute powerful tools to probe quantum-
mechanical corrections in nanoplasmonics, which here we
have calculated by augmenting the classical, local-response
theory with the Feibelman d-parameters. In particular, we have
shown that quantum effects in the response of metallic surfaces
lead to substantial nonclassical shifts and nonlocal broadening
of the EELS and CL spectral features associated with surface
plasmon resonances. In extended planar metal surfaces, such
deviations from classicality become non-negligible for electron
kinetic energies below ∼20 keV due to the contribution from
large wave vector components associated with free-electrons,
which increases as the electron energy is lowered. In metallic
spheres, the relevant length scale is instead determined by the
particle size, and thus, the impact of nonclassical corrections is
weakly dependent on the electron kinetic energy (see Fig. S3
in SI). Specifically, we find that quantum nonlocal effects be-
come substantial for spheres with radii . 10 nm, in-line with
experimental observations [6, 8, 13].

Our work provides a viable, concrete scheme for interrogat-
ing the nonclassical optical response of metals in a quantitative
fashion through the retrieval of the d-parameters associated
with the involved dielectric–metal interfaces from EELS and
CL measurements. In practice, as demonstrated here, this is
achieved using the d-parameter-corrected theory to infer such
parameters from fits of experimental spectra (Fig. 4), as all
other experimental parameters can be well-characterized using
currently available techniques. Additionally, we underscore
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that our proposal based on e-beam spectrocopies is superior
to optics-based techniques because it can effectively address
individual particles rather than an ensemble (which invariably
introduces inhomogeneous broadening due to particle size
and/or morphology variations). Yet another advantage of e-
beams is that, by varying their orientation, tomography-based
methods [60–63] can be exploited to precisely map the exact
shape of the nanoparticle (and even account for surface rough-
ness, a classical effect that could be erroneously mistaken for
nonclassical spectral shifts and broadenings).

We envision that the scheme presented in this work will
stimulate experimental endeavors for measuring the Feibelman
d-parameters for relevant combinations of dielectric–metal in-
terfaces. Indeed, a systematic compilation of a “d-parameter
catalogue” would allow the full deployment of this formalism
across the board in nanophotonics, with key implications not
only for understanding the fundamentals of plasmon-based
light–matter interactions at the nanoscale but also for opti-
mizing and designing nanoplasmonic devices with nanometer-
sized footprints.

METHODS

Mesoscopic scattering coefficients. The mesoscopic, d-parameter-
corrected scattering coefficients for a planar metal surface and for
metallic spheres have been previously introduced by Feibelman [2]
and Gonçalves et al. [15], respectively. Here, we reproduce them for
completeness.

For the planar dielectric–metal interface, the nonclassical version
of the Fresnel reflection coefficients for p- and s-polarized waves
read [2, 15, 30, 37]

rp =
εmkz,d − εdkz,m + (εm − εd)

[
iq2d⊥ − ikz,dkz,md‖

]
εmkz,d + εdkz,m − (εm − εd)

[
iq2d⊥ + ikz,dkz,md‖

] , (4a)

rs =
kz,d − kz,m + (εm − εd)ik2

0d‖
kz,d + kz,m − (εm − εd)ik2

0d‖
, (4b)

where q is the in-plane wave vector, k0 = ω/c, and kz, j =

√
ε jk2

0 − q2

with j ∈ {m, d} denoting the out-of-plane wave vector components.
For a metallic sphere of radius R, the generalized, nonclassical

transverse magnetic (TM) and transverse electric (TE) Mie coeffi-
cients are given by [15, 37]

tel = i
εm jl(xm)Ψ′l (xd) − εd jl(xd)Ψ′l (xm) + (εm − εd)

{
jl(xd) jl(xm) [l(l + 1)] d⊥ + Ψ′l (xd)Ψ′l (xm) d‖

}
/R

εm jl(xm)ξ′l (xd) − εdh(1)
l (xd)Ψ′l (xm) + (εm − εd)

{
h(1)

l (xd) jl(xm) [l(l + 1)] d⊥ + ξ′l (xd)Ψ′l (xm) d‖
}
/R

, (5a)

tml = i
jl(xm)Ψ′l (xd) − jl(xd)Ψ′l (xm) +

(
x2

m − x2
d
)
jl(xd) jl(xm) d‖/R

jl(xm)ξ′l (xd) − h(1)
l (xd)Ψ′l (xm) +

(
x2

m − x2
d

)
h(1)

l (xd) jl(xm) d‖/R
, (5b)

in terms of the dimensionless wave vectors x j ≡ k0
√
ε jR. Here, jl(x)

and h(1)
l (x) stand for the spherical Bessel and Hankel functions of the

first kind [49], Ψl(x) ≡ x jl(x) and ξl(x) ≡ xh(1)
l (x) are Riccati–Bessel

functions [49], and primed functions denote their derivatives.

SUPPORTING INFORMATION

Supporting information is available free of charge at DOI:
10.1021/acs.nanolett.3c00298.

Details on the Feibelman d-parameter data, comprehensive
description of the scheme to extract the d-parameters from
EELS spectra, and explicit demonstration of the robustness
of the EELS and CL peak position with varying e-beam
kinetic energy.
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[37] Gonçalves, P. A. D. Plasmonics and Light–Matter Interactions
in Two-Dimensional Materials and in Metal Nanostructures:
Classical and Quantum Considerations; Springer Nature: Cham,
2020.

[38] Ashcroft, N. W.; Mermin, N. D. Solid State Physics; Harcourt
College Publishers: Philadelphia, 1976.

[39] Kreibig, U.; Fragstein, C. V. The limitation of electron mean
free path in small silver particles. Z. Physik 1969, 224, 307–323.

[40] Johnson, P. B.; Christy, R. W. Optical constants of the noble
metals. Phys. Rev. B 1972, 6, 4370–4379.

[41] Tsuei, K. D.; Plummer, E. W.; Feibelman, P. J. Surface-plasmon
dispersion in simple metals. Phys. Rev. Lett. 1989, 63, 2256–
2259.

[42] Tsuei, K.-D.; Plummer, E. W.; Liebsch, A.; Pehlke, E.;
Kempa, K.; Bakshi, P. The normal modes at the surface of
simple metals. Surf. Sci. 1991, 247, 302–326.

[43] Sprunger, P. T.; Watson, G. M.; Plummer, E. W. The normal
modes at the surface of Li and Mg. Surf. Sci. 1992, 269-270,
551–555.

[44] Reiners, T.; Ellert, C.; Schmidt, M.; Haberland, H. Size Depen-
dence of the Optical Response of Spherical Sodium Clusters.
Phys. Rev. Lett. 1995, 74, 1558–1561.
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