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We explore the effects of quantum mechanical squeezing on the nonequilibrium thermodynamics
of a coherent heat engine with squeezed reservoirs coupled to a squeezed cavity. We observe that
the standard known phenomenon of flux- optimization beyond the classical limit with respect to
quantum coherence is destroyed in presence of squeezing. Under extreme nonequilibrium conditions,
the flux is rendered independent of squeezing. The efficiency at maximum power (EMP) obtained
by optimizing the cavity’s squeezing parameter is greater than what was predicted by Curzon and
Ahlborn even in the absence of reservoir squeezing. The EMP with respect to the either of reservoirs’
squeezing parameters is surprisingly equal and linear in ηC with a slope unequal to the universally
accepted slope, 1/2. The slope is found to be proportional to the dissipation into the cavity mode
and an intercept equal to a specific numerical value of the engine’s efficiency.

I. INTRODUCTION

One or more quantum systems that operate between
two separate reservoirs make up a Quantum Heat En-
gine (QHE). QHEs have the primary function of convert-
ing heat into work [1–7]. Apart from traditional thermal
reservoirs, the use of non-thermal baths, which are con-
structed reservoirs with correlated characteristics, have
provided a thorough setting for examining the relation-
ship between quantum effects and thermodynamic quan-
tities [8–12]. Squeezed states or non-canonical initial
states [13–15] are such non-thermal baths which allow
additional control over any quantum systems’ dynamics
garnering tremendous interest off late in the context of
open quantum systems [11, 15, 16].

Current technologies permit experimental realization
of such states [17] and its effects on the thermodynamics
are experimentally realizable through recently designed
experimental quantum heat engines (QHE)[18–22]. In-
tense efforts have been made to interrogate QHEs on
the role of coherence, correlations or entanglement on
the underlying dynamics [23–26]. It has already been
demonstrated that certain quantum resources can be ex-
ploited to bend the limits of classical thermodynamics
[16, 27, 28]. Coherence enhanced power and efficiency
and optimization of the flux via quantum coherences in
QHEs are well studied and established phenomena [7, 29–
32]. Squeezed thermal baths too have proven crucial,
especially in the light of a proof-of-concept experiment
based on a nanobeam heat engine[18]. Efficiency greater
than that of Carnot has also been predicted [20].

On the theoretical front, quantum thermodynamic
analysis of QHEs s are performed by combining principles
from quantum optics and nonequilibrium statistical me-
chanics [9, 33–35]. In quantum optics, squeezing [36, 37]
generally leads to less observation of quantum noise than
thermal states [38]. Squeezing alters the entropy flow
associated with the heat exchanged with the system and
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introduces an additional term proportional to the second-
order coherences which determines the asymmetry in the
second-order moments of the mode quadratures, which
takes into account both the relative variance shape and
the relative optical phase space displacements[33]. This
manifests in an increased efficiency, even surpassing the
Carnot bound [10, 18, 23, 39, 40]. To account for a re-
alistic performance of such QHEs, usually a finite time
assessment is performed by evaluating the efficiency at
maximum power (EMP), originally introduced in a clas-
sical context [41]. From a nonequilibrium quantum sta-
tistical point of view, the near equilibrium EMP is univer-
sally accepted to be ηC/2 [42], with ηC being the stan-
dard Carnot efficiency of a classical heat engine. Re-
cently, this robust expression has been showed to be in-
valid if the engine is locally optimized [43]. The EMP
has been shown to be modified into several forms as
one keeps changing or introducing or optimizing addi-
tional system parameters [39, 44]. One particularly in-
teresting form of the EMP has been predicted recently
which holds in the presence of squeezed reservoirs, be-
ing equal to η2m/(ηm − (1 − ηm) ln(1 − ηm)). Here, ηm
being a squeezing-dependent effective Carnot efficiency
[11]. However, the validity of such robust thermody-
namic expressions remains questionable when engines op-
erate in presence of both quantum coherences and quan-
tum squeezing since the general framework on which such
studies were based didn’t take such effects into account.
The current work is motivated on this latter aspect.

In this work, we address how the thermodynamics of
a QHE coupled to squeezed cavity respond to reservoir
squeezing in presence of coherences using a quantum mas-
ter equation technique. Such a technique is standard
and has already been used in nonequilibrium quantum
transport studies with squeezed reservoirs [45–47]. Un-
squeezed dynamics of the engine that we cosider has
also been well studied [7, 31, 48]. In Sec.(II), we in-
troduce our triple squeezed QHE model and its dynam-
ics. In Sec.(III), we explore the effects of squeezing on
the flux into the cavity mode, which we call the work-
flux. In Sec.(IV), we evaluate the EMP with respect to
three squeezing parameters and a system parameter after
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which we conclude.

II. SQUEEZED ENGINE DYNAMICS

The QHE model consists of four quantum levels cou-
pled asymmetrically to two squeezed baths with the up-
per two levels coupled to a squeezed unimodal cavity as
shown schematically in Fig.(1a). Experimentally, similar
QHEs have been realized in cold Rb and Cs atoms us-
ing magneto optical traps [21, 49]. The squeezed density
matrices of the QHE can be written as[46, 50],

ρ̄` =
1

Z`
exp{−β`Ŝ`Ĥ`Ŝ

†
`}, (1)

ρ̄ν =
1

Zν
exp{−βν ŜνĤν Ŝ

†
ν}, ν = h, c, (2)

with βz = (kBTz)
−1, z = `, h, c being the inverse temper-

atures of the cavity, hot and cold reservoirs respectively.
Ŝ(Ŝν) is the squeezing operator on the squeezed cavity’s

    

0 1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

xc

Ρ
1
2

ss

0 1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

xh

Ρ
1
2

ss

0 1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

x

Ρ
1
2

ss

a b

dc

Th    

    Tcxh
xc

x

(a) (b)

(c) (d)

FIG. 1. (Color online) a) Level scheme of the model quan-
tum heat engine. A pair of degenerate levels |1〉 , |2〉 is reso-
nantly coupled to two excited levels |a〉 and |b〉 by two ther-
mally populated squeezed field modes with hot (Th) and cold
(Tc) temperatures. Levels |a〉 and |b〉 are coupled through
a squeezed cavity mode of frequency ν` . Emission of pho-
tons into this squeezed cavity is the work done by the QHE.
The engine parameters are fixed through out the manuscript
at E1 = E2 = 0.1, Eb = 0.4, Ea = 1.5, g = 1, r = 0.7 and
τ = 0.5 in the unit of kB → 1 and h̄→ 1. b) The solid (dot-
ted) curves represent the steadystate coherence, ρss12 (solved
by setting the RHS of Eq.(8)=0) as a function of the b) cold
bath squeezing parameter xc evaluated at different values of
xh = 0, 0.5, 1, 2, bottom to top with x = 1 (x = 0), c) hot
squeezing parameter, xh with xc = 0, 0.5, 1, 2, bottom to top
and x = 1 (x = 0), d) cavity squeezing,x with the solid curves
(bottom to top) evaluated at xh = 0, xc = 0, 0.5, 1, 2. The
dotted ones represent xc = 0, xh = 0, 0.5, 1, 2.

mode (reservoirs’ modes) given by :

Ŝ` = e
1
2 (xâ

†2
` −h.c), (3)

Ŝν =
∏
k

e
1
2 (λ
∗
kν â
†2
kν−h.c), (4)

λkν = xkνe
iθkν , xkν > 0. (5)

θkν and xkν are the squeezing parameters of the reservoirs
and x is the squeezing parameter [46, 47, 50, 51]. Ĥ` =

ε`â
†
` â` is the Hamiltonian for the cavity mode and Ĥν =∑
k εkν â

†
kν âkν is the Hamiltonian for the ν-th reservoir.

The total Hamiltonian of the four level QHE is ĤT =∑
ν=1,2,a,bEν |ν〉〈ν|+Ĥ`+Ĥν+V̂sb+V̂sc, with the system-

reservoir and system-cavity coupling Hamiltonians given
by,

V̂sb =
∑
k∈h.c

∑
i=1,2

∑
x= a,b

rikâk|x〉〈i|+ h.c (6)

V̂sc = gâ†`|b〉〈a|+ h.c. (7)

εk, ε` and Eν denote the energy of the kth mode of the
two thermal reservoirs, the unimodal cavity and system’s
νth energy level respectively. The system-reservoir cou-
pling of the ith state with the kth mode of the reservoirs
is denoted by rik. â†(â) are the bosonic creation (an-
nihilation) operators. The radiative decay originating
from the transition |a〉 → |b〉 is the work done by the
engine. Unsqueezed version of such a QHE has been
thoroughly studied using a Markovian quantum mas-
ter equation [7, 30, 31, 48, 52]. Following such a stan-
dard procedure to derive of a quantum master equation
[46, 48] for the matrix elements of the reduced density
matrix ρ (supplementary information) has four popula-
tions, ρii, i = 1, 2, a, b coupled to the real part of a co-
herence term, ρ12. The coherence ρ12 between states |1〉
and |2〉 arise due to interactions with the hot and the
cold baths. This thermally induced coherence couples to
populations due to transition involving the states |1〉 and
|2〉. Under the symmetric coupling regime, we can now
write down five coupled first order differential equations
describing the time-evolution of the four populations and
the coherence (under symmetric coupling, r), given by

ρ̇12 =
−ry

2
ρ11 −

ry

2
ρ22 + rphÑhρaa + rpcÑcρbb

− r(n+ τ)ρ12 (8)

ρ̇ii = −rnρii + rÑhρaa + Ñcρbb − ryρ12, i = 1, 2 (9)

ρ̇bb = rNcρ11 + rNcρ22 + g2Ñ`ρaa

− (g2N` + 2rÑc)ρbb + 2rpcNcρ12 (10)

ρ̇aa = rNhρ11 + rNhρ22 − (g2Ñ` + 2rÑh)ρaa

+ g2N`ρbb + 2rphNhρ12 (11)

with,
∑
i ρii = 1, i = 1, 2, a, b and n = Nc + Nh, y =

Ncpc + Nhph, with the reorganized occupation factors
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FIG. 2. a) The solid (dotted) curves represent time evo-
lution of ρij with, x = 2 (without, x = 0) squeezing ob-
tained by solving Eq.(8-11) for Th = 2, Tc = 0.5, Tl = 0.9.
b) Steady state values as a function of the squeezing pa-
rameters for the same parameters as (a) c) Ratio of the
steady state values between states |b〉 and |a〉 reaching unity
highlighting the equipopulated nature under high squeezing;
pc = 0.2, 0.3, 0.5, 0.7, 0.8 from the top to the bottom curves.
(d) Optimization of the flux ratio as a function of hot coher-
ence parameter, ph for different squeezing parameters under
far from equilibrium conditions and pc = 1 (top to bottom:
x = 0, π/6, π/π/2, 2π/3, 5π/6, π, 3π/2). Other parameters are
same as Fig.(1a).

given by

Nz = cosh(2xz)(nz +
1

2
)− 1

2
, z = h, c, (12)

N` = cosh(2x)(n` +
1

2
)− 1

2
. (13)

Here, nc, nh andnl are the Bose-Einstein distributions
for the cold reservoir, hot reservoir and the cavity re-
spectively. These factors are now squeezing dependent
via the dimensionless parameters, xh, xc and x represent-
ing the extent of squeezing in the hot, cold reservoirs
and the cavity respectively. pν = | cosφν |, ν = h, c are
two dimensionless parameters that governs the strength
of coherences and whose values are dictated by the an-
gles of relative orientation (φν) of the ν−th bath induced
transition in the system [7, 48, 52]. A phenomenological
dimensionless rate τ has been added to take care of the
dephasing. Setting ρ̇ = 0, at the steady state, we can
solve for the steady state values of ρaa, ρbb, ρ11, ρ22, and
ρ12 and obtain these analytically (supplementary text).

The steadystate value of the coherence term ρss12 as a
function of the squeezing parameters, xh, xc and x are
shown in Fig.(1b,c,d)) for different engine parameters.
The different curves in Fig.(1b) represent ρss12 evaluated
for different xh and x values as a function of xc. The
solid (dotted) lines represent ρss12 when xh 6= 0(xh = 0)
and x = 0(x 6= 0). At high xc values, the coherence is re-
duced and saturates to a lower value in comparison to ρss12
values of lower xc. At high xh values (black curve), ρss12
steadily increases and reaches a maximum value around
some intermediate xc value and then sharply drops as
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FIG. 3. Failure of coherence to optimize the flux beyond
classical values (j/j0 > 1) under high squeezing as given by
Eq.(17). Inset: Linear dependence of the flux ratio on p − j
under high squeezing (x � 0) and Tl � 0 given by Eq.(18)
evaluated at pc = 1, Tc = 0.5, Th = 1. The square boxes
represent linear fit.

xc keeps increasing. This behavior is however absent for
lower xh values. Fig.(1c) represent ρss12 evaluated for dif-
ferent xc and x values as a function of xh. The solid
(dotted) lines represent ρss12 when xc 6= 0(xc = 0) and
x = 0(x 6= 0). At high xh values, the steady state values
of the coherence term increases and saturates to a higher
value in comparison to coherence at lower xh values. We
can rationalize that, xc(xh) tend to reduce (increase) the
steadystate values of the coherences as we keep squeez-
ing the baths more and more. The same however cannot
be said for ρss12 vs x as seen from Fig. (1d). The solid
(dotted) lines represent the behavior at xh = 0(xh 6= 0)
for finite xc values.

The time evolution of each of the equations (Eq.(8-11))
for various engine parameters for xh = xc = 0 and x = 2
is shown in Fig.(2a). In Fig.(2b), the steadystate values
of the populations as a function of x is shown where solid
(dotted) curves represent cavity-squeezed, x 6= 0 (cavity-
unsqueezed, x = 0) evolutions. Note that under high
squeezing of the cavity mode, the steady state values,
ρssaa and ρssbb equipopulate giving,

lim
x→∞

ρssbb
ρssaa

= 1 (14)

and is shown numerically in Fig.(2c) for different values
of the hot coherence parameter, ph. The analytical ex-
pressions for the steadystate values are provided in the
supplementary information.

III. WORK FLUX

We interprete the emission of photons into the
squeezed cavity as the work done by the engine. This
photon exchange process between the levels |a〉, |b〉 with
the squeezed cavity is quantified by the rate of photon
exchange with the cavity which we refer to as the work

flux, j = d
dt 〈a

†
`a`〉, where the trace is with respect to
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FIG. 4. a) Loss of optimization of flux as a function
of ph for different squeezing parameters, near equilibrium
(Tc = 0.9, Th = 1, Tl = 10). (b) Loss of linear dependence of
pc on the optimal value p∗h as given by Eq.(21). The topmost
curve represents Eq.(22). (c) Plot showing breakdown of the
coherent optimization of the flux as a function of squeezing
parameter. The shaded region is not allowed since the maxi-
mum possible value of p∗h is unity. Under far from equilibrium
condition p∗h exists which saturates (bottom curve) at higher
values of x given by Eq.(21). The top curve shows the behav-
ior of p∗h near equilibrium which is nonexistent after a certain
squeezing value. (d) (d) Lowering of thermodynamic affinity
as a function of squeezing evaluated at Tc = 0.1, Th = 2 and
xc = xh = 0.

the squeezed cavity density matrix. Following a stan-
dard procedure to second order in the coupling as devel-
oped in[30, 48] we get, j = g2(Ñ`ρ

ss
aa − N`ρssbb). We can

substitute the values of the steadystate populations to
obtain an analytical expression for the flux (supplemen-
tary information). When, the hot and the cold coherence
parameters individually go to zero (pc = ph = 0), the
coherence vanishes (ρss12=0) and we obtain a coherence -
unaffected value of the flux, which we denote as jo. Note
that, jo depends on the squeezing parameters x, xh and
xc. In the absence of squeezing (xh = xc = x = 0), jo
shall be denoted by j0o , which we refer to as the classical
value of the flux. There are no effects of coherence or
squeezing on j0o . It is a well known phenomena that, in
absence of squeezing, j > jo can be achieved as a func-
tion of coherence parameter, ph [7, 29]. We plot the ratio
j/jo in shown in Fig.(2d) for different squeezing values
of the cavity for xc = xh = 0. As the cavity squeezing
parameter is increased the optimal value of the flux grad-
ually decreases and the ph value that optimizes the ratio
(denoted as p∗h) shifts towards larger ph values. We now
attempt to explore the dependence of the flux in presence
of squeezing on the coherences in detail. Since the ana-
lytical expressions of j and j0o are too lengthy we focus
on some limiting cases.

Under high cavity squeezing, (x → ∞), we obtain
ρaaaa = ρssbb as seen from Eq.(14). The expression for the
flux in this case is simply given by,

lim
x→∞

j = g2( lim
x→∞

ρssaa), (15)

which under the condition pc = 0, ph = 0 in Eq.(15) is,

lim
x→∞

jo =
r(Nh −Nc)

2(n+ 1)
. (16)

Eq. (15), with pc = 1 can be expressed as,

lim
x→∞

j|pc=1 =
r(Nh −Nc)

(
Nh
(
1− p2h

)
+ t
)

(1− ph)fn + 2τ(n+ 1)
(17)

with fn = 4NcNh + n(2Nh(ph + 1) + ph + 2). The RHS
of Eq.(16) is always greater than RHS of Eq.(17) as seen
from the numerical result in Fig (3). The physical in-
terpretation is that the coherences are no longer able to
increase the flux beyond the non coherence values. Un-
der this condition, the ratio is bounded below unity as
seen in Fig.(3). We can analytically prove this by invok-
ing a few conditions. In Eq.(16) and (17), if τ = 0 and
Nh = zNc, z being a positive integer), the ratio between
the two fluxes becomes,

lim
x→∞

j|pc=1

lim
x→∞

jo

∣∣∣∣
Nh=zNc

=
2z(ph+1)(Ncz+Nc+ 1)

2Nc(ph+1)z2+z(4Nc+ ph+2)+1

(18)

which is a rational fraction of two linear terms of ph.
Eq.(18) can be shown to have a linear dependence on ph
for some appropriate conditions of the coefficients which
is graphically shown as an inset in Fig.(3). In Eq.(18),
for z = 1 and Nh = Nc (no bias), we see a flux value that
solely depends on only the coherence value, given by

lim
x→∞

j

jo
|Nh=Nc =

2(1 + ph)

(3 + ph)
(19)

≤ 1 (20)

and is linear in ph for small values as seen in the inset
of Fig.(3) and in Fig.(4a). In Fig.(4a), the flux ratio
j/jo is plotted for different squeezing parameters. The
squeezing decreases from top to bottom. For smaller ph,
the linearity is prominent, but for higher ph values, the
linearity is gradually less apparent as the squeezing pa-
rameter increases.

It has been previously reported that p∗h increases lin-
early in pc under the unsqueezed case [30]. In the current
case, we observe that under an extremely biased scenario
(Nh � 0) and high squeezing, x � 0, the linear depen-
dence is lost as shown graphically in Fig.(4b) and the
dependence of p∗h on the cold coherence parameter, pc is
given by the nonlinear function,

p∗h| =
√

(1−p2c) (4N2
c (1−p2c)+4Nc+1)+2Nc

(
p2c+1

)
+1

4Ncpc + pc
(21)

which reduces to unity when pc = 1 as seen in the Fig.
(4b). The nonlinear dependence takes a simplistic form
when Tc → 0, where the above expression reduces to,

p∗h|Tc=0 =
1−

√
1− p2c
pc

(22)
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which is shown as the topmost curve in Fig.(4b). The
RHS of Eq.(21) also has a strange dependence on the cav-
ity squeezing parameter. p∗h increases as a function of x
and saturates at higher x values as shown in the bottom-
most curve of Fig.(4c). However under extremely biased
conditions, p∗h sharply rises beyond unity and goes to the
shaded region. The shaded region is not allowed as the
maximum value of p∗h is unity. Since an analytical expres-
sion of p∗h as a function of x is beyond the scope of sim-
plistic analysis, the exact identification of this numerical
fallout range is not possible. We simply speculate that
such a breakdown happens when the cavity temperature
T` is set to be very high. Since n` is a function of T`, the
numerics blows when there is competition between x and
T` to dominate the behavior. The upper dashed curve in
the shaded portion also corresponds to an unrealistic p∗h
evaluated at a high cavity temperature. In Fig.(4d), we
plot the thermodynamic force as a function of squeezing.
The force can be identified from the analytical expression
of the flux (supplementary text) and is given by,

ζ =
ÑcÑ`Nh

NcÑhN`
. (23)

When ζ > (<)1, j > (<)1. In Fig.(4d), we plot the ratio
between the thermodynamic forces in presence and ab-
sence of squeezing for different cavity temperatures. As
squeezing increases, the ratio decreases for a fixed set
of engine parameters and then saturates. This leads to
lower magnitude of the flux in comparison to the un-
squeezed case and is more prominent when the cavity
temperature is low.

In Fig.(5a,b and c), we plot the ratio between the total
flux j and the classical flux j0o as a function of xc, xh and
x respectively for the same parameters as Fig.(2). As
a function of both the baths’ squeezing parameters, the
increase of the total flux is quite large in comparison to
the classical case. All of the curves show saturation be-
havior. Particularly interesting is the ratio’s dependence
on xh where the saturation value of the ratio is always
greater than unity.

We now focus on an extreme biased case (Th � Tc, a
limit which we invoke by taking Th → ∞ and Tc → 0),
a scenario when the temperature gradient is very high.
This case is different from a standard extreme nonequilib-
rium case where the thermodynamic force must be very
high (ζ � 0). Under the high temperature gradient sce-
nario, the steadystate populations of the upper two states
are given by,

lim
Th�Tc

ρssaa =

(
p2h + 1

) (
g2N` + 2r

)
g2 (4N` + p2h + 1)− 2 (p2h − 3) r

(24)

lim
Th�Tc

ρssbb =
g2Ñ`

(
p2h + 1

)
g2 (4N` + p2h + 1)− 2 (p2h − 3) r

, (25)

which no longer depends on the squeezing parameters of
the two baths. Using these above values the flux can be

(a)
(b)

(d)(c)

FIG. 5. Giant increase of the total flux (in presence of squeez-
ing as well as coherence) in comparison to the classical case.
The solid (dotted) lines represent the ratio between the to-
tal flux j and the classical flux j0o as a function of a) xc
evaluated at x = 0(1), xh = 0, 0.5, 1, 2, b) xh evaluated at
x = 0(1), xc = 0, 0.5, 1, 2. c) Solid (dotted) curves indicate the
total flux ratio as a function of cavity squeezing x evaluated
at Tc = 0.5(0.1) with {xh, xc} = {0.5, 0.1}, {0.1, 0.5}, {0, 0}
(top to bottom). (d) Change in the sign of the thermody-
namic affinity, A = log ζ as function of cavity squeezing pa-
rameter evaluated at{xh, xc} = {1, 0.1} (upper curve) and
{0.1, 1} (lower curve). The sign change happens at x∗ given
by Eq.(32).

recast as,

lim
Th�Tc

j =
2g2rÑ`(1 + p2h)

g2(1 + 4Nl + p2h)− 2r(p2h − 3)
(26)

while the coherence-unaffected value of the flux is simply,

lim
Th�Tc

jo =
2g2Ñ`r

g2(1 + 4N`) + 6r
(27)

It is interesting to note that, in this highly biased sce-
nario, the flux expression (RHS of Eq.(26)) doesn’t de-
pend on the cold coherence parameter any more. In the
above two expressions, if we invoke the high squeezing
scenario (x→∞), we can write down the ratio between
the two fluxes as,

lim
x→∞

lim
Th�Tc

j

lim
Th�Tc

jo
= (1 + p2h) (28)

Note that, the above expression is bound, 1 ≤ 1 + p2h ≤
2. In this limit with ph = 1(pc 6= 1), coherences can
double the value of the flux from its zero coherence value.
Likewise, the ratio between the flux in this limit and the
classical value of the flux can be written as,

lim
x→∞

lim
Th�Tc

j

lim
Th�Tc

j0o
= (1 + p2h)(1 +

6r − 3g2

4g2ñ`
) (29)

≥ 1. (30)

As long as r > g2/2 and pc 6= ph, within the high bias
scenario and maximal cavity-squeezing, the flux is always
greater than unity in comparison to the classical case.
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FIG. 6. (a) Squeezing induced increase of the work done
beyond classical limits (Tc = 0.1, Th = 1). The increase is
larger when the cavity temperature is lower. (b) Negative
work done as a function of squeezing for different Tc( Th =
2, Tl = 1). (c) EMP with respect to Ea as a function of ph
for different squeezing values. (d) EMP with respect to Ea

for the range of squeezing at different cavity temperatures
(pc = 0.1, ph = 1).

IV. EFFICIENCY AT MAXIMUM POWER

We now move to perform a thorough analysis on the
efficiency at maximum power (EMP or η∗). In a stan-
dard context, the EMP is calculated by maximizing the
efficiency with respect to a system parameter. In our
QHE model, the efficiency is defined as η = W/Qh with
Qh = (Ea−E1), and the useful work done (W) is defined
as,

W = Ea − Eb −WdissTc, (31)

with Wdiss = kB ln Ñ`N` is the dissipation into the cavity

mode [30, 48]. W doesn’t depend on the squeezing pa-
rameters of the two squeezed reservoirs or the noise in-
duced coherences. In Fig. (6a), we show the variation of
W/Wo (Wo being the useful work in absence of squeez-
ing, x = 0) as a function of x for several values of the
cavity temperature, Tl. As can be seen, the work done
increases as Tl is lowered and saturates at higher values
of x and is always greater than unity as long as Tc > T`.
When Tc < T` (Fig.(6)b), the work done is negative. In
general, the work changes its sign at x = x∗, given by

x∗ =
1

2
<

(
cosh−1

(
ÑcNh +NcÑh

(2n` + 1)(Nc −Nh)

))
. (32)

Although W and η are independent of coherences and
the reservoir squeezing parameters, the EMP however de-
pends on these parameters. The EMP obtained by max-
imizing P with respect to any system parameter puts an
implicit dependence via the optimized value of the chosen
parameter. We choose the three squeezing parameters
xc, xh, x and Ea to optimize the EMP and denote these
by η∗xc, η

∗
xh, η

∗
x and η∗Ea respectively. The squeezing unaf-

fected values of the EMP are denoted by η∗o . In Fig.(6c),
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FIG. 7. (Color online)(a) EMP with respect to squeezing as a
function of ph fr various pc. In a), b) and c), the black curves
(overlayed with red color) represent the evaluated EMP of
our QHE. The green dashed curve is the upper bound on
the EMP, η∗∗. The brown dashed line represents ηCA. The
dotted line represent ηL. (b) and (c) EMP with respect to x
as a function of ηC with r = 0.7, g = 1) and r = 0.1, g = 3
respectively. When r ≈ g, η∗x > ηCA as seen in (b). (d) EMP
with respect to Ea as a function of ηC with r = 0.7, g = 1).
Here, η∗Ea > ηCA with x = 1(xc = xh = 0).

we show the dependence of the ratio η∗Ea/η
∗
o as a function

of ph for several x-values evaluated at xc = xh = 0 and
pc = 0.9. The dependence of this ratio on ph is extremely
nonlinear and is unity at ph = 0.8 where effects of coher-
ence vanish. At lower (higher) squeezing values, the ratio
decreases (increases) to unity and then sharply increases
beyond unity as a function of ph. We can theorize that,
lower ph values (under the condition ph < pc), smaller
values of cavity squeezing favor increasing the EMP be-
yond classical values while for larger ph (ph > pc), high
squeezing favor increase of the EMP beyond classical val-
ues. In Fig.(6d), we plot the same ratio as a function of
cavity squeezing parameter for different cavity tempera-
tures, Tl. There is an optimization of the EMP at lower
values of x and the hump keeps shifting leftward to even
smaller values as Tl is increased and the EMP ratio keeps
decreasing. From Fig.(6d), we can conclude that lower
values of T` yield very high values of EMP with respect
to Ea under moderate squeezing conditions of the cavity.
In Fig. (7a), we plot η∗x as a function of ph for differ-
ent combinations of xc and xh for a fixed pc value (0.5).
Here, for a fixed set of engine parameters, when xc < xh
leads to a larger optimized value (around ph = 0.5) of the
EMP with respect to x (blue curve in the figure). How-
ever as ph approaches unity, there is a sharper fall in the
EMP and goes below unity. For the case when xc = xh,
the behavior is similar (dotted curve) but the increase is
not as high as the previous case. When squeezed to the
limits, xc →∞, xh →∞, the EMP with respect to x no
longer depends on the coherence (dashed curve). This
is due to the fact that, under this scenario, the power
cannot be optimized with respect to x and the maximum
value occurs at x = 0.

In general, the EMP has a universally accepted for-
mula, the Curzon-Ahlborn EMP, ηCA = 1 −

√
1− ηC



7

  

0 0.3 0.6 0.8 1
0.0

0.2

0.4

0.6

0.8

1.0

Ηc

Η
x

c
*

Ηc 0 0.3 0.6 0.8 1
0.0

0.2

0.4

0.6

0.8

1.0

Ηc

Η
x

h
*

Ηc

0.0 0.2 0.4 0.6 0.8 1.0

0.55

0.60

0.65

0.70

0.75

Tc

Η
,Η

*

0.0 0.2 0.4 0.6 0.8

0.65

0.70

0.75

0.80

0.85

Ηc

Η
E

a
*

(a) (b)

(d)(c)

FIG. 8. Linear dependence of η∗xc(a) and η∗xh(b) as a func-
tion of ηC , governed by Eq.(33) evaluated at x =∞, 1 and 0
(top to bottom ). Note that η∗xh = η∗xc with the upper (mid-
dle) curves having a slope of m = 0.02(0.19) and intercept
of c = 0.76(0.59). c) Solid line represents the EMP, given by
Eq.(34) while the dotted line is simply the normal efficiency,
η = W/Qh. d) Appearance of a quadratic term and an in-
tercept for η∗Ea as a function of ηC , evaluated at x = 1.5(∞)
denoted by lower (upper) curves. The fit parameters for the
upper (lower) curves are a1 = 0.85(0.76), a2 = 1.7(0.75), a3 =
0.05(−0.28), a4 = 0.07(−0.28).

[41, 53] and is represented by the dashed curves in
Fig.(7b,c and d). As a function of ηC , the EMP is bound
between ηC/2 ≤ η∗ ≤ η∗∗, where the upper bound is
η∗∗ = ηC

2−ηC [54]. In Fig.(7b,c and d), we show the be-

havior of our engine’s EMP as a function of the Carnot
efficiency, ηC . The solid (topmost green) curve repre-
sent the upper bound η∗∗. The EMP of the QHE op-
timized with respect to x for xc = xh = 0 is repre-
sented by the solid line highlighted with red dots. In
Fig.(7b,c), η∗x ≥ (<)ηCA is observed under the condition
r ≥ (<)g. Values of EMP larger than ηCA has been
previously reported with squeezed reservoirs [17, 20]. In
our case, one can have EMP more than the predicted
ηCA just by squeezing the cavity even in the absence
of squeezed reservoirs. In Fig.(7d), for nonzero values of
cavity-squeezing, η∗Ea > ηCA is shown (solid black curve).
This result is valid irrespective of r and g values. The
upper bound is always obeyed in presence of squeezing
as evident from Fig.(8b,c and d). The EMP of the QHE
is always lower than the upper dashed curve (η∗∗). Note
that the universal slope of 1/2 (any EMP = ηC/2 near
equilibrium)[42] is maintained in all the curves for smaller
values of ηC when maximized with respect to x.

We now move to discuss a rather interesting finding
observed when the EMP is maximized with respect to
a reservoir squeezing parameter. As can be seen from
Fig.(8a and b), both η∗xh and η∗xc are found to be linear
in ηC with a slope which is not equal to the universally
predicted value of 1/2[53]. By a linear curve fitting tech-
nique, we infer that the EMP with respect to xc or xh is
dictated by the equation,

η∗xh = η∗xc = mηC + c. (33)

Our numerical results reveal that the slope, m is equal
to the numerical value of Wdiss/Qh and the intercept, c
being given by the numerical value of the quantity, (Eab−
Wdiss)/Qh. This intercept is interestingly the efficiency
of the engine albeit with Tc = 1. Note that, η∗xc = η∗xh
and is shown as two identical plots in Fig.(8a,b). In these
two figures. The numerical plots reveal that the m 6=
1/2. Such a breakdown of the universality of the linear
coefficient has also been observed in presence of geometric
phaselike effects [52, 55]. Since Wdiss > 1, the EMP
increases as x is increased (for fixed T`) to a maximum
value of Eab/Qh at ηC = 1. The efficiency of the QHE,
η = W/Qh is always less than η∗ν and is shown as a
function of Tc in Fig.(8c).

This linear dependence doesn’t exist for η∗Ea for finite
x as seen from the numerical results in Fig.(8d) for x = 1
and x → ∞. It has been previously reported that such
a nonlinear dependence of the EMP on the squeezing
parameter x takes the form η∗∗ = 1−

√
sech(2x)

√
1− ηC

[56]. We assess the validity if this expression by defining
two curve fitting equations,

η∗Ea ≈ a1 −
√
sech(a2x)

√
a3 − a4ηC (34)

≈ a5ηC + a6η
2
C + c (35)

that can best represent the EMP with respect to the sys-
tem parameter Ea. Here, ai-s are fit parameters. We
observe that a1 6= a3 6= a4 6= 1 and a3 6= 2 result-
ing in η∗Ea 6= η∗∗ and is shown in Fig.(8d). Further, in
Eq.(35), a5 6= 1/2 and a6 6= 1/8. In this engine, it is al-
ready known that the quadratic coefficient is not 1/8 [30].
Both the above equations are good fits (solid curves) on
the numerically evaluated η∗Ea (dots) as function of ηC
as seen in Fig.(8d). It is interesting to note that the in-
tercept of η∗Ea as a function of ηC in Eq.(35) is the same
numerical value of the engine’s efficiency of the engine,
η = W/Qh similar to what was observed in Eq.(33). This
lets us rationalize that Eq.(35) is a better representation
of η∗Ea vs ηC than Eq.(34). At ηC = 1, η∗Ea again reaches
a maximum value of Eab/Qh. For x = 0, m = 1/2 is
recovered. Further for x = 0, the intercept in Eq.(34)
also vanishes by mixing with the quadratic term. Since
we cannot derive analytical expressions for these coeffi-
cients, we demonstrated it this numerically shown as the
bottom-most dotted line in Fig.(7d)).

The EMP also has other interesting logarithmic
expressions[43, 57, 58], one particularly claimed to be
valid for squeezed states[11], η∗L = η2m/{1−(1−ηm) ln(1−
ηm)}. ηm is a modified Carnot efficiency given by ηm =
1−Tc/Tmh . Tmh is a modified but fictitious reservoir tem-
perature and is directly proportional to the energy of the
squeezed mode and inversely proportional to the logarith-
mic ratio of the squeezed mode’s occupation factor. By
an analogy with this previous work [11], we can express
the modified temperature in our QHE to be,

Tmh =
Ea − E1

ln 1+Nh
Nh

. (36)
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We numerically evaluate ηE∗a for different squeezing pa-
rameters and Th values and plot it in Fig.(9) along side
the corresponding η∗L values. As can be seen, η∗Ea 6= η∗L.
Further since η∗xh and η∗xc is found to be linear in ηC , these
anyway don’t agree with the predicted value η∗L. Un-
der extremely low squeezing conditions of the hot bath,
ηmC → ηC in the expression for η∗L. Under this condition,
η∗L has been high lighted as dotted curves in Fig.(7b,c
and d) and is seen to be unequal to η∗x.

V. CONCLUSION

By deriving a coherence-population coupled quantum
master equation, we carried out a comprehensive study

of the thermodynamics of quantum heat engine coupled
to two squeezed reservoirs and a squeezed unimodal cav-
ity. We showed that the steadystate value of the co-
herence term of the density matrix vanishes (saturates)
under maximal squeezing of the cold (hot) bath. Under
high squeezing conditions of the cavity, the two upper
states of the engine equipopulate. We showed that under
high squeezing of the cavity, the quantum coherence can
no longer optimize the flux beyond the classical values.
We also showed how the flux can be linearized with re-
spect to coherences under high squeezing conditions and
equal Bose-Einstein distributions for the hot and cold
baths. We also showed that larger EMP favors lower val-
ues of cavity temperatures and lower values of squeezing.
The EMP can be increased beyond the Curzon-Ahlborn
limit by squeezing the cavity alone even if the baths are
unsqueezed. We also show a linear dependence of the
EMP with respect to the reservoirs’ squeezing parameters
which we identify analytically with a slope proportional
to the dissipation into the cavity mode. The EMP with
respect to a system parameter, Ea doesn’t obey the uni-
versal slope of 1/2 for finite squeezing and is not equal to
a recently proposed general form of the EMP in presence
of squeezed reservoirs [11].
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