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We investigate electron tunneling in AB bilayer graphene through a triple electrostatic barrier of
heights Ui(i = 2, 3, 4) subjected to a perpendicular magnetic field. By way of the transfer matrix
method and using the continuity conditions at the different interfaces, the transmission probability
is determined. Additional resonances appear for two-band tunneling at normal incidence, and their
number is proportional to the value of U4 in the case of U2 < U4. However, when U2 > U4, anti-
Klein tunneling increases with U2. The transmission probability exhibits an interesting oscillatory
behavior when U3 > U2 = U4 and U3 < U2 = U4. For fixed energy E = 0.39γ1, increasing barrier
widths increases the number of oscillations and decreases Klein tunneling. The interlayer bias creates
a gap for U2 < U3 < U4 and U3 > U2 = U4. In the four-band tunneling case, the transmission
decreases in T+

+ , T−
+ and T−

− channels in comparison with the single barrier case. It does, however,

increase for T+
− when compared to the single barrier case. Transmission is suppressed in the gap

region when an interlayer bias is introduced. This is reflected in the total conductance Gtot in the
region of zero conductance. Our results are relevant for electron confinement in AB bilayer graphene
and for the development of graphene-based transistors.

PACS numbers: 72.80.Vp, 73.21.Ac, 73.23.Ad
Keywords: Bilayer graphene, AB-Stacking, triple barrier, magnetic field, energy spectrum, transmission
channels, Klein tunneling, conductance.

I. INTRODUCTION

Numerous theoretical and experimental studies have been conducted on graphene [1] since its discovery in 2004. This
is because of its remarkable features on the one hand and its broad range of potential applications in both fundamental
and technological sciences on the other. Unlike ordinary materials, graphene exhibits unusual electronic properties.
In fact, it has a very high electronic mobility of 250 000 cm2/Vs, which is 20 times greater than that of GaAS [2–6]. In
addition, in graphene, charge carriers behave like relativistic massless particles and possess a linear energy dispersion
at the Dirac points [7–11]. Moreover, graphene has a zero band gap energy [12–14], an unconventional quantum
Hall effect [2, 10, 15, 16] and a minimum conductivity [2, 17]. Another remarkable property of graphene is the
phenomenon known as Klein tunneling, where electrons can tunnel perfectly through a potential barrier [7, 18–22].
Graphene is a promising material for applications such as carbon-based transistors [23–28], optoelectronic devices
[29–31], and strain sensors [32–35] due to its high electronic mobility, high thermal conductivity [36, 37], and optical
and mechanical properties [38–40]. However, since the graphene conduction and valence bands touch each other, an
energy gap must be opened to confine electrons in graphene and enable transistors to switch off [41, 42]. One of the
techniques to open and control a gap is the application of an external electric field to AB bilayer graphene [43–45].

AB bilayer graphene results from the stacking of two layers of graphene in accordance with Bernal’s method [46].
Similar to monolayer graphene, AB bilayer graphene has several intriguing characteristics. It does, in fact, display a
peculiar quantum Hall effect [47–49] that is distinct from the Hall effect seen in monolayer graphene. In contrast to
monolayer graphene, electron tunneling in bilayer graphene is characterized by anti-Klein tunneling [7, 50, 51], i.e.,
a perfect reflection. Its energy spectrum shows four parabolic bands [43, 52]. Two of them touch each other at zero
energy, and two others are separated by an energy equal to the interlayer coupling γ1 = 0.4 eV [43, 53]. The ability
to open and control a gap makes AB bilayer graphene a major asset for nanoelectronic applications [53–55].

Many studies on the transport properties of bilayer graphene for two-band (E < γ1) and four-band (E > γ1)
tunneling have been published recently [56–62]. Indeed, it has been shown that for a double-barrier structure, the
presence of bound states in the well is responsible for the presence of transmission resonances in the gap region[61, 62].
This is not compatible with the development of graphene-based transistors [61, 62]. In a recent study, we demonstrated
the possibility of completely suppressing transmission in the gap region using a triple barrier system [59]. However,
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in the case of energies smaller than γ1, we have found that a bias must be applied in at least two of the three regions
of the triple barrier system, considering large barrier widths to achieve the gap. In this work, we aim to enhance
the conditions under which a gap can be obtained in AB bilayer graphene. Hence, we study electron tunneling in
AB bilayer graphene through a triple potential barrier in the presence of a magnetic field. Our study revealed the
following points. (i): The use of the magnetic field makes it possible to study different configurations of the triple
barrier, yielding different results. (ii): Transmission increases for rising barrier (U2 < U4) while it decreases for
declining barrier (U2 > U4). (iii) A gap is opened for some configurations by applying a bias only in region 3 (where
the magnetic field is present) and this does not require large barrier widths. (iv): For a fixed energy, the triple barrier
configurations in the presence of a magnetic field enhanced the transmission with multiple oscillations when barrier
widths are increased. (v): For energy E > γ1, the transmission is completely suppressed in the gap region and this is
reflected in the conductance Gtot.

More precisely, first, we assessed the case where the energy is inferior to γ1. It was discovered that in the triple
barrier case and for U2 < U4, a resonance appears at normal incidence for energies less than U4, which is not the case
for the single barrier [58]. The number of resonances is found to increase as the value of U4 increases. Transmission
is zero in the same region when U2 > U4, and anti-Klein tunneling increases with U2 but does not change when U3

changes. An interesting number of oscillations have appeared in the triple barrier cases in the energy region greater
than U4, particularly when U3 > U2 = U4 and when U3 < U2 = U4. These oscillation numbers are higher than those
obtained in refs. [57–61]. When we fix the value of energy at E = 0.39γ1 and increase the barrier widths, Klein-
tunneling decreases and the number of oscillations increases more, even at non normal incidence. When U2 < U3 < U4

and U3 > U2 = U4 are used, an interlayer bias opens a gap, whereas it has no effect when U2 > U4, U3 < U2 < U4,
and U3 < U2 = U4 are used. Subsequently, we have considered the case of energy superior to γ1. The transmission
decreased in the channels T+

+ , T−
+ and T−

− compared to the result in a single barrier [58] while in the T+
− channel it

increased. Transmission is zero in the gap region for a non-zero interlayer bias of (δ3 = 0.3γ1), contrary to the findings
in refs. [61–63]. Note that the transmission observed in the gap region in the symmetrical and asymmetrical double
barrier cases arises from the bound states present in the well, which is not suitable for graphene-based electronic
[61]. In the triple-barrier case, and especially in configurations where U3 does not act as a well, there is a complete
suppression of transmission in the gap region. This shows the relevance of the triple barrier system, as it provides the
on/off switch state for grraphene-based transistors.

This work is organized as follows. In Sec. II, we present the theoretical model and determine the eigenvectors and
eigenvalues of the system. Sec. III deals with the determination of the transmission probabilities using the continuity
conditions and the transfer matrix method, leading to the corresponding conductance. In Sec. IV, we numerically
present and discuss the obtained results. Finally, we provide a summary of the results in Sec. V.

II. THEORY AND METHODS

We consider a system of triple electrostatic barriers through which electrons in bilayer graphene can tunnel. As
depicted in Fig. 1, our system is made up of five regions, each denoted by j. In addition to the electric field, the
central region (j = 3) is subjected to a magnetic field.

V2

V
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b1 b2 b3

11 2 3 4 5
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x

z

B,

a b c d

FIG. 1. Schematic representation of five regions, including the triple barrier and magnetic field.
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The following Hamiltonian can describe our system [9, 57]:

H =


V + vFπ

† −v4π† v3π
vFπ V + γ1 −v4π†

−v4π γ1 V − vFπ
†

v3π
† −v4π vFπ V −

 (1)

where π = px + i(py + eAy(x)) is the in-plan momenta, vF = 106 m/s is the Fermi velocity. The potentials V + and
V − on the first and second layers, respectively, are defined by

V ±
j =

{
0, j = 1, 5

Uj + ξδj , j = 2, 3, 4
(2)

such that ξ = +1 and ξ = −1 correspond to the first and second layers. The barrier strength is represented by the
parameter Uj , and the interlayer bias is represented by the parameter δj . The magnetic field is applied perpendicularly
to the graphene layers, and it can be written in terms of the Heaviside step function Θ

B(x, y) = BΘ [(b− x) (c− x)] (3)

where B is a constant. The component of the vector potential Ay(x) in the Landau gauge is defined as

Ay(x) =
ℏ
el2B


b, if x < b

x, if b < x < c

c, if x > c

(4)

where lB =
√
ℏ/eB is the magnetic length. The parameters v3 and v4 have been shown to have no effect on the

band structure at high energy or on the transmission at low energy [43, 57, 64]. Then, we neglect them and write the
Hamiltonian (1) as

Hj =


Uj + δj vFπ

† 0 0
vFπ Uj + δj γ1 0
0 γ1 Uj − δj vFπ

†

0 0 vFπ Uj − δj

 (5)

in the basis of four component spinor ψj(x, y) =
[
ψj
A1
, ψj

B1
, ψj

A2
, ψj

B2

]†
where the symbol † denotes the transpose row

vector. As a consequence of the conservation of momentum ky along the y-direction, the spinor can be written as

ψj(x, y) = eikyy
[
ϕjA1

, ϕjB1
, ϕjA2

, ϕjB2

]†
(6)

In order to determine the eigenvalues and the eigenvectors of each region, we use Hjψj = EjΨj to obtain four
coupled differential equations

−i
√
2ϑ0aϕ

j
B1

= (εj − δj)ϕ
j
A1

(7a)

i
√
2ϑ0a

†ϕjA1
= (εj − δj)ϕ

j
B1

− γ1ϕ
j
A2

(7b)

−i
√
2ϑ0aϕ

j
B2

= (εj + δj)ϕ
j
A2

− γ1ϕ
j
B1

(7c)

i
√
2ϑ0a

†ϕjA2
= (εj + δj)ϕ

j
B2

(7d)

where we have set εj = Ej −Uj , ϑ0 = ℏvF
lb is the energy scale, a and a† are respectively the annihilation and creation

operators

a =
lB√
2

(
∂x + ky +

eAy(x)

ℏ

)
(8a)

a† =
lB√
2

(
−∂x + ky +

eAy(x)

ℏ

)
(8b)

which satisfy the commutation relation
[
a, a†

]
= I. We eliminate the unknowns from (7a-7d) step by step and obtain

for ϕB1

[
2ϑ20aa

† − (εj + δj)
2
] [

2ϑ20a
†a− (εj − δj)

2
]
ϕjB1

= γ21(ε
2
j − δ2j )ϕ

j
B1

(9)
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A. Eigenvalues and eigenvectors in region 3

In region 3, where the vector potential is Ay(x) =
ℏx
el2B

, we introduce the variable z =
√
2( x

lB
+ kylB) and solve (9)

to obtain ϕB1 . Then, we substitute the result into (7a-7d) to determine the rest of the spinor components. For more
simplicity, we write the solution in matrix form

ψ3(x, y) = G3M3(x)C3 (10)

where G3 = I4 is 4× 4 identity matrix, C3 = (c+, c−, d+, d−)
†
is a constant, and the matrix M3(x) is given by

M3(x) =


η−λ+χ

+
+,−1 η∗−λ+χ

+
−,−1 η−λ−χ

−
+,−1 η∗−λ−χ

−
−,−1

χ+
+,0 χ+

−,0 χ−
+,0 χ−

−,0

ζ+χ+
+,0 ζ+χ+

−,0 ζ−χ−
+,0 ζ−χ−

−,0

η∗+ζ
+χ+

+,1 η+ζ
+χ+

−,1 η∗+ζ
−χ−

+,1 η+ζ
−χ−

−,1

 (11)

where χτ
±,l = D [λτ ± l,±z] are the parabolic cylindrical function with argument z and l = −1, 0, 1. We have set the

quantities

λτ = −1

2
+
ε23 + δ23
2ϑ20

+ τ

√
(ϑ20 − 2ε3δ3)2 + γ21(ε

2
3 − δ23)

2ϑ20
(12)

η± =
−i

√
2ϑ0

ε3 ± δ3
(13)

ζ± =
−2ϑ20λ± + (ε3 − δ3)

2

γ1(ε3 − δ3)
(14)

We solve (12) to obtain the energy spectrum in this region. It is given by

ετ±,3 = ± 1√
6

[
µ

1
3 + νµ

−1
3 + 2A

] 1
2

+ τ
1√
6

[
−6B

√
6
(
µ

1
3 + νµ

−1
3 + 2A

)−1
2 −

(
µ

1
3 + νµ

−1
3 − 4A

)] 1
2

(15)

where we have defined the parameters

µ = −A3 + 27B2 + 9AC +

√
(−A3 + 27B2 + 9AC)

2 − ν3 (16)

ν = (A2 + 3C) (17)

A = δ23 + (2n+ 1)ϑ20 +
γ21
2

(18)

B = ϑ20δ3 (19)

C =
(
(2n+ 1)ϑ20 − δ23

)2 − ϑ40 + γ21δ
2
3 (20)

and n = λτ is an integer number.

B. Eigenvalues and eigenvectors in regions 1, 2, 4, 5

In regions j = 1, 2, 4, 5, the vector potential is constant and set to be Ay(x) =
ℏ

el2B
dj where

dj =

{
b, if x < b
c, if x > c

(21)

By solving (9) for ϕB1
, and substituting the result into (7a-7d), we obtain a general solution in the matrix form

ψj(x, y) = GjMj(x)Cje
ikyy (22)
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where Gj and Mj(x) are igiven by

Gj =


f+− −f++ f−− −f−+
1 1 1 1
h+ h+ h− h−

h+g++ −h+g+− h−g−+ −h−g−−

 (23)

Mj(x) =


eik

+
j x 0 0 0

0 e−ik+
j x 0 0

0 0 eik
−
j x 0

0 0 0 e−ik−
j x

 (24)

with the parameters

fτ± = ℏvF
kτj ± i

(
ky +

dj

l2B

)
εj − δj

(25)

hτ =

(εj − δj)
2 − (ℏvF )2

[(
kτj

)2
+
(
ky +

dj

l2B

)2
]

(εj − δj) γ1
(26)

gτ± = ℏvF
kτj ± i

(
ky +

dj

l2B

)
εj + δj

(27)

The wave vector kj along the x-direction is expressed as

kτj =

√√√√ε2j + δ2j + τ
√

4ε2jδ
2
j + γ21

(
ε2j − δ2j

)
(ℏvF )2

−
(
ky +

dj
l2B

)2

(28)

giving rise to the eigenenergies

ετ±,j = ±

√
δ2j + (ℏvF k)2 +

γ21
2

+ τ

√
(ℏvF k)2

(
4δ2j + γ21

)
+
γ41
4

(29)

where k =
[(
kτj

)2
+ k2y

] 1
2

is the wave vector. It is worth noting that in the incident and transmission regions j = 1, 5,

solutions are obtained by requiring Uj = δj = 0.

III. TRANSPORT PROPERTIES

We will calculate the transmission probability corresponding to the present system. We do this by imposing
continuity conditions at each interface of the triple barrier structure. Thereafter, we can use the transfer matrix
method to make a connection between the coefficients of the incident region and those of the transmitted one. These
coefficients are given by

Cτ
1 =

 δτ,1
rτ+
δτ,−1

rτ−

 , Cτ
5 =

t
τ
+

0
tτ−
0

 (30)

where δτ,±1 is the Kronecker delta symbol. The continuity at interfaces x = a, b, c, d gives rise to

G1M1(a)C1 = G2M2(a)C2 (31)

G2M2(b)C2 = G3M3(b)C3 (32)

G3M3(c)C3 = G4M4(c)C4 (33)

G4M4(d)C5 = G5M5(d)C5. (34)
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We can now connect the coefficients Cτ
1 to Cτ

5

Cτ
1 = NCτ

5 (35)

where the matrix transfer N takes the form

N =

4∏
j=1

M−1
j (xj)G

−1
j Gj+1Mj+1(xj) (36)

After manipulation, we can write (35) ast
τ
+

rτ+
tτ−
rτ−

 =

N11 0 N13 0
N21 −1 N23 0
N31 0 N33 0
N41 0 N43 −1


−1  δτ,1

0
δτ,−1

0

 (37)

where Nij are the matrix elements of N in (36). Then, we can easily derive the transmission coefficients from (37).
They are given by

tτ+ =
N33δτ,1 −N13δτ,−1

N11N33 −N13N31
(38)

tτ− =
N11δτ,−1 −N31δτ,1
N11N33 −N13N31

(39)

At this stage, we have to introduce the current density to find all transmission channels, which is

j = vFΨ
†α⃗Ψ (40)

where α⃗ is a 4× 4 matrix with two Pauli matrices σx on the diagonal, and the rest is zero. Then, using (40), we can
calculate the incident jinc and transmitted jtra current densities. As a result, we obtain the four transmission channels

T τ
± =

|jtra|
|jinc|

=
k±5
kτ1

∣∣tτ±∣∣2 (41)

Afterward, we will use the Landauer–Büttiker formula to calculate the conductance based on the previously deter-
mined transmissions. This is

G(E) = G0
Ly

2π

∫ +∞

−∞
dky

∑
τ,n=±

T τ
n (E, ky) (42)

where G0 = 4 e2

h , the factor 4 arises from the valley and spin degeneracy in graphene. Ly is the width of the sample
in the y-direction.

IV. RESULTS AND DISCUSSIONS

In the following, we will compute and discuss our numerical results. To begin with, we will look at the case of
energy less than the interlayer coupling γ1 (two-band tunneling). Here, only one mode of propagation is possible, so we
have just one transmission channel. Next, we will consider energy greater than the interlayer coupling γ1 (four-band
tunneling). In this case, two propagation modes are available, which result in four transmission channels.

A. Two-band Tunneling

The transmission probability is shown in Fig. 2 as a function of incident energy E at normal incidence (ky = 0)
for barrier widths of b1 = b2 = b3 = 25 nm. The magnetic length is set to lB = 13.5 nm, as in the single barrier case
discussed in [58], and the interlayer bias is set to δ2 = δ3 = δ4 = 0. We plot the transmission for two configurations
of the triple barrier system in Fig. 2(a), and compare it to the result found in [58] (blue line). In contrast to the
single barrier case (blue line), a transmission resonance occurs for energy lower than U4 when U2 < U3 < U4 (green
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line). In the same energy range, however, transmission is zero (anti-Klein tunneling [7, 50]) when U2 > U3 > U4

(red line). The transmission oscillates faster in the triple barrier cases (green and red lines) than in the single barrier
(blue line [58]) and double barrier for zero magnetic field [61] cases for energies greater than U4. Remember that
anti-Klein tunneling in bilayer graphene is caused by the fact that the barrier cloaks the confined states, making
them invisible to transmission [65]. In the case of the triple barrier, anti-Klein tunneling depends only on the value
of the first barrier, i.e., the value of U2. In fact, in the case where U2 < U3 < U4, the value of U2 is small, and
then anti-Klein tunneling is limited to E = 0.2γ1, whereas for the opposite configuration, due to the large value
of U2 = 0.4γ1, anti-Klein tunneling extends to E = 0.4γ1. In addition, the resonance observed at E = 0.3γ1 for
U2 < U3 < U4 results from hole states inside the barriers U3 and U4 through which the electrons can tunnel. In
the case where U2 > U3 > U4, because of the magnitude of anti-Klein tunneling, no such resonance is observed.
Fig. 2(b) depicts the transmission with the same parameters as in Fig. 2(a), but with U4 (green line) and U2 (red
line) increased. The number of resonances increases as U4 increases for configuration U2 < U3 < U4 (green line).
Indeed, increasing the barrier height (U4) increases the number of hole states through which electrons can tunnel,
thus increasing the number of resonances. In the opposite configuration, we see that anti-Klein tunneling increases
as U2 increases. This confirms the dependence of anti-klein tunneling on the first barrier (U2). In Fig. 2(c), we
reduce U3 so that U3 < U2 < U4 (green line) and U2 > U4 > U3 (red line) are obtained. Transmission occurs for
energies less than U2 for U3 < U2 < U4 (green line), but not for U3 (blue line see [58]). Note that when the value of
U3 is reduced, it acts like a well between U2 and U4. Then, the bound states present in the well are responsible for
the non-zero transmission observed in the region preceding E = U2 [56, 61]. For U2 > U4 > U3 (red line), due to the
large magnitude of anti-Klein tunneling, decreasing U3 has no significant effect on the transmission, which remains
nearly identical to that shown in Fig. 2(a). We conclude that when U2 > U4, the transmission decreases regardless of
whether U3 is large or small. The transmission for U3 < U2 = U4 (green line) and U3 > U2 = U4 (red line) is shown in
Fig. 2(d). In both cases, the number of transmission oscillations increases significantly when compared to the single
barrier’s result [58]. However, when U3 > U2 = U4, it is less than when U3 < U2 = U4. This difference arises from
the bound states available between U2 and U4 when U2 = U4 < U3 and which are absent in the opposite case. It is
also worth noting that such a large number of oscillations is not observed in [57, 59–61].

U3=0.3γ1 , U2=U4=0

U2=0.4γ1 , U3=0.3γ1 , U4=0.2γ1

U2=0.2γ1 , U3=0.3γ1 , U4=0.4γ1
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(c) U3=0.3γ1 , U2=U4=0
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(d)

FIG. 2. (Color online): Transmission as a function of energy E, at normal incidence (ky = 0), for barrier widths b1 = b2 =
b3 = 25 nm, lB = 13.5 nm, and δ2 = δ3 = δ4 = 0. (a): U2 < U3 < U4 (green line) and U2 > U3 > U4 (red line). (b): As in (a)
except that U4 = 0.5γ1 (green line) and U2 = 0.5γ1 (red line). (c): U3 < U2 < U4 (green line) and U2 > U4 > U3 (red line).
(d): U3 < U2 = U4 (green line) and U3 > U2 = U4 (red line). The blue line corresponds to the result obtained in [58] for a
single barrier.
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To investigate the interlayer bias effect, we plot the transmission as a function of incident energy E in Fig. 3, with
the same parameters as in Fig. 2 and δ3 = 0.1γ1 is set. The presence of the interlayer bias in Fig. 3(a,b) opens a gap
for the triple barrier system when U2 < U3 < U4 (green line), as it does for the single barrier system (blue line [58]).
In contrast, there is no gap when U2 > U3 > U4 (red line), and the transmission behaves similarly to the result in
Fig. 2 with a minor difference. Applying a bias only in region 3 is not enough to obtain a gap in this case, as in [59].
The interlayer bias has no meaningful effect on transmission in Fig. 3(c) when U3 < U2 < U4 or when U2 > U4 > U3,
and no gap is found. In the first case, the presence of bound states in the well is responsible for the resonances found
instead of a gap [61]. In the second case, as when U2 > U3 > U4, the applied bias is not sufficient to open a gap,
then the anti-Klein tunneling remains. However, in Fig. 3(d), there is a gap when U3 > U2 = U4, but not when
U3 < U2 = U4. This difference arises from the absence of bound states when U3 > U2 = U4 while they are present
when U3 < U2 = U4. Note that, in the triple barrier case, the transmission does not behave like the results in [58–61]
when a gap is opened. For instance, the transmission is not zero in the region preceding the gap in [58–60], while it
is zero in the triple barrier case. Let us also note that in the case of a triple barrier with zero magnetic field [59], it is
necessary to apply an interlayer bias in at least two regions to obtain a gap, whereas in this case δ3 can open a gap
on its own for some configurations. Consequently, a bias can be applied in region 2 (δ2 ̸= 0) or region 4 (δ4 ̸= 0) to
obtain a gap in configurations where it is not obtained by δ3 = 0.1γ1.
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FIG. 3. (Color online): The same parameters as in Fig. 2 but now for δ3 = 0.1γ1 and δ2 = δ4 = 0.

In Fig. 4 we show the transmission as a function of barrier width (b1 = b2 = b3) and the transverse wave vector ky.
The magnetic length is set at lB = 18.5 nm, the interlayer bias at δ1 = δ2 = δ3 = 0, and the energy at E = 0.39γ1.
When we compare Fig. 4(a) (single barrier case [58]) to Fig. 4(b) (U2 < U3 < U4), we see that the number of
oscillations increases significantly in the triple barrier case as the barrier widths increase. In Fig. 4(c) additional
transmission resonances appear where U3 < U2 < U4, resulting in more oscillations than in Fig. 4(b). The number of
resonances, on the other hand, decreases when U3 < U2 = U4, as shown in Fig. 4(d). As a result, the oscillations are
less frequent than in Fig. 4(b). However, it is important to note that the number of oscillations is greater than that of
the single barrier [58] and double-barrier [61] cases. Klein tunneling is found to be reduced in the triple barrier cases
when compared to the single barrier [58]. In fact, at |ky| = 0.3 nm−1, anti-Klein tunneling begins at b1 = b2 = b3 = 3
nm in triple barrier cases, and at 8 nm in single barrier case. In addition, for barrier widths greater than 20 nm, the
transmission narrows more in the triple barrier cases than it does in the single barrier case. As a consequence, Klein
tunneling decreases while anti-Klein tunneling increases.

It is important to note that the magnetic field plays a crucial role in this work. Indeed, it enables us to investigate
different configurations, each yielding unique outcomes. For example, configurations of the types U2 < U3 < U4 and
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U4 > U3 > U2 provide distinct results. If the magnetic field were zero, they would have the same results, and the
study would be restricted. Furthermore, it is noteworthy that, thanks to the presence of the magnetic field, there are
configurations where a gap is opened by applying an interlayer bias only in the central region (region 3). In contrast,
in the absence of a magnetic field [59] it is found that an interlayer bias must be applied in at least two regions,
considering large barrier widths to open a gap. On the other hand, in four-band tunneling, we will study only one
configuration of the triple barrier, and asymmetry is expected in all channels of transmission due to the presence of
the magnetic field in the central region.

FIG. 4. (Color online): Density plot of transmission as a function of the barrier width (b1 = b2 = b3) and the transverse
wave vector ky for lB = 18.5 nm and E = 0.39γ1. (a): Single barrier case, (b): U2 < U3 < U4, (c): U3 < U2 < U4 and (d):
U3 < U2 = U4. The interlayer bias are set at δ1 = δ2 = δ3 = 0.

B. Four-band Tunneling

We plot the transmission as a function of incident energy E and the transverse wave vector ky in Fig. 5 for the
single barrier case [58] with U3 = 2.5γ1 (left) and the triple barrier case with U2 < U3 < U4 (right). The barrier
widths are set to b1 = b2 = b3 = 15 nm, the magnetic length is set to lB = 13.5 nm, and the interlayer bias is set
to δ2 = δ3 = δ4 = 0. The cloak effect [50, 57] occurs in the T+

+ channel at normal incidence in the energy region
U3 − γ1 < E < U3 (where the modes k+ outside and k− inside the barrier are decoupled) in the single barrier case,
and for a wide range of energy U3 − 2γ1 < E < U3 +0.5γ1 (where the modes k+ outside and k− inside the barrier are
decoupled) in the triple barrier case. However, at non-normal incidence, the two modes k+ outside and k− inside the
barrier are coupled, and then transmission occurs. For energies smaller than U3 − γ1, there are propagating states k+

resulting in non-zero transmission in the single barrier case, whereas for the triple barrier case they are available only
for U2 − γ1. As a result, the transmission resonances decrease for energies less than U3 when compared to the single
barrier case. There are, however, more thin resonances than those obtained in [59, 61, 63]. Furthermore, the presence
of the magnetic field in the triple barrier makes the transmission to be more pronounced for ky < 0 in the region
U3 − 2γ1 < E < U3 + 0.5γ1, while the transmission exhibits symmetrical behavior with respect to normal incidence
(ky = 0) in [57–61]. The transmission probability increases in the T+

− channel compared to the single barrier case and
approaches unity near E = U3 in the case of the triple barrier (right). This is because the cloak effect appears only
at normal incidence. In addition, the transmission oscillates, unlike [57, 58, 61]. In the T−

+ channel and for the triple
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barrier case, the cloak effect appears even at non-normal incidence and has large size in contrast to T+
− channel. As

a result, the transmission probability is close to zero, as found in [59]. In contrast, in the case of a single barrier [58],
it is different from zero. The transmission in the T−

− channel decreases from E = U3 in the single barrier case to

E = U3 − γ1 in the triple barrier case. Indeed, in T−
− channel there are no propagating states k− in the barriers in

the region upwards of E = U3 − γ1, then the cloaking is larger [57]. Therefore, the number of resonances diminishes
in the triple barrier case, but the transmission probability still remains higher than in [60, 61]. Resonances appear in
the case of a single barrier for energies greater than U3 + γ1, whereas the transmission is zero in the case of a triple
barrier due to the cloaking. Note that, in the triple barrier in the absence of magnetic field and interlayer bias [59], in
all channels T+

+ , T+
− ,T−

+ and T−
− the transmission is found to be symmetric with respect to normal incidence. In this

case, the presence of the magnetic field in region 3 of the triple barrier system breaks the symmetry in all transmission
channels.

FIG. 5. (Color online): Density plot of transmission as a function of incident energy E and the transverse wave vector ky.
(Left): Single barrier case with U3 = 2.5γ1. (Right): Triple barrier case with U2 = 1.5γ1, U3 = 2.5γ1 and U4 = 3γ1. The barrier
widths are set at b1 = b2 = b3 = 15 nm, lB = 13.5 nm and δ2 = δ3 = δ4 = 0.
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FIG. 6. (Color online): The same parameters as in Fig. 5, but now for δ3 = 0.3γ1 and δ2 = δ4 = 0.

Fig. 6 shows the transmission channels for the same parameters as in Fig. 5, but with δ3 = 0.3γ1 and δ2 = δ4 = 0.
We observe that the presence of the interlayer bias results in a gap region in all transmission channels, as found in the
single barrier case [58]. In addition, no transmission is found in the gap region, in contrast to [61–63]. The cloak effect
in the T+

+ channel is larger in the triple barrier case than in the single barrier case, as shown in Fig. 5. However, in

the T+
− channel, it occurs for the same energy region in both the triple barrier and single barrier cases. Furthermore,

we observe two thin resonances in the T+
− channel and triple barrier case that are not present in the single barrier

case [58]. The transmission probability in the T−
+ channel and triple barrier case becomes non-zero in the region of

energies greater than U4, in contrast to the result in Fig. 5, where it is close to zero. However, it still remains lower
than in the case of the single barrier. In the T−

− channel, the transmission in both single barrier and triple barrier
cases is similar to the results obtained in Fig. 5, except that the number of resonances decreases in the single barrier
case.
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C. Conductance

In Fig. 7, we plot the conductance as a function of energy E for the triple barrier system U2 < U3 < U4. Fig.
7 (a) shows the conductance for zero interlayer bias: δ2 = δ3 = δ4 = 0, which corresponds to the results in Fig. 5
(right). For energy E < γ1 , the only contribution to the total conductance comes from G+

+ (Gtot = G+
+), while the

other contributions are zero. This is explained by the presence of the k+ propagation mode in the T+
+ channel in this

region, whereas it is not present in the other channels, see Fig. 5 (right panel). In the energy region γ1 < E < U4,
the conductance G+

+ decreases and approaches zero around the points E = U2 and E = U3. This reduction is due to

the low transmission and the magnitude of the cloak effect within this region in T+
+ channel. However, G+

− begins to
conduct at E = γ1 and provides an important contribution, preventing the total conductance from dropping to zero
in the energy region γ1 < E < U4. This is the result of the large probability of transmission in T+

− channel, in contrast

to the single barrier case [58], where the transmission is low in the T+
− channel, and then it causes the conductance

total to drop to zero at E = U3. Furthermore, the contribution from G−
− in the region γ1 < E < U2, where there is a

propagation mode k− in the T−
− channel (Fig. 5,right panel) and the contribution from G+

+ in the region U2 < E < U3

have enhanced the total conductance Gtot. The contribution of G−
+ remains very close to zero until E = U4 due to the

large magnitude of the cloak effect in T−
+ . Note that for E > U4, G

+
+ provides a very strong contribution, which pushes

up the total conductance. In Fig. 7 (b), we plot the conductance with the same parameters as in Fig. 7 (a), but now
for δ3 = 0.3γ1, which corresponds to the transmission channels in Fig. 6 (right panel). The presence of the interlayer
bias results in zero conductance in the gap region for all channels of conductance (Gtot = G+

+ = G+
− = G−

+ = G−
− = 0).

For energy E < γ1, additional peaks are found in the conductance Gtot, which are absent in Fig. 7 (a). In addition, in
contrast to Fig. 7. (a) G−

+ makes a modest contribution in region γ1 < E < U2, resulting in a new peak at E = U2−δ3
in the total conductance Gtot. For E > U4, its contribution increases and approaches G+

−. However, near the gap,

we note the suppression of a pick in G+
− when compared with the result in 7 (a). This suppression is also observed in

the total conductance Gtot.
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FIG. 7. (Color online): Conductance of the triple barrier structure as a function of energy E. (a): for U2 = 1.5γ1 < U3 =
2.5γ1 < U4 = 3γ1 and δ2 = δ3 = δ4 = 0. (b): The same parameters as in 7 (a) but now for δ3 = 0.3γ1 and δ2 = δ4 = 0. The
barrier widths are set at b1 = b2 = b3 = 15 nm and lB = 13.5 nm.

V. CONCLUSION

In this paper, we have investigated the transmission of charge carriers in AB bilayer graphene through a triple
potential barrier and in the presence of a perpendicular magnetic field. Thanks to the presence of the magnetic
field, we have examined different configurations of the triple barrier in the case of two-band tunnels. It emerged
that transmission increases in the case of ascending barriers (U2 < U4) compared to declining barriers (U2 > U4).
Additionally, anti-Klein tunneling depends on the value of U2. In the presence of a magnetic field, the application
of an interlayer bias in the central region (region 3) is sufficient to open a gap for some configurations of the triple
barrier. At fixed energy, the triple barrier enhances transmission when compared to the single barrier case.

In the four-band tunneling, it was seen that the transmission decreases in the channels T+
+ , T−

+ and T−
− when

compared to the case of a single barrier. By contrast, in the T+
− channel, there is an increase in the transmission

probability in comparison with the single barrier case. Asymmetry is found in all channels of transmission as a result
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of the presence of the magnetic field. Contrary to [61–63], we observed total suppression of transmission in the gap
region in the presence of an interlayer bias, (δ3 = 0.3γ1). This results in a region of zero conductance (gap) in the
total conductance Gtot. Additional peaks are found in Gtot in the region before the gap, while near this region a pick
is suppressed. To sum up, our findings revealed interesting oscillatory features that provide good regulation of charge
carrier transmission in AB bilayer graphene. Our results, on the other hand, demonstrated that in the presence of a
magnetic field, the triple barrier system is capable of confining electrons in AB bilayer graphene as well as providing
a logic state on/off to graphene-based transistors.
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