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Excitons in monolayer transition metal dichalcogenide are endowed with intrinsic valley-orbit
coupling between their center-of-mass motion and valley pseudospin. When trapped in a confinement
potential, e.g., generated by strain field, we find that intralayer excitons are valley and orbital angular
momentum (OAM) entangled. By tuning trap profile and external magnetic field, one can engineer
the exciton states at ground state, and realize a series of valley-OAM entangled states. We further
show that the OAM of excitons can be transferred to emitted photons, and these novel exciton
states can naturally serve as polarization-OAM locked single photon emitters, which under certain
circumstance become polarization-OAM entangled, highly tunable by strain trap and magnetic field.
Our proposal demonstrates a novel scheme to generate polarization-OAM locked/entangled photons
at nanoscale with high degree of integrability and tunability, pointing to exciting opportunities for
quantum information applications.

Single photon emitters play a key role in quantum op-
tics and quantum information technologies [1–5]. Pho-
tons carrying orbital angular momentum (OAM) is of
particular importance for high-capacity quantum infor-
mation processing. Tremendous effort has been made for
generating photons with OAM in various platforms [6–
18], mostly relying on extra sophisticated phase trans-
formers. More interestingly, the locking or entanglement
between spin angular momentum (SAM) and OAM of
photons, with further increased entanglement dimension-
ality, can also be engineered using appropriate methods.
For example, this entanglement has recently been demon-
strated by passing photons through geometric phase
metasurface [19], or using deterministically positioned
quantum emitters combined with surface plasmon polari-
tons and spiral gratings [20]. On the whole, the schemes
for generating polarization-OAM locked/entangled pho-
tons are rather limited and mostly rely on sophisticated
experimental setup.

Nowadays, with the significant advances in transition
metal dichalcogenide (TMD), people have realized that
excitons in monolayer TMD as well as their heterostruc-
tures can serve as an intriguing platform for single pho-
ton emitters [21]. These systems enable selective con-
trol of exciton valley degree of freedom through cou-
pling with light polarization. In fact, single photon emit-
ters based on both monolayer and heterobilayer TMDs
are already realized [22–29]. With the versatile experi-
mental techniques to engineer desired exciton trap using
strain, e.g., by placing TMD on nanopillar, nanobubble
or nanosphere, the properties of single emitters based on
trapped excitons are highly controllable (see Fig. 1(b)).
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Figure 1. (a) Upper: dispersions of intralayer exciton with
valley-orbit coupling for δ = 0. Lower: textures of valley
pseudospin denoted by arrows of same color with correspond-
ing branch. (b) Monolayer TMDs on nanobubbles of different
aspect ratios, generating shallow or tight strain traps for ex-
citons. (c) Excitons at ground state of a shallow trap can
recombine and emit photons in state {|σ+,−1〉, |σ−, 1〉}; ex-
citons at ground state of a tight trap can emit photons either
in state {|σ+,−2〉, |σ−, 0〉} or {|σ+, 0〉, |σ−, 2〉}, tunable by
external magnetic field. {|σ+, l〉, |σ−, l + 2〉} denotes photon
state with OAM l (l + 2) in σ+ (σ−) polarization. Helical
wavefronts illustrate the nonzero OAM of these three differ-
ent polarization-OAM locked/entangled photons.

On the other hand, in heterobilayers, moiré potentials
can also provide an exciton trap, which possibly realize
a perfect array of quantum emitters based on moiré ex-
citons [30, 31]. TMD based single photon emitters have
the advantage of high integrability and photon extrac-
tion efficiency, which is especially desirable for quantum
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information applications.

Till now, photons from these TMD based single
photon emitters do not carry OAM, with only two
SAM/polarization states. Interestingly, there is an
unique property of intralayer exciton in monolayer TMD,
i.e., coupling between exciton valley pseudospin with
center-of-mass momentum [32, 33], originating from
electron-hole Coulomb exchange interaction. The valley-
orbit coupling has chirality of two, inducing entanglement
between valley pseudospin and OAM of excitons. Since
excitons in +K (−K) valley are interconvertable with
photons of σ+ (σ−) polarization, we find that, this valley-
orbit coupling can be exploited to couple SAM and OAM
of emitted photons. The three degrees of freedom of pho-
tons, i.e., SAM, OAM and temporal profile are entangled
consequently, reducing to SAM-OAM entanglement if the
temporal profile in two SAM channels are the same. In
the general case, we adopt the terminology “polarization-
OAM locking” for rigorousness. In particular, the emit-
ted photons by exciton ground state intrinsically carry
nonzero OAM in either polarization component, with-
out the need of extra phase transformers. Specifically,
we first show that when confined in a trap, e.g., gener-
ated by strain field, the exciton eigenstates are valley-
OAM entangled, and also OAM of these excitons can
be transferred to photons via radiative recombination.
So those excitons can naturally serve as single emitters
of photons with SAM and OAM locking/entanglement.
Our proposal provides an appealing candidate for realiz-
ing SAM-OAM locked/entangled single photon emitters,
and these emitters inherit the advantage of generic TMD
based emitters. Our results also have important impli-
cations for moiré trapped intralayer excitons in bilayer
TMDs, and we subsequently propose a realistic system
as a polarization-OAM locked single photon emitter ar-
ray based on trions in moiré potentials from twist hBN
substrate.

The key ingredient of our proposal relies on the intrin-
sic valley-orbit coupling of intralayer exciton in mono-
layer TMD [32, 33]. With electron-hole Coulomb ex-
change interaction, the center-of-mass momentum of in-
tralayer exciton is coupled with valley pseudospin. The
Hamiltonian describing the center-of-mass motion of in-
tralayer excitons in momentum space reads

Ĥ0 =
~2Q2

2m
+βQ+βQ (cos(2φQ)σx + sin(2φQ)σy)+δσz,

(1)
where Q is the exciton center-of-mass momentum with
magnitude Q, β is the valley-orbit coupling strength, re-
lated with the strength of Coulomb interaction, and δ is
the valley splitting induced by external magnetic field,
known as the valley Zeeman effect [34, 35]. m is the ex-
citon effective mass and Pauli matrices σi (i = x, y, z)

correspond to exciton valley pseudospin. As shown in
Fig. 1(a), this Hamiltonian gives rise to exciton disper-
sions with two branches, E±(Q) = ~2Q2/2m + βQ ±√
β2Q2 + δ2, with corresponding eigenstates χ± (Q) =(
e−iφQ ,±eiφQ

)T
/
√

2 when δ = 0. Without external
magnetic field (δ = 0), the upper branch is linear at small
Q, while the lower branch is parabolic (see Fig. 1(a)).

The form of eigenstates implies different valley pseu-
dospin textures locked with Q for two branches. In ad-
dition, when confined in an isotropic exciton trap, e.g.,
created by strain (see Fig. 1(b)), the exciton eigenstates
become valley-OAM entangled, as will be shown below.
Specifically, we consider a strain induced harmonic trap
with finite depth, which should be a reasonable approx-
imation around the minimum of a generic isotropic con-
finement potential, and solve the exciton eigenstates tak-
ing into account valley-orbit coupling. Such a confine-
ment potential results from strain induced gap modula-
tions, which has been shown to be the dominant effect
in strained TMDs [36]. Generalization to other form of
confinement potential is straightforward and the detailed
form of trap only quantitatively affects the results we
present below, as long as it is isotropic. Then the center-
of-mass motion of intralayer excitons is described by the
Hamiltonian Ĥ = Ĥ0 + Vtrap(R) with the confinement
potential Vtrap(R) = mω2R2/2− V0. Here both the trap
frequency ω and trap depth V0 can be easily tuned within
current experimental techniques by designing the strain
field profile. The confinement potential is assumed to be
vanishing outside the trap radius L ≡

√
2V0/mω2. For

L > 10 nm, which is much larger than monolayer exciton
Bohr radius aB ∼ 1 nm, the internal degrees of freedom
of exciton can be neglected, with its center-of-mass mo-
tion describable by the above Hamiltonian.

The eigenvalues and eigenstates of this Hamilto-
nian can be first solved numerically in momentum
space [37], avoiding to express the valley-orbit cou-
pling term in coordinate space. Afterwards, exci-
ton wave function in real space can be readily ob-
tained by Fourier transform. For an isotropic strain
trap, each pesudospin component of eigenstates can
be characterized by definite OAM with quantum num-
ber l. The eigenstates in momentum space has

the form Ψ(Q) =
(
ψK(Q)eilφQ , ψ−K(Q)ei(l+2)φQ

)T
=

ψK(Q)|K, l〉 + ψ−K(Q)| − K, l + 2〉, hereafter denoted
as {|K, l〉, | −K, l + 2〉}, specifying the OAM l (l + 2)
in K (−K) valley of exciton state. Here the OAM of
the two pseudospin components differ by 2, as required
by total angular momentum conservation respected by
valley-orbit coupling, explicitly entangling valley pseu-
dospin and OAM of excitons. The exciton eigenvalues
and eigenstates can be obtained by solving the follow-
ing coupled equations (see Supplementary Material for
further details),
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(
ψK(Q)
ψ−K(Q)

)
=


 K+(Q)ψK(Q) + βQψ−K(Q) + 1

(2π~)2

∫
dQ′V

(
|Q−Q′|

)
ψK(Q′)e−il(φQ−φQ′)

K−(Q)ψ−K(Q) + βQψK(Q) + 1
(2π~)2

∫
dQ′V

(
|Q−Q′|

)
ψ−K(Q′)e−i(l+2)(φQ−φQ′)


 , (2)
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Figure 2. Lowest 5 exciton levels in a typical tight (a) and
shallow trap (b). (l, l + 2) in the legend denotes the exciton
state {|K, l〉, | −K, l+ 2〉}. (c) Exciton wave functions of the
lowest 3 energy levels in (b) marked by small circles. Ampli-
tude (phase) of wave function is shown in upper (lower) row,
with K and −K labelling the valley index. The square width
is 70 nm and the unit of |ψ| is nm−1.

where K±(Q) = ~2Q2/2m + βQ ± δ and V
(
|Q−Q′|

)

is the Fourier transform of confinement potential V (R).
The exciton wave function in coordinate space, obtained
by Fourier transform in polar coordinate, has the similar

form Ψ(R) =
(
ψK(R)eilφR , ψ−K(R)ei(l+2)φR

)T
, where

R is center-of-mass coordinate of exciton.

By solving the above equations, we find that the
ground state changes as the dimensionless quantity β̃ =

β/
(
~ω
√

~/mω
)

exceeds a critical value β̃c ≈ 3 ∼ 4,

dependent on V0/~ω. When β̃ < β̃c, the ground state
is two-fold degenerate, i.e., states {|K,−2〉, | − K, 0〉}
or {|K, 0〉, | − K, 2〉}. The degeneracy can be broken
by applying an out-of-plane magnetic field, i.e., δ 6= 0.
In contrast, when β̃ > β̃c, the ground state is unique,
i.e., state {|K,−1〉, | − K, 1〉}. In the latter case, with
the increase of magnetic field strength, the ground state
changes from {|K,−1〉, |−K, 1〉} to {|K,−2〉, |−K, 0〉} or
{|K, 0〉, |−K, 2〉}, depending on the direction of magnetic
field. In a word, there are three possible non-degenerate
ground states in the presence of external magnetic field,
each carrying nonzero OAM of excitons, switchable by
varying strain potential and magnetic field.

To be specific, we choose two trap profiles, each repre-
sentative of one class of exciton levels, as shown in Fig.
2. The confinement potential profile created by strain is
related with the height h and radius L of the bubble (see

Fig. 1(b)), which can be flexibly tuned via substrate en-
gineering. The maximum strain ε on the monolayer TMD
depends on the aspect ratio of bubble through ε ∼ h2/L2

[38], and consequently the strain induced trap depth V0

is determined as V0 ∼ γh2/L2, with γ ≈ 30 ∼ 40 meV
per 1% of strain for TMD. For realistic strain ε . 5%,
a trap depth V0 ∼ O(100) meV is readily achievable.
Within the harmonic trap model, the trap frequency is
therefore determined by ω =

√
2V0/mL2. Figure 2(a)

corresponds to a tight trap, with V0 = 80 meV, L = 10
nm (~ω ≈ 10.5 meV), and the dimensionless β̃ = 3.3,
below the critical value. Figure 2(b) corresponds to a
shallow trap, with V0 = 80 meV, L = 100 nm (~ω ≈ 1.1
meV), and β̃ = 10.5, above the critical value. The bare
parameters are β = 0.9 eV·Å, and exciton effective mass
m = 1.1me, with me being electron mass [33]. The lowest
5 exciton levels in each scenario along with their change
with valley Zeeman energy δ are shown in Fig. 2. The
magnitude and phase of wave functions for the lowest
three exciton levels are also shown in Fig. 2(c), demon-
strating the above mentioned valley-OAM entanglement.

The valley and OAM entanglement of excitons implies
novel optical selection rules when they are coupled with
light. Microscopically, we start from the light-matter in-
teraction Hamiltonian, ĤI = −eA · p̂/m, and calculate
the exciton-light coupling matrix element T = 〈Υ|ĤI |0〉,
where Υ(R, r) = Ψ(R)⊗ Φ(r) is the exciton wave func-
tion composed of both center-of-mass part Ψ(R) as cal-
culated above and internal part Φ(r). Recently, it was
shown that the OAM of photon in twisted light can be
transferred to the center-of-mass OAM of exciton [39].
We adopt similar formalism and find that those excitons
with valley and OAM entanglement will couple with pho-
tons with polarization-OAM locking.

Ψ(R) have two components Ψ±(R) corresponding to
±K valley, and Φ(r) is assumed to be in the s-wave
state of electron-hole relative motion. A general vec-
tor potential of light field can be decomposed as A =
ε̂+A+(R) + ε̂−A−(R), with ε̂± being the unit vector of
σ± polarization. The matrix element can be separated
accordingly, T = T+ + T−, with the + (−) component
contributed by coupling between K (−K) valley of exci-
tons and ε̂+ (ε̂−) polarization of vector potential. The
matrix element is given by (see Supplementary Material
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for detailed derivation)

T± ∝
∫
dRA±(R)Ψ∗±(R)

∫
drΦ∗(r)

∫
dkeik·rpvc

±

= N
∫
dRA±(R)Ψ∗±(R), (3)

where pvc
± is the dipole moment between conduction and

valence band in ±K valley, with dependence on electron
momentum neglected, and N is a coefficient quantifying
the transition amplitude of s-wave exciton. So the tran-
sition matrix element is proportional to the overlap be-
tween the exciton center-of-mass wave function and laser
vector potential, related with the excitation rate η of a
laser beam.

Clearly, for rotationally symmetric excitation field A
with definite OAM, the matrix element does not vanish
only when the exciton OAM coincides with the OAM of
excitation light. So exciton state {|K, l〉, | − K, l + 2〉}
will couple with photon state {|σ+, l〉, |σ−, l + 2〉}, char-
acterized by vector potential A+(R) = ε̂+Al(r)e

ilφR ,
A−(R) = ε̂−Al+2(r)ei(l+2)φR (the overall out-of-plane
part eiqzz is omitted here). This indicates the OAM
transfer from exciton to photon and vice versa, and the
entanglement between exciton valley and OAM will give
rise to locking between polarization and OAM of sin-
gle photons. Note that temporal profiles of excitons in
two valleys are generally different, due to different ra-
diative lifetimes, and therefore the emitted photons have
entanglement between SAM, OAM and temporal wave
function. In the case of equal valley radiative lifetime,
there exists quantum entanglement between SAM and
OAM of photons; otherwise, the more accurate terminol-
ogy “polarization-OAM locking” is used in general cases.
To quantitatively determine to what extent “locking” be-
comes “entanglement”, we have calculated the radiative
lifetimes of lowest 3 exciton states in Fig. 2(c) for each
valley [40], which are (τK , τ−K) ≈ (225.5τ0, 138.8τ0),
(902.6τ0, 1.4τ0) and (6.6τ0, 1013.7τ0), respectively. With
τ0 ≈ 0.2 ps being the radiative lifetime of unconfined
excitons at vanishing center-of-mass momentum, the ra-
diative lifetimes of these trapped excitons are on the
order of 10 ∼ 100 ps. The lifetime can be further
prolonged (shortened) by choosing a tighter (shallower)
trap. A series of exciton levels can be exploited to
serve as single photon sources with desired OAM. For
example, the three exciton states in Fig. 2(c) will emit
three types of polarization-OAM locked/entangled pho-
tons illustrated in Fig. 1(c). Interestingly, photon state
{|σ+,−1〉, |σ−, 1〉} will become polarization-OAM entan-
gled in the absence of magnetic field.

Recently, there has been growing interest in manipulat-
ing excitons in TMD materials with twisted light [41–43],
i.e., light carrying nonzero OAM. Here using twisted light
in Laguerre-Gaussian (LG) modes with matched OAM,
one can directly excite those exciton states with nonzero
OAM. For example, exciton state {|K,−1〉, | −K, 1〉} at

(a) (b)

Figure 3. Excitation rate (in arbitrary unit) of a laser field
with Gaussian profile for the lowest 5 exciton states marked by
small circles in Fig. 2(b). The excitation laser is σ+ polarized
in (a) and linearly polarized in (b). R0 is the distance between
excitation center and trap center.

ground state in Fig. 2(c) will be optically dark when
probed with fundamental Gaussian mode (l = 0), but be
bright for light of LGl=∓1,p=0 mode in σ± polarization.

On the other hand, if one excites those excitons carry-
ing OAM using laser in fundamental Gaussian mode, the
excitation rate can still be nonzero if the excitation cen-
ter does not coincide with the trap center. In Fig. 3, we
plot the excitation rate η ≡ |

∫
dR
∑
±A±(R)Ψ∗±(R)|2

as a function of the distance R0 between excitation cen-
ter and trap center for the 5 exciton states in Fig. 2(b).
We choose a Gaussian excitation field G = exp(−(R −
R0)2/w2), with A+ = G, A− = 0 in Fig. 3(a) and
A± = G in Fig. 3(b). The Gaussian wave width w
is set to be 10 nm, achievable with tip-enhanced tech-
niques [44–46]. Clearly, there is non-vanishing excitation
rate for off-center laser excitation, since in this case the
laser beam does not carry definite OAM with respect to
trap center.

The main results above, including valley-OAM entan-
gled excitons and the resulted polarization-OAM locked
photons, are applicable to any isotropic exciton trap, pro-
vided that the trap size is much larger than exciton Bohr
radius. To experimentally observe the above predicted
phenomena, one has to separate the strain trapped exci-
ton states from defect trapped exciton states, as defects
also play an important role in current demonstration of
single photon emitters in monolayer TMD. In principle,
these two types of exciton levels can be carefully resolved
by photon energy in Photonluminance (PL), since their
energy windows are generally different.

These exciton states with nonzero OAM and valley-
OAM entanglement also exist in moiré traps provided by
twisted TMD heterobilayers. Recently, it is discovered
that strong lattice reconstruction usually occurs in bi-
layer TMDs with large moiré size [47–49], invaliding the
applicability of continuum model [50], previously used to
describe moiré intralayer excitons. This poses a challenge
to the realization of single photon emitter array based on
moiré excitons, since negligible hybridization of exciton
wave packets between neighbouring trap minima is re-
quired, which is however hindered by the limited moiré
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Figure 4. (a) Moiré potential for intralayer trions generated
by twisted hBN substrate. The moiré period is am ≈ 28.7 nm
corresponding to θ = 0.5◦. (b) Moiré Brillouin zone and six
reciprocal lattice vectors used to construct moiré potential in
(a). Trion momentum is measured relative to ±K valley of
monolayer TMD. (c) Spin-valley configurations of four types
of trions, where the former and latter two configurations are
related by valley-orbit coupling (indicated by orange double
arrows). (d) Moiré minibands for two groups of trions illus-
trated in (c). Left (right) panel corresponds to the case of
spin up (down) excess electron. (e),(f) Trion wave functions
at the ground state marked by black circles in minibands of
(d), with additional arrows after “⊗” indicating spin of ex-
cess electron. The amplitude (phase) of trion wave function
is shown in upper (lower) row.

size available (see Supplementary Material for details).
This obstacle motivates us to propose another system,
i.e., intralayer trions in moiré potentials generated by
twisted multilayer hBN substrate [51], where lattice re-
construction should be weak even for large moiré size.

The registry dependent electrical polarization at the
twisted interface in the hBN substrate can generate an
electrostatic superlattice potential for charged carriers
[51], and a negative trion in monolayer TMD placed
on twisted hBN substrate experiences a moiré poten-
tial, modelled as Vmoiré =

∑6
j=1 Vj exp(iGj · R), where

Gj is the moiré reciprocal lattice vector with length G
(see Fig. 4(b)), and Vj = V exp(−Gnd) exp(iφ × (−1)j)
characterizes the strength of moiré potential, tunable by
the twist angle θ between multilayer hBN interface and
layer number n. First-principles calculations [51] suggest
V = −19.5 meV, φ = −π/2, and G1 = (0, 4π/

√
3am),

with moiré period am = a0/θ. d = 0.3 nm and a0 = 0.25
nm are the hBN monolayer thickness and lattice con-
stant, respectively. We choose θ = 0.5◦ and layer number
n = 4, which should be large enough for suppression of
lattice reconstruction. The trion Hamiltonian with this

type of moiré potential reads [32],

Ĥtrion =
~2Q2

2mt
+ βQ+ βQ cos(2φQ)σx + βQ sin(2φQ)σy

+
∆

2
(σzsz + 1) + Vmoiré, (4)

where mt ≈ 1.6me is the trion effective mass, sz is the
spin of excess electron, and ∆ ≈ 6 meV characterizes the
Coulomb exchange interaction between excess electron
and electron-hole pair [32] (see green arrows in Fig. 4(c)),
playing a similar role as valley Zeeman splitting. The
trion moiré bands are shown in Fig. 4(d), for two differ-
ent spin polarizations of excess electron. The Bloch wave
function at ground state is also shown, which clearly ex-
hibits the phase winding around moiré potential minima,
corresponding to state {|K,−2〉, | − K, 0〉} ({|K, 0〉, | −
K, 2〉}) in Fig. 4(e) (Fig. 4(f)), and should couple
with photon state {|σ+,−2〉, |σ−, 0〉} ({|σ+, 0〉, |σ−, 2〉}).
Note that the character of these photons from single emit-
ter array we proposed here is also conditioned on the spin
polarization of excess electron.

In summary, we have proposed that, due to the in-
trinsic valley-orbit coupling, trapped intralayer excitons
in monolayer TMD by a potential, e.g., provided by
strain field, can serve as single photon emitters with
polarization-OAM locking/entanglement. The charac-
ter of emitted photons by excitons at ground state
can be tuned by varying trap frequency and external
magnetic field, and generally carry nonzero OAM. The
valley-OAM entangled exciton states can be directly
probed by twisted light with matched OAM, or off-center
laser excitation with Gaussian profile. We also pro-
pose that, benefiting from moiré potential created by
twisted multilayer hBN substrate, with large moiré size
and weak lattice reconstruction, intralayer trions trapped
by this moiré potential can form an array of single pho-
ton emitters with polarization-OAM locking. Our work
demonstrates a novel scheme to realize polarization-OAM
locked/entangled single photon emitters and their array,
with the advantage of high controllability and integrabil-
ity, pointing to promising quantum information applica-
tions.
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I. NUMERICAL PROCEDURE OF SOLVING EXCITON ENERGY LEVELS CONFINED IN A
TRAP

The non-analytic form of valley-orbit coupling makes it inconvenient to solve the exciton energy levels in
coordinate space. In contrast, it is much more convenient to solve in momentum space, where the eigen-
equations become

El

(
ΨK(Q)

Ψ−K(Q)

)
=

(
K+(Q)ΨK(Q) + βQe−i2φQΨ−K(Q) + 1

(2π~)2

∫
dQ′V

(
|Q−Q′|

)
ΨK(Q′)

K−(Q)Ψ−K(Q) + βQei2φQΨK(Q) + 1
(2π~)2

∫
dQ′V

(
|Q−Q′|

)
Ψ−K(Q′)

)
, (1)

with K±(Q) = ~2Q2/2m+βQ±δ and V
(
|Q−Q′|

)
being the Fourier transform of confinement potential V (R).

For the isotropic confinement potential Vtrap(R) = mω2R2/2 − V0 adopted in the main text, the exciton wave
functions can be classified by orbital angular momentum l, and the eigenstates have the form

Ψ(Q) =

(
ψK(Q)eilφQ

ψ−K(Q)ei(l+2)φQ

)
, (2)

with the radial part of wave function ψK/−K(Q) only dependent on Q = |Q|. Plugging the above wave function
into the eigenvalue equation, one arrives at

El

(
ψK(Q)
ψ−K(Q)

)
=


 K+(Q)ψK(Q) + βQψ−K(Q) + 1

(2π~)2

∫
dQ′V

(
|Q−Q′|

)
ψK(Q′)e−il(φQ−φQ′)

K−(Q)ψ−K(Q) + βQψK(Q) + 1
(2π~)2

∫
dQ′V

(
|Q−Q′|

)
ψ−K(Q′)e−i(l+2)(φQ−φQ′)




=


 K+(Q)ψK(Q) + βQψ−K(Q) + 1

(2π~)2

∫
Q′dQ′dφQ′V

(
|Q−Q′|

)
ψK(Q′)e−il(φQ−φQ′)

K−(Q)ψ−K(Q) + βQψK(Q) + 1
(2π~)2

∫
Q′dQ′dφQ′V

(
|Q−Q′|

)
ψ−K(Q′)e−i(l+2)(φQ−φQ′)




=

(
K+(Q)ψK(Q) + βQψ−K(Q) + 1

(2π~)2

∫
Q′dQ′Vl (Q,Q′)ψK(Q′)

K−(Q)ψ−K(Q) + βQψK(Q) + 1
(2π~)2

∫
Q′dQ′Vl+2 (Q,Q′)ψ−K(Q′)

)
, (3)

where

Vl (Q,Q
′) =

∫
dφQ′V

(
|Q−Q′|

)
e−il(φQ−φQ′)

=

∫
dφQ′V (Q,Q′, φQ − φQ′) e−il(φQ−φQ′). (4)

In the last line of Eq. 3, the eigenvalue equation has been reduced to a coupled one-dimensional integral
equations, which can be numerically solved by discretization in Q space. By choosing different l and solving
the above equations, one obtains a series of exciton energy levels for fixed l. By comparing the energy levels of
different l, one can determine the ground state, first excited state, et al.

II. EXCITON-LIGHT COUPLING MATRIX ELEMENT

With the light-matter interaction Hamiltonian HI = −eA · p̂/m, one can calculate the exciton-light coupling
matrix element T = 〈Υ|HI |0〉, where Υ is the exciton wave function. Taking into account both center-of-mass
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2

and relative motion of excitons, the exciton wave function can be factorized to Υ±(R, r) = Ψ±(R)⊗Φ(r). The
transition matrix element for ±K valley can be calculated as [1]

T± = 〈Υ±|HI |0〉

=

∫∫
dRdr

∫∫
dQdk〈Υ±|R, r〉〈R, r|Q,k〉〈Q,k|HI |0〉

=
1

S2

∫∫
dRdr

∫∫
dQdkΨ∗±(R)Φ∗(r)ei(Q·R+k·r)〈k − Q

2
|HI |k +

Q

2
〉±, (5)

where the completeness relation
∫∫

dRdr|R, r〉〈R, r| =
∫∫

dQdk|Q,k〉〈Q,k| = 1 has been inserted. 〈Q,k|HI |0〉± =

〈k − Q
2 |HI |k + Q

2 〉± is related with electron interband transition from Bloch state ψv,k−Q
2

(r) in valence band
to state ψc,k+ Q

2
(r) in conduction band in ±K valley. Since ψc/v,k(r) = eik·ruc/v,k(r), with uc/v,k(r) being the

periodic part of Bloch wave function in conduction/valence band,

〈k − Q

2
|HI |k +

Q

2
〉± =

ie~
m

∫
dreiQ·ru∗

v,k−Q
2

(r)A± (r) ε̂± ·∇uc,k+ Q
2

(r)

≈ ie~
m

∑

i

A± (Ri) e
iQ·Ri

∫

unit cell

dru∗
v,k−Q

2

(r) ε̂± ·∇uc,k+ Q
2

(r)

=
~
m
A± (Q) ε̂± · pvc

k−Q
2 ,k+ Q

2

≈ ~
m
A± (Q) pvc

± (k) , (6)

where we have assumed that the vector potential A varies smoothly within a unit cell in the second line,
with Ri being the i-th lattice site. The general vector potential A = ε̂+A+(R) + ε̂−A−(R), with ε̂± being
the unit vector of σ± polarization. A± (Q) is the Fourier transform of A± (R). pvc

k−Q
2 ,k+ Q

2

is the transition
matrix element from valence to conduction band. Here we have made the approximation pvc

k−Q
2 ,k+ Q

2

≈ pvc
± (k).

Consequently,

T± ≈
~

mS2

∫∫
dRdr

∫∫
dQdkΨ∗±(R)Φ∗(r)ei(Q·R+k·r)A± (Q) pvc

± (k)

=
~

mS2

∫∫
dRdrΨ∗±(R)A± (R) pvc

± (r) Φ∗(r)

=
~

mS2

∫
dRΨ∗±(R)A± (R)D±

= N
∫
dRA±(R)Ψ∗±(R), (7)

where D± =
∫
drpvc
± (r) Φ∗(r). If pvc

± (k) is a constant, pvc
± (r) ∝ δ (r) and the transition dipole D± ∝ Φ∗(0),

which is nonzero only for s-wave exciton.

III. MOIRÉ INTRALAYER EXCITONS IN ROTATIONALLY ALIGNED WSe2/WS2

HETEROBILAYER

Lattice reconstruction usually occurs for bilayer TMDs with large moiré size. For rotationally aligned
WSe2/WS2 heterobilayer, it is pointed out that a new type of exciton, i.e., charge transfer exciton exists
[2], whose description is beyond the scope of continuum model [3]. However, modulated Wannier excitons still
exist, and the predictions based on continuum model agree with first-principles calculations [2].

Here we take the rotationally aligned WSe2/WS2 heterobilayer as an example, and focus on the Wannier
excitons trapped by moiré potentials, in which case the continuum model still works. Specifically, we model
the moiré potential by Vmoiré =

∑6
j=1 Vj exp(iGj · R), where Gj is the moiré reciprocal lattice vector, and

Vj = V exp(iφ × (−1)j) characterizes the strength of moiré potential. We choose V = −10 meV, φ = −3◦,
consistent with first-principles calculations [2], and G1 = (0, 4π/

√
3am) with moiré period am = 8 nm. The

other Gj is obtained by consecutive π/3 rotations shown in Fig. S1(b). The exciton moiré bands by solving the
Hamiltonian Ĥ0 +Vmoiré are shown in Fig. S1(c), where the degeneracy at γ point is broken by a weak magnetic
field. The Bloch wave function at γ point is also shown, with the phase winding around moiré potential minima
similar to state {|K,−2〉, |−K, 0〉}. However, the moiré size is not large enough, and therefore there is significant
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Figure S1. (a) Moiré potential of rotationally aligned WSe2/WS2 heterobilayer. The moiré period is 8 nm. (b) The
moiré exciton Brillouin zone and six reciprocal lattice vectors of moiré potential in (a). (c) Exciton minibands in the
moiré potential of (a), with a weak magnetic field (δ = 1 meV) breaking the degeneracy at γ point. The exciton Bloch
wave function at ground state denoted by black circle is shown in (d), with amplitude (phase) in upper (lower) row.

hybridization of exciton wave packets trapped at neighbouring potential minima, which is unfavourable for the
realization of single photon emitters. Since the moiré period here is probably already among the largest one
which supports a continuously varying superlattice potential, lattice reconstruction for large moiré size poses an
intrinsic obstacle to the realization of single emitter array based on moiré intralayer excitons, which motivates
us to propose another system based on moiré trions in twisted multilayer hBN substrate in the main text.
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