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We study theoretically fundamental Coulomb-correlated complexes: neutral and charged exci-
tons, also known as trions, in transition metal dichalogenides monolayers. We focus on the situation
where one of the electrons occupies excited, high-lying, conduction band characterized by a negative
effective mass. We develop the theory of such high-lying excitons and trions with negative effective
mass and demonstrate the key role of the non-parabolicity of the high-lying conduction band disper-
sion in formation of the bound exciton and trion states. We present simple, accurate and physically
justified trial wavefunctions for calculating the binding energies of Coulomb-bound complexes and
compare the results of variational calculations with those of a fully numerical approach. Within
the developed model we discuss recent experimental results on observation of high-lying negative
effective mass trions [K.-Q. Lin et al., Nat. Commun. 13, 6980 (2022)].
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I. INTRODUCTION

Atomically thin transition-metal dichalcogenides
(TMDC) provide a versatile platform for two-dimensional
(2D) materials with tailored functionalities and fasci-
nating physical properties [1]. These semiconducting
materials demonstrate outstanding optical properties –
absorption, reflection, emission – due to excitons and
trions, the Coulomb-correlated states of electrons and
holes [2–4], see Refs. [5–7] for review. Controllable
light-matter interaction [8–10], ability to form van der
Waals heterostructures [11], high and tunable exciton
binding energies of the excitons and trions in 2D semi-
conductor based systems [12–17] make these materials
prime candidates for nanophotonics applications [18–20].

Usually, excitons, bound electron-hole pairs, and tri-
ons, three particle complexes formed of the electron and
two holes or two electrons and a hole, involve charge car-
riers from the bottom conduction and topmost valence
band [21–23]. In specific cases, like bulk cuprous ox-
ide, several excitonic series are observed that originate
from closely-lying bands [24, 25]. In this respect, TMDC
monolayers (MLs) show unique properties. In recent ex-
periments, the high-lying excitons and trions were ob-
served [26, 27] that originate from the topmost valence
band holes and electrons in the excited conduction band.
Corresponding optical transitions lie in the ultraviolet
spectral range and can be advantageous for various ap-
plications.

Interestingly, the effective mass of the electron in this
excited conduction band is negative. It makes energy

spectrum and structure of the Coulomb-correlated com-
plexes different from that in conventional situation where
the effective masses of the involved charge carriers are
positive. Such situation calls for special investigation.

Here, motivated by recent experiments [26, 27], we
study the excitons and trions where one of the charge
carriers, namely, the electron, has a negative effective
mass. We demonstrate the importance of non-parabolic
k4 terms in the high-lying electron dispersion and present
numerical and analytical results of the binding energies
and wavefunctions of excitons and trions with negative-
mass electrons.

The paper is organized as follows: After brief intro-
duction (Sec. I) we formulate the model in Sec. II and
present the results for the excitons in Sec. III and tri-
ons in Sec. IV. Main results are summarized and a brief
outlook is given in Sec. V.

II. MODEL

We consider a simplified band structure of the TMDC
monolayer that includes the topmost valence band vb,
bottom conduction band cb and the high-lying conduc-
tion band cb+2 in notations of Refs. [6, 26–28]. Figure 1
shows schematics of the band structure in the vicinity
of the K± points of the Brillouin zone where the direct
band gap of TMDC monolayers is realized. The disper-
sion of the bands nearest conduction and valence bands
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(vb and cb) is taken in the isotropic parabolic form:

Evbk = −Eg −
~2k2

2mh
, Ecbk =

~2k2

2m1
, (1)

while in the dispersion of the high-lying cb+2 we take into
account also a non-parabolic contribution in the form of
the k4 term:

Ecb+2
k = E′g +

~2k2

2m2
+Bk4. (2)

Here k is the electron wavevector, Eg > 0 and E′g > 0
are the band gaps between cb ↔ vb and cb + 2 ↔ cb,
respectively, m1 > 0 and m2 < 0 are, respectively, the
electron effective masses in the bottom conduction band
and high-lying band, and mh > 0 is the effective mass
of the valence band hole; the electron effective mass in
vb mvb = −mh < 0. The coefficient B > 0 describes
the non-parabolic contribution to the dispersion of the
high-lying electron.

Note that in absence of k4 terms the energy Ecb+2
k

can become lower than Ecbk making the band notations
meaningless, while Bk4 renders the problem well-defined.
Thus, the dispersions (1) and (2) with B > 0 repre-
sent a minimum model that allows us to have a con-
sistent picture of the high-lying excitons and trions. As
a result of the interplay of the k2 and k4 the disper-
sion in the cb + 2 band has a loop (ring) of exterma
at k∗ =

√
−~2/(4m2B) demonstrating a mexican hat

shape. In real TMDC monolayers characterized by the
three-fold rotational symmetry, the dispersion of the
charge carriers is anisotropic in the plane and, instead
of the extrema loop, three minima can be formed. We
briefly discuss the effects of anisotropy in the end of the

Figure 1. Schematic illustration (not to scale) of the band
structure of TMDCmonolayer in the vicinity of theK± points
of the Brillouin zone. The topmost valence, bottom and high-
lying conduction bands are denoted as vb, cb, and cb+ 2, re-
spectively. Arrows denote the electron spin orientation; states
with the opposite spin orientations are not shown for clarity.

paper. Note that a non-parabolicity in the nearest cb and
vb is related to the interband k · p-mixing [29, 30], see
also Ref. [31] for a comparative study between a single
and multiband approaches; we disregard such effects for
simplicity.

To describe the excitons and trions we need to intro-
duce the Coulomb interaction. We use it in the Rytova-
Keldysh form [32, 33]

Vij(ρ) =
πqiqj
2r0κ

[
H0

(
ρ

r0

)
−Y0

(
ρ

r0

)]
. (3)

Here qi,j are the charges of the corresponding carriers
(qe = e < 0 is the electron charge, qh = −e > 0 is
the hole charge), κ is the effective dielectric constant
of the environment, ρ is the interparticle distance, r0
is the dielectric screening radius, H0(x) and Y0(x) are
the Struve and Neumann functions. At large distances
and/or small screening radius ρ/r0 � 1 the potential en-
ergy takes the Coulomb form ∝ 1/ρ, while at small dis-
tances and/or large screening radius the potential is loga-
rithmic function of the distance ∝ ln ρ/r0. The potential
energy in the form of Eq. (3) is adequate for describing
the Coulomb interaction in atomically thin semiconduc-
tors, see Refs. [13, 15, 17, 34–36] for details.

III. EXCITONS

We start with the theory of the two-particle bound
states – high-lying excitons (HX) – formed from the va-
lence band hole and high-lying electron. The effective
Hamiltonian describing the relative motion of the elec-
tron and hole in the HX reads

H = − ~2

2µ2
∆ +B∆2 + Veh(ρ), (4)

where µ2 is the high-lying electron and hole reduced
mass,

µ1 =
m1mh

m1 +mh
, µ2 =

m2mh

m2 +mh
, (5)

and ∆ is the Laplace operator acting on a wavefunction
ψ(ρ) with the relative electron-hole coordinate ρ. Since
the contribution Eg + Eg′ is excluded from the Hamil-
tonian (4) the total energy of the high-lying exciton is
Eg + Eg′ − Eb,HX where Eb,HX is the binding energy.

We recall that in the parabolic approximation, B = 0,
the HX can be bound only if µ2 > 0 for attractive
Veh(ρ) < 0: Indeed, the inversion of the sign of the mass
can be formally considered as an inversion of the inter-
action potential energy sign [37]. Hence, for µ2 < 0 and
Veh < 0 a bound HX state is absent. By contrast for
positive µ2 > 0, the binding energy is given by

Eb,HX =
2µ2e

4

κ2~2
ζ

(
r0µ2e

2

κ~2

)
, µ2 > 0, (6)
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where the function 0 6 ζ(x) 6 1 takes into account the
dielectric screenig effect: At x→ 0 the function ζ(x)→ 1
recovering the two-dimensional hydrogen model and at
x→∞ we have ζ(x) ∼ ln(x)/x [6, 33]. Interestingly, for
the negative reduced mass a two-electron state can be
bound despite the Coulomb repulsion between them [37],
see also Ref. [38] where the electron pairing due to the
spin-orbit interaction is discussed. Note that if µ2 > 0,
butm2 < 0 the HX translational massmHX = m2+mh <
0, cf. Ref. [39].

The presence of non-parabolic contribution to the dis-
persion B > 0 makes HX bound for any sign and value
of the reduced mass µ2, and, hence, for any value of
the high-lying electron effective mass m2, both positive
and negative. To illustrate it we consider, instead of a
Coulomb potential, a shallow short-range potential V0(ρ)

Veh(ρ) < V0(ρ) < 0. (7)

The presence of the bound state for V0 naturally implies
the bound state for a deeper (Rytova-Keldysh) potential.
For a shallow short-range interaction potential we trans-
form the Schödinger equation Hψ = Eψ to the k-space
and approximate the potential energy as∑

k′

V0;k−k′ψk′ ≈ V0;0
∑
k′

ψk′ ,

where V0,q =
∫
d2ρ V0(ρ) exp (iqρ), ψk =∫

d2ρψ(ρ) exp (ikρ) are the Fourier-components of
the potential energy and wavefunction, respectively, and
the normalization area is set to unity; V0,0 = V0,q=0 < 0.
Thus,

ψk ∝
1

E − Ek
, (8)

and the Schrödinger equation reduces to an algebraic
equation; the bound state energy is found from the self-
consistency requirement (see Supplementary Materials
for Ref. [27]):

V0;0
∑
k

1

E − Ek
= 1, Ek = Ak2/2 +Bk4, (9)

with A = ~2/µ2. In the case of A > 0 we obtain the
bound-state energy in the form

E = −A
2

4B

1

1− exp (−A/V0;0)
≈ −A

2

4B
eA/V0;0 , (10)

where the approximate equality holds for V0;0 → 0. The
binding energy is Eb = −E . In this situation we recover
exponentially shallow bound state as expected for two-
dimensional system with parabolic dispersion [40]. The
non-parabolicity terms play a role of the high-momentum
cut-off and determine the prefactor in the exponent in
Eq. (10).

At A < 0 (negative reduced mass) Eq. (9) can be trans-
formed to the following form

arctan
A√

−16BE −A2
=
π

2
+

√
−16BE −A2

2V
. (11)

(a)

(b)

Figure 2. (a) Relative motion dispersion, Eq. (9) (dark red),
and the wavefunction absolute value squared, Eq. (8) (dark
blue), in the k-space. (b) Absolute value squared of the rela-
tive motion wavefunction in the real space shown in the log-
linear scale to make oscillations more pronounced. For illus-
trative purposes we use arb. units. The oscillations in the
real space have the period of approximately 2π/k∗.

The minimum of the relative motion dispersion is in this
case E∗ = −A2/(16B) corresponding to

k∗ =

√
− A

4B
. (12)

Thus the binding energy is Eb = E∗ − E . One can check
that Eq. (11) has solutions with E < 0 for any relation
between A and B in the reduced motion dispersion. In
the important limits,

Eb =


(πV0,0)2

4B
, |V0,0| � |A|,

(πV0,0)2

16B
+
AV0,0

4B
, |V0,0| � |A|.

(13)

For the negative reduced mass case the bound state is
formed in the vicinity of the minima loop in the k-space
with the relevant wavevectors k ≈ k∗, Fig. 2(a). Thus,
as shown in Fig. 2(b), the relative motion wavefunction
oscillates in the real space. Another specific feature of
the wavefunctions is their behavior at ρ → 0: ψ(ρ) =
const + ρ2 ln ρ owing to the presence of k4 terms in the
dispersion. This function is sufficiently smooth at ρ→ 0
in contrast to the of the parabolic dispersion where the
wavefunction for the shallow short-range potential well
diverges as ln ρ.
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The analysis performed above forms a basis for calcu-
lating the excitonic states in the case of the Coulomb,
−e2/(κρ), and Rytova-Keldysh potential (3) and allows
us to formulate convenient trial functions to calculate the
high-lying exciton binding energy. Namely, the ground
state wavefunctions both for µ2 > 0 and µ2 < 0 should
behave as const + ρ2 at ρ → 0, otherwise divergence oc-
curs due to k4 terms and, for µ2 < 0, the wavefunc-
tion should oscillate in space. Naturally, the bound state
wavefunctions should decay at ρ → ∞. We use the fol-
lowing trial functions for the HX

ψ±HX(ρ; a, b) ∝

{
exp (−a

√
b2 + ρ2), µ2 > 0,

J0(aρ) exp (−bρ2), µ2 < 0,
(14)

with a and b being the variational parameters and su-
perscript ± corresponds to the sign of µ2; hereafter the
normalization factors are omitted. Both functions are
smooth at ρ → 0, the wavefunction for µ2 < 0 oscil-
lates as a function of ρ. We used the Bessel function
J0(ρ) as it is convenient oscillating function with de-
caying amplitude with increase in ρ, which reasonably
matches the oscillating behavior of the exact solution (8)
in the short-range interaction model with variational pa-
rameter a controlling the period of oscillations, see also
Ref. [41] where detailed analytical theory of the Coulomb-
bound states in two-dimensional systems with the mex-
ican hat dispersion is presented. We have checked ac-
curacy of these trial functions by comparing the exciton
energy found by minimizing the expectation value of the
Hamiltonian (4) with the results of numerical diagonal-
ization of Hamiltonian matrix using the non-orthogonal
basis of Gaussian functions φi(ρ) = exp(−αiρ2). Here

Figure 3. Exciton binding energy as a function of the high-
lying electron-hole reduced mass calculated for the Coulomb
potential (r0 = 0 in Eq. (3)) using the variational approach
with the trial functions (14) (dots) and numerical diagonal-
ization (solid lines).

Figure 4. Exciton binding energy as function of the parameter
B∗ = Be4µ3

1/(κ2~6) characterizing the non-parabolicity of
the dispersion.

the parameters αi were taken as geometric progression.
The total number N of basic functions and specific val-
ues of αi were chosen to optimize both the numerical
convergence and computational costs [42–44], typically,
N ≈ 50− 100 was sufficient for excitons, further increase
of N did not affect the result. Note, that with the cho-
sen basis we can obtain only exciton ground state and
axially-symmetric (s-shell) excited states. In Fig. 3 the
dotted and solid lines show Eb,HX as a function of µ2 for
different values of B calculated variationally (dots) and
numerically. Here and in what follows we use

E = µ1e
4/(κ2~2), a = κ~2/(µ1e

2), (15)

as units of the energy and length. Accordingly, the non-
parabolic term in the dispersion is given by the dimen-
sionless value B∗ = Be4µ3

1/(κ2~6). Overall, very good
agreement between the two approaches is seen. The ex-
citon state is bound for any µ2 (positive or negative) in
agreement with the analysis above.

Figure 4 shows the HX binding energy as a function
the non-parabolicity parameter B for several values of
µ2: solid lines correspond to µ2 > 0 and dashed lines to
µ2 < 0. For large B∗ the HX binding energy approaches
the asymptotic behavior

Eb,HX = C E

(B∗)1/3
, (16)

with the numerical coefficient C ≈ 0.8. The B−1/3 power
law dependence follows from the dimensional arguments
taking into account that for a bound state the mean
values of kinetic and potential energies of the exciton
should be of the same order of magnitude and the co-
efficient C has been found by variational approach with
the Gaussian trial function. At small B the HX bind-
ing energy saturates: for µ2 > 0 it reaches the value
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Figure 5. Excitonic series for Coulomb potential (r0 = 0 in
Eq. (3)), panel (a), and for the screened potential (r0/a = 1),
panel (b). s-shell exciton binding energies as a function of the
principal quantum number n are shown.

for the parabolic dispersion, Eq. (6) with a correction in
the form ∼ (µ2/µ1)EB∗ lnB∗. The lnB∗ factor arises
because, strictly speaking, the first-order perturbation
theory contribution related to the quantum mechanical
average of Bk4 term logarithmically diverges for hydro-
genic wavefunction. Interestingly, for µ2 < 0 the Eb,HX

also approaches a constant value that depends on µ2. In
this case, for sufficiently small B the radial motion takes
place in the vicinity of the minimum in the dispersion
with k ≈ k∗ where the dispersion is parabolic and does
not depend on B. Furthermore, the motion is essentially
one-dimensional. As a result, the radial wavefunction of
the exciton takes form of the bottom line in Eq. (14) with
a = k∗ [41], resulting in the spatial oscillations with the

period ∼ 2π/k∗, see Fig. 2. Hence, Eb,HX = Λ|µ2/µ1|E,
where Λ is a logarithmic factor that depends on the de-
tails of dispersion and screening of the potential. It is in
agreement with results for the Coulomb problem in the
two-dimensional electron gas with strong spin-orbit cou-
pling [45] and in the bilayer graphene [41] where similar
dispersion can be realized [46].

Finally, Fig. 5 shows the binding energies of HX ground
and excited states for two values of µ2/µ1 = ±1 and
three values of B∗. The figure shows the energies of
axially-symmetric (s-shell) HX states with the princi-
pal quantum numbers up to n = 10. The effect of
non-parabolicity is clearly seen. Deviations from the 2D
hydrogenic model in the case of the Coulomb potential
[black squares in Fig. 5(a)] are clearly visible. Particu-
larly, for positive µ2 and B 6= 0 the binding energies of
excitonic states are smaller than for the parabolic disper-
sion: It is because the dispersion is steeper and hence the
kinetic energy contribution which reduces the binding en-
ergy is larger. For negative µ2 the exciton energies are
higher than for the parabolic case with positive µ2, this
is because the dispersion for small k . k∗ is smoother.

IV. TRIONS

Now we study the high-lying trions, the three particle
complexes consisting of two holes occupying the topmost
valence bands and one electron in the high-lying cb + 2
band (HX+ trion) or a hole in vb and two electrons one of
those occupying the conduction band cb and another one
occupying the high-lying band cb + 2 (HX− trion). We
consider here only symmetric trions where the envelope
function is symmetric with respect to the permutations
of identical particles while the correspondig two-particle
Bloch function is antisymmetric with respect to the per-
mutations [15]; these states are optically active at low
carrier densities. Note that antisymmetric trions can also
manifest themselves in the optical response but their os-
cillator strength is proportional to the second power of
the free carrier density [47]. Similarly to the band edge
trions where are two HX− states: intravalley (or so-called
singlet) and intervalley (or triplet) ones where two elec-
trons are, respectively, in the same valley, or in the dif-
ferent valleys [15, 48–50] resulting in the fine structure of
the HX−. Since the fine structure of high-lying negative
trion is related to the short-range part of the electron-
electron interaction [cf. Ref. [15]] and, consequently, the
splitting between the intra- and intervalley states is by
far smaller than the trion binding energy (note that this
splitting has not been observed in Ref. [27]), we disregard
the difference between the intra- and intervalley trions in
what follows.
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A. Parabolic dispersion

It is instructive to start with the parabolic dispersion
model neglecting Bk4 terms in the cb+ 2 dispersion. Let
us consider first the HX+ state. The relative motion of
the holes with respect to an electron is governed by the
Hamiltonian

HHX+ = − ~2

2µ2

(
∆1 + ∆2 +

2σ2
σ2 + 1

∇1∇2

)
+ Vhh(ρ1 − ρ2) + Veh(ρ1) + Veh(ρ2), (17)

where ρi are the relative coordinates of two holes (i =
1, 2) with respect to the electron, ∇i and ∆i are the
gradient and Laplace operators acting on functions of ρi,
µ2 is the reduced mass of the high-lying electron and a
hole, Eq. (5), and σ2 = mh/m2 is the hole-to-electron
mass ratio, cf. Refs. [12, 15, 51]. We recall that for the
neutral HX to be bound µ2 should be positive in the
parabolic approximation, see Eq. (6). In this case HX+

is bound as well, since Eq. (17) describes the positive-
mass situation, see [15] for details. Its binding energy is
a fraction of the high-lying exciton binding energy

Eb,HX+ = χEb,HX, (18)

where the coefficient χ ∼ 0.1 depends on the screening
radius r0 and effective masses via µ2 and σ2.

The situation with HX− is more involved. The relative
motion Hamiltonian within a parabolic approximation
takes the form

HHX− = − ~2

2µ1
∆1 −

~2

2µ2
∆2 −

~2

mh
∇1∇2

+ Vee(ρ1 − ρ2) + Veh(ρ1) + Veh(ρ2). (19)

In this case ρi are the relative coordinates of two elec-
trons with respect to a hole. Taking into account that
the HX− envelope function is symmetric with respect to
permutation of electrons

ψHX−(ρ1,ρ2) = ψHX−(ρ2,ρ1),

the Hamiltonian can be mapped to the symmetrized one
(cf. Eq. (17) in supplement to Ref. [27])

H = − ~2

2µ̄

(
∆1 + ∆2 +

2σ̄

σ̄ + 1
∇1∇2

)
+ Vee(ρ1 − ρ2) + Veh(ρ1) + Veh(ρ2), (20)

with the renormalized values of the parameters

1

µ̄
=

1

2

(
1

µ1
+

1

µ2

)
, σ̄ =

µ̄

mh − µ̄
=

2m1m2

mh(m1 +m2)
.

(21)
Similarly to the case of the HX+ one can find square-

integrable eigenfunction of Hamiltonian (20). However,
it does not automatically mean that the corresponding

negative high-lying trion is bound, since its energy can be
above the energy of a neutral HX energy. Formally this is
because such a trion is bound with respect to the exciton
with the reduced mass µ̄ [with corresponding “effective”
binding energy Ēb,HX− = 2χµ̄e4/(~κ)2, cf. Eq. (18)]
rather than HX with the reduced mass µ2. Following
Suppementary Materials to Ref. [27] we obtain for the
HX− binding energy

Eb,HX− =
2µ2e

4

~2κ2

[
µ̄

µ2
(1 + χ)− 1

]
. (22)

The binding energy should be positive, thus, in addition
to µ2 > 0, the following conditions should hold0 < m2 < m∗ ≡

m1mh(1 + 2χ)

mh − 2χm1
, if m∗ > 0,

0 < m2 or m2 < m∗, if m∗ < 0.

(23)
Thus, for negativem2 the condition for HX− to be bound
requires |m2| to be sufficiently large. This condition can
be understood from the following qualitative arguments:
to form a bound trion state the HX considered as a rigid
particle should bind with the cb-electron. The interaction
between HX and electron is typically attractive due to
both the exchange and polarization contributions [52–54].
Hence, corresponding reduced mass of HX and electron
should be positive yielding m2 < −m1 −mh < 0 where
we made use of the fact that the translational mass of the
HX is mHX = m2 + mh < 0 (for µ2 > 0) and µe−HX =
m1mHX/(m1 +mHX) > 0.

B. HX− with non-parabolic dispersion

Next we address the effects of cb+ 2 band nonparabol-
icity on trions. We focus here mainly on the negatively
charged high-lying trion, because this situation is par-
ticularly interesting due to an interplay of the exciton
and trion binding for µ2 < 0. We perform two types of
calculations of the HX− ground state.

The first type of calculations is variational. In the
variational calculation we use symmetrized combinations
of HX trial functions, Eq. (14) in the form

ψHX−(ρ1, ρ2; a1, a2, b1, b2) ∝ ψαHX(ρ1; a1, b1)ψβHX(ρ2; a2, b2)

+ {1↔ 2}, (24)

where ai, bi (i = 1, 2) are the variational parameters,
and α, β = ± determine the particular form of the high-
lying exciton wavefunction in Eq. (14): For µ2 > 0 we
use α = β = +, while for µ2 < 0 we use α = + and
β = −. In the latter case such sign convention allows
us to take into account that one of the electrons in the
HX− (from cb) has a positive effective mass and the other
one (from cb+ 2) has a negative mass such that reduced
mass µ2 < 0. We have also checked a trial function with
both α = β = − for trions with the negative reduced
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mass, µ2 < 0, and the resulting energies were very close
to obtained with function with α = + and β = −.

The second type of calculations is used to test the vari-
ational approach and provide more accurate numerical
framework for determining the high-lying trion states.
In this calculation the HX− wavefunction is decomposed
as

ψHX−(ρ1,ρ2)

=
∑
i,j,k

Cijk

(
e−αiρ

2
1−βjρ

2
2 + e−αiρ

2
2−βjρ

2
1

)
e−δk|ρ1−ρ2|2 ,

(25)

where αi, βj , δk are parameters whose values were taken
as geometric progression. Similarly to calculation of the

Figure 6. HX− binding energy as a function of the high-lying
electron-hole reduced mass calculated for the Coulomb poten-
tial (a) and for screened potential (b). Dotted lines in (a) show
the results of variational calculation and solid lines [in panels
(a) and (b)] show the results of full numerical approach.

Figure 7. High-lying trion binding energy as a function of
non-parabolicity parameter B∗.

high-lying excitons presented above, the total number of
basic functions and specific values of αi, βj , δk were cho-
sen for the best combination of convergence and compu-
tational costs. The coefficients Cijk were determined by
minimizing the total energy. The wavefunction (25) pro-
vides rather accurate form of the radial wavefunctions for
relative motion of electrons and, importantly, takes into
account, via the factor exp (−δk|ρ1 − ρ2|2), correlation
between the electron motion.

Figure 6 shows the dependence of the HX− binding
energy on the high-lying electron to hole reduced mass
µ2 calculated for several values of the non-parabolicity
parameter B. Solid lines show the results of the full
numerical calculation, while dotted lines in Fig. 6(a)
demonstrate the results of the variational approach with
the trial functions (24). The variational calculation
gives reasonable estimate of the binding energy being by
10% . . . 30% lower than the “exact” value found using the
wavefunction (25). We have also performed the numeri-
cal calculation with the function in the form of Eq. (25)
but without correlation factors, i.e., setting δk ≡ 0.
These results turn out to be almost indistinguishable
from the results of variational calculation, which justifies
the choice of the trial functions (24) for the variational
calculation.

For negative µ2 the larger is |µ2|, the larger is the high-
lying trion binding energy. For positive µ2 a maximum
in the dependence of Eb,HX− on µ2 is seen for small B.
Qualitatively, this maximum can be understood within
the framework of the analytical expression for the HX−
binding energy in the parabolic approximation, Eq. (22).
It appears as a result of an interplay of two terms: the
first, positive term, weakly increases with increase in µ2,
while the absolute value of the second, negative term,
increases linearly with µ2. This maximum becomes more
pronounced in the case of the screened Rytova-Keldysh
potential, Fig. 6(b).
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The dependence of the high-lying trion binding energy
on the non-parabolic contribution to the dispersion char-
acterized by the parameter B is shown in Fig. 7. For
small B (B∗ � 1) the HX− binding energy increases with
increase in B and strongly depends on µ2. Hence, the
presence of k4 terms in the high-lying electron dispersion
makes trions more stable. For large non-parabolic term
(B∗ � 1) the Eb,HX− decreases with increasing B regard-
less the value of µ2 following the same B−1/3 power law
as for the HX, Eq. (16) with a different coefficient yield-
ing relatively large high-lying trion-to high-lying exciton
binding energy ratio

Eb,HX−

Eb,HX
≈ 0.3. (26)

To summarize, the presence of k4 terms in the high-
lying electron dispersion significantly expand the range
µ2/µ1 where the high-lying HX− trion is bound. As for
positive trion, HX+ it is bound already in the parabolic
approximation and our estimates show that it remains
bound in the presence of non-parabolic contributions to
the dispersion.

C. Discussion of the results

Let us now briefly discuss the obtained results in view
of experimental data reported in Ref. [27]. For rough es-
timates we note that in TMDC monolayers the valence
band hole and the conduction band (cb) electron effec-
tive masses are about the same, mh ≈ m1. The electron
effective mass in cb+2 conduction band has a similar ab-
solute value, but it is negative. Estimates based on the
DFT approach presented in Ref. [26] show that for WSe2
monolayers |m2| ≈ 0.46m0 > mh ≈ 0.36m0 with m0

being the free-electron mass, making the reduced mass
µ2 ≈ 1.66m0 > 0 in Eq. (5). Additional evidence for
|m2| > mh follows from the strong phonon progression of
HX observed in Ref. [26] indicating that the translational
mass of the high-lyign exciton is negative. Thus, neutral
high-lying exciton, HX, is bound even if Bk4 terms are
neglected in the cb+ 2 dispersion. For such parameters,
however, m∗ > 0 in Eq. (23) (for m1 ≈ mh and rea-
sonable χ ≈ 0.2 the m∗ ≈ 2.3m1). Hence, according
to Eq. (23) the HX− is not bound in the parabolic ap-
proximation. Thus, we come to the conclusion that Bk4
contribution should be sizeable to make HX− bound.

Note that experimentally observed HX− binding ener-
gies are ≈ 43 meV for WSe2 monolayer and ≈ 21 meV for
MoSe2 monolayer [27]. In the former case it is slightly
larger than the band-edge trion, X−, binding energy,
while in the latter case it is slightly smaller than that
of X−. Depending on µ2/µ1 and B the HX− binding en-
ergy can be on the order of 10% . . . 25% of the HX bind-
ing energy, thus, somewhat increased values of Eb,HX−

compared to Eb,X− can be related to (i) enhancement
of the Eb,HX due to rather large µ2/µ1 ≈ 6 . . . 10 for the

estimated parameters and (ii) to large B∗ where, as men-
tionned above, the trion-to-exciton binding energy ratio
turns out to be quite large, Eq. (26).

In this theoretical paper we abstain from further anal-
ysis of the experimental data and more detailed com-
parison of the calculations with experiment. The main
reason is that the dispersion in cb+ 2 band is quite com-
plicated [26, 28] and contains, in addition to simplified
Eq. (2), anisotropic terms. Also, experimental data on
high-lying excitons binding energy are not available to
the best of our knowledge. Still our theoretical results
in combination with experimental data [27] indicate im-
portance of the non-parabolic terms in the high-lying
electron dispersion for formation of the three-particle
Coulomb complexes.

V. CONCLUSION AND OUTLOOK

To conclude, we have developed the theory of high-
lying excitons and trions in two-dimensional semiconduc-
tors. Such Coulomb-bound complexes involve one elec-
tron in the excited conduction band with the negative ef-
fective mass and a non-parabolic dispersion. We have de-
veloped (i) variational method for calculating such com-
plexes with simple and physically justified trial functions
and (ii) the efficient and accurate numerical approach
based on decomposition of the wavefunctions of Gaus-
sians. We have demonstrated the importance of the band
non-parabolicity for formation of the high-lying excitons
and trions. In particular, for negative reduced mass the
presence of k4 terms in the high-lying electron dispersion
makes exciton bound and strongly enhances the range of
stability of the negatively charged high-lying trions. Our
estimates show that the high-lying trion binding energies
can be in the range of 10% . . . 30% of the high-lying ex-
citon binding energy, i.e., on the order of several tens of
meV for transition-metal dichalcogenide monolayers.

The developed theory is not limited to the monolayer
transition-metal dichalcogenides. In the gapped bilayer
graphene the dispersion contains the mexican hat fea-
tures both in conduction and valence bands [46] and
tunable excitons are observed in this material [55]. In
several other material platforms, including few-layer Ga-
and In-monoseledines and monosulfides [56] the disper-
sion with a ring of extrema in the valence band. Similar
situation is probably realized in two-dimensional hexag-
onal BN [57, 58]. In this respect, we can also mention
bulk GaP with the camel’s back dispersion [59, 60]. Im-
portantly, dispersion engineering, e.g., in moire lattices
can be used to realize the non-parabolic dispersion with
an extremum ring. In this regard, developed theoretical
approaches will be helpful for studying the fundamen-
tal quasiparticles, excitons and trions, in a wide range of
material systems.
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Nanophotonics with 2d transition metal dichalcogenides.
Opt. Express, 26(12):15972–15994, 2018.

[21] E. F. Gross and N. A. Karrjew. Light absorption by
cuprous oxide crystal in infrared and visible part of the
spectrum. Dokl. Akad. Nauk SSSR, 84:471, 1952.

[22] E. I. Rashba and M. D. Sturge, editors. Excitons. North-
Holland Publishing Company, 1982.

[23] E. L. Ivchenko. Optical spectroscopy of semiconductor
nanostructures. Alpha Science, Harrow UK, 2005.

[24] E F Gross. Excitons and their motion in crystal lattices.
Soviet Physics Uspekhi, 5(2):195, 1962.

[25] T. Kazimierczuk, D. Frohlich, S. Scheel, H. Stolz, and
M. Bayer. Giant Rydberg excitons in the copper oxide
Cu2O. Nature, 514(7522):343–347, 2014.

[26] Kai-Qiang Lin, Chin Shen Ong, Sebastian Bange,
Paulo E. Faria Junior, Bo Peng, Jonas D. Ziegler, Jonas
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Jaroslav Fabian, Viktor Zólyomi, Neil D Drummond, and
Vladimir Fal’ko. k · p theory for two-dimensional transi-



10

tion metal dichalcogenide semiconductors. 2D Materials,
2(2):022001, 2015.

[29] Maxim Trushin, Mark Oliver Goerbig, and Wolfgang
Belzig. Model prediction of self-rotating excitons in two-
dimensional transition-metal dichalcogenides. Phys. Rev.
Lett., 120:187401, 2018.

[30] N. V. Leppenen, L. E. Golub, and E. L. Ivchenko. Exci-
ton oscillator strength in two-dimensional Dirac materi-
als. Phys. Rev. B, 102:155305, 2020.

[31] M. Van der Donck, M. Zarenia, and F. M. Peeters. Ex-
citons and trions in monolayer transition metal dichalco-
genides: A comparative study between the multiband
model and the quadratic single-band model. Phys. Rev.
B, 96:035131, 2017.

[32] N. S. Rytova. Screened potential of a point charge in a
thin film. Proc. MSU, Phys., Astron., 3:18, 1967.

[33] L. V. Keldysh. Coulomb interaction in thin semiconduc-
tor and semimetal films. JETP Lett., 29:658, 1979.

[34] Pierluigi Cudazzo, Ilya V. Tokatly, and Angel Rubio. Di-
electric screening in two-dimensional insulators: Implica-
tions for excitonic and impurity states in graphane. Phys.
Rev. B, 84:085406, 2011.

[35] Alexey Chernikov, Timothy C. Berkelbach, Heather M.
Hill, Albert Rigosi, Yilei Li, Ozgur Burak Aslan,
David R. Reichman, Mark S. Hybertsen, and Tony F.
Heinz. Exciton binding energy and nonhydrogenic
Rydberg series in monolayer WS2. Phys. Rev. Lett.,
113:076802, 2014.

[36] Dinh Van Tuan, Min Yang, and Hanan Dery. Coulomb
interaction in monolayer transition-metal dichalco-
genides. Phys. Rev. B, 98:125308, 2018.

[37] E. F. Gross, V. I. Perel’, and R. I. Shekhmamet’ev. In-
verse Hydrogenlike Series in Optical Excitation of Light
Charged Particles in a Bismuth Iodide (BiI3) Crystal.
JETP Lett., 13:229, 1971.

[38] Yasha Gindikin and Vladimir A. Sablikov. Spin-orbit-
driven electron pairing in two dimensions. Phys. Rev. B,
98:115137, 2018.

[39] Al.L. Efros and B.L. Gelmont. Exciton dispersion law
in diamond-like semiconductors. Solid State Communi-
cations, 49(9):883 – 884, 1984.

[40] L. D. Landau and E. M. Lifshitz. Quantum Mechanics:
Non-Relativistic Theory. Butterworth-Heinemann, Ox-
ford, 1977.

[41] Brian Skinner, B. I. Shklovskii, and M. B. Voloshin.
Bound state energy of a coulomb impurity in gapped bi-
layer graphene. Phys. Rev. B, 89:041405, 2014.

[42] A. Baldereschi and N.O. Lipari. Spherical model of shal-
low acceptor states in semiconductors. Phys. Rev. B,
8:2697, 1973.

[43] J. Thewes, J. Heckötter, T. Kazimierczuk, M. Aßmann,
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