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Using the tight-binding model, we investigate the valley current of the ‘low-bi-up’ and

‘low-bi-low’ graphene junction, where ‘low’ and ‘up’ are respectively the lower and upper

graphene layers extended from the central AB stacking bilayer graphene layer, ‘bi’. Source

and drain electrodes connect with the left and right monolayer regions, respectively, and thus

the total current is forced to flow through the interlayer path in the low-bi-up junction. We

measure valley current reversal (VCR) using the average of 1
2

∑
ν=±(Tν,−ν − Tν,ν) per lateral

wave number, where Tν,ν′ denotes the electron transmission rate from the left Kν′ valley to the

right Kν valley. Without the vertical electric field, the VCR is less than half in both junctions.

This VCR is attributed to monolayer–bilayer matching. As the vertical field intensifies, the

VCR declines in the low-bi-low junction, but increases to about 0.8 in the low-bi-up junction.

This VCR enhancement originates from interlayer matching. Analytic scattering matrixes

elucidate these matching effects. Experiments of VCR detection are also proposed.

1. Introduction

The discovery of the exfoliation synthesis1) has opened up avenues to Hall effects2, 3) of

the ultimate thin layer, graphene (G).4–6) The concept has been generalized to spin (valley)

Hall conductivity σs (σv).7, 8) Here, the valleys refer to the inequivalent corner points in the

Brillouin zone and are denoted by K+ and K− on the analogy of up (+) and down (−) spins.

The σs (σv) equals (J+ − J−)/V , where J+ and J− denote contributions to the charge current

from the spin + and − (valley K+ and K−). The transverse voltage V induces the longitudinal

spin (valley) current J+ − J−, and vice versa. Compared with the charge current J+ + J−, it

is not easy to detect the J+ − J−, and the nonlocal resistance Rnl is an alternative. The Rnl

enhanced by the magnetic field was attributed to σs in Refs.9) and10) , but the insensitivity to

the in-plane magnetic field suggests the valley as the origin.11, 12) This closely connects with

valleytronics, where valleys carry, store, and manipulate information,13–15) in the analogy to

spintronics.16, 17) The dissipationless ‘pure’ valley current (VC) with zero charge current is

1/39

http://arxiv.org/abs/2301.10978v2


J. Phys. Soc. Jpn.

particularly appealing. This pure VC is a likely origin of the giant Rnl in the bilayer G18–21)

and the monolayer G.8, 22–25) Quantum pumping can also generate the pure VC.26)

In addition to σv, various proposals on the G-based valleytronics exist. The line de-

fect,27–30) strain field,31–35) zigzag edge states,36–39) and twisted bilayer G40) work as the VC fil-

ters that transmit only one of J+ or J−. The J+ stream branches off from the J− streams through

strain fields,41, 42) magnetic-electric barriers,43) transistor interfaces,44) and spatially alternat-

ing vertical electric fields.45) A superconducting contact46, 47) and the splitting of Landau lev-

els48) enable the detection of the valley polarization. There also exist theoretical proposals

for optical generation49–58) and detection.59, 60) In these discussions, the intervalley scattering

disturbs the VC randomly and merely produces noise. However, the controlled intervalley

scattering enables us to detect the VC reversal (VCR) by the Rnl sign change. The VCR is

a crucial function in valleytronics, for example, as a ‘not’ logic gate in pure VC. The unidi-

rectional propagation of the zigzag edge state in a given valley becomes opposite when the

energy moves across the neutral Fermi level.36, 38) It explains the VCR in the p-n junction of

the zigzag G ribbon.61) The zone folding illustrates the VCR origin of superlattice graphene

(SG) sandwiched between pristine G regions.62–64) Compared with these VCRs, the VCR ori-

gin remains unclear in the partially overlapped G (po-G); Li et al. argued that Fano resonance

suppresses the intravalley transmission but did not show what enhances the intervalley trans-

mission.65) Their numerical outputs are partially inconsistent with the Fano resonance. The

interlayer potential difference improves the VCR in the side contacted armchair nanotubes,66)

but it is not discussed in Ref.65) . The VCR is outside the scope of other theoretical works

about the po-G67–76) and the bilayer–monolayer interface.77, 78)

σv and Rnl have been calculated using the semiclassical formulation (SCF)79) and

Landauer–Büttiker formulation (LBF).80–85) The SCF leads to the scaling relation Rnl ∝ σ2
vρ

3

with the Ohmic resistivity ρ.14, 18, 86) The cubic law Rnl ∝ ρ3 is σv evidence, but the absence of

direct σv detection causes uncertainty.83, 84) Nonzero σv originates from either bulk states87)

or topological edge states in the SCF,88, 89) whereas nontopological edge transport also satis-

fies the ρ3 scaling law in the LBF.90) There also exist non-VC pictures of Rnl: electron fluid

viscosity,91–94) edge charge accumulation,95) and the Nernst-Ettingshusen effect.96, 97) In this

paper, we perform an LBF calculation of the VCR that is a probe for the bulk VC contribution

to the Rnl. Although the electron correlation causes superconductivity, the critical temperature

is considerably lower than the typical temperature in Rnl measurements.98–100) The spin split-

ting of the low-energy conduction and valence bands is lower than 0.1 meV for the vertical

electric field in this paper.101, 102) Accordingly, we exclude these two aspects from the scope
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of this paper.

The rest of this paper is organized as follows. In Sect. 2, we present the tight-binding (TB)

models and define the VCR indicator g̃v. The perfect pure VCR is realized when g̃v reaches

one. In Sect. 3, we derive analytic formulas of the VCR transmission rate about the normal

incidence. In Sect. 4, we compare these analytical results with the exact numerical data and

clarify the two kinds of VCR origins. The wave function analysis presents intuitive pictures

of the VCR. In Sect. 5, we propose experimental probes for the bulk VC contribution to Rnl.

In Sect. 6, we present a summary and the conclusions.

2. TB Models and VCR Transmission Rates

We consider the two kinds of po-G, ↓↑ and ↓↓, as shown in Fig. 1, where ↓ and ↑ denote

the lower and upper graphene layers, respectively. The top Vt and bottom Vb gate electrodes

exert a vertical electric field on the two layers. The bilayer region is limited spatially and

each of the bias electrodes VL and VR connects with only one of the layers. In the ↓↑ junction,

VL and VR connect with the ↓ and ↑ layers, respectively. In the ↓↓ junction, both VL and

VR connect with the ↓ layer. Figure 2 shows the atomic structures of the ↓↑ junction in the

case of N = 6. The dotted and solid lines represent ↓ and ↑ layers, respectively. Integer

indexes ( j, jy) and sublattice indexes (A, B) specify the atomic coordinates (x, y) as x = a
2

j,

yA,↓ = yA,↑ = 3ac[ jy +
1+(−1) j

4
], yB,↓ = yA − ac, and yB,↑ = yA + ac with the lattice constant a

and the bond length ac = a/
√

3. The bilayer region is limited in the range 1 ≤ j ≤ N − 1 with

the geometrical overlap length (N − 2)a/2. The left j ≤ 0 and right N ≤ j monolayer regions

respectively correspond to the ↓ and ξ layers in the ↓ ξ junction (ξ =↓, ↑). Bonded squares

denote carbon dimers added to armchair edges. The addimer (x, y) positions are represented

by (0, (3m+ 2)ac) and (Na/2, (3m′ + 1)ac) with integers m and m′. When not explicitly noted,

we assume the perfect armchair edges.

The wave functions at sublattices A and B are represented by Aξ, j, jy and Bξ, j, jy with the

layer index ξ =↓, ↑. Using the periodic boundary condition (A, B) jy+Ny
= (A, B) jy with the

transverse width 3Nyac, we can reduce the dimension of the TB equations of the bilayer

region as

E~c↓, j = (h0 − ε)~c↓, j + h1

(
~c↓, j−1 + ~c↓, j+1

)

+W0~c↑, j +W1

(
~c↑, j−1 + ~c↑, j+1

)
, (1)

E~c↑, j = (h0 + ε)~c↑, j + h∗1

(
~c↑, j−1 + ~c↑, j+1

)
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Fig. 1. (Color online) Arrangements of electrodes and graphene layers ↓ and ↑. Vt and Vb denote the top and

bottom gate electrodes, respectively. VL and VR denote the bias electrodes.

Fig. 2. (Color online) Indexes j, jy, A, and B and atomic positions in the ↓↑ junction. Layers ↓ and ↑ are

parallel to the xy plane.

+W∗
0~c↓, j +W∗

1

(
~c↓, j−1 + ~c↓, j+1

)
, (2)

where

t~cξ, j = e−
i
2
κ[(−1) j+1](Aξ, j,0, Bξ, j,0), (3)
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h0 = γ0


0 1

1 0

 , h1 = γ0


0 eiκ

e−iκ 0

 , (4)

W0 =


γ1 γ4

γ4 γ3e−2iκ

 , W1 = e−iκ


0 γ4

γ4 γ3

 , (5)

κ =
√

3
2

kya, and ky is the y component of the wave number vector. The vertical electric field

induces the interlayer difference 2ε in site energy.103) Two kinds of TB models, γ1γ3γ4-TB

and γ1-TB models, are used, where the latter is an approximation of the former. According

to Ref.104) , the γ1γ3γ4-TB parameters are γ0 = −3.12 eV , γ1 = 0.377 eV, γ3 = 0.29 eV, and

γ4 = 0.12 eV. The γ1-TB parameters are the same as the γ1γ3γ4-TB parameters except that

γ3 = γ4 = 0. The Hamiltonian elements of the addimers are defined in the same way.

Applying the exact method in Ref.105) to Eqs. (1) and (2), we can calculate Tν′,ν(κ) that

denotes the transmission rate from the left Kν state to the right Kν′ state. The Landauer’s

formula conductivity g (conductance per width 3ac in the unit of 2e2/h ) and the absolute

VCR conductivity gv are represented by


g

gv

 =
1

Ny

M∑

m=−M


g′(m∆κ)

g′v(m∆κ)

 , (6)

where 
g′(κ)

g′v(κ)

 =
∑

ν=±

∑

ν′=±


1

−νν′
2

 Tν′,ν(κ). (7)

The relative VCR conductivity is represented by gv/g. Owing to the periodic boundary con-

dition with the period 3Nyac, the transverse wave number ky is discrete as ky = m 2π
3Nyac

with

integers m. As κ =
√

3

2
kya, the interval of the discrete κ is represented by ∆κ =

√
3

2
a∆ky =

π
Ny

.

The wave number vector ~k = (kx, ky) of the monolayer region must satisfy the dispersion

relation

(E ± ε)2

γ2
0

=

(
2 cos

(
a

2
kx

)
+ cos κ

)2

+ sin2 κ (8)

indicating the energy gap |E ± ε| ≤ |γ0 sin κ| in a subband with a fixed κ. The integer M in Eq.

(6) corresponds to the maximum of the allowed |ky| and is represented by

M =



Int

[
Ny

π
arcsin

∣∣∣∣ |E|−|ε|γ0

∣∣∣∣
]
· · · (↓↑ junction)

Int

[
Ny

π
arcsin

∣∣∣∣ E+ε
γ0

∣∣∣∣
]
· · · (↓↓ junction)

, (9)

where Int[x] denotes the maximum integer that does not exceed x. The average VCR trans-
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mission rate for the active 2M + 1 subbands is represented by

g̃v =
Ny

2M + 1
gv (10)

that is relevant to both gv and gv/g. When g̃v = 1, the VCR transmission rates become perfect

for both T+,− and T−,+ in all the 2M + 1 subbands. It follows that gv and gv/g concurrently

reach their upper limits, (2M+1)/Ny and 1
2
. Under the condition g̃v = 1, the pure VC changes

into the inverse pure VC without losing its intensity. The condition T+,− = T−,+, which follows

the condition g̃v = 1, is necessary for this pure VCR. When only one of T+,− or T−,+ reaches

one, a pure VC changes into a nonpure VC. Even when the relative VCR conductivity is

perfect (gv/g =
1
2
), the absolute VCR conductivity may be far from the upper limit (gv ≪

(2M + 1)/Ny). Inversely, gv may be large with a small gv/g owing to a large M/Ny. The

condition g̃v ≃ 1 rules out these cases where only one of gv/g or gv is large. Refer to Appendix

A for the detailed VC formulas.

The signs of γ0 and γ4 are reversed compared with those shown in Ref.104) by the trans-

formation (A′, B′) = (A,−B). The transformation (A′↓, B
′
↓) = (A↓,−B↓), (A

′
↑, B

′
↑) = (−A↑, B↑)

proves that the γ1-TB model has the symmetry

g̃v(E, ε) = g̃v(−E,−ε) (11)

for both the ↓↑ and ↓↓ junctions. Even in the γ1γ3γ4-TB model, Eq. (11) holds approximately.

Refer to Ref.105) for this insignificance of γ3 and γ4. Appendix A proves that the ↓↑ junction

satisfies

g̃v(E, ε) = g̃v(E,−ε) (12)

in both the γ1-TB and γ1γ3γ4-TB models, whereas Eq. (12) is invalid for the ↓↓ junction.

Owing to Eq. (11) that holds approximately (exactly) in the γ1γ3γ4-TB (γ1-TB) model, we

eliminate the negative ε from the rest of this paper.

3. γ1-TB Calculation of Zero Lateral Wave Number

In Sect. 3, we discuss the γ1-TB calculation of subband κ = 0. Figure 3 exemplifies

the wave number k
(σ)

l
at the K+ valley with sign indexes l = ± and σ = ±. At the other

valley K−, k = −k
(σ)

l
≃ −4π/(3a). The group velocity dE

dk
at the K+ valley is positive (neg-

ative) when σ = + (σ = −). For the positive (negative) group velocity states, the index

σ corresponds to the Kσ (K−σ) valley. The index l is assigned according to the condition
∣∣∣k(σ)
+ − 4π/(3a)

∣∣∣ ≥
∣∣∣k(σ)
− − 4π/(3a)

∣∣∣. When lE is positive (negative), the kl dispersion line is

similar to the monolayer ↓ (↑) dispersion line. In this sense, the index l is the roots layer

6/39



J. Phys. Soc. Jpn.

dE
dk
> 0 (p = +) dE

dk
< 0 (p = −)

K+ K− K+ K−

bilayer k
(+)

l
−k

(−)

l
k

(−)

l
−k

(+)

l

l = +,−
monolayer k

(+)

ξ −k
(−)

ξ k
(−)

ξ −k
(+)

ξ

ξ =↓, ↑
K+

E > 0 k
(σ)
+ ≃ k

(σ)

↓ , k
(σ)
− ≃ k

(σ)

↑

E < 0 k
(σ)
+ ≃ k

(σ)

↑ , k
(σ)
− ≃ k

(σ)

↓

Table I. Relation of the indexes l, σ to the layers ξ =↓, ↑, the sign of the group velocity p = dE
dk
/
∣∣∣ dE

dk

∣∣∣, and the

valleys K±.

Fig. 3. Dispersion relation of the bilayer region calculated using the γ1-TB model for ε = 0.35 eV and κ = 0.

index. Table I summarizes the physical meaning of the indexes l and σ. Figure 3 also demon-

strates the bilayer propagating mode number N↓↑ at each valley as

N↓↑ =



0 · · · |E| < ∆ (gap)

4 · · ·∆ < |E| < ε (inner E)

2 · · · ε < |E| < ∆′ (pseudogap)

4 · · ·∆′ < |E| (outer E)

(13)

with the gap edge ∆ =
γ1ε√
4ε2+γ2

1

and the upper pseudogap edge ∆′ =

√
ε2 + γ2

1
106–109) .

The gap and pseudogap regions are excluded in Sect. 3, as their smaller mode number

suppresses the conductivity. In Sect. 3.1, we explain the exact formulas of the inner and

outer E regions. Refer to Ref.105) for the exact calculation method of the gap and pseudogap
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regions. In Sects. 3.2 and 3.3, k
(σ)

l
approximates 4π

3a
in the scattering between the monolayer

and bilayer regions. In Sect. 3.3, we neglect the difference between
∣∣∣k(+)

l
− 4π

3a

∣∣∣ and
∣∣∣k(−)

l
− 4π

3a

∣∣∣
in the propagation through the bilayer region. The transmission rate is concisely expressed in

Sect. 3.3 when N is a multiple of three. This expression is interpreted according to the wave

function nature. Except when ↓↓ is explicitly referred to, in Sect. 3, we mainly discuss the ↓↑
junction. It is straightforward to derive the ↓↓ formulas from the ↓↑ formulas.

3.1 Exact calculations

The dispersion relation and wave function of the bilayer region are represented by

cos

(
a

2
k

(σ)

l

)
=
−1

2

(
1 + lσ

√
3θl

)
, (14)


~c↓, j

~c↑, j

 =
∑

σ=±

∑

l=±

∑

p=±

ω
p j

σ,l√
Jσ,l
η

(p)

σ,l


~d ↓
σ,l

~d ↑
σ,l

 , (15)

where η denotes the mode amplitude, ω±,l = e±i a
2

k
(±)

l ,

[
t ~d ↓
σ,l
, t ~d ↑

σ,l

]
=

[
(σlαl, 1), βl

(
σlαl

E − ε
E + ε

, 1

)]
, (16)

Jσ,l =
∑

ξ=↓,↑

Im
[
w∗σ,l

t ~d
ξ

σ,l
h1
~d
ξ

σ,l

]

= 2|γ0|vl sin

(
a

2
k

(σ)

l

)
, (17)

vl =
αl

β(−l)

(β− − β+) , (18)

βl =

2εE − l

√
(γ2

1
+ 4ε2)E2 − γ2

1
ε2

γ1(E − ε)
, (19)

αl =
E + ε
√

3|γ0|θl
, (20)

θl = τl

E

|E|

√
E2 + ε2 + l

√
(γ2

1
+ 4ε2)E2 − γ2

1
ε2

√
3|γ0|

, (21)

where τ± = 1 (τ± = ±1 ) in the inner (outer) E.106–109) The solid square area of Fig. 4 shows

the spatial arrangement of elements of Eq. (16), where α↓ = σlαl and α↑ = α↓(E −ε)/(E +ε).
When there is a single mode such as (~c↓, j, ~c↑, j) = w

j

σ,l
(~d ↓
σ,l
, ~d ↑
σ,l

), the probability flow equals Jσ,l.

Here, we have chosen the definitions as conditions vl > 0 and Jσ,l > 0 hold. The probability
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flow of Eq. (15) is the same as
∑

l,σ |η(+)

l,σ
|2 − |η(−)

l,σ
|2, indicating that the sign p = ± denotes the

propagation direction. In the same way as the bilayer region, the dispersion relation and wave

function of each monolayer region are represented by

cos

(
a

2
k

(ν)
↓
↑

)
=
−1

2

(
1 + ν

E ± ε
|γ0|

)
, (22)

~c (0)

↓, j =
∑

ν=±

∑

p=±

ω
p j

ν,↓√
Jν,↓
η

(p)

ν,L


ν

1

 , (23)

~c (0)

↑, j =
∑

ν=±

∑

p=±

ω
p( j−N)

ν,↑√
Jν,↑
η

(p)

ν,R


ν

1

 , (24)

where ω±,ξ = e
±i a

2
k

(±)
ξ ,

Jν,ξ = 2|γ0| sin

(
a

2
k

(ν)
ξ

)
(25)

with the layer index ξ =↓, ↑. The superscript (0) in Eqs. (23) and (24) indicates that there is

no interlayer transfer integral. Each coefficient η of Eq. (15) [Eqs. (23) and (24)] corresponds

to the Kpσ [Kpν] valley . The top and bottom of Fig. 4 show amplitudes of single layer modes

in the ↓↑ junction.

The scattering matrixes S ↓ and S ↑ are defined by

~η (+)

~η (−)

L

 = S ↓


~η (−)

~η (+)

L

 , (26)


Λ∗~η (−)

~η (+)

R

 = S ↑


Λ~η (+)

~η (−)

R

 , (27)

where t~η (p) = (η
(p)
+,+, η

(p)
−,+, η

(p)
+,−, η

(p)
−,−),

t~η
(p)

L
= (η

(p)

+,L, η
(p)

−,L), t~η
(p)

R
= (η

(p)

+,R, η
(p)

−,R) and

Λ(σ,l|σ′,l′) = δσ,σ′δl,l′e
σi a

2 Nk
(σ)

l . (28)

The boundary conditions are

(~c↓,0, ~c↑,0, ~c↓,1) = (~c (0)

↓,0 , 0, ~c
(0)

↓,1 ) (29)

for S ↓ and

(~c↑,N , ~c↓,N, ~c↑,N−1) = (~c (0)

↑,N , 0, ~c
(0)

↑,N−1
) (30)

for S ↑. The exact S ↓ and S ↑ follow from the application of Eqs. (15), (23), and (24) to Eqs.
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Fig. 4. (Color online) Cross-sectional view of elements of Eqs. (15), (23), and (24), where α↓ = σlαl and

α↑ = α↓(E−ε)/(E+ε). Refer to the main text about the interlayer matching I↓↑ and monolayer–bilayer matching

Iξ(ν) where ξ =↓, ↑.

(29) and (30). Eliminating η(±) from Eqs. (26) and (27), we obtain

t↑↓ =
tt↑Λ

(
14 − r↓Λr↑Λ

)−1
t↓, (31)

which satisfies ~η (+)

R
= t↑↓~η

(+)

L
, where rξ (tξ) and 1n denote the S ξ reflection (transmission)

block and the n dimensional unit matrix, respectively. The transmission rate Tν′,ν(0) equals

the squared absolute value of the element of t↑↓. Replacing ↑ with ↓ in Eq. (31), we obtain

Tν′,ν of the ↓↓ junction.

3.2 First approximation

The approximation k
(σ)
± ≃ k

(σ)

↓ ≃
4π
3a

simplifies Eq. (29) to

X↓


~η (+)

~η (−)

L

 = −X∗↓


~η (−)

~η (+)

L

 , (32)
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where

X↓ =



u
↓
+ u

↓
− −u0

u
↑
+ u

↑
− 0

u
↓
+Ω u

↓
−Ω −u0Ω

∗


, (33)

u
ξ

l
=

1
√

vl

(~d
ξ

+,l
, ~d
ξ

−,l), u0 =


1 −1

1 1

 , (34)

Ω =


ei 2

3
π 0

0 e−i 2
3
π

 . (35)

Using the Kronecker product, we present S ↓ = −X−1
↓ X∗↓ as

S ↓ = YB
tYB ⊗ uB + YA

tYA ⊗ uA − 16, (36)

where

YB =

√
2

cB



α+√
v+

− α−√
v−

1


, YA =

√
2

cA



1√
v+

1√
v−

1


, (37)

u B
A
=

1

2


1 ±1

±1 1

 , (38)

c B
A
= 1 +

α±1
+ β− + α

±1
− β+

β− − β+
. (39)

We can easily confirm that Eq. (36) satisfies relation X↓S ↓ = −X∗↓ . We also obtain an approx-

imate formula

S ↑ = VS ′↓V, (40)

where

V =



β+
|β+ |12 0 0

0
β−
|β− |

12 0

0 0 12


, (41)

and we transform S ↓ into S ′↓ by replacing (αl, βl) with (α′
l
, β′

l
) =

(
E−ε
E+ε
αl,

1
βl

)
. Equations (36)

and (40) satisfy the unitary conditiontS ∗↓S ↓ =
tS ∗↑S ↑ = 16. The calculation of Tν′,ν(0) with Eqs.

(28), (31), (36), and (40) is referred to as the first approximation.
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3.3 Second approximation

Figure 3 and Eq. (14) demonstrate that a
2
k

(±)

l
≃ 2π

3
± lθl. This leads to an approximation

that replaces Eq. (28) as follows:

Λ(σ,s|σ′,s′) = δσ,σ′δs,s′ exp

[
iN

(
σ

2

3
π + lθl

)]
. (42)

When N/3 is an integer, the phase 2σπN/3 of Eq. (42) has no effect. This simplifies Eq. (31)

to

t↑↓ =
∑

χ=A,B

tt↑,χΛ̃
(
12 − r↓,χΛ̃r↑,χΛ̃

)−1
t↓,χ ⊗ uχ, (43)

where

Λ̃ =


eiθ+N 0

0 e−iθ−N

 . (44)

See Sect. 3.2 for the definitions of the tξ,χ and rξ,χ matrixes. For example, tt↓,A =
2
cA

(
1√
v+
, 1√

v−

)

and r↓,A =
cA

2
t↓,A

tt↓,A − 12. The relation uχuχ′ = δχ,χ′uχ and Eq. (43) bring us the second

approximation

Tν′,ν =

∣∣∣∣∣
GB

FB

+ νν′
GA

FA

∣∣∣∣∣
2

. (45)

See Appendix B for explicit expressions of G and F. Note that the second approximation (45)

is valid only when N/3 is an integer.

Here, we introduce

q ≡
(
2ε

γ1

)2

. (46)

When |E| approaches the gap edge ∆, |θ±| converges to θ0, where

θ0 =
γ1

2
√

3|γ0|

√
q(2 + q)

1 + q
. (47)

At the gap edge |E| = ∆,

(
T±,±, T±,∓

)
≃ q

1 + q

(
sin2(θ0N)

θ2
0
N2

, cos2(θ0N)

)
(48)

holds in the N range
√

(2 + q)3

(2 + 2q)θ0
≪ N ≪ 2

√
2 + q

θ0
. (49)

This suggests that

g′v(0) ≃ q

1 + q
(50)
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when conditions (49),

N ≃ π/θ0, (51)

and |E| ≃ ∆ hold. The exact g′v(0) peak certainly appears under conditions (49), (51), and

|E| ≃ ∆
3

√
11 + q (52)

with the height of about q/(1 + q). Appendix B shows that Eq. (51) requires the condition

q < 8. As |E| increases from ∆ to Eq. (52) with N fixed to Eq. (51), N(|θ+| + |θ−|)/2 remains

about π, whereas the difference between π and N|θ±| increases from near zero to about π/3.

When |E| ≫
√

4ε2 + γ2
1
, Eq. (45) approximates

T±,± ≃
(s+ − s−)

2

|F′|2 (1 + q)
, T±,∓ ≃

γ2
1
(s+ + s−)

2

4 |F′|2 E2
, (53)

where s± = sin(|θ±|N) and

F′ =
−1

1 + q
sin2

(
|θ+| − |θ−|

2
N

)
− ei(|θ+ |+|θ− |)N . (54)

Refer to Appendix B for the derivation. The second approximate T±,∓ formula of the ↓↓ junc-

tion (not shown here explicitly) also becomes proportional to E−2 when |E| ≫
√

4ε2 + γ2
1
.

The second approximation is closely related to another expression of Eq. (15),

~c↓, j

~c↑, j

 =
∑

χ=A,B

∑

l=±

∑

p=±

eilpθl j

√√
3|γ0|vl

ζ
(p)

χ,l
~f

(p)

χ,l, j
, (55)

where

(
~f (±)

B,l, j
, ~f (±)

A,l, j

)
=



0 αl

1 0

0 βlα
′
l

βl, 0




c j ±is j

±ils j lc j

 , (56)

ζ
(p)
B
A
,l
= η

(p)

+,l
± η(p)

−,l , c j = cos(2π j/3), and s j = sin(2π j/3). Equations (55) and (56) possess two

important characteristics. First, mode ζ
(p)

χ,l
is a Bloch state with the unit cell length 3a/2 and

the wave number 2plθl/a. Second, ~f
(p)

χ,l, j
is localized at the χ site when j/3 is an integer. These

characteristics explain the interference between the ~fA and ~fB modes in Eq. (45).

4. Results

4.1 ↓↑ junction

Crosses and circles in Fig. 5 represent the first approximations of T−,+(0) and T+,−(0),

respectively. The longitudinal overlap lengths are N = 47 in Fig. 5(a) and N = 45 in Fig.
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5(b). The solid line in Fig. 5(b) shows the second approximation of T±,∓. As the second

approximation is irrelevant to a non-integer N/3, the solid line does not appear in Fig. 5(a).

These approximation results reproduce well the exact T+,−(0) and T−,+(0) displayed by the

dashed lines. Unlike the exact calculation, the approximate formulas are not available in the

gap and pseudogap energy regions. However, these energy regions are unimportant because

of their low transmission rate. As Fig. 5 shows, the difference between T+,−(0) and T−,+(0)

is smaller with an integer N/3 than with a non-integer N/3. It follows that an integer N/3 is

advantageous for the g′v(0) to reach the upper limit. In the γ1γ3γ4-TB model, Eq. (12) is exact,

whereas Eq. (11) is approximate; thus, the relation g̃v(E, ε) = g̃v(−E, ε) does not exactly hold.

The numerical results show that the g̃v peak is slightly higher in the negative E region than in

the positive E region. As high g̃v is our concern, the figures in this paper, except for Figs. 3

and 5, display data on an integer N/3 and negative E.

Figures 6 and 7 show the data on ε = 0.35 eV and ε = 0, respectively. N increases from

45 to 57 (from 57 to 69) in Fig. 6 (Fig. 7), where N is limited to a multiple of three. In Fig. 6,

E changes from −0.38 eV to −0.1 eV (from −0.7 eV to −0.38 eV ) in the top (bottom) panels.

The E ranges partially overlap the gap |E| < 0.166 eV and pseudogap 0.35 eV < |E| < 0.514

eV in Fig. 6. Figure 7 includes a part of the pseudogap |E| < 0.377 eV. Blue lines represent the

γ1γ3γ4-TB data, indicating g′v(0) in the left panels and g̃v in the right panels. The left panels

are identical to the right panels in the black lines representing the second approximation

of g′v(0). Each pair of identical black lines helps compare the left and right panels in the

blue lines. In the gap and pseudogap, there are no black lines, but the blue lines confirm the

suppression of g′v(0) and g̃v. The second approximation excellently reproduces the Tν,ν′(0) of

the exact γ1-TB calculation, as Fig. 5 shows. Thus, γ2 and γ3 are the leading causes of the

slight difference between the black and blue lines in the left panels and have only minor effects

on g′v(0). On the other hand, g′v(κ) with nonzero κ causes differences between the left and right

panels in blue lines. Figure 8 displays the decomposition of g̃v into g′v(κ) and elucidates the

κ effect for the highest g̃v line of Fig. 6 (top panel, N = 45). The top and bottom panels

correspond to the γ1-TB and γ1γ3γ4-TB models, respectively. The solid black lines represent

g′v(κ) for seven κ′s, κ/π = 0.0025m (m = 1, 2, · · · , 7). The black dashed lines represent the

exact g′v(0) and are essentially the same as the second approximation of g′v(0). The eight black

lines contribute to g̃v when Ny = 400 and −0.35 eV < E < −0.16 eV. As has been defined by

Eqs. (6) and (10), g̃v equals the sum of g′(κ) divided by 2M + 1, where the channel number

2M + 1 changes with E according to Eq. (9). For example, (E, 2M + 1) = (−0.34 eV, 1) and

(−0.26 eV, 7) when Ny = 400. The red lines display g̃v computed for the width Ny = 1000,
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Fig. 5. (Color online) VCR transmission rate T±,∓ calculated using the γ1-TB model in the case of κ = 0, ε =

0.35 eV, (a) N = 47, and (b) N = 45.

where the small notches reflect the finite Ny. As Ny increases, the g̃v line becomes smooth

and independent of Ny. The monolayer energy gap ||E| − ε| < |γ0 sin κ|, which originates from

Eq. (8), widens as |κ| increases, and thus, only small |κ|’s contribute to the red lines in Fig. 8.

In this small range of κ, g̃v is close to g′v(0) as g′v(κ) is continuous with respect to κ. This is

the reason why the blue lines of the left panels are similar to those of the right panels in Fig.

6. Figure 8 also proves that the γ1-TB and γ1γ3γ4-TB models produce essentially the same

g̃v except that γ3 and γ4 lower the peak slightly. In Ref.105) , this smallness of γ3, γ4 effects is

discussed. These results indicate that the second approximation g′v(0) is very close to g̃v. In

the case of ε = 0, however, this is not true as discussed below.

Figure 9 displays g′v(κ) of zero ε for five κ’s, κ/π = 0, 0.01, · · · , 0.04 in case ε = 0
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Fig. 6. (Color online) VCR data of the ↓↑ junction in the case of ε = 0.35 eV, Ny = 1000, and N =

45, 48, 51, 54, and 57. Blue lines in the left and right panels represent the γ1γ3γ4-TB data of g′v(0) and g̃v,

respectively. Black lines represent the second approximation of g′v(0). The top and bottom panels mainly corre-

spond to the inner and outer E regions, respectively.

Fig. 7. (Color online) Data of g′v(0) and g̃v in the case of ε = 0, Ny = 1000, and N = 57, 60, 63, 66, and 69.

Blue lines in the left and right panels represent the γ1γ3γ4-TB data of g′v(0) and g̃v, respectively. Black lines

represent the second approximation of g′v(0).
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Fig. 8. (Color online) g̃v (red lines) and g′v(κ) (black lines) in the case of ε = 0.35 eV, N = 45, and Ny = 1000,

calculated using the γ1-TB (top panel) and γ1γ3γ4-TB models (bottom panel). The numerical values attached to

each black line represent κ/π.

and N = 69, corresponding to the highest g̃v peak in Fig. 7. The solid and dashed lines are

calculated using the γ1-TB and γ1γ3γ4-TB models, respectively. Thick (thin) lines correspond

to zero (nonzero) κ. In the pseudogap |E| < γ1, g′v(κ) is suppressed. The peak height of g′v(0)

is comparable to that in Fig. 8. Compared with Fig. 8, however, a wider range of κ contributes

to g̃v in Fig. 7. When g̃v reaches the maximum, the maximum effective |κ|/π equals 0.013 in

Fig. 6 and 0.045 in Fig. 7. As κ increases, the g′v(κ) of Fig. 9 decreases to negative values and

lowers the maximum g̃v peak height shown in Fig. 7 compared with that shown in Fig. 6.

Arrows indicate the shift of the peaks with N in Figs. 6 and 7. In the outer E, the peak

energy E approaches zero as N increases. This shift comes from the phases |θ±|N of Eq. (53),
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Fig. 9. (Color online) g′v(κ) in the case of ε = 0, and N = 69. The numerical values attached to each line

represent κ/π. The solid and dashed lines represent values calculated using the γ1-TB and γ1γ3γ4-TB models,

respectively. Thick (thin) lines correspond to zero (nonzero) κ.

where |θ±| increases with |E| in the outer E. In the inner E, however, only the peak height

changes with an almost constant peak energy (top panels in Fig. 6). This contrast suggests

the difference between the outer and inner E regions in the VCR origin. As shown in Figs.

1 and 4 , Iξ(ν) ≡ |(ν, 1)~d
ξ

σ,l
|2/|~d ξ

σ,l
|2 = (1 + ναξ)

2/(1 + α2
ξ) represents the monolayer ξ–bilayer

matching, where ξ =↓, ↑, α↓ = σlαl, and α↑ = α↓(E − ε)/(E + ε). The product of monolayer–

bilayer matchings I↓(±)I↑(∓) corresponds to the VCR and comes near the upper limit when

(i) α↓ ≃ −α↑ ≃ ±1. Since α↑/α↓ = (E − ε)/(E + ε) , condition (i) requires E ≃ 0. The

gap region |E| < ∆ suppresses the transport near the zero energy, and thus the optimized

E comes at the gap edge ±∆, followed by α↓ = σl(1 ±
√

1 + q)/
√

2 + q. When q ≫ 1,

this α↓ satisfies condition (i). The condition E ≃ ∆ is independent of N and corresponds

to the constant peak energy in the top panels of Fig. 6. For a large interlayer transmission

rate, the wave function must be extended between the two layers, and thus the interlayer

probability ratio β̃l ≡ |~d ↑σ,l|/~d
↓
σ,l
| must be close to one. We define the interlayer matching

I↓↑ ≡ 4/(β̃l + β̃
−1
l

)2, since this I↓↑ increases as β̃l approaches one. Interestingly, I↓↑ is close to

Eq. (50) when |E| ≃ ∆ ≪ ε and β̃l ≃ |βl|, suggesting the contributions of βl to the VCR. When

|E| ≫ ∆′, on the other hand, the monolayer–bilayer matching product I↓(±)I↑(∓) becomes

inversely proportional to E2, implying the physical origin of the factor E−2 in Eq. (53).

Circles (triangles) in Figs. 10 and 11 represent the highest g̃v peak data in the inner (outer)

E region. These data are calculated using γ1γ3γ4-TB model in the ranges |E| < 1.2 eV and

N ≤ 282, for eleven ε’s, ε = 0.05m eV (m = 0, 1, · · · , 10). Figure 10 shows the peak height

18/39



J. Phys. Soc. Jpn.

Fig. 10. (Color online) Height and N of the highest g̃v peak of the ↓↑ junction calculated using the γ1γ3γ4-TB

model in the range |E| < 1.2 eV and N ≤ 282, for eleven ε’s, ε = 0.05m eV (m = 0, 1, · · · , 10). Circles and

triangles correspond to inner and outer E regions, respectively. The transverse width 3Nyac is 3000ac. The solid

lines represent g̃v = q/(1 + q) and Eq. (51).

and peak N. Figure 11 shows the peak E. Solid lines represent values obtained using Eqs.

(50), (51), and (52), which accurately coincide with the circles. The dotted lines in Fig.

11 are the gap and pseudogap edge energies. Figures 10 and 11 include the inner E peak

(E,N, g̃v) = (−0.21 eV, 45, 0.77) in Fig. 6 and the outer E peak (E,N, g̃v) = (−0.44 eV, 69,

0.32) in Fig. 7. Concerning the absolute and relative VCR, (gv, gv/g) = (0.042, 0.47) for the

former and (0.057, 0.24) for the latter. Notably, the former gv/g reaches near the upper limit

0.5 corresponding to the perfect VCR (T+,− = T−,+ = 1). Compared with the zero ε case,

the absolute VCR slightly decreases, but the relative VCR significantly improves. The two

vertical arrows in Fig. 11 represent ||E| − ε| at the above-mentioned two peaks, whereas Eq.

(9) indicates the effective κ range |κ| < ||E| − ε|/|γ0. These arrows illustrate that the subband

effects are more significant in Fig. 7 than in Fig. 6. In the top panel of Fig. 10, the outer E

peak first increases with ε but declines when ε exceeds 0.15 eV. The initial climb comes from

the shrinkage of the effective κ range. As the peak E becomes distant from zero, the factor

γ2
1/E

2 of Eq. (53) causes the later decline. In contrast, the inner E peak continues to grow

with ε and rise above the outer peak. The perturbative formula in Ref.66) is consistent with

Eq. (53), but irrelevant to the inner E peak.103)

Equation (53) derives its validity from condition |E| ≫ γ1

√
1 + q in Appendix B, whereas

Fig. 11 indicates that the outer E peak appears near the pseudogap edge, ±γ1

√
1 +

q

4
. This
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Fig. 11. (Color online) Energies corresponding to the data in Fig. 10. The solid line represents values obtained

using Eq. (52). The dotted lines show the gap and pseudogap edges. The vertical arrows represent ||E| − ε| for

the triangle of ε = 0 and the circle of ε = 0.35 eV.

might weaken the effectiveness of Eq. (53) discussed above. Figure 12 dissolves this uncer-

tainty, where the black and blue lines represent the VCR transmission rate T±,∓ of Eqs. (45)

and (53), respectively, in the case of ε = 0. Surprisingly, the blue lines coincide well with

the black lines even when |E| is close to γ1. The blue lines overestimate the peak heights for

N between 57 and 63, but coincide well with the black lines for other N values. The decay

of T±,∓ with |E| certainly appears in the black lines. Overall, Eq. (53) reproduces the peak

position (E,N) of Eq. (45). These results mean that the condition |E| ≫ γ1

√
1 + q is not

necessary but sufficient for the effectiveness of Eq. (53). Although we have not obtained the

necessary and sufficient condition yet, the E−2 factor that comes from the monolayer–bilayer

matching certainly causes the decline of the outer E peak.

The g̃v oscillates periodically as a function of N, and the considered N range in Fig.

10 (N ≤ 282) is sufficient to include the global maximum of g̃v. The height of the m’th

g′v(0) peak at N ≃ mπ/θ0 in the inner E is almost constant irrespective of m in the second

approximation, but gradually decreases with m in the exact γ1-TB calculation. This difference

comes from the deviation of the average wave number 1
2
(k

(+)

l
+ k

(−)

l
) from 4π

3a
. The second

approximation neglects this deviation. In the exact γ1-TB calculation, the deviation of the

phase (k
(+)

l
+ k

(−)

l
)Na/4 from 2

3
πN increases with N, followed by the decay of the peak height.

γ3 and γ4 also induce the phase shift. Additionally, the peak period in g′v(κ) deviates from

π/θ0 as |κ| increases. These effects cause the decay of the g̃v peak with N in the inner E.

In the calculation presented so far, we assume the perfect armchair termination with no
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Fig. 12. (Color online) VCR transmission rate T±,∓ in the case of ε = 0. Black and blue lines represent values

calculated using Eqs. (45) and (53), respectively. N is limited to a multiple of three.

zigzag edge. To see the validity of this assumption, we replace the periodic condition with

the open boundary condition at positions
y

ac
= 2.5, 151.5 (7.5, 156.5) of the ↑ layer (↓ layer)

in the ↓↑ junction. This junction is equivalent to partially overlapped (50,50) zigzag graphene

ribbons (ZGRs). We also consider addimers bonded with the armchair edges as in Fig. 2.

The positions of the addimers vary randomly depending on the samples, and we consider

six addimers at ( x
a
,

y

ac
) = (0, 32),(0,92),(0,122), (N/2, 46), (N/2, 67), and (N/2, 97) as a case

of low coverage. Figure 13 corresponds to the top panels of Fig. 6, where red (black) lines

indicate the exact γ1-TB calculation of g̃v of the ZGR junction with no addimer (with the

six addimers). The g̃v curve is almost the same as that in Fig. 6 and the nearly perfect VCR

survives the imperfections. The sharp dips at E = −0.21 eV and −0.11 eV correspond to the

subband edge energies. Additionally, a nearly flat band of zigzag edge increases g̃v near the

Dirac points of single layers, |E| ≃ ε. As the ZGR width increases, however, these effects
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Fig. 13. (Color online) Exact g̃v of partially overlapped (50,50) zigzag graphene ribbons (ZGR) calculated

using γ1-TB in the case of N = 45, 48, 51, 54, and 57, and ε = 0.35 eV. Red and black lines correspond to the

perfect armchair edges and the armchair edges with six addimers, respectively. See the main text and Fig. 2 for

the addimers and ZGR.

weaken and the g̃v curve in Fig. 6 recovers.

4.2 ↓↓ junction

As Eq. (9) shows, the effective κ range |κ| < |E + ε|/|γ0| is wider for positive E than for

negative E. It follows that the g̃v peaks in the negative E region are higher than those in the

positive E region. In the case of the ↓↑ junction, an integer, N/3, is a necessary condition for

a near perfect g̃v because the relation T+,− ≃ T−,+ holds under this condition. Contrarily, the

mirror symmetry of the ↓↓ junction guarantees the relation T+,− = T−,+, irrespective of N.

Nevertheless, the g̃v peak tends to be higher with an integer N/3 than a non-integer N/3. We

speculate that constructive interference between the ~fA and ~fB modes in Eq. (55) increases

g̃v. As our interest lies in high g̃v, we present data on the negative E and N being a multiple

of three. Figures 14 and 15 represent the VCR data in the cases of ε = 0.35 eV and ε = 0,
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respectively. The black lines in Figs. 14 and 15 display the second approximation of g′v(0).

The blue lines show the exact data of g′v(0) (g̃v) calculated using the γ1γ3γ4-TB model in the

left (right) panel. Overall, Figs. 14 and 15 have the same format as that in Figs. 6 and 7. The

good agreement between the black and blue lines in the left panels indicates the effectiveness

of the second approximation of g′v(0) and the insignificantly small effects of γ3 and γ4. The

(E,N) ranges in Figs. 14 and 15 include or lie around the highest g̃v peaks searched in the

ranges |E| < 1.2 eV and N ≤ 282; (E,N, g̃v) = (−0.47 eV, 60, 0.20) in the case of ε =

0.35 eV and (−0.51 eV, 36, 0.45) in the case of ε = 0. In Fig. 15, the blue line peaks reach

about 0.7 in the left panel but remain less than 0.45 in the right panel. This reduction in g̃v

comes from the κ effect in the same way as Fig. 7. The monolayer–bilayer matching product

of the ↓↓ junction is defined as I↓(±)I↓(∓) in the same way as I↓(±)I↑(∓) of the ↓↑ junction.

This product I↓(±)I↓(∓) becomes also proportional to E−2 and explains the similarity between

Figs. 7 and 15. The outer E peak comes near the pseudogap edge |E| = ∆′ and decreases its

height with ε in the same way as the outer E peak of the ↓↑ junction. When ε = 0, the outer

E peak of the ↓↓ junction is slightly higher than that of the ↓↑ junction. When ε exceeds 0.2

eV, however, the inner E peak of the ↓↑ junction is dominant over the ↓↓ junction peak.

The second approximation is effective as shown in both Figs. 14 and 6, where the mono-

layer energy gap suppresses the κ effect. In the inner E region of ε = 0.35 eV, g̃v is typically

negative and about 0.1 at the most. This reduction in g̃v is reasonable. As ε increases, inter-

layer resonance degrades, and the ↓ layer works as an isolate-perfect layer with no intervalley

scattering. In the case of the ↓↑ junction, however, the electron must flow between the ↓ and

↑ layers, and thus, the ↓ layer cannot be isolated by increasing ε. The fine notches from the

finite Ny effect are more visible in Fig. 14 than in Fig. 6. The g′(κ) of the ↓↓ junction suddenly

changes from a considerably negative value to zero when |κ| exceeds |E + ε|/|γ0|, because of

the ↓ layer energy gap |E + ε| < |γ0 sin κ|. This sudden change brings remarkable notches to

Fig. 14. On the other hand, g′(κ) of the ↓↑ junction with the energy E ≃ −ε is close to zero,

irrespective of κ. Thus the finite Ny effect is inconspicuous in Fig. 6.

5. Detection in Experiments

The SG structure was experimentally observed in a Li-intercalated graphene.110) How-

ever, the VCR occurs in the G–SG–G double junctions, not in the SG alone.62–64) The G–SG

boundary control remains undeveloped, whereas the established G layer alignment technique

is advantageous to the po-G measurement.111)

Figure 16(a) shows a scheme of an experiment that proves that the bulk states drive the
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Fig. 14. (Color online) VCR data of ↓↓ junction in the case of ε = 0.35 eV, Ny = 1000, and N =

48, 51, 54, 57, 60 with almost the same format as in Fig. 6.

Fig. 15. (Color online) VCR data of ↓↓ junction in the case of ε = 0, Ny = 1000, and N = 42, 45, 48, 51, and

54 with almost the same format as Fig. 7.
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Fig. 16. Experimental detection of VCR via the bulk states. (a) Nonlocal resistance Rnl = V/I, where the

current I from contacts 1 to 2 induces the voltage between contacts 3 and 4. The central part is similar to the ↓↑
junction. The thick lines represent the zigzag edges. (b) Optical detection with the second harmonic generation.

Dashed circles represent the illuminated areas.

VCR. The central part is similar to the ↓↑ junction with a finite transverse width W. The thick

lines represent the zigzag edges. As the width W increases, the bulk contribution becomes

dominant and reduces the difference between the open and periodic boundary conditions.

The Rnl equals I/(V3−V4), where I is the charge current from 1 to 2 probes, and V3 (V4) is the

electric potential at contact 3 (4). It is a VCR signature that the vertical gate voltage changes

the Rnl sign. The top and bottom gates control the parameters E and ε. In contrast to the

VCR of the zigzag edge states,61) the bulk states carry the VC. The edge is an imperfection

of the infinite perfect crystal and cannot always be controlled. However, its effects become

negligible as the width W increases. Notably, reducing imperfections is an effective strategy

for reproducible outcomes, especially in industrial use.

In electric measurement, the current terminals, (VL,VR) in Fig. 1 and (1, 2) in Fig. 15, in-
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evitably connect the sample edges and enhance the edge influence on the current. In contrast,

we can exclude the current terminals in the optical measurements. The valley polarization

can be generated by either circularly49–56) or linearly polarized light.57, 58) We can also mea-

sure the valley polarization by optical second harmonic (SH) generation.59, 60) Steps (1)–(4) in

Fig. 16(b) illustrate an optical measurement method according to Ref.55) . (1) The left mono-

layer region is illuminated with the pump pulse ω -2ω bicircular field, where ω denotes the

principal angular frequency. This illumination induces the spatial gradient of valley concen-

tration, followed by the valley-dependent diffusion of electrons, i.e., VC. (2) The induced

VC is transmitted through the bilayer region with the sign reversed by the vertical gate. Con-

sequently, the right monolayer has the opposite valley polarization compared with the left.

(3) The linearly polarized probe light of the angular frequency 3ω is incident to the right

monolayer region and generates the SH. (4) The valley polarization in the right monolayer is

detectable with the phase of the SH (6ω angular frequency). The illuminated areas in steps

(1) and (3) are near the bilayer region but are restricted to each monolayer region. We can

also measure the electron transit time in step (2) from the delay time of the probe pulse.

In the experiment described in Ref.21) , the displacement field D times the interlayer

distance a↓↑ reaches about 0.5 V with a band gap of 0.14 eV, where D represents the

microscopic electric field felt by the graphene electrons. These data are comparable to

(2ε,∆) = (0.7, 0.166) eV for the high VCR g̃v = 0.8, suggesting the technical feasibility

of the present results. Since the carriers and surrounding materials have screening effects,

more realistic self-consistent calculations are necessary for the relationship between eDa↓↑

and 2ε. Additionally, the high D might modify the interlayer transfers γ1, γ3, and γ4. The

present analytic formulas contain no fitting parameter other than the Hamiltonian elements

and thus can be adapted to these advanced calculations.102, 112)

6. Summary and Conclusion

We discuss the ↓ ξ junction (ξ =↓, ↑), which denotes the double junction in a series of

the left layer ↓, AB stacking bilayer, and right layer ξ, where ↓ and ↑ are the extensions of

the lower and upper layers from the bilayer, respectively. Using the γ1-TB and γ1γ3γ4-TB

models, we calculate the transmission rate Tν′,ν from the left valley Kν to the right valley Kν′

as a function of the energy, the longitudinal bilayer length, and the lateral wave number κ. The

VCR transmission rate g′v(κ) = 1
2

∑
ν

[
T−ν,ν(κ) − Tν,ν(κ)

]
averages out at g̃v per κ. The present

paper is the first report on the two VCR origins of the po-G: monolayer–bilayer matching and

interlayer matching. These two origins refer to ‘wave function’ matching in position space
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(not in momentum space) and present an intuitive picture. Notably, the vertical electric field

enhances the interlayer matching near the bilayer gap edge and provides the nearly ‘pure’

VCR. A pure VC changes into an almost pure VC with an inverse sign and a similar intensity.

This enhancement occurs only when the electrons are forced to flow vertically, i.e., only in

the ↓↑ junction. On the other hand, monolayer–bilayer matching is adequate for the VCR in

the ↓↑ and ↓↓ junctions but weakens under the vertical field.

Using the γ1-TB model, we derive the analytical Tν′,ν(0) formulas. Since γ3, γ4, and

nonzero |κ| have only minor effects on g̃v near the bilayer gap edge, this formula is effec-

tive in the g̃v peak of the ↓↑ junction. The bilayer length is represented by (N − 2)a/2 with an

integer N and the lattice constant a. Compared with the non-integer N/3 case, the integer N/3

case shows larger g′v(0) and yields Eq. (45) that reflects the periodic sublattice localization of

Eq. (56). The peak N satisfies the condition
∣∣∣|k0| a2 −

2
3
π
∣∣∣ N ≃ π, where k0 is the bilayer wave

number at the gap edge.

In addition to the valley filter and valley splitter, the VCR is an essential function in

valleytronics but is still in its infancy. An important contribution is a proposal for the experi-

mental detection of the VCR driven by the bulk states. It will open a new field in valleytronics.
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Appendix A: VC Formulas

The probability conservation and the time-reversal symmetry guarantee

T→ν,ν′(κ) = T←−ν′,−ν(−κ), (A·1)

R←ν,ν′(κ) = R←−ν′,−ν(−κ), (A·2)

R→ν,ν′(κ) = R→−ν′,−ν(−κ), (A·3)

where R and T denote the reflection and transmission rates, respectively.113) The superscript

← (→) corresponds to the incidence from the right (left) monolayer G. The right (left) sub-

script indicates the valley index before (after) the scattering. Equation (A·1) is abbreviated to

Tν,ν′(κ) in the main text. With this notation, Eq. (10) is equivalent to

g̃v =
1

2M + 1

g′v(0) +

M∑

m=1

g′′v (m∆κ)

 , (A·4)

where

g′′v (κ) =
∑

ν,ν′

−νν′

2

[
T←ν′,ν(κ) + T→ν,ν′(κ)

]
. (A·5)

The inversion of the ε sign is equivalent to the π rotation around the y axis for the ↓↑ junction.

Since g′′(κ) is invariant under this rotation, Eq. (12) is true for the ↓↑ junction. In contrast,

the ↓↓ junction does not satisfy Eq. (12) because this rotation is not equivalent to the ε sign

change.

Using the κ average notation

♦̃ = 1

2M + 1

M∑

m=−M

♦(m∆κ), (A·6)

we can derive

T̃→ν,ν′ = T̃←−ν′,−ν, (A·7)

R̃←ν,ν′ = R̃←−ν′,−ν, (A·8)

R̃→ν,ν′ = R̃→−ν′,−ν, (A·9)

from Eqs. (A·1), (A·2), and (A·3). The VCs in the left (L) and right (R) monolayer regions

are represented by

JL
v =

∑

ν,ν′

[(
δν,ν′ − R̃→ν′,ν

)
ν′J→ν − T̃←ν′,νν

′J←ν

]
(A·10)
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and

JR
v =

∑

ν,ν′

[(
R̃←ν′,ν − δν,ν′

)
ν′J←ν + T̃→ν′,νν

′J→ν

]
(A·11)

accompanied by the charge current

J =
∑

ν,ν′

[(
δν,ν′ − R̃→ν′,ν

)
J→ν − T̃←ν′,νJ

←
ν

]
(A·12)

=
∑

ν,ν′

[(
R̃←ν′,ν − δν,ν′

)
J←ν + T̃→ν′,νJ

→
ν

]
, (A·13)

where J→ν (J←ν ) denotes the non-negative incidence flow from the Kν valley of region L (R).

Typical VCR occurs under two incidence conditions (i) J→ν = 1, J→−ν = J←+ = J←− = 0 and

(ii) J→ν = J←ν = 1, J→−ν = J←−ν = 0. Under condition (i), JR
v = T̃→+,ν − T̃→−,ν,

JL
v = ν(1 − R̃→ν,ν + R̃→−ν,ν), (A·14)

and J = T̃→+,ν + T̃→− ν. Under condition (ii),

JL
v = ν(R̃

→
−,+ + R̃→+,− + T̃→−,+ + T̃→+,−), (A·15)

JR
v = −ν(R̃←−,+ + R̃←+,− + T̃→−,+ + T̃→+,−), (A·16)

and J = T̃→ν,ν − T̃→−ν,−ν. When g̃v ≃ 1, the reflection rates Rν,ν′ and intravalley transmission rates

T±,± are near zero followed by the VCR JL
v ≃ −JR

v . In particular, the VCR of condition (ii)

corresponds to the reversal of pure VC as |Jv| ≃ 2≫ |J|. In the calculation with condition (ii)

above, we use Eqs. (A·7), (A·8), and (A·9), and the probability conservation

∑

ν′

T̃←ν′,ν + R̃←ν′,ν =
∑

ν′

T̃→ν′,ν + R̃→ν′,ν = 1. (A·17)

Appendix B: Explicit Expressions of the Second Approximation

Except for the last paragraph, in the present Appendix, we discuss the ↓↑ junction. In the

case of the ↓↑ junction,

G B
A
=
γ1(|θ∓|s− − |θ±|s+)√

3|γ0|(θ2+ − θ2−)
, (B·1)

Re[FA] =
3γ2

0|θ+θ−|
ε2 − E2

(Z + c+c−) + s+s−, (B·2)

Re[FB] = −Z − c+c− +
3γ2

0|θ+θ−|
E2 − ε2

s+s−, (B·3)
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Im[F B
A
] =

√
3|Eγ0 |

E2−ε2 [|θ±|s+c− + |θ∓|s−c+

∓
4ε2(|θ±|s+c− − |θ∓|s−c+)

3γ2
0
(θ2+ − θ2−)

]
, (B·4)

where

Z =
2γ2

1
(E2−ε2)

9γ4
0
(θ2+−θ2−)2

[(
1 −
θ2+ + θ

2
−

2|θ+θ−|

)
s+s−

+2 sin2

(
|θ+| − |θ−|

2
N

)]
, (B·5)

c± = cos(θ±N), s± = sin(|θ±|N). (B·6)

When |E| approaches ∆, |θ±| converges to θ0, followed by the limits

lim
|θ± |→θ0

G B
A
= −

√
1 + q

q(2 + q)
(φ0 cos φ0 ± sinφ0), (B·7)

lim
|θ± |→θ0

FB = −1 − 2

q
+

1 + q

(2 + q)2
(φ2

0 − sin2 φ0)

+
2

q
cos2 φ0 − i

sin(2φ0)

q
√

2 + q
+ 2i

1 + q

q
√

2 + q
φ0, (B·8)

and

lim
|θ± |→θ0

FA = 1 +
1 + q

q(2 + q)
(sin2 φ0 − φ2

0)

+
2

q
cos2 φ0 − i

sin(2φ0)

q
√

2 + q
− 2i

1 + q

q
√

2 + q
φ0, (B·9)

where φ0 = θ0N. Under condition (49), the last terms become dominant in Eqs. (B·8) and

(B·9). Equation (48) originates from these terms and Eq. (B·7).

Figure 3 demonstrates that |θ+| + |θ−| ≃ 2θ0 when |E| is near ∆. This leads to the approxi-

mation

N|θ±| ≃ π(1 ± ϕ), (B·10)

where N ≃ π/θ0 (Eq. (51)). When |ϕ| < 1
3
,

∆ < |E| <
∆

3

√
11 + q, (B·11)

as is confirmed below. The smallness of | sin(θ0N)| is necessary for the derivation of the

following approximate formulas from Eq. (B·10). Since N/3 is an integer, θ0N equals 3θ0
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Fig. B·1. (Color online) |F |/2 and G calculated using Eqs. (B·1) (B·2), (B·3), and (B·4) in the case of ε = 0.35

eV and N = 45.

times an integer, and thus the minimum | sin(θ0N)| can reach sin(3θ0/2). The condition q < 8

is equivalent to the condition sin(3θ0/2) < 0.16. First, we discuss the case 1 < q < 8. The

other case, q < 1, is discussed later.

When |E| reaches Eq. (52), Eq. (46) produces

θ2+ + θ
2
− =

10q(2 + q)γ2
1

54(1 + q)γ2
0

. (B·12)

This approximates

θ2+ + θ
2
− ≃

[
10 − 1

(1 + q)2

]
q(2 + q)γ2

1

54(1 + q)γ2
0

(B·13)

because 1
(1+q)2 ≪ 10. On the other hand, Eq. (46) guarantees an identity

θ2+ + θ
2
− =

3(θ2+ − θ2−)2γ2
0

2(1 + q)γ2
1

+
q(2 + q)γ2

1

6(1 + q)γ2
0

. (B·14)

Equations (B·13) and (B·14) result in

θ2+ − θ2− ≃
q(2 + q)γ2

1

9(1 + q)γ2
0

. (B·15)

Equations (B·12) and (B·15) satisfy condition |θ+| ≃ 2|θ−|. When this condition and Eq. (B·10)

hold, ϕ ≃ 1
3
. When Eq. (B·10) is effective, Eqs. (B·1), (B·2), (B·3), and (B·4) are approximated

by

GB ≃ GA (B·16)

≃ sin(πϕ)

ϕ

√
1 + q

q(2 + q)
, (B·17)

Re[FA] ≃ cos(2πϕ) − 1 + q

q(2 + q)

sin2(πϕ)

ϕ2
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+
2

q
cos2(πϕ), (B·18)

Re[FB] ≃ −Re[FA] − 2(1 + q) sin2(πϕ)

q(2 + q)2ϕ2

+
2

q
, (B·19)

and

Im[FB] ≃ −Im[FA] (B·20)

≃ 1 + q

q

√
ϕ2 +

1

2 + q

sin(2πϕ)

ϕ
. (B·21)

Equations (B·19) and (B·20) suggest that FB ≃ −FA. Equations (B·2), (B·3), and (B·4) cer-

tainly satisfy the inequality |Re[FA + FB]/Im[F]| < 0.33 when 1 < q < 8 and |ϕ| < 1
3
. The

relation FB ≃ −FA and Eq. (B·16) cause the constructive VCR interference between the ~fA

and ~fB modes as g′v(0) ≃ 4|GA/FA|2. Figure B displays |F |/2 and G in the case of ε = 0.35 eV

(q = 3.45) and N = 45 for the negative inner E region (−ε < E < −∆), where π/θ0 = 43.8,

∆ = 0.166 eV, and ∆
3

√
11 + q = 0.21 eV. When ϕ increases from 0 to 1/3, |F |/2 approaches

G, and the increase in 4G2/|F |2 follows. On the other hand, Eqs. (B·1) and (B·2) prove that

|GA/FA| converges to zero at |E| = |ε|, followed by the disappearance of g′v(0). These results

indicate that Eqs. (51) and (52) correspond to the g′v(0) peak. At the same time, Fig. B-1 shows

that the variation of |G/F | is minimal in the E range (B·11). We have discussed above the case

where 1 < q < 8. As q decreases from 1, on the other hand, the inner E region shrinks, and

thus the variation of |G/F | in the inner E region becomes small. In summary, the peak g′v(0)

in conditions (51) and (52) is similar to q/(1 + q) calculated using Eqs. (48) and (51). When

|E| ≫
√

4ε2 + γ2
1
, on the other hand, we derive Eq. (53) using 3γ2

0θ
2
± ≃ E2 ± |E|

√
4ε2 + γ2

1
,

Z ≃ 1
1+q

sin2
(
|θ+ |−|θ− |

2
N
)
, Im(FA) ≃ Im(FB) ≃ sin ((|θ+| + |θ−|)N), and 3γ2

0|θ+θ−|/(E2 − ε2) ≃ 1.

In the case of the ↓↓ junction,

Im[F B
A
] =

√
3|γ0 |

(E+ε)
[|θ±|s+c− + |θ∓|s−c+

+
4εE(|θ∓|s−c+ − |θ±|s+c−)

3γ2
0
(θ2+ − θ2−)

]
, (B·22)

G B
A
=
√

3|γ0 |
2(E+ε)

[
4εE(|θ∓|s− − |θ±|s+)

3γ2
0
(θ2+ − θ2−)

+|θ∓|s− + |θ±|s+] , (B·23)

Re[FB] = Z +

[
3γ2

0|θ+θ−|
(E + ε)2

+
(E − ε)2

3γ2
0
|θ+θ−|

]
s+s−, (B·24)
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and

Re[FA] =
3γ2

0
|θ+θ−|

(E + ε)2
Z + 2s+s−. (B·25)
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