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Abstract

We study the motion of charge carriers in curved Dirac materials, in the

presence of a local Fermi velocity. An explicit parameterization of the latter

emerging quantity for a nanoscroll cylindrical geometry is also provided, to-

gether with a discussion of related physical effects and observable properties.

Keywords: Dirac equation, graphene, local Fermi velocity, nanoscrolls.

1 Introduction

Dirac equation is one of the most relevant contributions in the history of quan-

tum mechanics. Over the decades, its study has been conducted from different

points of view [1–3], with countless applications in many areas of physics. The

reformulation of the Dirac formalism in curved backgrounds is an appealing field

of research due to its remarkable applications in high-energy physics, quantum

field theory, analogue gravity scenarios and condensed matter.

A real, solid-state system where to observe the properties of Dirac spino-

rial quantum fields in a curved space is provided by graphene and other two-

dimensional materials. The latter have attracted great interest because of their
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electronic, mechanical and optical characteristics [4–7]. The analysis of the elec-

tronic structure of these special substrates has received further contributions from

theoretical studies on the dynamics of Dirac particles in curved spacetime. In par-

ticular, an effective low-energy model, formally equivalent to a Dirac equation,

emerges in graphene-like materials; the resulting formulation then provides a pow-

erful tool to describe the motion of the long-wavelengths charge carriers [8–19].

Furthermore, from a practical perspective, stability, flexibility and near-ballistic

transport at room temperature, make Dirac materials [20] an ideal framework for

many nanoscale applications [21–26].

Curvature effects. In the large wavelength regime [10, 27, 28], where quasipar-

ticles wavelengths are large if compared with the honeycomb dimensions, curva-

ture effects in Dirac materials have been extensively studied [8, 29, 30]. Intrinsic

curvature deformations involve inelastic effects (usually coming from the forma-

tion of disclination-type defects), that turn out to work as potentials for pseudo-

magnetic fields modulated by curvature. Extrinsic curvature is an elastic effect

coming from graphene sheet warping, determining a variation of the bond angles

between orbitals and introducing peculiar effects in the electronic properties of

the material [31–33].

Effects from intrinsic curvature have been subject of much more attention

within the graphene community, the inelastic deformation giving rise to the emer-

gence of pseudogauge fields directly affecting the carrier dynamics and the elec-

tronic properties of the sample [12]. In the following, instead, we focus on an

extrinsic curvature framework, where the contributions of the pseudogauge fields

are neglected and the physical properties are determined by the specific folding

of the sample, expressed in terms of the related parametrization.

Local Fermi velocity. It is well recognized that a gap formation in graphene-

like systems [34, 35] suggests the inclusion of a spatially-varying Fermi velocity in

the sample [36–39]. Confirmations in this direction also come from spectroscopy

experiments [30, 40–42]. In addition, the need for a local Fermi velocity (LFV)

emerges from the electronic transport in two-dimensional strained Dirac materials

[43]; the latter feature has triggered a wide range of researches [44–50].

From a theoretical point of view, the study of an effective Dirac behavior

from lattice symmetry or, in a more general context, from low-energy expansion

for distorted lattices in continuum approximation [51, 52] has allowed a better

understanding of the correspondence between the lattice formulations and the

quantum field covariant approach in curved space, justifying an emergent spatial

dependence for the Fermi velocity [30]. On the other hand, the studies on het-
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erostructures in graphene-like materials suggest that the dynamics of the charge

carriers in the substrate can be described in terms of an effective Dirac model

with a non-constant Fermi velocity [53]. The latter features a position depen-

dence that can be induced, e.g., by the presence of lattice strains, by specific

curved geometries producing interlayer interactions, by deposition of graphene

layers on suitable substrates giving rise to local on-site potentials spoiling the

original symmetry [35, 37, 40, 41, 54, 55].

A related, critical aspect in graphene-like materials is the generation of position-

dependent mass (PDM) effects [56–69]. This has led to several theoretical studies,

including those on wave packet dynamics and propagation in topological mate-

rials [70–73]. In the context of PDM, we are dealing with a generalized form of

the Schrödinger equation, involving a set of ambiguity parameters. In this re-

gard, von Roos [74] showed that it is possible to construct a Hermitian form for

the governing Hamiltonian, whose expression depends on the above-mentioned

parameters.

In this work we consider some features of electron dynamics in Dirac mate-

rials, in the long-wavelength approximation and in the presence of a non-trivial

local Fermi velocity. We focus, in particular, on nanoscroll geometry. Graphene

nanoscrolls are physically relevant due to their remarkable electronic, mechanical

and optical properties, originating from their peculiar curved geometry [75, 76].

In this regard, we want to discuss physical observables exploiting a low-energy

model with an effective Dirac equation for the charge carriers.

As we will discuss, the nanoscroll geometry is intrinsically flat: since the

emerging local pseudomagnetic fields are proportional to the local Gaussian cur-

vature [77, 78], we do not consider them in our cylindrical geometry, the associated

Gaussian curvature being zero everywhere.

The paper is organized as follows. In Sect. 2, we discuss the procedure we use

to parameterize the underlying curved spacetime, restricting on a set of suitable

cylindrical coordinates for the related Dirac equation. In Sect. 3, we analyze the

influence of the LFV on the Dirac equation, reformulating the problem in terms

of modified γ-matrices. In Sect. 4, we take into account the impact of PDM in

our formulation and discuss the explicit case of a graphene nanoscroll, taking

into account the density of states as a simple observable and commenting on the

measurement issues. Finally, in Sect. 5, we briefly summarize the obtained results.
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2 Parameterizing the curved spacetime

We start recovering the coordinates of a conventional three-dimensional spacetime

in cylindrical coordinates as specified in [15, 33]:

xa = (t, x, y, z) ⇒ xµ = (t, ϕ, z) , (1)

having expressed the former coordinates as

x = r(ϕ) cos(ϕ) , y = r(ϕ) sin(ϕ) , z = z , (2)

with an explicit ϕ–dependence for the radius. Making use of the Jacobian Ja
µ = ∂xa

∂xµ ,

we find the explicit form of the metric gµν :

gµν =
(
Ja
µ

)t
ηab J

b
ν = diag

(
1, −f(ϕ)2, −1

)
, (3)

where the quantity f(ϕ)2 reads

f(ϕ)2 = r(ϕ)2 + r′(ϕ)2 . (4)

As a result, the line element for the curved space assumes the form

ds2 = gµν dx
µ dxν = dt2 − f(ϕ)2 dϕ2 − dz2 . (5)

The flat-space Dirac equation is defined in terms of flat γ-matrices that we can

parameterize in terms of Pauli matrices as

γa = {σ3, −i σ1, i σ2} , a = 0, 1, 2 (6)

and obey the Clifford algebra

{γa, γb} = 2 ηab 1 , ηab =

(
1 0

0 −1

)
. (7)

To derive the form of the Dirac equation in curved space, we consider a tetrad

basis at each spacetime point. The γµ matrices for the curved background, that

we label by Greek indices, are obtained by means of the vielbeins eµ
a:

γµ = eµ
a γa , eµ

a = diag (1, f(ϕ), 1) , (8)
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where γµ = gµν γν satisfy the curved space Clifford algebra

{γµ, γν} = 2 gµν 1, µ = 0, 1, 2. (9)

The flat Dirac equation in the presence of an electromagnetic field Aa(x),[
iℏ γa

(
∂a +

g

iℏ
Aa

)
−m

]
Ψ = 0 , (10)

acquires, in the curved background, the form:[
iℏ γµ

(
∂µ +Ωµ +

g

iℏ
Aµ

)
−m

]
Ψ = 0 , (11)

where Ωµ = 1
4 ωµ

abMab is the spin affine connection, expressed in terms of the

spin connection ωµ
ab and Lorentz generators Mab =

1
2 [γa, γb] [79, 80]. According

to the tetrad postulate, the gamma matrices of the curved space are covariantly

constant. Furthermore, the existence of a confining potential is crucial in the

thin-layer quantization approach [81, 82].1

Imposing the cylindrical symmetry of space, the spin affine connection Ωµ

vanishes and (11) simplifies to[
iℏ γµ

(
∂µ +

g

iℏ
Aµ

)
−m

]
Ψ = 0 , (12)

having the same form of (10), but expressed in terms of the curved γµ matrices.

3 Impact of a local Fermi velocity

For heterostructures, the Fermi velocity becomes position-dependent [53, 83, 84]:

vf ! vf(ϕ, z) , (13)

and this also affects Dirac equation (10), that is modified as [53, 85, 86][
iℏΓa√vf

(
∂a
√
vf +

g

iℏ
√
vfAa

)
−m

]
Ψ = 0 , (14)

where

Γa =

{
γ0

vf(ϕ, z)
, γ1, γ2

}
. (15)

1 This leads to two parts of the Dirac equation: one Schrödinger-like equation with an ex-
ternally applied electromagnetic field, and another expression corresponding to the spin-orbit
interaction term on the curved surface. We are interested in the former contribution only.
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For convenience, we also introduce the Γµ matrices

Γµ =

{
1

vf(ϕ, z)
e0a γa, e

1a γa, e
2a γa

}
, eµa = gµν eν

a , (16)

so that a curved space Dirac equation in the presence of LFV takes the form[
iΓµ√vf

(
∂µ

√
vf +

g

i

√
vfAµ

)
−m

]
Ψ = 0 , (17)

where, from now on, we assume ℏ = 1.

Let us now study more in detail eq. (14). In order to simplify our analysis,

we define the field χ(ϕ, z):√
vf(ϕ, z)Ψ(ϕ, z) = χ(ϕ, z) , (18)

so that the above equation can be rewritten as[
iΓµ vf

(
∂µ +

g

i
Aµ

)
−m

]
χ = 0 . (19)

Explicitly, the components of Γµ read

Γµ = gµν Γν =

{
1

vf

(
1 0

0 −1

)
,

(
0 − i

f(ϕ)

− i
f(ϕ) 0

)
,

(
0 1

−1 0

)}
, (20)

where f(ϕ) is given by (4), while we have considered the inverse of (3) for gµν

and employed (15) and (16).

3.1 Dirac equation

Using the explicit form of the Γµ matrices, we can write equation (19) in the form(
E −m vf

f

(
∂ϕ + g

iAϕ

)
+ ivf

(
∂z +

g
iAz

)
vf
f

(
∂ϕ + g

iAϕ

)
− ivf

(
∂z +

g
iAz

)
−(E +m)

)(
χ1

χ2

)
= 0 ,

(21)

where we adopted the column representation for χ = (χ1, χ2) and restricted the

local Fermi velocity to be a function of z only, vf = vf(z).

We now make the following ansatz for χ:

χ = e−i λE t

(
χ1(ϕ, z)

χ2(ϕ, z)

)
= e−i λE t ei kϕ

∫ ϕ

f(ϕ′) dϕ′

(
χ+(z)

χ−(z)

)
, (22)
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were both χ+ and χ− are functions of z only. We have also assumed the vector

Aµ to be expressed as

Aµ =
(
0, Aϕ(ϕ, z), Az(ϕ, z)

)
. (23)

Expanding then (21), we obtain a pair of coupled equations of the form[
vf
f

(
∂ϕ +

g

i
Aϕ

)
+ i vf

(
∂z +

g

i
Az

)]
χ2 + (E −m)χ1 = 0 , (24)

[
vf
f

(
∂ϕ +

g

i
Aϕ

)
− i vf

(
∂z +

g

i
Az

)]
χ1 − (E +m)χ2 = 0 . (25)

Uncoupling the above system, we get two separate second-order differential equa-

tions, corresponding to separate conditions for the upper component χ+ and the

lower component χ− . In particular, we find for χ+[
v2f ∂

2
z +

(
vf v

′
f + 2 v2f

g

i
Az

)
∂z +

(
g vf (vfWϕ)

′ − kϕ vf v
′
f + 2 g kϕ v

2
f Wϕ − g2 v2f W

2
ϕ − k2ϕ v

2
f

)
+

+
(g
i
vf (vfAz)

′ − g2 v2f A
2
z

)
+
(
E2 −m2

) ]
χ+ = 0 ,

(26)

where we have also used the separation Aϕ = f(ϕ)Wϕ(z).

In order to get an exact solution we set Az = 0 which modifies (26) to the

form[
v2f ∂

2
z + vf v

′
f ∂z +

(
g vf (vfWϕ)

′ − kϕ vf v
′
f + 2 g kϕ v

2
f Wϕ − g2 v2f W

2
ϕ − k2ϕ v

2
f

)
+

+
(
E2 −m2

) ]
χ+ = 0 .

(27)

Note that this ansatz removes the imaginary term in (26). The correspondent

equation for χ− can be found by substituting kϕ ! −kϕ and g ! −g in the

above expression.

Since we want explicit analytic solutions, we need to define the explicit form

of the LFV and the vector component of Aϕ . In the following section, we exploit

a typical choice. We also briefly comment PDM schemes characterized by an

extended Schrödinger equation, the latter in turn dependent on a generalized

class of potentials containing a set of ambiguity parameters.

4 An explicit model

The study of position-dependent mass problems [74] has found a huge amount of

applications in the last two decades. These include the study of the electronic
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properties of condensed-matter systems, such as compositionally-graded crystals,

quantum dots and liquid crystals [87, 88], quantum many-body systems focusing

on the nuclei, quantum liquids, helium and metal clusters [89]. Furthermore, PDM

has found relevance in different theoretical contexts that include supersymmetric

quantum mechanics [57, 90, 91], coherent states [92] and use of indefinite effective

mass [93]. Several techniques have been developed to tackle PDM problems like

the so-called point canonical transformation [94] and potential algebra formalism

(see, for instance, [49] and references therein).

The feature of spatial modulations of Fermi velocity leading to velocity bar-

riers is an interesting field of research (see for example [95]). Several tractable

forms of LFV, facilitating closed form solutions of the governing system, have

already been envisaged [39, 47]. Of particular interest is the study of a certain

range of models concerning the shape of the velocity profile, as well as the way

in which the latter influences two-dimensional Dirac materials, in order to study

localization effects and induced bound states. One such form involved the ex-

ponential velocity profile [39], the role of which was explored on the problem of

bound modes propagation along a waveguide, a situation of great interest where

to realize electron optics based on ballistic guiding in Dirac materials. Motivated

by the latter [39] and by earlier studies on the PDM issue [47–49], we consider

the following forms for the LFV and Wϕ function:

vf(z) = v0 e
αz , Wϕ(z) = w0 e

−αz , (28)

where v0 is the minimal Fermi velocity, found at the center of the barrier, α > 0

is related to the length scale of the problem and w0 is a real constant.

The search for exact solutions of Schrödinger-like equations, in an extended

framework with a PDM, has received several contributions where an exponential

form has been proposed for the PDM itself [96–98]. Going deeper into the role

of the LFV, an interesting connection between the mass function and the form

of the local velocity was also noted [47, 48, 99]. The nature of the LFV, in the

special framework of a so(2, 1) algebra, has recently been discussed in connection

with a PDM-dependent Dirac equation in [49].

Using above ansatz (28), we see from (27) that the upper component χ+

satisfies[
v20 e

2αz ∂2
z + α v20 e

2αz ∂z −
(
αkϕ v

2
0 + k2ϕ v

2
0

)
e2αz + 2B kϕ v0 e

αz − κ2
]
χ+(z) = 0 ,

(29)

where

κ2 = m2 +B2 − E2 , B = g v0w0 . (30)
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If we now make the change of variable

y =

∫ z 1

vf(q)
dq = −e−αz

v0 α
, (31)

equation (29) can be recast as[
∂2
y −

kϕ
α

(
1 +

kϕ
α

)
1

y2
−

2B kϕ
α

1

y
− κ2

]
χ+(y) = 0 , −∞ < y < 0 , (32)

while the correspondent equation for χ− is found through substitutions kϕ ! −kϕ
and B ! −B.

The solution of above (32) is given by

χ+(y) ∝ M
(
−
B kϕ
ακ

,
2 kϕ + α

2α
; 2 y κ

)
, (33)

where M(a, b; y) is the well known Whittaker function.2 In terms of the variable

z, we then find

χ+(z) = C1 M
(
−
B kϕ
ακ

,
2 kϕ + α

2α
; − 2κ

v0 α
e−αz

)
. (34)

On the other hand, the lower component χ− of the spinor wavefunction reads

χ−(z) = C1 M
(
−
B kϕ
ακ

,
−2 kϕ + α

2α
; − 2κ

v0 α
e−αz

)
. (35)

For the energy levels, we exploit the relation

κn = −
B kϕ

kϕ + α+ nα
, n = 0, 1, 2, . . . (36)

to determine

E2
n = m2 +B2

(
1−

k2ϕ
(kϕ + α+ nα)2

)
, n = 0, 1, 2, . . . (37)

the above expression ensuring that we always get real energies.

2 The function M(a, b; z) is a solution of a Whittaker equation and is expressed in terms of the

Kummer confluent hypergeometric function as M(a, b; z) = e−
z
2 eb+

1
2 1F1

(
b− a+ 1

2
, 1 + 2 b; z

)
.
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4.1 Application: density of states

Once obtained an explicit solution χ to modified Dirac equation (21), we can con-

sider the probability density P =
√
det(gµν)χ

2 , in terms of which a normalization

condition can be written as∫
dΣ P(ϕ, z) =

∫
dz dϕ

√
r(ϕ)2 + r′(ϕ)2 |χ(ϕ, z)|2 = 1 . (38)

In order to write an expression for P, we need an explicit surface parameterization

r(ϕ) for the sample surface, together with the previous solutions eqs. (34) and (35).

4.2 Nanoscrolls

Graphene nanoscrolls [31, 100, 101] have received great attention due to their un-

usual properties and potential applications [102–106]. They consist in carbon–

based structures obtained by rolling a graphene layer into a cylindrical geome-

try [100], and exhibit some exciting qualities due to their distinctively different

conformation [75, 76], making them conceptually interesting and experimentally

relevant.

Unusual electronic and optical properties of carbon nanoscrolls are due to

their unique topology and peculiar structure [15, 32, 33]. The nanoscroll geometry

is intrinsically flat, as shown by its vanishing Riemann components and Gaussian

curvature. In this regard, emerging local pseudomagnetic fields Bs due to curva-

ture effects are proportional to the local Gaussian curvature R [77, 78], that in

the cylindrical nanoscroll geometry vanishes.

On the other hand, nanoscrolls exhibit non-zero extrinsic curvature Kab, re-

sulting from their non-trivial embedding in R3. The sample extrinsic curvature

affects the experimental observables, giving rise to physical measurable effects

[8, 15, 31, 33]. In this regard, the long-wavelength approximation also helps to

narrow the field to charge carriers that are more likely to experience the extrinsic

global curvature of the sample, justifying at the same time a continuum approxi-

mation for the substrate.

The nanoscroll geometry can be explicitly parameterized in terms of

Archimedean–type spirals in cylindrical coordinates [107–109]. Let us then con-

sider the following parameterization for the cylindrical geometry of the layer sur-

face [15, 33]:

r(ϕ) = R

(
1− 1

2π

ϕ

DN

)2
, (39)

where the coefficient D controls the distance between the layers and R is a typical

dimension for the radius of the cylinder. The integer number N takes into account
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the windings of the wrapped graphene layer; from a physical point of view, it acts

as a momentum cutoff, correctly restricting the analysis to the long-wavelength

continuum approximation.3 The boundary conditions in the cylindrical symmetry

give rise to a quantization condition on the transverse component of the charge

carriers momentum kϕ of the form [15, 33]

kϕ =
2π

ζN
, (40)

having defined the geometrical parameter ζN

ζN ≡
2πN∫
0

dϕ f(ϕ) , (41)

roughly expressing a measure of the cylinder spiral.

In Figs. 1–3 we plot the normalized probability density P as a function of the

coordinates (ϕ, z) for a nanoscroll geometry with different dimensions, number of

windings N and energy parameters.

Figure 1: Normalized probability density P as a function of the coordinates (ϕ, z) for a

nanoscroll geometry with parameters N = 4, R = 15, D = 100, g = 10−3,

α = 1.5× 10−2, v0 = 50, w0 = 100 .

3 This requires that the number N is small when compared with the ratio of the cylinder
circumference to the graphene lattice dimension a

(
N ! 2πR

a

)
.
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Figure 2: Normalized probability density P as a function of the coordinates (ϕ, z) for a

nanoscroll geometry with parameters N = 5, R = 5, D = 100, g = 10−3,

α = 2× 10−2, v0 = 200, w0 = 100 .

Figure 3: Normalized probability density P as a function of the coordinates (ϕ, z) for a

nanoscroll geometry with parameters N = 3, R = 30, D = 100, g = 10−3,

α = 10−2, v0 = 90, w0 = 15 .

We can see that the structure of the probability density function is weakly

affected by displacements along the ϕ coordinate, while its variation is non-trivial

along the z direction, in agreement with our choice (28).
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4.3 Local density of states

Given a location X on the layer surface and an energy value E, the local density of

states (LDOS) of the sample can be expressed in terms of the probability density

as [110]

ρs(E,X, 0) =
1

ε

E∑
E−ε

P(X) , (42)

for small values of ε, where the 0–coordinate states that we are considering pseu-

doparticles on a two-dimensional space (zero-distance from the substrate surface).

The LDOS then expresses the number of charge carriers per unit surface and unit

energy range of size ε, at a given surface location X and energy E. The sample

LDOS is not only an interesting direct physical observable, but also a substrate

feature of great importance for electronic applications, being the availability of

empty valence and conduction states (states below and above the Fermi level)

crucial for the transition rates.

Measurements. The sample LDOS can be mapped using a scanning tunnel-

ing microscope (STM). The latter is an experimental device based on quantum

mechanical tunneling, where the wave-like properties of charge carries allow them

to penetrate, through a potential barrier, into regions that are forbidden to them

in the classical picture. STM spectroscopy provides insight into the surface elec-

tronic properties of the substrate, being the tunneling current strongly affected

by the local density of states ρs . The latter is in turn related to the probability

density P through definition (42).

A typical STM device consists of sharp conductive tip, brought within tun-

neling distance (< nm) from a sample surface. A small voltage bias V is then

applied between the probe tip and the substrate, causing charge carriers to tunnel

across the gap, resulting in a tunneling current between the sample and the tip.4

In the STM–map setup, the density of states at some fixed energy is mapped

as a function of the position (ϕ, z) on the sample surface. If we assume ε = e V to

be very small with respect to the work function Φw (minimum energy required to

extract an electron from the surface), the sample states with energy lying between

Ef − ε and Ef are very close to the Fermi level and have non-zero probability of

tunneling into the tip. The resulting tunneling current I is directly proportional

to the number of states on the substrate within our energy range of width ε,

this number depending on the local properties of the surface. Including all the

sample states in the chosen energy range, the measured tunneling current can be

4 To simplify our discussion, we are assuming that both materials have the same Fermi level.
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modeled, in first approximation, as [110]

I ∝
Ef∑

Ef−e V

P e−2Λ d , (43)

where Λ is some decay constant in the barrier separation depending on Φw . The

exponential function gives the suppression for charge carriers tunneling in the

classically forbidden region of width d (sample-tip separation). The tunneling

current can be then measured, for constant separation d, at different X positions

and, for sufficiently small V , it can be conveniently expressed in terms of the

LDOS of the sample as [110]:

I(X) ∝ ρs(Ef, X, 0) e−2Λ d e V . (44)

For finite bias voltage and different Fermi levels for the sample and tip, the tunnel-

ing current and its relation with the sample local density of states can be obtained

from Bardeen time-dependent perturbation approach [110].

5 Summary

The study of graphene-like systems is a captivating and multidisciplinary field of

research, combining notion and techniques from quantum mechanics, general rel-

ativity and condensed matter physics. These special materials realize the physics

of Dirac fermions in a real laboratory framework, the substrate acting as a lower-

dimensional curved spacetime for the charge carriers. This provides a direct con-

nection between condensed matter and theoretical quantum models, with the

possibility to explore the analogues of many high energy physics effects in a solid-

state system [111–122].

In this paper we studied the governing equations of the charge carriers in Dirac

materials, in the presence of a local Fermi velocity and non-trivial energy-mass

parameters. The curvature of the sample mimics a curved spacetime background

for the Dirac pseudoparticles, whose dynamics is then governed by a suitably

modified Dirac equation. The procedure led us to an analytic expression for the

wave functions of the quasiparticle modes, which was then applied to an explicitly

example involving a nanoscroll geometry. We also discussed the impact on the

sample density of states as a simple and straightforward physical observable.
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[46] A. Ishkhanyan and V. Jakubský, “Two-dimensional Dirac fermion in pres-

ence of an asymmetric vector potential”, J. Phys. A 51 (2018), n. 49, 495205,

[arXiv:1801.05045]. [p. 2]

[47] O. Mustafa, “(1+1)-Dirac bound states in one dimension, with position-

dependent Fermi velocity and mass”, Open Physics 11 (2013), n. 4, 480–486.

[p. 2, 8]

[48] R. Ghosh, “Position-dependent mass Dirac equation and local Fermi veloc-

ity”, J. Phys. A 55 (2022), n. 1, 015307, [arXiv:2107.01668]. [p. 2, 8]

[49] B. Bagchi, R. Ghosh and C. Quesne, “so(2, 1) algebra, local Fermi velocity,

and position-dependent mass Dirac equation”, J. Phys. A 55 (2022), n. 37,

375204, [arXiv:2205.02017]. [p. 2, 8]

[50] R. Valencia-Torres, J. Avendaño, J. Garćıa-Ravelo and E. Choreño,
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[62] R.R.S. Oliveira, A.A. Araújo Filho, R.V. Maluf and C.A.S. Almeida,

“The relativistic Aharonov–Bohm–Coulomb system with position-dependent

mass”, J. Phys. A 53 (2020), n. 4, 045304, [arXiv:1812.07756]. [p. 3]

[63] A. Contreras-Astorga, D.J. Fernández C and J. Negro, “Solutions of the

Dirac equation in a magnetic field and intertwining operators”, Symm. In-

tegr. Geom. 8 (2012) 082. [p. 3]

[64] C. Downing and M. Portnoi, “Trapping charge carriers in low-dimensional

Dirac materials”, Int. J. Nanosci. 18 (2019), n. 03n04, 1940001. [p. 3]

[65] F. Serafim, F. Santos, J. Lima, C. Filgueiras and F. Moraes, “Position-

dependent mass effects in the electronic transport of two-dimensional quan-

tum systems: Applications to nanotubes”, Physica E 108 (2019) 139–146.

[p. 3]

20

http://arxiv.org/abs/1812.07756


[66] A. Schulze-Halberg, “Arbitrary-order Darboux transformations for two-

dimensional Dirac equations with position-dependent mass”, Eur. Phys. J.

Plus 135 (2020), n. 3, 1–13. [p. 3]

[67] A. Schulze-Halberg, “Higher-order Darboux transformations for the Dirac

equation with position-dependent mass at nonvanishing energy”, Eur. Phys.

J. Plus 135 (2020), n. 10, 863. [p. 3]

[68] A. Schulze-Halberg, “Darboux transformations for Dirac equations in polar

coordinates with vector potential and position-dependent mass”, Eur. Phys.

J. Plus 137 (2022), n. 7, 1–16. [p. 3]

[69] C. Tezcan, R. Sever and O. Yesiltas, “A new approach to the exact solutions

of the effective mass Schrodinger equation”, Int. J. Theor. Phys. 47 (2008)

1713. [p. 3]

[70] S. Raghu and F. Haldane, “Analogs of quantum-Hall-effect edge states in

photonic crystals”, Phys. Rev. A 78 (2008), n. 3, 033834. [p. 3]

[71] B. Bernevig and T. Hughes, “Topological Insulators and Topological Super-

conductors”; Princeton University Press, Princeton, USA (2013). [p. 3]

[72] P. Xie and Y. Zhu, “Wave packet dynamics in slowly modulated photonic

graphene”, J. Differ. Equ. 267 (2019), n. 10, 5775–5808. [p. 3]

[73] P. Hu, L. Hong and Y. Zhu, “Linear and nonlinear electromagnetic waves in

modulated honeycomb media”, Stud. Appl. Math. 144 (2020), n. 1, 18–45.

[p. 3]

[74] O. von Roos, “Position-dependent effective masses in semiconductor the-

ory”, Phys. Rev. B 27 (1983) 7547–7552. [p. 3, 7]

[75] Zhang, D.B. and Akatyeva, E. and Dumitrică, T., “Bending ultrathin
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