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We explore the magnetohydrodynamics of Dirac fermions in neutral graphene in the Corbino ge-
ometry. Based on the fully consistent hydrodynamic description derived from a microscopic frame-
work and taking into account all peculiarities of graphene-specific hydrodynamics, we report the
results of a comprehensive study of the interplay of viscosity, disorder-induced scattering, recombi-
nation, energy relaxation, and interface-induced dissipation. In the clean limit, magnetoresistance of
a Corbino sample is determined by viscosity. Hence the Corbino geometry could be used to measure
the viscosity coefficient in neutral graphene.

Transport measurements remain one of the most com-
mon experimental tools in condensed matter physics.
Having dramatically evolved past the original task of es-
tablishing bulk material characteristics such as electrical
and thermal conductivities, modern experiments often
involve samples that are tailor-made to target particular
properties or behavior.

In recent years considerable efforts have been devoted
to uncovering the collective or hydrodynamic flows of
charge carriers in ultraclean materials as predicted theo-
retically [1–4]. Several dedicated experiments focused on
answering two major questions: is the observed electronic
flow really hydrodynamic and how to measure electronic
viscosity [5–10], the quantity that fascinates physicists
beyond the traditional condensed matter physics [11–
18]. The hydrodynamic regime is apparently easiest to
achieve in graphene [2–4]. This material is especially in-
teresting since it can host two drastically different types
of hydrodynamic behavior: (i) “conventional” at rela-
tively high carrier densities [3, 19, 20] and (ii) “uncon-
ventional” at charge neutrality [21, 22].

Linearity of the excitation spectrum in graphene leads
to the fact that electronic momentum density defines the
energy current, jE . In the intermediate temperature win-
dow where electron-electron interaction is the dominant
scattering process in the system (ℓee ≪ ℓdis, ℓe−ph,W , in
the self-evident notation) the energy flow becomes hydro-
dynamic. At high carrier densities (in “doped graphene”)
the energy current is essentially equivalent to the electric
current, j, allowing one to formulate a Navier-Stokes-like
equation for j [20] as pioneered by Gurzhi [19].

At charge neutrality and in the absence of the exter-
nal magnetic field (B = 0) the energy and electric cur-
rents decouple [23]. In the hydrodynamic regime the elec-
tric current remains Ohmic [22] (with the “internal” or
“quantum” conductivity σQ due to electron-electron in-
teraction [24–27]), while the Navier-Stokes-like equation
describes the energy current [22, 28, 29]. If external mag-
netic field is applied, the energy and charge flows become
entangled [21–23] allowing for a possibility to detect the
hydrodynamic flow in electronic transport experiments.
In particular, a bulk (infinite) system is characterized

FIG. 1. Hydrodynamic velocity u and temperature δT dis-
tribution in the device obtained by solving the hydrodynamic
equations at relatively high temperatures where energy relax-
ation is dominated by supercollisions. Arrows indicate u and
the color map shows δT . The quantitative results were com-
puted using the following values of the average temperature
T = 150K, disorder scattering time τdis = 1.5 ps (correspond-
ing to the scattering rate τ−1

dis ≈ 0.67THz≈ 5.1K), recombi-
nation time τR = 15ps, energy relaxation time τRE = 5ps,
dimensionless coupling constant in graphene α = 0.5, carrier
density in the leads nL = 5×1012 cm−2, and the current pass-
ing through the device I = 1µA. The four panels correspond
to the indicated values of magnetic field.

by positive, parabolic magnetoresistance [23, 30] propor-
tional to the disorder mean free time τdis (disorder scat-
tering is the only mechanism of momentum relaxation).

The outcome of a given measurement is strongly in-
fluenced by the sample size and geometry. Early experi-
ments focused on either the “strip” (or Hall bar) [5–8] or
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the point contact geometry [9, 10], while more recently
data on Corbino disks became available [31].

The simplest viscous phenomenon one can look for in a
long (striplike) sample [7–10, 12, 32–52] is the Poiseuille
flow [53–55]. This flow is characterized by a parabolic
velocity profile with the curvature determined by viscos-
ity. In doped graphene the Poiseuille flow of charge can
be detected by imaging the electric current density [8].
In contrast, neutral graphene exhibits the Poiseuille flow
of the energy current [56]. Moreover, at relatively high
temperatures where hydrodynamic behavior in graphene
is observed the electron-phonon interaction (either direct
[23, 57, 58] or via “supercollisions” [59–64]) cannot be ne-
glected and hence electronic energy is not conserved. The
resulting energy relaxation dwarfs the viscous contribu-
tion to the Navier-Stokes [65] equation.

Applying a perpendicular magnetic field to a neutral
graphene strip leads to a coupled charge and energy flow
with the two currents being orthogonal [23]. The elec-
tric current flowing along the strip is accompanied by a
neutral quasiparticle flow in the lateral direction result-
ing in energy and quasiparticle accumulation near the
strip boundaries [66, 67]. The accumulation is limited by
quasiparticle recombination [67] and energy relaxation
processes [59]. As a result, the boundary region’s contri-
bution to the resistance is linear in the applied magnetic
field [23, 48, 67, 68], in contrast to the standard quadratic
magnetoresistance of the bulk system [23, 30]. In classi-
cally strong fields the boundary contribution dominates
making the linear magnetoresistance directly observable.
This effect is not specific to Dirac fermions as shown by
experiments in bilayer graphene [69].

The Corbino geometry presents an interesting alterna-
tive to the Hall bar experiments [31, 65, 70–78]. In a typ-
ical measurement the electric current is passed from the
inner to the outer boundary of a Corbino disk. The spe-
cific feature of the stationary flow in this geometry is that
the magnitude of the radial component of the current is
determined by the continuity equation alone. In the ab-
sence of the magnetic field the whole current flows radi-
ally. Combining the solution of the continuity equation
with the hydrodynamic Gurzhi equation (e.g., in doped
graphene) leads to an apparent paradox [73]: the current
flow appears unaffected by viscosity. However, the dis-
sipated energy is still determined by viscosity leading to
the jumps of electric potential at the contacts thus re-
solving the paradox. In a perpendicular magnetic field
the system exhibits parabolic magnetoresistance inverse
proportional to the viscosity and independent of the dis-
order scattering. Applied phenomenologically to neutral
graphene (neglecting contact effects) [78] this conclusion
stands in sharp contrast to the standard result [23, 30]
raising the question of the fate of the disorder-limited
bulk magnetoresistance in the Corbino geometry.

In this paper we investigate hydrodynamic flows in
neutral graphene in the Corbino disk subjected to the
perpendicular magnetic field based on the graphene-
specific hydrodynamic theory [2, 22, 59] reporting the

results of a careful study of the interplay of viscosity,
disorder-induced scattering, recombination, energy relax-
ation, and interface-induced dissipation. Solving the hy-
drodynamic equations we find the spatial distribution of
the hydrodynamic velocity u, temperature (see Fig. 1),
electric current, and potential φ (see Fig. 2). Further-
more, we calculate the field-dependent resistance of the
whole Corbino sample including the leads. Keeping in
mind recent and ongoing experiments, it appears logical
to include the effect of the lead resistance in order to
achieve a more realistic description of the Corbino de-
vice. However, the theoretical limit of “ideal” leads can
be considered without any complications.
The main results of this paper are as follows. We

show that magnetoresistance of the Corbino device ex-
hibits a crossover from the “hydrodynamic” (viscosity-
dominated) to the “bulk” (disorder-limited) behavior
with the increasing system size as compared to the
Gurzhi length ℓG =

√
ντdis [46–49, 52] (ν is the kinematic

viscosity [3, 5, 6, 55, 79] and τdis is the disorder mean
free time). In the clean limit (τdis → ∞) magnetoresis-
tance remains finite and is determined by viscosity offer-
ing a way to measure the viscosity coefficient in neutral
graphene. In classically strong fields magnetoresistance
remain parabolic (in contrast to the linear magnetoresis-
tance in the strip geometry). The “contact magnetoresis-
tance” induced through the dissipation jump is present,
but is typically weaker than the bulk contribution.

I. MAGNETOHYDRODYNAMICS IN
GRAPHENE

Our arguments are based on the hydrodynamic theory
of electronic transport in neutral graphene derived from
the kinetic (Boltzmann) equation [21, 22, 59] or from the
microscopic Keldysh technique [80]. At charge neutral-
ity both bands contribute to transport on equal footing.
A current-carrying state is characterized by the chemical
potentials µ± of each band or by their linear combina-
tions [22, 81]

µ =
µ++µ−

2
, µI =

µ+−µ−

2
, (1a)

conjugate to the “charge” and “imbalance” (or “total
quasiparticle”) densities

n = n+ − n−, nI = n+ + n−. (1b)

In equilibrium µI = 0. Any macroscopic current can be
expressed as a product of the corresponding density and
hydrodynamic velocity u (up to dissipative corrections).
Due to the kinematic peculiarity of the Dirac fermions
in graphene known as the “collinear scattering singular-
ity” [21, 25] one has to consider the electric, energy, and
imbalance, jI currents defined as

j = nu+δj, jI = nIu+δjI , jE = Wu, (2)
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where W is the enthalpy density and δj and δjI are
the dissipative corrections. In the degenerate limit
µ ≫ T the dissipative corrections vanish [22, 28] justify-
ing the applicability of the single-band picture to doped
graphene. At charge neutrality n = 0, the electric and
energy currents in Eq. (2) appear to be decoupled [22].

Within linear response, steady-state macroscopic cur-
rents obey the linearized hydrodynamic equations [82].
Assuming that the dominant mechanism of energy relax-
ation is supercollisions [59], the equations have the form

∇·δj = 0, (3a)

nI∇·u+∇·δjI = −12 ln 2

π2

nIµI

TτR
, (3b)

∇δP = η∆u+
e

c
δj×B − 3Pu

v2gτdis
, (3c)

3P∇·u = −2δP

τRE
. (3d)

Here Eq. (3a) is the continuity equation; Eq. (3b) is the
“imbalance” continuity equation [22, 81] (where vg is the
band velocity in graphene, c is the speed of light, e is the
unit charge, and τR is the recombination time); Eq. (3c)
is the linearized Navier-Stokes equation [22, 29, 82, 83]
(with η being the shear viscosity); and Eq. (3d) is the
linearized “thermal transport” equation (τRE is the en-
ergy relaxation time [59]). We follow the standard ap-
proach [55] where the thermodynamic quantities are re-
placed by the corresponding equilibrium functions of the
hydrodynamic variables. Equilibrium thermodynamic
quantities, i.e., the pressure P = 3ζ(3)T 3/(πv2g), en-

thalpy density W, imbalance density, nI = πT 2/(3v2g),
and energy density are related by the “equation of state”,
W = 3P = 3nE/2. Equations (3) should be solved for
the unknowns u, µI , and δP keeping the remaining (ther-
modynamic) quantities, e.g., nI , P , and T , constant.

The dissipative corrections to the macroscopic currents
can be determined from the underlying microscopic the-
ory [22, 29, 82] and are expressed in terms of the same
variables closing the set of hydrodynamic equations (3)

δj =
1

e2R̃

[
eE + ωBeB×

(
α1δI∇µI

τ−1
dis +δ−1

I τ−1
22

− 2T ln 2

v2g
u

)]
,

(4a)

δjI = − δI

τ−1
dis +δ−1

I τ−1
22

1

e2R̃
× (4b)

×
[
α1ωBeB×E+

2T ln 2

π
e2R0∇µI+α1ω

2
B

2T ln 2

v2g
u

]
,

R̃ = R0+α2
1δIR̃B . (4c)

In Eqs. (4) the following notations are introduced. R0 is
the zero-field bulk resistivity in neutral graphene [23, 30]

R0 =
π

2e2T ln 2

(
1

τ11
+

1

τdis

)
−→

τdis→∞

1

σQ
, (5)

where τ11 ∝ α−2
g T−1 describes the appropriate electron-

electron collision integral. R̃B denotes [65, 82]

R̃B =
π

2e2T ln 2

ω2
B

τ−1
dis +δ−1

I τ−1
22

, (6)

where τ22 ∝ α−2
g T−1 describes a component of the col-

lision integral that is qualitatively similar, but quantita-
tively distinct from τ11 and δI ≈ 0.28. Another numerical
factor in Eqs. (4) is α1 ≈ 2.08 and ωB = eBv2g/(2cT ln 2)
is the generalized cyclotron frequency at µ = 0.
The shear viscosity at charge neutrality and in the ab-

sence of magnetic field was evaluated in Refs. [22, 79, 83]
and has the form

η(µ = 0, B = 0) = B T 2

α2
gv

2
g

, B ≈ 0.45. (7)

Within the renormalization group (RG) approach, αg

is a running coupling constant [56, 83–86]. However,
the product αgvg remains constant along the RG flow
[24, 83]. Hence Eq. (7) gives the correct form of shear
viscosity in neutral graphene [84]. Within the kinetic
theory approach, the coefficient B can be expressed in
terms of time scales characterizing the collision integral
[22, 79]. At neutrality these time scales are qualitatively
similar to, but quantitatively distinct from τ11 and τ22.
The similarity follows from the fact that in general all
time scales are functions of the chemical potential and
temperature [22, 28, 87]. At neutrality µ = 0 and hence
all time scales are inverse proportional to temperature.
As a function of the magnetic field, the viscosity co-

efficient in neutral graphene exhibit a weak decay until
eventually saturating in classically strong fields [79]

η(µ = 0, B) =
B+B1γ

2
B

1+B2γ2
B

T 2

α2
gv

2
g

, γB =
|e|v2gB
α2
gcT

2
, (8)

where

B1 ≈ 0.0037, B2 ≈ 0.0274.

This behavior should be contrasted with the more con-
ventional Lorentzian decay of field-dependent shear vis-
cosity in doped graphene [6, 45, 46, 79, 88]. However, in
weak fields where most present-day experiments are per-
formed this distinction is negligible. Moreover, due to
the smallness of the coefficient B1 and B2 we disregard
the field dependence of η in what follows.
Under the assumptions of the hydrodynamic regime,

disorder scattering is characterized by the large mean free
time, τdis ≫ τ11, τ22, yielding a negligible contribution to
Eqs. (5) and (6). Equation (5) describes the uniform bulk
current (at B = 0) and is independent of viscosity (i.e.,
in a channel [3, 21, 67, 82]). In contrast, in the Corbino
geometry the current flow is necessarily inhomogeneous
and hence viscous dissipation must be taken into account.
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II. BOUNDARY CONDITIONS

Differential equations (3) should be supplemented by
boundary conditions, which should be expressed in terms
of the hydrodynamic velocity and macroscopic currents.
The statement of the boundary conditions does not im-
ply the validity of the hydrodynamic approximation at
the sample edges and generally have to be derived from
the underlying microscopic theory. However some of the
boundary conditions can be derived based on the con-
servation laws alone. In the circular Corbino geometry
conservation laws can be used to establish boundary con-
ditions for radial components of the currents [65].

A. Radial components of macroscopic currents

A typical experimental setup involves a graphene sam-
ple (in our case, at charge neutrality) in the shape of an
annulus placed between the inner (a disk of radius r1) and
outer (a ring with the inner radius r2) metallic contacts
(leads). The electric current I is injected into the cen-
ter of the inner lead preserving the rotational invariance
(e.g., through a thin vertical wire attached to the center
point) and spreads towards the outer lead, which for con-
creteness we assume to be grounded. The overall voltage
drop U is measured between two points in the two leads
(at the radii rin < r1 and rout > r2) yielding the device
resistance, R = U/I. The only boundaries in the system
are between the sample and the external leads.

For simplicity, we assume both leads to be of the same
material with a single-band electronic system, e.g., highly
doped graphene with the same doping level. In that
case, all macroscopic currents in the leads are propor-
tional to the drift velocity and hence are determined by
the injected current. In the stationary case, the conti-
nuity equation (3a) determines the radial component of
the electric current density. In the inner lead this yields
jinr = I/(2πer), defining the radial component of the drift
velocity, uin

r = jinr /nL (nL is the carrier density in the in-
ner lead). Assuming charge conservation is not violated
at the interface, we find the boundary condition between
the inner lead and the sample

jr(r1−ϵ) = nLur(r1−ϵ) = δjr(r1+ϵ), (9a)

where ϵ > 0 is infinitesimal and we took into account
that in neutral (n = 0) graphene j = δj.

The second hydrodynamic equation, Eq. (3b), is the
continuity equation for the imbalance density. Although
the total quasiparticle number is not conserved, integrat-
ing this equation over an infinitesimally thin region en-
compassing the boundary yields a similar boundary con-
dition for the imbalance current assuming that the re-
laxation rate due to quasiparticle recombination is not
singular at the boundary

jI,r(r1−ϵ) = nLur(r1−ϵ) = nIur(r1 + ϵ) + δjI,r(r1 + ϵ).
(9b)

Here we took into account the fact that in a single-band
system jI is identical with j.
Finally, Eq. (3d) is the linearized continuity equation

for the entropy density (here we follow the standard prac-
tice [55] of replacing the continuity equation for the en-
ergy density by the entropy flow equation, also known
as the thermal transport equation). Again, assuming the
energy relaxation rate is not singular at the interface (i.e.,
the current flow is not accompanied by energy or excess
heat accumulation at the boundary between the sample
and the contact) we integrate Eq. (3d) over an infinitesi-
mally thin region encompassing the boundary and arrive
at the boundary condition for the entropy current

sinur(r1−ϵ) = sur(r1 + ϵ), (9c)

where s and sin are the entropy densities in the sample
and inner lead, respectively.

B. Tangential flows in external magnetic field

The above boundary conditions (and the correspond-
ing conditions on the outer lead) are sufficient to solve the
hydrodynamic equations in the absence of magnetic field
where all currents are radial [65]. An external magnetic
field induces the tangential components of the currents
due to the classical Hall effect. The continuity equations
do not determine the tangential components and hence
the boundary conditions have to be derived from a mi-
croscopic theory. Generally speaking, the boundary con-
ditions depend on the presence of tangential forces at the
interface, usually associated with edge roughness. Typi-
cally [2–4, 55, 73], one considers the two limiting cases of
either the “no-slip” or “no-stress” boundary conditions
corresponding to either the presence or the absence of
the drag-like friction across the interface.
For contact interfaces in the Corbino geometry, the

boundary conditions corresponding to the above limiting
cases differ from the well-known expression of conven-
tional hydrodynamics. The no-slip boundary condition
now means that the tangential component of the hydro-
dynamic velocity is continuous across the interface (writ-
ten as above for the inner interface)

uLϑ(r1 − ϵ) = uϑ(r1 + ϵ), (10a)

in contrast to the common condition of vanishing velocity
at the channel boundary (the two are consistent, since in
the latter case there is no flow beyond the edge).
The no-stress boundary condition means the absence of

any forces along the interface in which case the tangential
component of the stress tensor Πij is continuous. In polar
coordinates appropriate for the Corbino geometry one
finds

Πϑr
L,E(r1 − ϵ) = Πϑr

E (r1 + ϵ), (10b)

The no-stress boundary condition is easy to derive start-
ing from the kinetic equation. Multiplying the kinetic
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equation by the momentum and summing over all quasi-
particle states, one finds an equation featuring the gradi-
ent of the stress tensor [22] as well as macroscopic forces
in the system. Now the boundary condition can be ob-
tained by integrating that equation over the small volume
around the interface. Unless there is a force localized at
the interface (with a δ-function-like coordinate depen-
dence on the hydrodynamic scale), this procedure would
yield Eq. (10b). Usually, the interfaces are microscop-
ically rough with the roughness providing such a force.
As a result, the no-slip boundary condition is more com-
monly used. In neutral graphene, however, the quasipar-
ticle wavelength typically exceeds any length scale asso-
ciated with edge roughness leading to specular scattering
[82] and Eq. (10b).

In the case of the hard wall edges, the boundary con-
ditions were previously studied theoretically in Ref. [89]
and confirmed experimentally in Ref. [8] where a nonzero
slip length was proposed indicating a more general
Maxwell’s boundary condition. However, the specific
choice of the boudnary conditions does not lead to qual-
itatively different results [73]. Here we follow the hy-
drodynamic tradition and consider both the no-slip and
no-stress boundary conditions.

C. Interface-induced dissipation and jumps of the
electric potential

The hydrodynamic theory discussed so far completely
describes the energy flow in neutral graphene. In order to
establish the device resistance R we have to find the be-
havior of the electrochemical potential at the interfaces.

The standard description of interfaces between metals
or semiconductors in terms of the contact resistance [90]
can be carried over to neutral graphene [81]. In graphene,
the contact resistance was recently measured in Ref. [8]
(see also Refs. [31, 91, 92]). In the diffusive (or Ohmic)
case, the contact resistance leads to a voltage drop that is
small compared to that in the bulk of the sample and can
be neglected. In contrast, in the ballistic case with almost
no voltage drop in the bulk, most energy is dissipated at
the contacts. Both scenarios neglect interactions.

In the diffusive regime interactions give rise to per-
turbative corrections to the bulk resistivity [93, 94] and
the contact resistance can still be neglected. In ballis-
tic samples electron-electron interaction may lead to the
“Knudsen-Poiseuille” crossover [19] and drive the system
to the hydrodynamic regime. In this case the Ohmic
resistivity of the electronic fluid may remain small, but
there exist other channels for dissipation due to viscos-
ity [73] and energy relaxation processes [59]. In neutral
graphene the effect is subtle [65], since the electric current
is decoupled from the hydrodynamic energy flow. How-
ever, both are induced by the current source that pro-
vides the energy dissipated through all the above chan-
nels. The energy dissipated in the system corresponds to
the overall voltage drop. In the bulk of the sample the

FIG. 2. Electric current density j and potential φ in the
device obtained by solving the hydrodynamic equations at
relatively high temperatures where energy relaxation is domi-
nated by supercollisions. Arrows indicate j and the color map
shows φ. The outer lead is chosen to be grounded. The four
panels correspond to the indicated values of magnetic field.
For the values of other parameters, see Fig 1.

voltage drop is Ohmic as determined by Eq. (4a), while
the additional contribution takes the form of a potential
jump at the interface between the sample and leads. At
the same time, an excess electric field is induced in a thin
Knudsen layer around the interface [73].
The magnitude of the jump in ϕ can be established by

considering the flow of energy through the interface as
suggested in Ref. [73] and detailed in neutral graphene
atB = 0 in Ref. [65]. Consider the kinetic energy defined
by integrating the energy density nE(u)−nE(0) over the
volume

E =

∫
dV [nE(u)−nE(0)] ≈

∫
dV

6P

v2g
u2, (11)

which we have expanded to the leading order in u (and
hence in I). In the stationary state, dissipation is bal-
anced by the work done by the source, such that the time
derivative of the kinetic energy vanishes, A = Ė = 0. Us-
ing the equations of motion and continuity equations to
find time derivatives, one may split A into the “bulk”
and “boundary” contributions, A = Abulk +Aedge. The
former may be interpreted as the bulk dissipation, while
Aedge must include the energy brought in (carried away)
through the boundary by the incoming (outgoing) flow.
The boundary condition is then found under the assump-
tion that energy is not accumulated at the interface.
Assuming the leads’ material is highly doped graphene,

the equation of motion is the usual Ohm’s law where we
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may combine the diffusion term [95] with a contribution
of viscosity ηL due to disorder [96] into the gradient of
the stress-energy tensor [23] and hence

3PL

v2g
uL∂tuL =

= ui
L

(
−3PL

v2g

ui
L

τL
−∇jΠij

L,E+nLeE
i+

e

c
ϵijkjjBk

)

= −3PL

v2g

u2
L

τL
+
∂uL,i

∂xj
Πij

L,E+
e

c
uL ·(j×B)+eφ∇·j

−∇i
(
uj
LΠ

ij
L,E + ejiφ

)
.

The last term in this expression determines the bound-
ary contribution. Given that the Lorentz force does not
explicitly contribute, the only difference from the expres-
sion derived in Ref. [65] at B = 0 is the nonzero tangen-
tial components of the hydrodynamic velocity and the
stress tensor (vanishing in the absence of magnetic field).
In neutral graphene, we obtain a similar expression from
the Navier-Stokes equation, while the Joule heat is de-
termined by δj. Equating the two contributions we find
the jump of the potential in the form

φ(r1 − ε)− φ(r1 + ε) = IRc + (12)

+
2πr1
I

[(
urΠ

rr
E + uϑΠ

ϑr
E

) ∣∣∣
r1+ε

−
(
urΠ

rr
L,E + uϑΠ

ϑr
L,E

) ∣∣∣
r1−ε

]
,

where Rc is the usual contact resistance [81]. A similar
condition holds at the boundary with the outer lead.

III. HYDRODYNAMIC FLOWS IN THE
CORBINO GEOMETRY

In polar coordinates and taking into account radial
symmetry, the hydrodynamic equations (3) and (4) form
two disjoint sets of differential equations. The first one
determines the tangential component of the velocity uϑ:

1

r

∂(rδjr)

∂r
= 0, (13a)

η∂r

(
1

r

∂(ruϑ)

∂r

)
− eB

c
δjr −

3Puϑ

v2gτdis
= 0, (13b)

δjr =
1

e2R̃

[
eEr(r) + ωB

2T ln 2

v2g
uϑ

]
, (13c)

δjIϑ = − α1δIωB

τ−1
dis +δ−1

I τ−1
22

δjr, (13d)

while the second one involves the radial component ur:

nI

r

∂(rur)

∂r
+

1

r

∂(rδjIr)

∂r
= −12 ln 2

π2

nIµI(r)

TτR
, (14a)

∂δP

∂r
= η∂r

(
1

r

∂(rur)

∂r

)
+

eB

c
δjϑ − 3Pur

v2gτdis
, (14b)

3P

r

∂(rur)

∂r
= −2δP (r)

τRE
. (14c)

δjϑ =
ωB

e2R̃

(
α1δI

τ−1
dis +δ−1

I τ−1
22

∂µI

∂r
− 2T ln 2

v2g
ur

)
, (14d)

δjIr = − 2δIT ln 2

τ−1
dis +δ−1

I τ−1
22

[
R0

πR̃

∂µI

∂r
+
α1ω

2
B

e2R̃

ur

v2g

]
. (14e)

A. Tangential component of the velocity and bulk
voltage drop

The bulk magnetoresistance can be found by solv-
ing Eqs. (13) with the appropriate boundary conditions.
Combining Eqs. (13a) and (13b) we find an inhomoge-
neous Bessel equation for the tangential component of
the velocity uϑ with the characteristic length scale be-
ing the Gurzhi length ℓ2G = ηv2gτdis/(3P ). The boundary
condition for uϑ is determined by microscopic details of
viscous drag at the interface and hence is not universal.
Here we follow the hydrodynamic tradition and consider
both the no-slip and the no-stress boundary conditions,
see Sec. II B. Moreover, one can distinguish two different
setups where the external magnetic field is applied either
to the sample only or to the whole device including the
leads. In all these cases we can find an analytic expression
for uϑ, which can be substituted into of Eq. (13c) to find
the electric field in the sample, Er (the radial component
of the current is determined by the continuity equation
alone). Similarly, Eq. (13d) determines δjIϑ. Using the
obtained electric field we can determine the voltage drop
through the bulk of the sample as

U =

r2∫
r1

Erdr =

r2∫
r1

dr

(
R̃I

2πr
− B

c
uϑ

)
. (15)

For the no-slip boundary condition for uϑ and allowing
the external magnetic field to penetrate the leads, the
tangential component of the velocity is given by

uϑ = −BIℓ2G
2πcηr

+
BI
(
ηℓ2L − ηLℓ

2
G

)
2πcηηLr1r2

× (16)

×

K1

(
r

ℓG

) r1I1

(
r1
ℓG

)
−r2I1

(
r2
ℓG

)
K1

(
r1
ℓG

)
I1

(
r2
ℓG

)
−I1

(
r1
ℓG

)
K1

(
r2
ℓG

)

+ I1

(
r

ℓG

) r2K1

(
r2
ℓG

)
−r1K1

(
r1
ℓG

)
K1

(
r1
ℓG

)
I1

(
r2
ℓG

)
−I1

(
r1
ℓG

)
K1

(
r2
ℓG

)
,
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where ηL is the disorder-induced viscosity [96] and ℓ2L =
v2gηLτL/(2PL) is the Gurzhi length in the leads.

In the limit ℓG ≫ r1, r2 (i.e., “clean system” with long
mean free time τdis → ∞) this simplifies to (p = r2/r1)

uϑ ≈ − BIℓ2L
4πcrηL

[
2 +

(
1

ℓ2G
− ηL
ηℓ2L

)
× (17)

×
r2 ln

(
r
r1

)
+r2p2 ln

(
r2
r

)
−r22 ln p

1−p2

.
The corresponding voltage drop remains finite

U ≈
(
1− ηℓ2L

ηLℓ2G

)
B2Ir22
4πc2η

(p2−1)2−4p2 ln2 p

4p2(p2−1)
(18a)

+
I ln p

2π

(
B2

c2
v2gτL

3PL
+ R̃

)
,

yielding the field-dependent bulk resistance (R = U/I)

R(B) ≈ ln p

2π
R0 +

B2r22
4πc2η

(p2−1)2−4p2 ln2 p

4p2(p2−1)
(18b)

+
B2v4g ln p

2c2T 3

[
α2
1δI

8 ln3 2

1

τ−1
dis +δ−1

I τ−1
22

+
T 3

µ3
τL

]
,

assuming ηℓ2L/(ηLℓ
2
G) = 3PτL/(2PLτdis) ≪ 1 with PL =

µ3
L/(3πv

2
g). The two field-dependent terms differ in their

dependence on temperature, sample size, and coupling
constant [35] opening a possibility to separate the two
contributions from the experimental data and thus to
measure the viscosity coefficient.

If the magnetic field is applied to the sample only (and
not to the leads) uϑ vanishes in the leads and hence the
terms with ℓL do not appear in the voltage drop (18). In
that case, the field-dependent contribution to U does not
contain τdis in contrast to the known result in the strip
geometry [23, 30].

A similar result can be obtained in the case of no-stress
boundary conditions, where the tangential component of
the velocity uϑ is still expressed in terms of the Bessel
functions. In the clean limit (ℓG ≫ r1, r2) the voltage
drop also remains finite

U ≈ I

2π

(
R̃+

B2ℓ2L
c2η

− BηH
ecηnL

)
ln p (19)

+
r22B

2I

4πc2η

[(
p2−1

) (
p4+10p2+1

)
12p2 (p2+1)

2 − ln p

1+p2

]

+
I

2π

[
B2

c2

(
ℓ2G−ℓ2L

)
η

+
BηH
ecηnL

]
p2−1

p2+1
,

where ηH is the Hall viscosity in the leads, which vanishes
if the magnetic field is not allowed in the leads. In that
case, the last term in the voltage drop (19) is proportional

FIG. 3. Radial (top panel) and tangential (bottom panel)
components of the hydrodynamic velocity u computed within
the “supercollisions model” of energy relaxation. Black lines
in the shaded regions show the drift velocity in the leads.
Color curves correspond to different values of the external
magnetic field according to the shown color coding. The top
curve shows values at B = 0 and is identical with the results
of Ref. [65]. For the parameter values, see Fig 1.

to τdis and independent of viscosity. The second term
in Eq. (19) remains similar to Eq. (18) and is inverse
proportional to η. This term’s dependence on the ratio
p is distinct from both Eq. (18) and the third term in
Eq. (19) and could be extracted by analyzing the data in
a set of Corbino disks with different p.
In the opposite limit ℓG ≪ r1, r2, the leading contri-

bution to the bulk voltage drop is independent of η. For
no-slip boundary conditions and in the simplified case
where the field is not allowed to penetrate the leads we
find for the field-dependent part of U

R(B)−R(0) ≈
B2v2gτdis ln p

6πc2P
+

ln p

2π
δIα

2
1R̃B ∝ τdisB

2.

(20)
The voltage drop (20) is proportional to τdis similarly
to the result in the strip geometry (see Refs. [23, 30]).
Of course, in the limit ℓG ≪ r1, r2 the mean free time
τdis cannot be arbitrarily large, hence the voltage drop
(20) does not diverge. In the limit τdis → ∞ the voltage
drop crosses over to the above “clean” limit and is given
by Eq. (18). However, the limiting expression (20) is
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independent of viscosity, and hence qualitatively similar
to the usual result.

To summarize the results of this section, we have
shown that bulk magnetoresistance in neutral graphene
in the Corbino geometry exhibits a crossover between the
“clean” limit of the large (compared to the disk radius)
Gurzhi length to the limit of small Gurzhi length. In the
former case, the field-dependent part of the bulk voltage
drop is determined by viscosity, while in the latter limit
it is proportional to the disorder mean free time similarly
to the known result in the strip geometry.

B. Radial component of the velocity and the
device resistance

The five equations (14) can be reduced to two cou-
pled differential equations (for similar calculations in the
strip geometry see Refs. [23, 48, 68, 82]). To simplify the
arguments, we introduce the following notations

q = nIur, p = δjI,r, x =
2nI

3P
δP, y =

12 ln 2

π2

nI

T
µI .

(21)
In terms of the new variables, Eqs. (14a) and (14c) can
be written as

1

r

∂(rq)

∂r
+

1

r

∂(rp)

∂r
= − y

τR
, (22a)

1

r

∂(rq)

∂r
= − x

τRE
. (22b)

Equation (14e) can be rewritten as

∂y

∂r
= − 6

π

R̃nI

R0T 2τ̃
p− 12 ln 2

π

α1ω
2
B

e2v2gR0T
q, (23a)

where τ̃ = δI/(τ
−1
dis +δ−1

I τ−1
22 ). Finally, Eqs. (14b) and

(14d) can be combined into

∂x

∂r
=

2η

3P

∂

∂r

1

r

∂(rq)

∂r
− 2

v2g

[
τ−1
dis +

ω2
B

e2R̃

4T 2 ln2 2

3Pv2g

]
q

+α1τ̃
π2T 2

9Pv2g

ω2
B

e2R̃

∂y

∂r
. (23b)

Introducing the differential operator

D̂q =
∂

∂r

1

r

∂(rq)

∂r
, (24)

we rewrite Eqs. (22) in the matrix form

D̂

(
q
p

)
= T̂S

(
∂x/∂r
∂y/∂r

)
, T̂S =

( 1
τRE

0

− 1
τRE

1
τR

)
. (25a)

Similarly, Eqs. (23) can be written in the matrix form(
∂x/∂r
∂y/∂r

)
= −M̂

(
q
p

)
+ V̂ D̂

(
q
p

)
, (25b)

FIG. 4. Local variations of temperature (top panel) and pres-
sure (bottom panel) in the Corbino device computed within
the “supercollisions model” of energy relaxation. Black lines
in the shaded regions indicate that the leads are at equilib-
rium. Color curves correspond to different values of the exter-
nal magnetic field according to the shown color coding. Zero
field values are identical with the results of Ref. [65]. For the
parameter values, see Fig 1.

where

V̂ =

(
2η
3P 0
0 0

)
,

and

M̂ =

 16 ln3 2
3π

δIR̃BT 3

v4
gPR0τ̃

+ 2
v2
gτdis

4 ln 2
3

α1δInIR̃BT
v2
gPR0τ̃

24 ln2 2
π2

α1δIR̃B

v2
gR0τ̃

6
π

nIR̃
R0T 2τ̃

 .

Finally, combining Eqs. (25) we find the equation for
the variables p and q

D̂

(
q
p

)
= K̂

(
q
p

)
, K̂ =

[
1− T̂S V̂

]−1

T̂SM̂. (26)

The obtained equation should be solved with the bound-
ary conditions (9). The solution is straightforward albeit
tedious. The results can be expressed in terms of linear
combinations of the Bessel functions. Thus obtained so-
lutions are not particularly instructive, hence we present
the results of the calculation in graphical form.
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FIG. 5. Magnetoresistance of a small (top panel) and large
(bottom panel) Corbino device computed within the “su-
percollisions model” of energy relaxation. The radii of the
Corbino disks are shown above the plots. The black dotted
line shows the quantity R̃, which is of the same order of magni-
tude as the magnetoresistance in the infinite system [23, 82].
Color curves correspond to three different sets of values of
the relaxation times. For other parameter values (yielding
ℓG = 0.2µm), see Fig 1. The insets show the contact resis-
tance due to viscous dissipation.

The radial component of the hydrodynamic velocity is
shown in the top panel of Fig. 3. The drift velocity in the
leads shows the standard Corbino profile, ur ∝ 1/r. At
each interface, ur exhibits a jump due to the mismatch of
the entropy densities in the sample and leads. For high
enough magnetic field, ur has a sign change close to the
interface. However, the corresponding change of direc-
tion is hardly seen in the overall flow diagram shown in
Fig. 1, since the numerical value of the tangential compo-
nent uϑ is much larger (see the bottom panel of Fig. 3).

The hydrodynamic velocity determines the energy cur-
rent in the system. The nonuniform energy current re-
sults in local variations of the electronic temperature
from its equilibrium value (see Fig. 4). The inhomoge-

neous temperature profile suggests that energy relaxation
is less effective in strong magnetic fields. Fig. 1 shows the
same data as Fig. 4 but in the form of the color map.
Finally we use the boundary conditions (12) to find the

interface jumps of the electric potential which allows us
to determine the device resistance. The procedure is the
same as in the case of B = 0 discussed in Ref. [65]. The
results are shown in Fig. 5. For small enough samples (see
the top panel in Fig. 5) the device resistance deviates only

slightly from R̃ which is of the same order of magnitude
as the magnetoresistance in the infinite system [23, 82].
In large samples the deviation is more pronounced and
depends on the actual radius of the disk rather than on
the ratio p (which is the same in both plots).
The quantitative results shown in this section were

computed for a particular choice of the relaxation times.
These values are largely phenomenological; however, the
magnetoresistance shown in Fig. 5 hardly depends on
them, while for larger samples (the bottom panel) the
three curves are indistinguishable. However, the values of
the relaxation times cannot be completely arbitrary. The

point is that the matrix K̂ in Eq. (26) is not guaranteed to
have real, positive eigenvalues (although its determinant
is positive). In particular, the recombination time τR
and energy relaxation time τRE cannot be very different.
Within the physical model of supercollisions [59] these
time-scales are of the same order of magnitude. Quasi-
particle recombination involves supercollision scattering
between the bands, while energy relaxation includes an
additional contribution of intraband scattering. As a re-
sult, the energy relaxation time is shorter than τR, but
not much shorter since the model does not involve any
additional parameter. For such physical values of the re-

laxation times the eigenvalues of the matrix K̂ are real
positive and the resulting magnetoresistance is well ac-
counted for by the curves shown in Fig. 5 where, again,
the particular values of τR and τRE do not have a strong
quantitative impact on the overall resistance magnitude.

C. Energy relaxation due to electron-phonon
interaction

Supercollisions are scattering events involving electron
scattering off a phonon and an impurity. As such, this is
a next-order process as compared to the direct electron-
phonon scattering. The reason supercollisions might be
important is that the speed of sound is much smaller than
vg. At high enough temperatures [59, 60] supercollisions
indeed dominate, but at lower temperatures the direct
electron-phonon scattering cannot be neglected.
Energy relaxation and quasiparticle recombination due

to electron-phonon scattering was considered in Ref. [23]
within the linear response theory. Since the macroscopic
equations of the linear response theory coincide with
the linearized hydrodynamic equations [22], we can di-
rectly incorporate the corresponding decay terms into
our hydrodynamic theory. These decay terms appear in
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FIG. 6. Magnetoresistance in small (top) and large (bot-
tom) Corbino devices computed within the “electron-phonon
model” of energy relaxation (cf. Fig. 5).

Eq. (25a) through the matrix T̂S . The model of electron-
phonon interaction introduced in Ref. [23] corresponds to
the following choice of this matrix

T̂ep = − 1

|∆|

(
γ

τEc
+ 1

τEb
− γ2

N2τEb
− γ

τEc

−γ2N2

γτEc
− N2

τIc
− 1

τEb

2γ
τEc

+ γ2

N2τEb
+ N2

τIc

)
,

(27)
where

γ=
π2

12 ln2 2
, N2 =

9ζ(3)

8 ln3 2
, ∆ = γ2 −N2,

and τEb ≪ τEc ≤ τIc describe the three independent
components of the electron-phonon collision integral [23].

Repeating the above calculation with T̂ep instead of

T̂S , we arrive at the results that are largely similar to
those obtained within the supercollision model, but with
a few notable differences (see Figs. 6-11). Unless specified
in the figure captions, the parameter values used for the
quantitative computation are the same as in the case of
supercollisions (see the caption to Fig. 1).

FIG. 7. Electric current density j and potential φ within the
electron-phonon model of energy relaxation (cf. Fig. 2).

Magnetoresistance of the device is still positive and
parabolic (see Fig. 6). In small devices, it is still largely

determined by the quantity R̃ (shown by the black dot-
ted line in Fig. 6 similarly to Fig. 5). In this case, varia-
tions of the electron-phonon relaxation rates still do not
affect the result in any noticeable way. The results for
large devices are also similar to the case of supercollisions:
calculated magnetoresistance clearly exceeds R̃ and thus
shows a strong dependence on the size of the device (but
not on the ratio p).

The electric current density and potential in the device
are seen largely the same as in the case of supercollisions,
although the deviation of the current from the radial di-
rection (i.e., its tangential component δjϑ) is somewhat
smaller (see Fig. 7, cf. Fig. 2). This result seems to be
consistent with the similarities in the magnetoresistance
in the two cases.

The hydrodynamic velocity u is still dominated by its
tangential component (see Figs. 8 and 9). The latter
shows the behavior that is largely similar to that shown
in the bottom panel of Fig. 3, although the magnitude of
uϑ shows stronger growth with increasing magnetic field.
In contrast, the temperature variation is “reversed”: now
the electronic temperature is increased around the inner
contact and decreased close to the outer one (the opposite
behavior to that seen in Figs. 1 and 4) (see Fig. 10).

The reversed behavior of the temperature variation
corresponds to the change in the radial component of
the hydrodynamic velocity ur. While the jumps at the
interfaces with the leads remain the same (insofar ur on
the sample side of the interface is larger than the drift
velocity in the leads), the initial slope of ur as a function
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FIG. 8. Hydrodynamic velocity u and temperature δT dis-
tribution in the device obtained by solving the hydrodynamic
equations at relatively low temperatures where energy relax-
ation is dominated by direct electron-phonon scattering (cf.
Fig. 1).

FIG. 9. Tangential component of the hydrodynamic velocity
uϑ computed within the “electron-phonon model” of energy
relaxation (cf. Fig. 3).

of the radial coordinate has the opposite sign, which does
not change with the increase in the magnetic field.

Overall, it is rather natural that the choice of the en-
ergy relaxation model mostly affects the energy flow in
the device rather than the charge flow. This is a clear
consequence of the decoupling of the energy and electric
currents in neutral graphene. Although the two currents
are being coupled by the magnetic field, the effect ap-
pears to be subleading. It is not surprising that the effect
of this coupling is most pronounced in strong magnetic
fields and large Corbino disks.

Contact resistance induced by viscous dissipation (see

FIG. 10. Local temperature variation computed within the
“electron-phonon model” of energy relaxation (cf. Fig. 3).

FIG. 11. Radial component of the hydrodynamic velocity
ur computed within the “electron-phonon model” of energy
relaxation (cf. Fig. 3).

insets in Figs. 5 and 6) is also affected by the choice of the
energy relaxation model. In the case of supercollisions
its qualitative behavior exhibits a strong dependence on
the size of the disk (see Fig. 5), while in the model of
electron-phonon scattering this dependence is reduced to
the magnitude only. The contact resistance is signifi-
cantly stronger in small devices for both choices of the
energy relaxation model as expected on general grounds.
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IV. SUMMARY

In this paper we considered hydrodynamic flows of
charge and energy in neutral graphene Corbino disks. We
have shown that the Corbino geometry offers a (in princi-
ple realizable) possibility to measure electronic viscosity
in neutral graphene, a task that so far has appeared elu-
sive. The viscosity coefficient could be extracted from the
magnetoresistance data in the ultra-clean limit where the
bulk contribution to the device resistance is independent
of the electron-impurity scattering time. The bulk re-
sistance dominates over the contact resistance for larger
sized disks and hence can in principle be measured in
laboratory experiments.

Corbino magnetoresistance in graphene is illustrated
in Figs. 5 and 6, where the calculated magnetoresistance
is shown for two models of energy relaxation. In both
cases, the dependence R(B) is parabolic, similarly to the
known result in the strip geometry. The viscosity co-
efficient can be in principle determined experimentally
by analyzing the data in a set of different Corbino disks
(see Sec. IIIA). This is not a straightforward task since
the magnetoresistance is given by a sum of viscosity-
dependent and viscosity-independent terms. In the clean
limit ℓG ≪ r1, r2 [see Eq. (18)], these terms exhibit
distinct dependence on the sample size r2, the ratio of
the radii p = r2/r1, and temperature, making it possi-
ble to extract the viscosity coefficient from the experi-
mental data. In the opposite limit [see Eq. (19)], the
dominant contribution to magnetoresistance is indepen-
dent of viscosity. Existing experiments appear to be in
the crossover between these two limits. In this paper
we have used parameter values yielding ℓG ≈ 0.2µm.
The size of the Corbino disk used in a recent experiment
[31] was r1 = 2µm, r2 = 9µm, which is closer to the
“large Corbino disk” illustrated in panels (b) in Figs. 5
and 6 than to the clean limit. It is fair to say that at
present extracting viscosity from Corbino magnetoresis-
tance measurements would be extremely difficult. At the
same time, we are not aware of any other way to measure

the viscosity coefficient in neutral graphene. We believe
that viscosity measurements and more generally exper-
imental observation of purely viscous effects in neutral
graphene will be more accessible in the near future with
even cleaner samples (increasing τdis by an order of mag-
nitude).
The regime of linear magnetoresistance as seen in the

strip geometry or infinitely sized models does not exist
in the Corbino geometry. This can be easily understood
by noting that the origin of linear magnetoresistance is
in the accumulation of energy and quasiparticle density
in the boundary region of a long strip where the sam-
ple edges provide a natural barrier for the lateral neutral
flow of quasiparticles induced by the magnetic field. In
a Corbino disk there is no such edge. The lateral cur-
rents (energy and imbalance) flow freely around the disk
without accumulating quasiparticles at any point.
Unlike the case of a single-band conductor (e.g., doped

graphene), at charge neutrality the electric field is not
expelled from the bulk of the sample. Nevertheless bulk
viscous dissipation does lead to a discontinuity of the
electric potential at the sample-lead interfaces inducing
an additional contact resistance. This resistance however
is rather small as compared to the resistance of the whole
device and should not have a strong effect on the viscosity
measurements.
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(2019).
[80] B. N. Narozhny, Annals of Physics 454, 169341 (2023).
[81] M. S. Foster and I. L. Aleiner, Phys. Rev. B 79, 085415

(2009).
[82] B. N. Narozhny, I. V. Gornyi, and M. Titov, Phys. Rev.

B 104, 075443 (2021).

[83] M. Müller, J. Schmalian, and L. Fritz, Phys. Rev. Lett.
103, 025301 (2009).

[84] D. E. Sheehy and J. Schmalian, Phys. Rev. Lett. 99,
226803 (2007).
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