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Abstract 

The strictly gauge invariant approach to the construction of the analog of guiding center integrals 

of motion in spatially homogeneous/inhomogeneous constant magnetic fields is considered. With 

their help the gauge invariant equations, describing the wave functions of highly degenerate Lan-

dau levels in the “classical” non-relativistic case, are formulated. The proposed gauge-invariant 

approach was used also for the construction of the equations describing the quasi-relativistic car-

riers’ behavior in the homogeneous /inhomogeneous magnetic field in the single layer graphene. 
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1 Introduction 

Guiding center approximation (or drift approximation) is a well-known and powerful theoretical 

tool to describe the “classical” charge particle motion in plasma in a strong magnetic field [1]. This 

most widely used approach allows to decouple fast helical motion of the particle about a local 

magnetic line from the slow bounce and drift motions along and across magnetic field lines [2,3]. 

The notion of the guiding center operator as the certain operator integration constant arises also in 

the quantum mechanical description of the motion in a constant, spatially uniform magnetic field 

[4,5,6]. In what follows we intend to propose the gauge invariant method of constructing the so 

called pseudo-momentum operators which can be used for labelling wave functions of the highly 

degenerate Landau levels and which are directly connected to the guiding center variables in their 

classical meaning.   

2 Uniform magnetic field problem revisited 

The motion of a particle of mass 𝑚 and charge 𝑞 in uniform constant magnetic field is one of the 

most studied quantum systems. Due to specific algebraic structure of the Hamiltonians considered, 

as in relativistic case (Dirac Hamiltonian), so in non-relativistic case (Schrodinger Hamiltonian), 

the energy spectrum can be easily obtained without turn to the solution of corresponding differen-
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tial equations. Nevertheless, to our point of view there are some questions to be clarified concern-

ing the derivation of the Eigen wave functions in this seemingly simple and thoroughly scrutinized 

problem. The problem hinges on the necessity to fix the form of the vector potential to achieve 

this goal. Starting from the papers published by E. H. Kennard, C. C. Darwin and V. Fock [7,8,9] 

it was common to use mainly circular gauge 𝑨 = [𝑩 × 𝒓] 2⁄ . For the beginning, we reconsider this 

simplest case of non-relativistic 2D motion of the particle with the charge |𝑞| in the X-Y plane 

perpendicular to uniform constant external magnetic field 𝐵 > 0 directed along Z-axis. To sim-

plify our consideration, we neglect spin. The Hamiltonian to be considered in the first quantization 

runs as  

𝐻̂ =
𝑚

2
(𝑣𝑥

2 + 𝑣𝑦
2)                             (1) 

Where 𝒗 = (𝒑 − |𝑞|𝑨) 𝑚⁄ , due to minimal coupling hypotheses. Hereafter ℏ = 𝑐 = 1. So defined 

velocity component operators satisfy the following commutation rule [𝑣𝑥
(+)

, 𝑣𝑦
(+)

] = 𝑖 𝑙𝐵
2 𝑚2⁄   𝑙𝐵 =

√1 |𝑞|𝐵⁄  (henceforth we put ℏ = 𝑐 = 1). The index (+) is used to underline that we describe 

motion of the particle with the charge |𝑞|.  The velocity operators can be redefined to reveal the 

equivalence of the considered problem to 1D problem of harmonic oscillator. To this purpose, the 

“quasi-position” 𝑄̂ = 𝑣𝑥
(+)

𝑚𝑙𝐵  
2  and “quasi-momentum” 𝑃̂ = 𝑚𝑣𝑦

(+)
operators can be introduced 

which fulfill the usual commutation rules [𝑄̂, 𝑃̂] = 𝑖 valid for the position and momentum opera-

tors. The Hamiltonian in these operators is formally equivalent to the traditional 1D harmonic 

oscillator one. This redefinition allows also to construct Bose operators 𝑎̂ =

𝑙𝐵𝑚(𝑣𝑥
(+)

+ 𝑖𝑣𝑦
(+)

) √2⁄ ,  𝑎̂+ = 𝑙𝐵𝑚(𝑣𝑥
(+)

− 𝑖𝑣𝑦
(+)

) √2⁄  subjected to the commutation relation 

[𝑎, 𝑎+] = 1, valid in considered case of constant spatially homogeneous magnetic field. The Ham-

iltonian (1) in these operators acquires the form 𝐻̂ = 𝜔𝑐(𝑎̂+𝑎̂ + 1 2⁄ ) where 𝜔𝑐 = 𝑞𝐵 𝑚⁄ . Choos-

ing symmetric gauge 𝑨 = 𝐵 (−𝑦, 𝑥) 2⁄ , it is possible to introduce an additional pair of Bose oper-

ators commuting with 𝑎̂ and 𝑎̂+ by simple changing the sign of the charge and interchanging an-

nihilation/creation operators [5,10] 

𝑏̂+ =
𝑙𝐵𝑚

√2
(𝑣𝑥

(−)
+ 𝑖𝑣𝑦

(−)
) =

𝑙𝐵

√2
[(𝑝𝑥 + |𝑞|𝐴𝑥) + 𝑖(𝑝𝑦 + |𝑞|𝐴𝑦)]       (2) 

𝑏̂ =
𝑙𝐵𝑚

√2
(𝑣𝑥

(−)
− 𝑖𝑣𝑦

(−)
) =

𝑙𝐵

√2
[(𝑝𝑥 + |𝑞|𝐴𝑥) − 𝑖(𝑝𝑦 + |𝑞|𝐴𝑦)] 

It is common to define with the help of these operators the coordinates of the center of circular 

orbit along which the charged particle is gyrating (guiding center operators) [5]. It must be stressed 

that so written expressions for 𝑏̂, 𝑏̂+ are misleading. If we assume that 𝐴𝑖 in (2) are really the 
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components of a vector potential, we are to accept that the gauge invariance of our solutions is 

violated.  Really, 𝑣𝑖
(−)

 in this case are to be identified with the velocity operators for the particle 

with the charge - |𝑞| (positron?!) which cannot appear in our non-relativistic theory. Moreover, 

the straightforward evaluation e.g. of the commutator [𝑎̂, 𝑏̂+] leads to the following condition to 

be imposed on chosen gauge 

[𝑎̂, 𝑏̂+] = −𝑖𝑙𝐵
2 |𝑞|[𝜕𝑥𝐴𝑥 − 𝜕𝑦𝐴𝑦] + 𝑙𝐵

2 |𝑞|[𝜕𝑦𝐴𝑥 + 𝜕𝑥𝐴𝑦]   (3) 

Which is zero for the symmetric gauge 𝑨 = 𝐵(−𝑦, 𝑥) 2 ⁄  only . So, we are to write e.g. operator 

𝑏̂ as 

𝑏̂ =
𝑙𝐵

√2
[(𝑝𝑥 + |𝑞|𝐴̃𝑥) − 𝑖(𝑝𝑦 + |𝑞|𝐴̃𝑦)]                (4) 

Where 𝐴̃𝑖 are the components of some vector field, determined in “fixed” symmetric gauge as 

𝐴̃𝑖 = −𝐴𝑖. In order to lend support to this statement let us consider the problem of guiding center 

operators from another point of view which has been discussed e.g. in [11]. We start from classical 

description where it is possible to solve the problem of the motion in constant magnetic field em-

ploying extra conserved quantity 𝒌 [12,13]. This vector emerges in classical description when we 

integrate the equation of the motion 𝑚 𝑑𝒗 𝑑𝑡⁄ = |𝑞|𝒗 × 𝑩 with respect to time, with the result 

𝑚𝒗 = |𝑞|𝒓 × 𝑩 + 𝒌. The meaning of the integration constant 𝒌 = 𝑚𝒗 − |𝑞|𝒓 × 𝑩 is clarified af-

ter proper scaling and rotation [13,14,15]. The vector 𝑹0 = [𝒌 × 𝑩] |𝑞|𝐵2⁄  in the classical picture 

defines the center of particle circular motion (guiding center) fixed at the moment of magnetic 

field switching on. It has to be mentioned that this integral of motion has been established by 

Gorkov and Dzyaloshinskii in [16], see also [17]. It is easy to verify that in quantum mechanical 

description 𝒌̂ (now 𝒌 becomes an operator) remains also time-invariant, as  

𝜕𝒌̂

𝜕𝑡
= 𝑖[𝐻̂, 𝒌̂] = 𝑖 [

𝑚(𝑣𝑥
2 + 𝑣𝑦

2)

2
, 𝑚𝒗̂ − |𝑞|[𝒓̂ × 𝑩]] = 0          (5) 

The introduced 𝒌̂ operators are subjected to more strict commutation conditions in considered 

uniform magnetic field case namely [𝑘̂𝑖 , 𝑣𝑗] ≡ 0 regardless of the specific choice of the vector 

potential. This property will be of use for us later on while discussing the graphene behavior under 

the action of the spatially homogeneous/inhomogeneous constant magnetic fields. The explicit 

forms of these operators run as follows 

𝑘̂𝑥 = 𝑚𝑣𝑥 −
𝑦

𝑙𝐵
2   𝑘̂𝑦 = 𝑚𝑣𝑦 +

𝑥

𝑙𝐵
2          (6)  

Pay attention that contrary to the statement in [18], these operators are strictly gauge invariant. 

Really, the physical meaning of the terms |𝑞|[𝒓̂ × 𝑩] after scaling and rotation (as in the case of 𝒌̂ 
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) is revealed as the particle coordinates operators in disguise, which of course do not respond to 

the gauge transformations and the velocity operators 𝑣𝑖 are gauge invariant by the definition.  As 

𝒌̂ has dimension of momentum, this vector constant is known under the term “pseudo-momentum” 

(the nomenclature used in [18,19]). As components of 𝒌̂  do not commute ([𝑘𝑦, 𝑘𝑥] = 𝑖 𝑙𝐵  
2 )⁄  but 

nevertheless commute separately with the Hamiltonian, it is useful to construct from them the 

ladder operators  

                                 𝑏̃ = 𝑙𝐵 (𝑘𝑦 + 𝑖𝑘𝑥) √2⁄      𝑏̃+ = 𝑙𝐵 (𝑘𝑦 − 𝑖𝑘𝑥) √2⁄                      (7) 

 

In order to bring them both simultaneously into play for labelling the eigenfunction. These oper-

ators are in one-to-one correspondence with the pair of 𝑏-operators used in [5,10] and discussed 

above, which practically in all the papers known to us, are used for the construction of the “cen-

ter of rotation” operators. We can require the eigenfunction Ψ𝑛,𝜆(𝒓)belonging to the given n’th 

Landau level to be simultaneously the eigenfunction of  𝑏̃  

𝑏̃ Ψ𝑛,𝜆(𝒓) = 𝜆Ψ𝑛,𝜆(𝒓)                (8) 

where 𝜆 arbitrary complex number 𝜆 = 𝜆1 + 𝑖𝜆2 (the celebrated coherent states). Or we can use 

operator  𝑏̃+𝑏̃ (𝑚 > 0) 

𝑏̃+𝑏̃Ψ𝑛,𝑚(𝒓) = 𝑚Ψ𝑛,𝑚(𝒓)             (9) 

As this second variant describe the states which are all gyrating about fixed center 𝒓 = 0, they 

contradict our classical picture. We with the authors [5] adhere to the first choice which has simple 

and physically clear interpretation and coincides with the classical description. The second variant 

can be of use for the description of the charge particle motion in an axisymmetric magnetic field 

with straight field lines dependent only on |𝒓| [20].   One more comment is due. The defined 

coherent states formed non-orthogonal over complete set for arbitrary 𝜆. It is known that this set 

can be reduced to orthogonal complete set on the von Neumann lattice [21]. One more possibility 

to use both non-commuting pseudo-momentum operators simultaneously arises when we try to 

impose periodic boundary conditions following [10,22] with the help of the shifting operators 𝑇̂𝑥 =

exp (𝑖𝑘̂𝑥𝑥) and 𝑇̂𝑦 = exp (𝑖𝑘̂𝑦𝐿𝑦). 𝐿𝑥 and 𝐿𝑦 define a parallelogram where the particle resides. 

The periodic conditions demand that 

𝑇̂𝑥Ψ = 𝑒𝑖𝜃𝑥Ψ    𝑇̂𝑦Ψ = 𝑒𝑖𝜃𝑦Ψ         (10) 

 These conditions can be fulfilled if and only if [𝑇̂𝑥, 𝑇̂𝑦] = 0 which due to [[𝑘𝑦, 𝑘𝑥] = 𝑖 𝑙𝐵  
2⁄ im-

pose restrictions on the choice of 𝐿𝑥 and 𝐿𝑦 

𝐿𝑥𝐿𝑦 

𝑙𝐵  
2 = 2𝜋𝑛      (11) 
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Where 𝑛 is any integer number.   

One more essential for the gauge invariance of 𝑘̂𝑖-operators property is revealed, if we present 

them in arbitrary gauge 𝑨  in the form (𝑚𝒗̂ = 𝒑̂ − |𝑞|𝑨) 

𝒌̂ = 𝒑̂ −
1

2
|𝑞|[𝒓̂ × 𝑩] − |𝑞| (𝑨 +

1

2
[𝒓̂ × 𝑩])           (12)         

It is easy to verify that the combination in parentheses is curl independent, thus meaning that in-

tegral 

∫ (𝑨 +
1

2
[𝒓̂ × 𝑩]) 𝑑𝒓

𝒓2

𝒓1

    (13) 

Is path independent. Thus, we can associate with this expression the gradient of some function, 

which can be dubbed as generalized gradient transformation function 

𝑨 +
1

2
[𝒓̂ × 𝑩] = 𝛁𝜑     (14) 

This well-known combination has appeared in the famous paper by J. Schwinger [23] presenting 

derivation of relativistic electron propagator within original essentially gauge invariant method. It 

has been shown that this method can be applied for computing non-relativistic propagator as well, 

though unfortunately this method is rarely used in this context [24,25]. This curl vanishing expres-

sion appeared in [23] in the relativistic invariant form 𝐴𝜇(𝑥) + 𝐹𝜇𝜈(𝑥) 2⁄  where 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 −

𝜕𝜈𝐴𝜇. It is easy to check that in our 2D non-relativistic case this expression coincides with (13). 

Inasmuch according to the commonly accepted prescription gauge transformation function 𝜑 has 

no any  effect upon wave function other than multiplication by phase factor 𝑒𝑥𝑝𝑖𝑞𝜑, and corre-

spondently (as it is prescribed) can be ignored, we are left with the expression 𝒌̂ = 𝒑̂ −

1

2
|𝑞|[𝒓̂ × 𝑩].  The subtle point is that we cannot identify [𝒓̂ × 𝑩] 2⁄  with the vector potential – 𝑨, 

as in this case 𝒌̂ would be gauge dependent quantity as it was clarified above. The operator 𝒌̂ =

𝒑̂ + |𝑞|𝑨 so understood is the mechanical moment for the “anti-particle” and according to charge 

super-selection rule would be acting in orthogonal Hilbert subspace [26,27]. Such difference in 

the behavior of these two terms of the pseudo-momentum under gauge transformation is reminis-

cent of the point of view presented in [28,29,30]. The only difference is that the authors propose 

to consider peculiarities not in 𝒌̂  transformation but in the redefined vector potential   𝑨 =

𝑨𝑝ℎ𝑦𝑠 + 𝑨𝑝𝑢𝑟𝑒. Their basic postulate is that under gauge transformation 𝑈 = exp (𝑖𝑞𝜒), these two 

components transform differently. 𝑨𝑝𝑢𝑟𝑒 transforms as the full 𝑨 (𝑨𝑝𝑢𝑟𝑒 → 𝑨𝑝𝑢𝑟𝑒 + ∇𝜒), while 
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𝑨𝑝ℎ𝑦𝑠 transforms in the same manner as does the electric field 𝑬 thus remaining unchanged  

𝑨𝑝ℎ𝑦𝑠 → 𝑨𝑝ℎ𝑦𝑠 (see [30] and citing within).  

The well-studied problem in homogeneous field nevertheless arises two questions. First, if 

we discard defined above 𝛁𝜑 in 𝒌̂  through gauge transformation of the wave function Ψ(𝒓) =

Φ(𝒓)exp 𝑖|𝑞|𝜑,  the equation for Φ(𝒓) will contain “fixed”  symmetric vector potential [𝑩 × 𝒓̂] 2⁄  

independently of the form of our initially arbitrary chosen potential 𝑨 . Such property of the con-

sidered approach resolves long-standing puzzle of the linear Landau gauge 𝑨1 = 𝐵(0, 𝑥)or  𝑨2 =

𝐵(−𝑦, 0). Contrary to common statement, if we rely on the “symmetry” considerations and an-

nounce the eigenfunctions to be of the form 𝜑(𝑥)exp(𝑖𝛾𝑦) for 𝑨1 (𝜑(𝑦)exp(𝑖𝛾𝑥) for 𝑨2), the 

obtained wave functions in these gauges does not belong to the space of square integrable functions 

of the symmetric gauge thus contradicting announced gauge invariance. The problem of the map-

ping states in 𝑨1 gauge to the states in 𝑨2 gauge is also not so simple and straightforward as has 

been clarified in [31]. The outlined approach show, that due to the existence of guiding center 

integral of motion, starting with arbitrary 𝑨, we arrive at the equations written in the symmetric 

gauge which lead uniquely to the solutions with the finite norm. It must be noted that the problem 

of such possible “uniqueness” of the vector potential choice has been discussed albeit from another 

point of view in [32,33].  

 

3 Non-relativistic particle in the inhomogeneous field 

Following the approach outlined above, we present below the construction of an analog of the 

guiding center operator for spatially inhomogeneous magnetic field [34]. We choose e.g. a mag-

netic field with a constant gradient given by  

𝑩(𝒓) = 𝐵0

𝑥

𝐿
𝒛 ̂             (15) 

 Where 𝐵0 is a constant and 𝐿 ≡ |∇ln (𝐵)|−1 is the constant gradient length scale. This seemingly 

oversimplified example of spatially inhomogeneous field is nevertheless important for the descrip-

tion of the charge particle motion in the region of magnetic field reversal leading to formation of 

current sheets along neutral lines [35,36]. The classical variant of this problem has been discussed 

in [37,38]. Being inspired by the form of guiding center operators in homogeneous case, we pro-

posed that an analog of gauge invariant pseudo-momentum operator (if exists) in such field is also 

of the form 

𝒌̂ = (𝑚𝒗̂ − |𝑞|𝑨̃)            (16) 

From now on we will use only gauge invariant velocity operators 𝒗 = (𝒑 − |𝑞|𝑨) 𝑚⁄ , so the (+) 

index will be omitted. It should be reminded that in no way 𝑨̃(𝒓) in the expression for 𝒌̂ can be 
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considered as the vector potential and as so it must remain unchanged under gauge transformation. 

This vector field is to  be determined from the condition that 𝒌̂ (or its components) commute with 

the Hamiltonian . This condition is a fortiori fulfilled if as discussed above 

                                                   [𝑚𝑣𝑖, 𝑘̂𝑗] ≡ 0 𝑖, 𝑗 = 1,2            (17)  

 

Taking into account that  [𝑣𝑥, 𝑣𝑦] = 𝑖|𝑞|𝐵(𝒓) 𝑚2⁄ , these conditions lead to the following set of 

equations  

𝜕𝑥𝐴̃𝑥 = 0  𝜕𝑦𝐴̃𝑥 = 𝐵(𝒓)                   (18) 

  𝜕𝑥𝐴̃𝑦 = −𝐵(𝒓)   𝜕𝑦𝐴̃𝑦 = 0                          

Substituting chosen 𝐵(𝒓) = 𝐵(𝑥), we infer that only  𝐴̃𝑦 component complies with the required 

conditions and is  

𝐴̃𝑦 = −𝐵0

𝑥2

2𝐿
                     (19) 

By the way, the arising of such constant of motion (conserved quantity) can be inferred from the 

classical equation of motion: 

𝑣̇𝑥 =
|𝑞|

𝑚
𝐵0

𝑥

𝐿
𝑣𝑦     𝑣̇𝑦 = −

|𝑞|

𝑚
𝐵0

𝑥

𝐿
𝑣𝑥         (20) 

Integrating the second equation we obtain 

𝑣𝑦 = −
|𝑞|

𝑚
𝐵0

𝑥2

2𝐿
+

𝑘𝑦

𝑚
                      (21) 

It is easy to verify that going to quantum mechanical description the so defined operator 𝑘𝑦 is the 

required additional integral of motion. As we have only one conserved component of pseudo-

momentum we are left with no choice but to state that the Eigen functions of the problem 

𝐻̂Ψ𝐸(𝒓) = 𝐸Ψ𝐸(𝒓) are simultaneously the Eigen functions of found pseudo-momentum compo-

nent 

𝑘̂𝑦Ψ𝐸,𝜆(𝒓) = (−𝑖𝜕𝑦 − |𝑞|𝐴𝑦 − |𝑞|𝐴̃𝑦)Ψ𝐸,𝜆(𝒓) = 𝜆Ψ𝐸,𝜆(𝒓)            (22) 

The vector potential 𝐴𝑦 in this expression is any “real” vector potential suitable to our problem, 

which changes under gauge 𝑈(1) transformation. Once more we want to call the reader's  attention 

to the specific behavior of 𝑘̂𝑦 operator under gauge transformation. Only 𝐴𝑦 term in this expression 

undergoes change with gauge variation. The term 𝐴̃𝑦 is not affected by this operation as it is in 

essence the function of particle coordinates and thus is not subjected to gauge transformations. 
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Now we are going to prove that notwithstanding the specific choice of the vector potential, ob-

tained solutions belong to the same Hilbert space. Really, let us choose the vector potential in the 

Landau-like (linear) gauge  𝑨 = 𝐵0(0, 𝑥2 2𝐿⁄ ). In this gauge 𝑘̂𝑦 = −𝑖𝜕𝑦 and thus the 𝑦 component 

of the canonical momentum is conserved in accord with the commonly accepted approach based 

on the symmetry of the problem [39]. In this case Ψ𝐸,𝜆(𝒓) = 𝜑𝐸,𝜆(𝑥)𝑒𝑥𝑝𝑖𝜆𝑦, where 𝜑𝐸,𝜆(𝑥) sat-

isfies the equation (𝑙𝐵0

2 = 1 |𝑞|⁄ 𝐵0) 

                                 [−𝜕𝑥
2 + (𝜆 − 𝑥2 2𝐿𝑙𝐵0

2⁄ )
2

] 𝜑𝐸,𝜆(𝑥) = 2𝑚𝐸𝜑𝐸,𝜆(𝑥)              (23)   

 

Now, let us try the symmetry-like gauge in this problem, using for this purpose the so called 

Poincare’ or multipole gauge (PMG) [40,41,42,43,44]. In its relativistic covariant form PMG po-

tential satisfies condition 𝑥𝜇𝐴𝜇(𝑥) = 0. In this case it can be expressed as the integral over the 

electromagnetic field tensor 𝐹𝜇𝜆(𝑥) = 𝜕𝜇𝐴𝜆(𝑥) − 𝜕𝜆𝐴𝜇(𝑥) as [45]  

𝐴𝜇(𝑥) = ∫ 𝑑𝑢 𝑢𝑥𝜆

1

0

𝐹𝜆𝜇(𝑢𝑥)           (24) 

 In the considered by us non-relativistic limit this expression transforms into  

𝑨(𝒓) = −𝒓 × ∫ 𝑑𝑢 𝑢

1

0

𝐵(𝑢𝒓)𝒛̂              (25) 

It is easy to verify that for spatially homogeneous field we obtain well-known potential in sym-

metric gauge. In chosen magnetic field with constant gradient, according to (25), the chosen “ar-

bitrary” vector potential is 

𝑨(𝒓) = 𝐵0(−𝑦, 𝑥)
𝑥

3𝐿
            (26)    

Correspondently, 𝑘̂𝑦 = −𝑖𝜕𝑦 + 𝑥2 6𝐿𝑙𝐵0

2⁄  and Ψ𝐸,𝜆(𝒓) = 𝜑𝐸,𝜆(𝑥)exp [𝑖𝑦(𝜆 − 𝑥2 6𝐿𝑙𝐵0

2⁄ )]. It is 

easy to verify that 𝜑𝐸,𝜆(𝑥) in this expression coincides with the one in (22), as it satisfies the same 

equation. Thus it is proved that as in the case of the uniform magnetic field, so in our non-uniform 

problem the requirement on the wave function to be the eigenfunction of the pseudo-momentum 

leads to the one-to-one, up to the exponential phase factor, mapping of the solutions belonging to 

the different gauges. It is interesting to compare our quantum mechanical problem with classical 

solutions in constant gradient field discussed in [46, 47, 36]. Compare the expression for conserved 

𝑌 component of the canonical momentum 𝑝𝑦 = 𝑚𝑣𝑦 + 𝑞𝐴𝑦 = 𝑐𝑜𝑛𝑠𝑡 (Formula (1) in [36]) which 

is in one-to-one correspondence with considered guiding center operator 𝑘̂𝑦. It must be noted that 
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the quantum variant of this problem is by far more rich in physics as compared to its classical 

counterpart. The quantum description for 𝜆 > 0 is given by 1D Schrodinger equation (23) with the 

“celebrated quartic double-well potential” [48] which is omnipresent in different physical and 

chemistry problems. The quantum solution  differs due to the tunneling effect (“instanton” behav-

ior) from classical prediction of existing for 𝜆 > 0  localized “one-sided” gyration [36] which does 

not cross 𝐵 = 0 line. Thus, as for 𝜆 > 0 so for 𝜆 < 0, the average particle quantum motion is 

symmetric relative to neutral magnetic line. It must be stressed than despite the apparent differ-

ences in the exponential factors of the considered wave functions the 𝑦 component of the physi-

cally meaningful quantity –the current density remains invariant (as it must be!) under the gauge 

change. Using the definition of the current density in magnetic field [Landau] it is straightforward 

to show that in the both gauges the current density is 

𝐽𝑦 =
𝑖𝑞

2𝑚
[(𝜕𝑦Ψ∗)Ψ − Ψ∗𝜕𝑦Ψ] −

𝑞2

𝑚
𝐴𝑦Ψ∗Ψ =

|𝑞|

𝑚
(𝜆 −

𝑥2

2𝐿𝑙𝐵0

2 ) |𝜑(𝑥)|2       (27) 

Pay attention that according to this expression, 𝜆 sign alone does not determine the direction of 

the particle drift in the considered state. For 𝜆 > 0 all depends on the average mean-square value 

of the particle deviation along 𝑋 axes 〈𝑥2 2𝐿𝑙𝐵0

2⁄ 〉. For 𝜆 < 〈𝑥2 2𝐿𝑙𝐵0

2⁄ 〉 the particle changes the 

drift direction. This result is in accord with the classical considerations [36] and at the same time 

reveals peculiar status of 𝒌̂ operators. The physical meaning as an observable must be ascribed 

without doubt to 𝐽𝑦, which means that 𝑘̂𝑦 plays some auxiliary role and its consideration as ob-

servable is under question. Here it is appropriate to remember (see above) that this characteristic 

emerges in classic picture not as the constant of motion in its accepted meaning but as the constant 

of integration over time. This suspicion of the strange role of the guiding center operator in our 

quantum problem is reinforced by the revision of the solution in homogeneous magnetic field 

discussed above. The states belonging to, e.g., ground Landau level (from which all others n-levels 

wave functions can be deduced) are given by the equation 

𝑎̂Ψ0(𝒓) =
𝑙𝐵𝑚

√2
(𝑣𝑥 + 𝑖𝑣𝑦)Ψ0(𝒓) =

1

√2
(𝑎̂𝑥 + 𝑖𝑎̂𝑦)Ψ0(𝒓) = 0        (28) 

Where 𝑎̂𝑖, 𝑎𝑖
+ are the Bose operators [𝑎̂𝑖, 𝑎𝑗

+] = 𝛿𝑖𝑗 of the form  

𝑎̂𝑖 = −𝑖𝑙𝐵 (𝜕𝑥𝑖
+

𝑥𝑖

2𝑙𝐵
2 )   𝑎𝑗

+ = −𝑖𝑙𝐵 (𝜕𝑥𝑖
−

𝑥𝑖

2𝑙𝐵
2 )          (29) 

The general solution Ψ0,𝜆(𝒓) = φ0,𝜆(𝑥)φ0,𝑖𝜆(𝑦) of the equation () is given by the solutions of two 

equations 
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𝑎̂𝑥φ0,𝜆(𝑥) =  𝜆φ0,𝜆(𝑥)    𝑎̂𝑦φ0,𝑖𝜆(𝑦) = 𝑖𝜆φ0,𝑖𝜆(𝑦)        (30)    

Where φ0,𝜆(𝑥), φ0,𝑖𝜆(𝑦) are corresponding coherent states and 𝜆 = 𝜆1 + 𝑖𝜆2 arbitrary complex 

number. So we obtain the highly degenerate set of the wave functions belonging to the same Lan-

dau level without invoking the guiding center operators. Thus the use of pseudo-momentum oper-

ators in this problem is superfluous. They can be used for clarifying the physical meaning of the 

numbers 𝜆1,2 The action of the introduced above operator       𝑏̃ = 𝑙𝐵 (𝑘𝑦 + 𝑖𝑘𝑥) √2⁄  where {𝑘𝑖} 

are the discussed pseudo-momentum operators upon these functions is 

𝑏̃Ψ0,𝜆(𝒓) =
1

√2
 (𝑎𝑦 + 𝑖𝑎𝑥)Ψ0,𝜆(𝒓) = 𝑖𝜆√2                   (31) 

So we can state that really the numbers𝜆1,2 labelling the eigenfunctions can be interpreted after 

scaling by   𝜆𝐵 as the corresponding 𝑅2,1-coordinates of the center of the particle gyration. The 

usefulness of these operators lies in the fact that with them we can construct gauge invariant equa-

tions choosing for the start any appropriate gauge as it was clarified above. 

 

4 Graphene in the magnetic fields 

An additional but no less important example of proposed approach is due to the fact that introduced 

above gauge invariant pseudo-momentum operators  𝑘̂𝑥, 𝑘̂𝑦 (6) remain valid as the motion con-

stants for the description of the low-energy envelope states in the single layer graphene in homo-

geneous field and defined above 𝑘̂𝑦 (20,21) can be used for labeling states in the perpendicular 

gradient magnetic field 𝑩(𝒓) = 𝐵0𝑥 𝒛̂ 𝐿⁄ . Due to commutation conditions defined in (5) for ho-

mogeneous field and   𝑘̂𝑦 commutator (17) in the gradient field case these operators commute with 

the Dirac-like Hamiltonian  describing carriers behavior in graphene within 𝒌 ∙ 𝒑 approach and 

can serve as the corresponding quantum numbers  [49,50]. Due to valley degeneracy of graphene 

Hamiltonian valid for arbitrary perpendicular magnetic field it suffices as it is common to restrict 

our consideration to one of the valleys (say K valley) described by the Hamiltonian 𝐻̂ =

𝑣𝐹(𝑄̂+𝜎+ + 𝑄̂𝜎−) [51]. Here 𝑄̂ = 𝜋̂𝑥 + 𝑖𝜋̂𝑦, 𝜎± = (𝜎𝑥 ± 𝑖𝜎𝑦) 2⁄ , and 𝜎𝑖 are Pauli matrixes. Con-

sider the behavior of the zero-mode states (if existing) described by the first-order partial differ-

ential equation 

(𝜋̂𝑥 + 𝑖𝜋̂𝑦)Ψ(𝒓) = 0           (32) 

 Where 𝜋̂𝑖 = −𝑖𝜕𝑖 − |𝑞|𝐴𝑖(𝒓). It is straightforward to show that the sought-for solutions form the 

set of coherent states being in one-to-one correspondence with the set describing the degenerate 

lowest Landau level in the “classical” non-relativistic problem [see (28,29,30)]. As discussed 
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above, in the gradient magnetic field 𝑩(𝒓) = 𝐵0 𝑥𝒛̂ 𝐿⁄  we can choose any appropriate gauge. In 

deciding on the gauge 𝑨 = (0, 𝐵0 𝑥2 2𝐿)⁄  we arrive to the simplest form for 𝑘̂𝑦 = −𝑖𝜕𝑦 (see dis-

cussion above). Labeling the Eigen functions Ψ𝜆
𝑇(𝒓) = (𝜑𝜆(𝑥), 0)exp(𝑖𝜆𝑦) by its eigenvalue 𝜆  

we obtain  

[−𝑖𝜕𝑥 + 𝑖(𝜆 − 𝑥2 2𝐿𝑙𝐵0

2⁄ )]𝜑𝜆(𝑥) = 0        (33) 

It follows from (33) that 𝜑𝜆(𝑥)~exp(𝜆𝑥 − 𝑥3 6𝐿𝑙𝐵0

2⁄ ). Contrary to the behavior in the considered 

above non relativistic Schrodinger case  where a particle can remain localized along neutral line 

[36] crossing it hither and thither, the zero-mode carriers in K valley escape to  𝑥 = −∞ thus 

destroying the current sheet. The general Landau state (𝐸 ≠ 0) is given by the solution Φ(𝒓)𝑇 =

(𝜑1(𝒓), 𝜑2(𝒓)) of the matrix equation 

(−𝐸𝐼 + 𝑣𝐹𝑄̂+𝜎+ + 𝑣𝐹𝑄̂𝜎−)Φ(𝒓) = 0        (34) 

These equations of the first order can be transformed to the equations of the second order by ap-

plying to the equation (34) the operator  𝐸𝐼 + 𝑣𝐹𝑄̂+𝜎+ + 𝑣𝐹𝑄̂𝜎− 

(𝐸𝐼 + 𝑣𝐹𝑄̂+𝜎+ + 𝑣𝐹𝑄̂𝜎−)(−𝐸𝐼 + 𝑣𝐹𝑄̂+𝜎+ + 𝑣𝐹𝑄̂𝜎−)Φ(𝒓) = 0        (35) 

As a result, we are to solve two Schrodinger-like equations  

(−𝐸2 + 𝑣𝐹
2𝑄̂+𝑄̂)𝜓1(𝒓) = 0  (−𝐸2 + 𝑣𝐹

2𝑄̂𝑄̂+) 𝜓2(𝒓) = 0          (36) 

Which are super-symmetry (SUSY) connected [52], [53] as the solutions Ψ𝑇(𝒓) =

(𝜓1(𝒓), 𝜓2(𝒓)) are subjected to the condition 𝜓2(𝒓) = 𝑣𝐹𝑄̂𝜓1(𝒓) 𝐸⁄ . As it has been clarified in 

[54] the arbitrary solutions of these squared Dirac-like equations being of the second order can 

contain “superfluous” ones which do not satisfy the initial equation of the first order. The remedy 

is to consider the function  

Φ(𝒓) = (𝐸𝐼 + 𝑣𝐹𝑄̂+𝜎+ + 𝑣𝐹𝑄̂𝜎−)Ψ(𝒓)         (37) 

Which is the solution of the first order equation (34) if Ψ(𝒓) is the solution of (35). As we are left 

with the solution of the one Schrodinger-like equation (36), the procedure outlined above for non-

relativistic problem can be at once applied for the analysis of carrier spectrum in graphene. For the 

chosen gradient magnetic field, the explicit form of the corresponding Schrodinger –like operator 

is 

𝑣𝐹
2𝑄̂+𝑄̂ = 𝑣𝐹

2(𝜋̂𝑥 − 𝑖𝜋̂𝑦)(𝜋̂𝑥 + 𝑖𝜋̂𝑦) = 𝑣𝐹
2[𝜋̂𝑥

2 + 𝜋̂𝑦
2 − 𝑥 𝐿𝑙𝐵0

2 ]⁄          (38) 

The difference with the non-relativistic case discussed above resides in the linear in 𝑥 term (com-

pare with (23)). The wave function solutions as in non-relativistic case demonstrate two types 



12 
 

depending on the sign of 𝜆, described above. The only difference with classical result is that they 

are shifted in the positive direction along 𝑋 axis. The symmetry is restored when we consider 

carrier behavior in 𝐾′valley. We will not proceed further with the analysis of the wave function 

solutions and energy spectrum of (35) which will be considered elsewhere, as our task in the pre-

sented paper has been to pave gradient invariant road to the formulation of “proper” wave equa-

tions with the help of pseudo-momentum aka guiding center operator.    

5 Conclusion 

The role of the “forgotten” pseudo-momentum in the solution of the Landau problem as for uni-

form so in spatially non-uniform magnetic fields has been discussed in the series of the papers (see 

[11] and citing herein). Presented approach differs in that we placed particular emphasis on the 

gauge invariance of the procedure of the construction of the corresponding wave equations. It is 

common consensus in that the gauge invariance is one of the most fundamental symmetry proper-

ties of physics [55,56]. Thus, citing J. Schwinger [23], we follow his prescription that “a formally 

gauge invariant theory is ensured if one employs methods of solution that involve only gauge 

covariant quantities”. In our paper we outlined the gauge invariant approach to the construction of 

the analog of guiding center operator in homogeneous/inhomogeneous magnetic fields. On the 

face of it, the presented approach is unnecessary and superfluous, as e.g. there exists common 

consensus that in the discussed “axial” problems (e.g., 𝑩(𝒓) = 𝐵0𝑥𝒛̂ 𝐿⁄ ) we must choose the wave 

function in the form Ψ(𝒓) = 𝜑(𝑥)exp (𝑖𝜆𝑦) simply relying on symmetry considerations. We ar-

gue that in accord with presented above considerations this is not so simple. Such naïve approach 

is valid only for the “proper” chosen gauge. The phase dependence of the wave function factor is 

determined by the eigenfunction of the additional time independent operator –pseudo-momentum, 

which in its turn is explicitly dependent upon the particular choice of the vector potential form. 

The steps to be taken to obtain the “proper” equations for the wave functions are as follows. First, 

we are free to choose any form of the vector potential fulfilling condition 𝑟𝑜𝑡 𝑨(𝒓) = 𝑩(𝒓) ap-

propriate to the considered magnetic field spatial distribution. Second, we define the conserved 

pseudo-momentum operator (or its component) dependent upon chosen gauge but nevertheless by 

the definition gauge invariant [57]. Fixing the phase of the exponential factor by imposing the 

restriction that the sought wave functions are simultaneously the eigenfunctions of the pseudo-

momentum, we arrive at last to the gauge invariant equation. It is easy to verify that following 

these steps we always obtain the solutions which can be mapped in different gauges upon each 

other by traditional Weyl gauge transformation. 
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