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The collective coordination of distributed tasks in a complex system can be represented
as decision dynamics on a graph. This abstract representation allows studying the perfor-

mance of local decision heuristics as a function of task complexity and network architec-

ture. Here we identify hard-to-solve and easy-to-solve networks in a social differentiation
task within the basic model of small-world graphs. We show that, depending on the

details of the decision heuristic as well as the length of the added links, shortcuts can
serve as structural promotors, which speed up convergence towards a solution, but also

as structural insulators, which make the network more difficult to solve. Our findings
have implications for situations where, in distributed decision systems, regional solu-
tions emerge, which are globally incompatible as for example during the emergence of
technological standards.
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1. Introduction

Self-organized dynamics on graphs are an important concept to analyze distributed

decision-making and task coordination. Beyond social sciences [15, 16, 21] also logis-

tics [9] and computer science [5, 12, 17] are interested in how distributed decisions

can efficiently lead to global coordination, e.g., to avoid queuing or to minimize

interference between wireless networks. In the simplest coordination problems, a

node of the graph can select a decision (a ’color’) out of a list of allowed decisions

based on the observed decision states of its direct neighbors. The local decision

heuristics (i.e., the decision selection criteria at each node) represent the goal of the

systemic task. Such coordination tasks come in two variants [14]: Either the task is

related to some type of consensus across the whole system. In this case, the graph

is ’solved’, when no different colors are linked. Alternatively, these coordination

tasks can be related to social differentiation, scheduling, or resource allocation. In

this case, the graph is ’solved’, when no same colors are linked. Here we focus on

the second scenario of social differentiation and scheduling. Its abstraction as color

dynamics on graphs, related to the graph coloring problem, has been made popular

by the seminal work of Kearns et al. [15]. This framework has led to relevant insight

into problem-solving dynamics and some ’stylized facts’ about distributed decision

making. Examples include the positive effect of random agents in a distributed de-

cision system [21], the effect of a wave-like organization of attention and strategic

waiting on these decision dynamics [11], and the effect of shortcuts in a small-world

architecture on the convergence toward a fully solved system. This is visible, both in

experiments with human subjects [15] and numerical simulations involving simple

heuristics [11].

The decision heuristics introduced in Hadzhiev et al. [11] furthermore provided a

better understanding of the interplay of centralized and autonomous, decentralized

control in manufacturing planning and control [27, 3].

However, a striking characteristic of graph coloring dynamics has not been un-

derstood in the past: For a fixed number of a few shortcuts (i.e., for example, as

a result of a small rewiring probability in the Watts-Strogatz model [26]) one ob-

serves a dramatic variability of runtime. Here we show that – besides the random

initialization, as well as the general stochastic nature of these dynamics – this high

variability is due to the network topology: Depending on the exact positions as well

as the heuristic employed, shortcuts in a ring graph can generate easy-to-solve and

difficult-to-solve graphs. They can act as structural insulators or structural promo-

tors, i.e., they either delay or accelerate regional reorganization efforts towards a

trans-regionally compatible solution.

The problem we address is of relevance for many real-world applications: In

these dynamics, regional solutions emerge rapidly, but they are incompatible on

a global scale and the diffusing remaining conflicts, which are the boundaries of

incompatible solution regimes, require an excessive amount of local reorganization,

until one region switches to a solution compatible with another region. This prob-



April 26, 2024 1:12 WSPC/INSTRUCTION FILE ws-acs

Structural insulators and promotors in networks under generic problem-solving dynamics 3

lem of different locally valid solutions that are globally incompatible can especially

be observed in the emergence of compatibility standards [24]: Different technical

devices may be locally compatible based on one standard, but incompatible with

functionally equivalent standards from other areas, leading to competition between

alternatives [22] and ultimately resulting in a global standard. Examples of such

battles are BlueRay vs HD DVD or Wi-Fi vs HomeRF [23]. There already exist

some models to explain the success or failure of standards. But as economic mod-

els, they are focused on the interplay of strategic factors, business models, and

business actors [20, 6]. Our investigation rather contributes to understanding the

spatial organization of standards and hence the influence of the network topology

on the time until a standard settles.

2. Methods

We investigate heuristics that can solve the graph coloring problem based on local

decisions. In this problem from graph theory, the goal is to assign colors to the

vertices of a graph such that no two adjacent vertices have the same color. The

minimum number of colors that are needed to color a network in this way is known

as the chromatic number χ of the graph. In this section, we explain how we generate

graphs with a given chromatic number, introduce different local decision heuristics,

and present a genetic algorithm that we use to generate networks with specific

properties.

2.1. Small-World Networks

In this analysis, we mainly focus on small-world networks with few inserted links

as a toy model for graphs with high clustering and small shortest path length. The

idea of the graph generation follows [26]. However, since the networks are supposed

to be solvable with a given number of χ colors (the chromatic number), we generate

them as follows: 40 (39 for χ = 3) nodes are arranged as a circular graph, where

each node i is connected to its χ − 1 closest neighbors in both directions. A given

number of shortcuts are then added such that each shortcut connects only nodes

with a different value of mod(i, χ), where i is the node index, thus preserving the

graph’s chromatic number χ. To compare how fast different network topologies can

be solved, we look at the number of color changes that have been performed until

the network is in a solved state. The color changes then set a time scale where each

time step is equal to one color change.

2.2. Other graph topologies with χ = 2

To extend our results to more general statements we generate three other types of

random networks (only for χ = 2):

• BA: For this network, we start with a simple path graph with 4 numbered

nodes. We then add nodes and links following preferential attachment as
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described in [2] where each new node (labeled with a consecutive number)

is attached to existing nodes via two links. However, and in contrast to the

reference, to ensure that the graph has a chromatic number of 2, for an

even (odd) number of already existing nodes, a newly added node can only

connect to nodes with an odd (even) label.

• Random: The procedure to create this graph starts with a graph of N

unconnected nodes, labeled with an integer i. A given number of edges is

then sampled randomly from all edges that would connect two nodes with

an even and an odd label. This ensures a chromatic number of χ = 2. If the

resulting graph is not connected, the procedure is repeated with a different

set of randomly selected edges.

• Modular (Mx): To generate this graph, we start with two separate graphs

A and B of type random. We then rewire x randomly selected edges so

that each edge connects one node from A and one from B. Similar to the

procedure for small-world networks, the connections are always added in

such a way that the chromatic number χ = 2 is preserved. For small x the

graph has high modularity. The larger x the, the more similar the graph

becomes to a random graph.

2.3. Neighborhood assessment strategies

Agent-based models to solve graph coloring problems have already been analyzed in

various variations. Inspired by the results from [15], Hadzhiev et al. [11] developed

a family of local decision heuristics that allow agent-based networks to be solved in

reasonably short times. Following the concepts from [11], a graph coloring heuristic

consists of two components: One strategy for the temporal organization (indicating

which node acts next) and one for the neighborhood assessment (indicating which

color the active node selects). To simulate the behavior of independent distributed

systems as closely as possible, we always use random sequential updates (R) for the

temporal organization, which means that every time step the next node is selected at

random from all available nodes. Using other heuristics for temporal organization,

e.g. the channeled attention strategy (C) from [11], the results are qualitatively

similar (data not shown). For the neighborhood assessment heuristic, we first refer

to three strategies from [11], namely R (random), M (color minimizing), and W

(strategic waiting). We then present a new (N) heuristic whose behavior can be

continuously tuned by a parameter r (reasoning): For large values of r the agents

always select their color by reasoned considerations. The smaller r, the more often

the color choice happens randomly. In all strategies, the active node first assesses

the colors of its connected neighbors. If possible, the node randomly selects one of

the colors that does not appear in its neighborhood (conflict-free color). Otherwise,

the different strategies proceed as follows:

• R (random color): The node selects a color at random from all available

colors
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• M (conflict minimizing color): The node selects randomly a color from

the set of colors that minimizes the number of conflicts. If the node has

already the unique conflict-minimizing color, a color is selected at random.

• W (strategic waiting): Equal to the M scheme, however, if the node has

already the unique conflict-minimizing color, the present color is retained

with probability p = 0.9.

• N (reasoning): With a probability r the node randomly selects a color

that minimizes the conflicts (reasoned acting). In the other case (with a

probability 1 − r) it randomly selects a color from the list of all available

colors.

The N heuristic can hence be understood as a generalization of the three other

heuristics. For small r the N heuristic is similar to the R heuristic, for intermediate

r it is similar to the M , and for large r to the W heuristic.

In order to name the full heuristics, we follow the naming scheme that was also

used in [11]: XY means that we used X as temporal organization strategy and Y

as neighborhood assessment strategy.

2.4. Genetic Algorithm

To assess how strongly the topology of a network (with a fixed number of shortcuts)

affects the runtime, we use a genetic algorithm that evolves to easy-to-solve or hard-

to-solve networks (with respect to a given heuristic). The algorithm starts with an

ensemble of six randomly selected small-world networks with the given number S

of shortcuts and proceeds as follows:

• Each network of the ensemble is randomly colored and then solved by the

respective strategy. The time until solved (measured in activation steps) is

averaged over 500 runs.

• The two fastest (slowest) solved networks are kept for the next run, addi-

tionally, four networks are generated by mutations (rewiring of one short-

cut) and by recombination (take n shortcuts from one network and S − n

shortcuts from the other network) of these two fastest (slowest) networks.

• These six new networks are the new ensemble for the first step.

After around 200 evolution steps, we could – for the network sizes used in this

investigation – no longer observe any significant improvements. However, to ensure

that rare modifications are also covered by the algorithm, we terminated the process

after 1000 evolution steps and saved the obtained topologies.

3. Results

We take the observed high variability of the distributed graph coloring problem

as an opportunity to examine how the network topology influences the runtime.

To focus the analysis we limit ourselves to networks with a chromatic number of
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Fig. 1. Mean number of time steps (color changes) until the network is solved vs. the number of

shortcuts for small-world networks using the RR (random attention – random color), RM (random

attention – conflict-minimizing color), and RW (random attention – strategic waiting) heuristic.
The light area denotes the standard deviation (reproduced from [11]).

χ = 2. In the last part of the results section, we explain why networks with χ > 2

show a significantly more complicated behavior, which results from the interaction

of different mechanisms and thus defies a simple mechanistic explanation.

We begin our investigation by looking at some results from [11]. The authors

analyzed how different graph coloring heuristics perform in small-world networks

when the number of shortcuts increases. In Fig. 1 we show the performance of the

three heuristics that use random sequential updates (R) for the temporal organi-

zation, and R, M or W as neighborhood assessment (see 2.3 for details). With the

RR and RM heuristic, the more shortcuts the network has, the longer (on average)

the nodes need to organize and finally solve the network. In contrast, using the

RW heuristic the solution is reached faster with more added links, as it was also

observed in human subject networks [15]. Looking at Fig. 1, it is also noticeable

that – for a fixed number of shortcuts – the variance of the time steps required is

strikingly high. Since the initial conditions for each run are chosen randomly and the

heuristic contains stochastic components, a certain variance is to be expected. An

open question, however, is whether the topology, i.e. the location of the shortcuts,

has an impact on the solvability.

To test and quantify the impact of the topology, we use a genetic algorithm
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(see 2.4) that is designed to generate easy and hard-to-solve small-world graphs

with a small number of 5 added links. A strong difference between the runtimes

of the extreme graphs could indicate whether and how the topology affects the

runtime. Results of the network evolution for the RR, as well as the RW heuristic,

are presented in Fig. 2. The large difference between the fastest and slowest networks

(120 vs. 2531 color changes for RW heuristic, 406 vs. 1206 color changes for the RR

heuristic) indicates that – for a fixed number of shortcuts – the runtimes depend

strongly on the shortcut positions. Additionally, the resulting topologies seem to

have characteristic features (see also second column of Fig.2): Long-range links

facilitate a fast solution finding for the RW heuristic, but create a difficult-to-

solve network for the RR heuristic. Likewise, the easy-to-solve network for the RR

heuristic is characterized by maximally short links, whereas for the RW heuristic

the short links appear in the difficult graph.

In what follows we will introduce a generalized heuristic and extract general fea-

tures that can explain the interdependence between topology and runtime. Long-

range links are often considered to be beneficial for a system-wide organization

because they allow transmitting information over a long distance [1]. Our analysis

is based on the idea that the respective agent must be able to process the addi-

tional information provided by a long link. When agents evaluate the observations

from their neighborhood reasoned, the remote information helps them to adapt

themselves to the global solution. If, on the other hand, the agents do not operate

reasoned, the additional source of information creates confusion, which hinders the

stabilization of local solutions. To test this proposition, we introduce a new heuris-

tic N . This heuristic can be continuously adjusted between reasoned and random

behavior by means of a single parameter r (details in Sec. 2.3).

We create a ring lattice with 40 nodes and add a single shortcut (with the

constraint that the chromatic number χ = 2 is conserved, see also Sec. 2.1) For

Fig. 3 we set r to different values and analyze how the runtime depends on the

relative length of the added shortcut (averaged over 10.000 runs each). As expected,

if the heuristic is very reasoned (large r) the time until solved decreases for longer

shortcuts. In contrast, if the heuristic contains a lot of randomnesses (small r),

long-range links deteriorate the solvability of the graph. An additional observation

is that the reasoned strategies work poorly, when the inserted link is very short (an

increase of the required time by about 30%).

3.1. Reasoned Agents (large r)

For large r the results are in line with the slow network obtained for the RW

heuristic in Fig. 2. The slow network is characterized by comparably short links

that create two densely connected areas. These clusters foster a fast emergence of

local solutions. Additionally, the short shortcuts stabilize the local solution against

fluctuations from the outside. Figure 4a shows an example of such stabilization of

a local solution. The larger the parameter r, the more stable the locally solved
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Fig. 2. Comparison of the results for the genetic algorithm evolved with the RR or RW heuris-
tics for hard-to-solve (slow) and easy-to-solve (fast) networks with 5 shortcuts. (first column)

Exemplary topology after 50 evolution steps. The numbers indicate how many time steps the

heuristics required to solve the respective graph (averaged over 500 random initial conditions).
(second column) Required time steps (solid, blue) and the average path length (dashed, orange)

for the networks vs. the evolution steps. The solid grey and dashed grey lines show the trajectories

of other runs. The data was scaled to a range of [-1,1]. (third column) histogram of the time steps
require to solve an evolved network with the given heuristic (for 10,000 random initial conditions).

The last bin contains all data above the upper limit of 5,000 time steps. The red line indicates the

mean.

areas. However, in the likely case that the local solution is not compatible with

the currently prevailing global solution domain, the system is in a hard-to-solve

state: The reasoned agents cling to their local solution, the added link acts as a

structural insulator. Contrarily, evolving towards topologies that are easy to solve

for the RW heuristic, the resulting network is characterized by a few nodes that

are connected to various areas of the network and that act as ordering nodes. These

ordering nodes synchronize the local solutions already during their build-up. An
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Fig. 3. Relative extra time until ring graphs with 40 nodes and a single shortcut are solved vs.

the relative length of the added shortcut for different values of r. A relative length of 1 refers to a
shortcut of maximal length, hence spanning 20 nodes. The time is measured relative to the time

that is needed if the ring graph does not have any shortcut.

example of the effect of a single long-range shortcut is shown in Figure 4b. Without

the shortcut, the node labeled with “A” could either stay red or change its color to

blue. In both cases, the result would be a single conflict with one neighbor. However,

due to the shortcut – that is by definition inserted such that it does not alter the

graph’s chromatic number and, hence, a global solution is possible – a change to

blue minimizes the local color conflicts and acts as a local reference for the global

solution domain.

3.2. Irrational Agents (small r)

The situation is different for irrational agents, i.e. with small r (similar to the

RR heuristic). Here, Fig. 1 tells us that shortcuts consistently create graphs that

are more difficult to solve than the pure ring graph, where the effect is stronger

the longer the added link. Consequently, the results from Fig. 2 show that the fast

networks are characterized by short links. For the RR heuristic, the difficult-to-solve

networks are characterized by long-range links, very similar to the graphs that are

easy to solve for the RW heuristic. For irrational agents (as in the RR heuristic), the

long links that connect a single node to various areas of the graph act like a source

of noise: A color-fluctuation of the highly connected node immediately destabilizes

the colors of all connected nodes, spread over the full network.

3.3. Complex Topologies

Having analyzed the interplay between the length of added links and the reasoning

of the acting agents in small-world graphs, it is now natural to ask, whether this
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A

Fig. 4. Comparison of the two effects a shortcut can have: (a) A short link stabilizes a solution

regime against perturbations from the outside. In the example, there is a color conflict between
the two red nodes (indicated by a red link). The right red node has two blue neighbors (one direct

and one via the shortcut). If the node acts reasoned its color is stabilized since red minimizes the

conflicts. (b) The sketch shows two sections of a large ring graph (indicated by the gray dashed
line). The long shortcut organizes two distant sections and orders them. Without the shortcut,

the node with the label “A” would have a 50% chance of keeping its color, compared to changing
to blue. Due to the shortcut, reasoned-acting nodes will change to blue, since this is the conflict-

minimizing color.

behavior can also be observed in more complex networks. As described in Sec. 2.2,

we generated modular graphs (2 x 20 nodes, 40 edges each) with different numbers

of rewires, random graphs (40 nodes, 80 edges), and BA graphs (40 nodes). All

graphs are generated such that χ = 2. In Fig. 5(left) we show the distribution of

the average shortest-path length for the different networks. For the modular graph,

the more rewires we do, the shorter gets the path length. In Fig. 5(right) we show

the time until solved vs the reasoning parameter r of the N heuristic (averaged

over 10,000 networks each). For both the random networks and the BA graphs, the

more reasoned the agents act, the faster they are. Note, however, that for r = 1.0

dead-lock situations are possible that cannot be solved (see e.g. Fig. 2 in [11]). The

results confirm the observations from the small-world networks: Random networks

as well as BA networks have small modularity and high connectivity. It is therefore

unlikely that globally incompatible solutions can stabilize against the rest of the

network. The modular network is, however, specifically designed to have two almost

separate modules. Fig. 5 shows that in this case heuristics that act too reasoned

have a disadvantage: If the two modules converge to different solution domains, it

is difficult for the heuristic to overturn one solution. The more edges we rewire,

the less modular the network is. Consequently, we observe that reasoned heuristics

become more advantageous with the number or rewires.
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Fig. 5. (left) Distributions of the average shortest-path length for the different random graphs

shown in the right figure. The abbreviation Mx denotes a modular graph with x rewires. Each
distribution contains 10,000 data-points. (right) Mean number of time steps (color changes) until

the network is solved vs. the reasoning of the heuristic for different graph topologies (see Sec. 2.2),

averaged over 10,000 networks. The standard-deviation of the mean is smaller than the markers.

3.4. Extension to χ = 3

The natural extension of our investigation is to increase the chromatic number of

the graphs. For Fig. 7 we performed a similar analysis as for Fig. 3, but with a ring

graph with 39 nodes and a chromatic number of χ = 3. Depending on the length

of the added shortcut the system takes longer or is faster to solve than without a

shortcut. The general behavior of the network is on average similar to the one with

a chromatic number of two (short shortcuts lead to longer times). However, there

are also two drastic differences: (1) The curve shows an alternating behavior that

was not present for the χ = 2 graphs. The reason is a complicated interplay between

the shortcuts and the different possible solution regimes. For two colors there are

only two possible solution domains: abab or baba. However, for three colors there

are 3! = 6 possible solution domains that are facilitated or suppressed depending

on the position of the shortcut. (2) The relative effect of a single shortcut is not

as strong as for the χ = 2 graph. The main reason is that a shortcut at each end

excludes only one color at a time. If there are only two colors a single disallowed

color directly determines the correct color: ¬red → blue. However, the more colors

we have the less effect has the banning of a single color. To control such a setting one

would need to generalize the definition of a shortcut. For χ = 3 such a generalized

shortcut would hence consist of four conventional shortcuts that all-to-all connect

two adjacent nodes with two other adjacent nodes.
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Fig. 6. Sketch of a ring graph with two locally correct but globally incompatible coloring domains.
(left) Both sides of the ring have a locally correct coloring. For the red node in the first contexture

(C1), the only logical color option is to stay red. Likewise, for the red node in the second contexture
the only logical option is to stay red. However, since the solutions are globally incompatible,

one contexture needs to change their logic in order to reach solved system. (right) Through an

inserted link both contextures get the possibility to observe another contexture (another local
logic). The color-choice of the connected neighbour is now affected by the own color. In the

context of polycontextural logic, the link can hence be interpreted as a third context (C3), that

allows self-reflection.

4. Conclusion

In small-world networks, shortcuts reduce the average path length and facilitate the

transport of local information through the system [18]. One would therefore expect

that distributed coordination problems on graphs always benefit from shortcuts,

albeit the effect size might depend on the respective length of the shortcut. Here,

we discussed the graph coloring problem as a simple form of distributed coordination

problem. We analyzed how shortcuts affect the time a local heuristic needs to solve

the coloring problem. Depending on how reasoned the agents act, added shortcuts

give rise to different mechanisms: They synchronize the solution domains between

distant sections of the network, stabilize parts of the network against fluctuations, or

they create perturbations. For reasoned heuristics, short shortcuts tend to insulate

locally solved but globally incompatible solutions against each other, finally leading

to an increase in the overall time until a solution is found. We call shortcuts that

create such separated domains structural insulators. In contrast, long shortcuts

foster early synchronization of otherwise distant areas of the network, which is why

we call them structural promotors.

The graph coloring problem can also be analyzed as an example of distributed

logical systems: The conflicts encountered in graph coloring dynamics on a ring arise

due to two (or more) coloring domains that are structurally equal (they are correctly

colored) but locally different (they follow a different color permutation). From a

mathematical point of view, this inconsistency between local logical systems relates

to distributed logic. Our results can hence be interpreted from the perspective of

Gotthard Günther’s theory of polycontexturality (often also termed transclassical

logic) [10].
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According to this theory, every interacting subject spans a – possibly unique

– isolated logic, a contexture. All contextures have equal rights and are aligned

in a heterarchy. Therefore, no contexture can be said to be right or wrong. In

our system, each node can be regarded as a subject (an observer) that spans a

contexture. Different logics then show up by the fact that locally correct solutions

do not match globally (compare Fig. 6(left)). However, if the network contains a link

as depicted in Fig. 6(right), then each connected node can observe the respective

node of the other contexture: it can observe the results of the observations of another

observer. Günther’s theory states that these observations of other observers allow

for self-reflection and a questioning of one’s own logic. In our model, by observing

persistent color conflicts with a remote node, nodes gain the ability to recognize that

their own color choice does not correspond to the globally valid logic. To select the

color randomly instead of based on reasoned considerations can then be understood

as a switch of the local logic.

In this view, it also becomes intuitive, why longer shortcuts serve as promotors

and shorter shortcuts serve as insulators: For a node with a shortcut, its ability

to self-reflect the own logic requires a link to truly independent information, tran-

scending the local solution regime.

As a minimal model for the effects of links or information flow within poly-

contextural systems, the analysis of the graph coloring problem can contribute to

heterarchical approaches in biology [4], consensus finding [8], complex and reflexive

relations in social systems [25, 13], or transformations in physics [7].

We also believe that our findings have implications for the understanding of

the emergence of technological standards (here represented by globally compatible

solutions), as well as for the development of more robust scheduling schemes in

manufacturing and resource distribution [19].

As emphasized at different points in the text, we focused on a heterarchical

model definition. In real systems, however, we often observe hierarchies, where some

few nodes have a central position and the ability to coordinate tasks. With respect

to graph-coloring dynamics, the effect of such hierarchies was examined in Ref. [?].

The authors introduce leader nodes, which have a global view of the system and

provide an additional source of information for connected nodes. Extending our

work to such leader nodes (and to hierarchical networks in general) is an interesting

avenue for future work. Indeed, link structures in hierarchical networks may display

an overlay of structural insulators and promotors.
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