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The exciton polariton (EP), a half-light and half-matter quasiparticle, is potentially an 

important element for future photonic and quantum technologies1-4. It provides both strong 

light-matter interactions and long-distance propagation that is necessary for applications 

associated with energy or information transfer. Recently, strongly-coupled cavity EPs at 

room temperature have been demonstrated in van der Waals (vdW) materials due to their 

strongly-bound excitons5-9. Here we report a nano-optical imaging study of waveguide EPs 

in MoSe2, a prototypical vdW semiconductor. The measured propagation length of the EPs 

is sensitive to the excitation photon energy and reaches over 12 μm. The polariton wavelength 

can be conveniently altered from 600 nm down to 300 nm by controlling the waveguide 

thickness. Furthermore, we found an intriguing mode back-bending dispersion close to the 

exciton resonance. The observed EPs in vdW semiconductors could be useful in future 

nanophotonic circuits operating in the near-infrared to visible spectral regions. 

 

 In recent years, van der Waals (vdW) materials have emerged as a new material system 

supporting various types of polaritons with unique properties10,11. For example, graphene was 

discovered to support surface plasmon polaritons with high confinement, long lifetime and gate 

tunability10-15. Thin flakes of hexagonal boron nitride were proven to support hyperbolic phonon 

polaritons with wavelengths down to a few hundred nanometres10,11,16-18. These unique polaritons 

make both materials promising for nanophotonic applications in the terahertz to mid-infrared 

frequency regime. Group IVB transition-metal dichalcogenides (TMDs) with chemical formula 

MX2 (M = Mo, W; X = S, Se) are vdW semiconductors with sizable bandgaps and strongly 

bounded excitons19-22. These excitons can couple with photons to form half-light and half-matter 

quasiparticles, namely exciton polaritons (EPs)1-4. Due to the large exciton binding energy, 

polaritons in TMDs are expected to be stable and robust at ambient conditions, thus suitable for 

technological applications. Indeed, far-field optical studies of TMDs embedded in micro-cavities 

captured the spectroscopic signatures of strongly-coupled cavity EPs5-8. Real-space characteristics 

(e.g. propagation, confinement, and interference) of the TMD polaritons, on the other hand, have 

not been addressed. Very recently, an imaging study of WSe2 with the aperture-type scanning 

near-field optical microscope was reported23, where interactions between waveguide photons and 

excitons were observed. Nevertheless, the characteristic dispersion relation of the waveguide EPs 

was not observed.   



 In this work, we performed nano-optical imaging studies of TMD planar waveguides, 

where EPs were formed due to the strong coupling between excitons and waveguide photons24-28. 

In order to probe these waveguide EPs, we used a scattering-type scanning near-field optical 

microscope (s-SNOM) that is built based on a tapping-mode atomic force microscope (AFM) with 

a sharp metallized tip (Fig. 1a). The spatial resolution of the s-SNOM defined by the radius of 

curvature of the tip apex is about 25 nm. In addition, the AFM tip is illuminated by a p-polarized 

laser beam. The high spatial resolution and p-polarized excitation of the s-SNOM enables effective 

dispersion mapping of individual TM waveguide modes. For signal detection, we use a concave 

mirror to collect photons back-scattered off the coupled tip-sample system (Fig. 1b) and these 

photons are counted by an amplified silicon photodetector. The samples studied here are exfoliated 

MoSe2 thin flakes on standard SiO2/Si wafers. In order to cover EPs due to the A excitons (~1.55 

eV) of MoSe2 (Supplementary Fig. S4), we used a continuous-wave Ti:Al2O3 laser that can be 

tunable from 1.3 to 1.8 eV.  

 In Fig. 1c-g, we show a selected dataset of s-SNOM images taken on a 156-nm-thick 

MoSe2 planar waveguide, where we plot the normalized near-field amplitude (s) at various 

excitation laser energies (). Within these images, we see clear interference fringes on MoSe2 

parallel to its edge (dashed lines), and these fringes demonstrate a clear energy dependence. First, 

we find that the fringe period increases systematically with decreasing E. In addition, the fringe 

intensity shows a significant enhancement at lower E. Moreover, we notice that the fringes extend 

further into the sample interior as E decreases. For example, at E = 1.35 eV (Fig. 1g and 

Supplementary Fig. S8), fringes can be seen 30 m away from the sample edge.  

 Based on the above observations, we hypothesize that these fringes are generated due to 

the interference between photons collected by the detector from different paths. As illustrated in 

Fig. 1b, the collected photons come from two major paths. In the first path (marked with ‘P1’), 

incident photons are scattered back directly by the s-SNOM tip. In the second path (marked with 

‘P2’), the laser-illuminated tip launches in-plane propagative modes inside the sample. As 

discussed in detail below, these in-plane modes correspond to the TM0 waveguide modes. The 

waveguide modes propagate radially away from the tip and then get scattered into photons by the 

sample edge. Photons collected from paths ‘P1’ and ‘P2’ have a phase delay that scales with the 

distance between the tip and the sample edge. Therefore as the tip scans towards the edge of MoSe2, 

one expects to see oscillations of photon intensity due to the interference of photons from the two 

photon paths. Other possible photon paths play less important roles as discussed in the 

Supplementary Information.  

            The above hypothesis implies a sensitive dependence of the fringes pattern on the 

orientation of the sample edge relative to the incident beam. In the configuration described in Fig. 

1b and Fig. 2a, the laser beam is in the x-z plane and the sample edge is along the y direction, so 

the laser beam is perpendicular to the sample edge (referred to as ‘perpendicular configuration’). 

In this configuration, photons collected through path ‘P2’ (Fig. 2a) are mainly from waveguide 

modes (marked with ‘w.m.’) propagating along the -x direction (Supplementary Information). 

Therefore, the fringe period in the perpendicular configuration (⊥) is expected to be 
1

01 ( / )cosp p    
−

⊥
  −  ,                                                      (1) 

where p is the wavelength of the waveguide mode, 0 is the excitation laser wavelength, and  ≈ 

30 is the incident angle of the laser beam relative to the x-y plane. In another configuration (Fig. 

2b), the sample edge is along the x direction and thus the in-plane projection of the incident beam 

is parallel to the sample edge (referred to as ‘parallel configuration’). Here, photons in path ‘P2’ 



are mainly those scattered from waveguide modes traveling in an angle of  relative to the y 

direction (Fig. 2b), where 
1

0sin [( / )cos ]p   −=  obtained by matching the boundary condition 

(momentum conservation along the edge direction) (Supplementary Information). Therefore, the 

fringe period in the parallel configuration (//) is expected to be  
1

// 01/ cos ( / ) tan cosp p      
−

  −  .                                           (2) 

Based on Eqs. 1 and 2, we know that 
/ /  is smaller than ⊥

. Therefore, edge orientation 

dependence study provides a convenient way to test our hypothesis about fringe formation.  

 Figures 2c,d show near-field amplitude images taken at E = 1.38 eV (corresponding to 0 

= 900 nm) in the perpendicular and parallel configurations, respectively. Apparently, the fringes 

obtained in the parallel configuration (Fig. 2d) are denser than those in the perpendicular 

configuration (Fig. 2c). For the purpose of quantitative comparison, we extracted line profiles 

perpendicular to the fringes directly from Fig. 2c,d, and then performed  Fourier Transform (FT) 

analysis on these fringe profiles to accurately determine the fringe periods. Thus-obtained fringe 

profiles are plotted in Fig. 2e,f and the corresponding FT profiles are given in Fig. 2g,h. For 

convenience, we set the horizontal axis of the FT profiles to be 
/ /1/   and 1/ ⊥

 for parallel and 

perpendicular configurations, respectively. Considering that both 
/ /  and ⊥

 are clearly smaller 

than 1 m, we only pay attention to the FT peaks above 1 m-1. In this regime, we can locate a 

dominant FT peak at 1.64 m-1 for 1/ ⊥
 and 2.51 m-1 for 

/ /1/  . Therefore we have 610 nm⊥ =  

and 
/ / 398 nm = , based on which we can calculate p to be 383 nm and 377 nm for perpendicular 

and parallel configurations, respectively (Eqs. 1 and 2). The values of p acquired from the two 

configurations are highly consistent with a deviation less than 2%, which validates our hypothesis 

and analysis.  

Following the above methodology, we can now analyze the s-SNOM imaging data taken 

at all other laser energies. Figures 3a plots the fringe profiles taken at excitation energies from 1.35 

to 1.77 eV. Their corresponding FT profiles are shown in Fig. 3b, where we can locate the 

dominant peaks (marked with arrows) due to the waveguide mode. By accurately measuring the 

FT peak positions, we can extract ⊥
 and then calculate p with Eq. 1. In addition, the propagation 

length (Lp) of the waveguide mode can be estimated by measuring the linewidths of the FT peaks 

(Methods). Thus-obtained Lp, plotted in Fig. 3c as squares, is at least over 12 m at low energies, 

currently limited by our device size (Supplementary Information). At higher energies close to or 

above the A exciton energy, Lp drops rapidly to 2 m or less. The general trend of the experimental 

Lp is consistent with the theoretical estimation (solid curve in Fig. 3c) (Methods).   

Based on the extracted p through fringe analyses, we construct the energy (E) - momentum 

(qp = 2/p) dispersion relation of the waveguide mode in Fig. 1. The obtained experimental (qp, 

E) data points (blue squares) are overlaid on top the calculated dispersion color map (Fig. 3d). As 

introduced in the Methods, the bright regions in the color maps represent various 

photonic/polaritonic modes existing in the sample/substrate system. For convenience, we use the 

free-space photon wavevector k0 = 2/0 as the momentum unit, which leads to vertical dispersions 

of photons in air (q = k0) and SiO2 (q = 1.46k0) marked by the green and blue dashed lines in Fig. 

3d. Here in the dispersion map, we find a good agreement between experimental data points 

(squares) with a confined mode close to q  2.5k0 in the color map. According to mode analysis 

(Supplementary Fig. S5), this mode corresponds to the TM0 waveguide mode inside MoSe2.  



To reveal the detailed features of the TM0 mode, we show a zoomed-in view (2.2k0 < q < 

2.8k0) of Fig. 3d in Fig. 3e, where a back-bending dispersion of the waveguide mode is clearly 

visualized near the A exciton energy (see also the dispersion data of the 110-nm-thick MoSe2 

sample in Supplementary Fig. S6). Such an ‘anomalous’ dispersion is in fact the characteristic 

behaviour of the EPs under measurements with fixed excitation energies (imaging experiments 

with a continuous-wave laser in our case). The commonly-accepted anti-crossing dispersion of the 

EPs, on the other hand, can be obtained by measurements at fixed momenta (e.g. spectroscopic 

studies of cavity polaritons at fixed incident angles)1-8. The fixed-energy imaging measurements 

intend to determine the polariton momenta (qp) by searching horizontally the dispersion map (e.g. 

along horizontal dashed lines in Fig. 3f), while the fixed-momentum spectroscopic experiments 

are to locate the polariton energy (Ep) by sweeping vertically the dispersion map (e.g. along the 

vertical dashed lines in Fig. 3g). With both methods, one can obtain a series of (qp, Ep) data points 

(blue crosses in Fig. 3f,g). The polariton dispersion reflected by these data points demonstrates 

either back-bending (Fig. 3f) or anti-crossing (Fig. 3g) features. Note that the back-bending 

dispersion also suggests that polaritons are subject to broadening, which introduces finite photonic 

spectral weight at the gap between the top and bottom polaritonic branches. The broadening is 

mainly due to scatterings of EPs with longitudinal optical phonons that can be strongly suppressed 

at cryogenic temperature (Supplementary Fig. S7). Back-bending dispersion has been observed 

previously in both plasmon and phonon polaritons29,30. Our experiment proves that the EPs also 

share this phenomenon. Based on the back-bended dispersion data points, we estimate a Rabi 

splitting energy (ERabi) of ~100 meV (yellow arrow in Fig. 3e), indicating a strong coupling 

between excitons and waveguide photons. The ERabi value measured here in bulk MoSe2 appear to 

be larger than those of atomic layers of TMDs5-8 and smaller than that of bulk WS2
9.  

 Finally, we performed s-SNOM imaging of MoSe2 waveguides with different thicknesses. 

As shown in Fig. 4a,b, we plot the near-field images of two additional MoSe2 waveguides with 

thicknesses of 77 and 110 nm, respectively. They are both taken at E = 1.48 eV in the perpendicular 

configuration. As described above, we determined the fringe period ( ⊥
) by extracting fringe 

profiles (Fig. 4c) by FT analysis (Fig. 4d). Employing Eq. 1, we obtained p versus waveguide 

thickness (Fig. 4e), which shows good consistency with theory (black curve) (Supplementary 

Material). From Fig. 4e, we found that p can be altered from 600 to 300 nm by controlling the 

waveguide thickness. Note that the observed TM0 polariton mode is cut off in MoSe2 waveguides 

with a thickness less than ~70 nm (Fig. 4e). In order to explore polaritons in thinner flakes or even 

atomic layers of TMDs, other type of waveguide modes (e.g. TE0 mode23) or other coupling 

methods (e.g. micro-cavity coupling1-8) have to be adopted.  

 By combining the s-SNOM technique with rigorous theoretical analyses, we uncovered the 

real-space characteristics of EPs in MoSe2 waveguides. The observed polaritons have shown a 

small wavelength (down to 300 nm) and a long propagation length (up to 12 m or above) under 

ambient conditions. These characteristics observed in our first generation devices are comparable 

to or even better than surface plasmon polaritons in graphene12-15 and hyperbolic phonon polaritons 

in hexagonal boron nitride16-18. Through careful design and engineering, the TMD waveguides 

with tailored polaritonic modes could potentially be applied in miniaturized nanophotonic circuits 

for information or energy transfer in the near-infrared to visible regions. In addition, it will be 

interesting to perform polariton nano-imaging at cryogenic temperatures, where one could possibly 

visualize EPs with stronger coupling strength and longer propagation length (Supplementary Fig. 

S7). Future studies are also promising to explore new polaritonic characteristics and functionalities 

by patterning TMD flakes into nano-resonators or other types of photonic structures (e.g. photonic 



crystals). Our work opens up new avenues for studies of EPs and paves the way for future 

applications of TMDs in optoelectronics and nanophotonics. 
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Figure Legends 



 
Figure 1. Nano-optical imaging of a MoSe2 planar waveguide. a, Schematics of concentric 

waveguide modes in MoSe2 launched by the laser-illuminated s-SNOM tip. b, Illustration of the 

experimental setup where the incident beam is aligned perpendicular to the sample edge that is 

along the y direction. We also sketch here the two major paths (‘P1’ and ‘P2’) where photons can 

be collected by the concave mirror. c-g, Selected s-SNOM imaging data of a 156-nm-thick MoSe2 

planar waveguide taken at various laser energies (E). Here we plot the near-field amplitude (s) 

normalized to that of the SiO2/Si substrate. The dashed lines mark the sample edge. The scale bars 

represent 1 m. 

 



  
Figure 2. Edge-orientation dependence study. a, Illustration of the perpendicular configuration, 

where the incident beam (black arrow) is perpendicular to the sample edge. b, Illustration of the 

parallel configuration, where the x-y plane projection of the incident beam is parallel to the sample 

edge. The labeling ‘w.m.’ in a and b represents waveguide modes. c,d, Near-field amplitude 

images of MoSe2 taken at E = 1.38 eV in the perpendicular and parallel configurations, respectively. 

The dashed lines mark the sample edge. The scale bars represent 1 m. e,f, Real-space line profiles 

extracted perpendicular to the fringes in c and d, respectively. Here d is the distance between the 

tip and the sample edge. g,h, Fourier transform (FT) analysis of the real-space profiles in e and f, 

respectively. 

 



 
Figure 3. Dispersion analysis. a,b, Real-space fringe profiles and the corresponding FT profiles 

of the 156-nm-thick MoSe2 waveguide taken at various excitation energies (1.35 - 1.77 eV) in the 

perpendicular configuration. All the profiles are displaced vertically for clarity. The arrows in b 

mark the FT peak associated with the measured waveguide mode in MoSe2. c, Propagation length 

(Lp) of the measured waveguide mode from both experiment (squares) and theory (curve). d, 

Experimental dispersion data points (blue squares) overlaid on the calculated dispersion color map. 

e, A zoomed-in version of panel d at the q range from 2.2k0 to 2.8k0. The yellow arrow marks the 

Rabi splitting energy. f, Illustration of the fixed-E experiments with horizontal line cuts across the 

dispersion map. g, Illustration of the fixed-q experiments with vertical line cuts across the 

dispersion map. The blue crosses in f and g mark the positions with maximum photonic spectral 

weight along the line cuts. The color maps in d-g plot the imaginary part the p-polarized reflection 

coefficient Im(rp) (Methods). 

 



 
Figure 4. Waveguide-thickness dependence study. a,b, Near-field imaging data of MoSe2 planar 

waveguides with thicknesses of 77 and 110 nm, respectively. These images were taken at E = 1.48 

eV in the perpendicular configuration. The scale bars represent 1 m. c,d, Real-space fringe 

profiles and the corresponding FT profiles of MoSe2 with various thicknesses. e, Thickness 

dependence of polariton wavelengths (p) from both experiment (data points) and theory (black 

curve) at E = 1.48 eV. 

 

Methods 

Experimental setup. For nano-optical imaging experiments, we used a scattering-type scanning 

near-field optical microscope (s-SNOM, Neaspec) that is built based on a tapping-mode atomic 

force microscope (AFM) operating with a tapping frequency of about 270 kHz and a tapping 

amplitude of about 50 nm. A pseudo-heterodyne interferometric detection module is implemented 

in our s-SNOM to extract both the scattering amplitude (s) and phase () of the near-field signal. 

In this work, we discuss mainly the s signal that is sufficient for describing all the characteristics 

of the EPs. In order to subtract the background signal, we demodulated the near-field signal at the 

3rd harmonics of the tapping frequency of the AFM tip. In all the displayed near-field images, we 

plotted s normalized to that of the SiO2/Si substrate. For optical excitation, we used a Ti:Al2O3 

laser operating in the continuous-wave mode. The photon energy of the Ti:Al2O3 laser can be 

conveniently tunable from 1.3 to 1.8 eV. The samples studied here are MoSe2 planar waveguides 

fabricated using the mechanical exfoliation method. The substrates used for these samples are 

standard Si wafers with a 300-nm-thick thermal oxide layer on the top. Our s-SNOM experiments 

were all performed at ambient conditions.  

 

Dispersion calculation and analysis. The dispersion color maps shown in Fig. 3d-g were obtained 

by evaluating numerically the imaginary part of the reflection coefficients Im(rp) of the multilayer 

sample/substrate system. The bright curves shown in the color map correspond to various photonic 

and polaritonic modes in the entire system. Considering that the electric field right underneath the 

s-SNOM probe is perpendicular to the sample surface, only transverse magnetic (TM) waveguide 

modes are excited. Therefore, we only consider p-polarized reflection coefficient rp(q, E) in the 

dispersion calculation. By using the transfer matrix method, we numerically calculate Im(rp) of the 



entire air/MoSe2/SiO2/Si system. The photonic/polaritonic modes appear at the (q, E) positions 

where Im(rp) diverges or maximizes. Therefore, we can conveniently estimate numerically the 

mode wavelength (p = 2/qp) through the calculated dispersion color maps. In order to fit the 

experimental dispersion data points (Fig. 3d), we adopted the experimental ab-plane dielectric 

constants of MoSe2 from previous optical measurement (Supplementary S4). The c-axis dielectric 

constant (c) of MoSe2 is a fitting parameter, which was set to be 8.3 throughout the entire spectral 

range of our experiment (1.3 – 1.8 eV). The good agreement between experimental data points and 

calculated dispersion plot validates such an assumption. 

 

Determining the propagation length of the EPs. In order to determine quantitatively the 

propagation length (Lp) of the measured waveguide EPs, we first extract the linewidths (plotted in 

Supplementary Fig. S9a) of the FT peaks of the waveguide mode (Fig. 3b) and then determine Lp 

using Eq. S11 in the Supplementary Information. Thus-obtained Lp data points are plotted in Fig. 

3c. Note that Lp at the lowest energy (E = 1.35 eV) is most likely underestimated due to limited 

resolution of the FT profiles originated from the finite size (~ 30 m) of our device (Supplementary 

Information). In order to estimate theoretically Lp, we approximate the tip-launched waveguide 

mode as cylinder waves with a wave function of
1/2 ( )i qx tAx e − −

. Here, q = q1 + iq2 is the complex 

in-plane momentum of the waveguide mode. Therefore, the amplitude of the wave decays as: 
p/(2 )1/2  

x L
Ax e

−−
, where the propagation length Lp equals to (2q2)

-1. For an anisotropic material 

like MoSe2 with an ab-plane dielectric function of ab = 1 + i2 (Supplementary Fig. S4) and an 

c-axis dielectric constant of c  8.3, we have 2 2

0 ( / )c c ab zq k k  = − . Based on this equation, we 

have an analytic formula of  
1

2 2 2 2

2 1 1 2 1 0 1/ (2 ) 1 1 ( / )( / 1)p cL q k q    
−

 = − − −
 

. By adopting the 

q1=2/p data of the TM0 waveguide mode (Fig. 3), we can calculate Lp using the above formula. 

The calculated result is plotted in Fig. 3c as the solid curve. The general trend of the theoretical 

curve is consistent with the experimental data (squares in Fig. 3c). 

 

Data availability. The data that support the plots within this paper and other findings of this study 

are available from the corresponding author upon reasonable request. 
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1.  Discussion and analysis about fringe formation 

1.1 Photon path ‘P3’ 

In the main text, we discuss two major photon paths ('P1’ and ‘P2’) for both perpendicular 

and parallel configurations (Fig. 1, Fig. 2 and Supplementary Fig. S1). In path ‘P1’, photons are 

scattered directly by the tip back to the detector. In path ‘P2’, photons first transfer into propagative 

waveguide exciton polaritons (EPs) and then scatter to photons when reaching the edge of the 

sample. In addition to the two photon paths, there is another possible photon path ‘P3’ that could 

contribute to the signal collection process. In photon path ‘P3’, the photons first transfer into EPs 

and then reflected backward to the tip after reaching the sample edge. The reflected EP modes can 

be scattered back to detector by the AFM tip. This path has been extensively discussed in previous 

nano-infrared imaging studies of graphene plasmons1 and hexagonal boron nitride (hBN) 

polaritons2. In the current work, ‘P3’ plays a less significant role compared to ‘P2’ for the 

following two reasons. First, the momenta (q) of the modes involved in our experiments is much 

closer to the free-space photon wavevector (k0). As a result, only a small portion of the EP modes 

are reflected back by the sample edge. In addition, the round-trip propagation of the EP modes in 

mailto:zfei@iastate.edu


‘P3’ also suffers more damping compared to ‘P2’ due to the longer traveling distance. As a result, 

we didn’t see clear experimental evidence of fringes due to the interference between photons from 

paths ‘P1’ and ‘P3’.  

 

1.2 Edge excitation 

The photon paths ‘P2’ and ‘P3’ discussed above all assume the SNOM tip as the only 

launcher of the EPs. In fact, the sample edge can also launch polaritons when illuminated by the 

laser beam. Nevertheless, due to the small size of the focused laser beam (~ 2 m), edge launching 

is only possible when the tip-edge distance (d) is very small (d < 1 m). Therefore, the fringes that 

are over 1 m away from the edges are solely due to the effects of tip scattering or launching (‘P1’ 

and ‘P2’). When performing FT analysis (Fig. 3b) on the fringe profiles (Fig. 3a), we cut off a 

short part of the fringe profiles (~ 1 m close to the edge) in order to avoid the complications 

involving edge launching processes.  

 

 
Supplementary Figure S1. Illustration of various paths from which the photons can be collected 

by the detectors.  

 

1.3 Perpendicular configuration  

In Fig. 2a and related text in the manuscript, we discuss the perpendicular configuration of 

the experimental setup, where the laser beam is perpendicular to the edge of sample. Based on this 

configuration, we obtain an equation (Eq. 1 in the main text) that describes the relation between 

the fringe period ( ⊥
) and the wavelength of the EPs (p).  Now we introduce in detail how this 

equation is derived. As discussed above, the fringes observed in our experiments are mainly due 

to the interference between collected photons from paths ‘P1’ and ‘P2’.  In the latter path (‘P2’), 

the tip-launched EPs propagate radially away from the tip, so they could in principle be scattered 

into free-space photons from any positions along the sample edge. Nevertheless, the concave 

mirror with a relatively small collection angle of less than 14 (beam size < 1 inch, focusing length 

≈ 2 inches) collects mainly the scattered photons from waveguide EPs propagating along the 

direction perpendicular to the edge.  

In order to elucidate that, we illustrate in Supplementary Fig. S2 the process of edge 

scattering where the incident laser beam is in the x-z plane and the sample edge is along the y 

direction (perpendicular configuration). Here we assume, tip-launched EPs with a momentum of 

qp propagate to the edge with a random angle () with respect to the x-axis. At the edge, the EPs 

are scattered into free-space photons with a wavevector of k0. The angle between the scattered 



photons and the optical axis of the concave mirror is .  As discussed above,  should be within 

the collection angle of the concave mirror:  < 14. Therefore, photon wavevector along the y 

direction (ky) should satisfy ky < k0sin() < k0sin(14) = 0.242k0. In the edge scattering process, 

momentum is conserved along the edge direction (y direction), so we have ky = qpsin() < 0.242k0. 

Considering that the EPs of MoSe2 studied in the current work are more confined in space than 

photon modes in SiO2: qp > 1.46k0, we have  < 9.8o. Since the above upper bound limit analysis 

is far from stringent, the actual average  will be much closer to zero with a more careful analysis. 

Furthermore, EPs with finite  will be subjected to higher propagation loss and larger reflection 

coefficient than those with normal incidence towards the edge ( = 0). Therefore, we assume  = 

  = 0o in the following analysis. The error bar of the extracted p based on such an assumption is 

less than 1 - cos(9.8o)  1.4%.  

Under the assumption of  =  = 0o, we estimate the phase difference () between photons 

collected from paths ‘P1’ and ‘P2’ to be:  

( )0 0cos 2 1/ cos / ,p pq d k d d     = − = −                                 (S1) 

where d is the distance between the tip and the sample edge, p and 0 are the wavelengths of 

waveguide EPs and free-space photons, respectively. If d changes by a distance that equals to the 

fringe period ( ⊥
),  will change by 2. Therefore we have  

( )
1

01 / cosp p    
−

⊥
 = −
 

.                                                   (S2) 

 

 
Supplementary Figure S2. Illustration of the perpendicular configuration of the nano-optical 

experimental setup. 

 

1.4 Parallel configuration 

Figure S3 illustrates the parallel configuration of the experimental setup, where the incident 

laser beam is kept in the x-z plane and the sample edge is along the x direction. Similar to the 

perpendicular configuration, the fringes are formed due to the phase difference between photons 

collected by the detector from paths ‘P1’ and ‘P2’. In path ‘P2’, tip-launched EPs with an in-plane 

momentum of qp propagate toward the edge with an angle of  with respect to the y axis and get 

scattered into free-space photons (k0) when reaching the sample edge. Again, the angle  between 

scattered photons and the optical axis should be less than the collection angle of the concave mirror: 

 < 14. From Supplementary Fig. S3, we find that the x component of the wavevector of the 

scattered photons (kx) should satisfy: k0cos( +14) < kx < k0cos( −14), where  =  is the 

angle between the optical axis of the concave mirror and the x-y plane. Therefore, we have 0.72k0 



< kx < 0.96k0. Considering the momentum conservation along the direction of the scattering edge 

(x direction): kx = qpsin(), so we have 0.72k0/qp < sin() < 0.96k0/qp. Based on this inequality, we 

have 16.8<    in the case of qp ~ 2.5k0 (e.g. TM0 mode in the 156-nm-thick MoSe2 sample). 

The angle deviation is quite small, so we assume  = 0 for convenience. In this case, kx = qpsin() 

= k0cos()  = 20.3 when qp ~ 2.5k0. The uncertainty of the estimated p due to such an 

assumption is estimated to be less than cos(16.8) - cos(20.3)  1.9%.  

Under the assumption of  = 0, we estimate the phase difference () between photons 

collected from paths ‘P1’ and ‘P2’ to be:  

( )0 0/ cos tan cos 2 1/ cos / tan cos /p pq d k d d         = − = −                  (S3) 

where 1

0sin [( / )cos ]p   −=  obtained from kx = qpsin(). If d changes by a distance that equals 

to the fringe period (
/ / ),  will change by 2. Therefore we have  

1

// 01/ cos ( / ) tan cosp p      
−

  −                                         (S4) 

 

 
Supplementary Figure S3. Illustration of the parallel configuration of the nano-optical 

experimental setup. 

 

 

 
Supplementary Figure S4. In-plane (ab-plane) dielectric function of MoSe2 for calculations of 

the EPs. The black and red curves are real and imaginary parts of the dielectric function, 

respectively. The solid lines are experimental data adopted from Ref. 3, which were measured in 

bulk MoSe2 at room temperature. The dashed lines are modeled results that we constructed by 



using single Lorentzian oscillator for both A and B excitons (see detailed discussions in Section 4 

of the Supplementary Information). The c-axis permittivity is set to be 8.3 throughout our energy 

region that produces a good fit to experimental dispersion data points (Fig. 3d in the main text).   

 

2. Field-distribution calculation confirming TM0 waveguide modes  

In order to confirm the nature of the measured waveguide EPs, we performed field 

distribution calculations by matching boundary conditions in Maxwell’s wave equations. The 

waveguide structure is plotted in Supplementary Fig. S5a. The calculations were performed 

considering 156-nm-thick MoSe2 excited by a laser beam with a photon energy of 1.38 eV, but the 

general results apply also to other thicknesses (110 nm and 77 nm) or other laser energies. The ab-

plane optical constants for MoSe2 used in the calculation are adopted from Ref. 3 (Supplementary 

Fig. S4) and the c-axis permittivity is set to be 8.3 that is determined through dispersion fitting 

(Fig. 3d in the main text). The results are shown in Supplementary Fig. S5b and S5c, where we 

plot the y-component magnetic field (Hy) and z-component electric field (Ez) at various z positions, 

respectively. Note that the waveguide EPs is set to be propagating along the -x direction. From the 

field distribution, we know that the measured waveguide EPs correspond to TM0 mode.   

 

 
Supplementary Figure S5. Field-distribution calculation confirming TM0 waveguide modes. 

a, Illustration of the MoSe2 waveguide sandwiched by air and SiO2. The waveguide EPs are 

propagating along the -x direction. b,c, Calculated Hy(z) and Ez(z) of the waveguide EPs in the 

156-nm-thick MoSe2 sample (Figs. 1 and 2 in the main text). The blue dashed lines here mark the 

top and bottom surfaces of the MoSe2 layer.  

 

3. Polariton dispersion of the 110-nm-thick MoSe2 sample 

 In Fig. 3d,e of the main text, the dispersion data points (blue squares) were obtained from 

near-field amplitude images of the 156-nm-thick MoSe2 waveguide. Here in Supplementary Fig. 

S6, we show additional dispersion data (blue squares) measured from the 110-nm-thick MoSe2 

waveguide. Again, these data points are in good agreement with the theoretical dispersion color 

map and they also show the back-bending feature close to the A exciton energy. We also notice 

that the polariton mode of the 110-nm-thick MoSe2 sample shift to the low momentum region (~ 

2k0) compared to that of the 156-nm-thick one (~ 2.5k0), indicating reduced mode confinement or 

increased mode wavelength (Fig. 4e in the main text).  

 



 
Supplementary Figure S6. Experimental dispersion data of waveguide EPs overlaid on the 

calculated dispersion color map of a 110-nm-thick MoSe2 waveguide. 

 

4. Effects of exciton linewidth & temperature on polariton dispersion 

As discussed in the main text, the back-bending dispersion is a characteristic behavior of 

polaritons subject to broadening when measured by experiments under continuous-wave excitation 

(fixed excitation energies). Here we wish to explore the effects of the exciton broadening or 

linewidth on back-bending. For that purpose, we calculated the dispersion diagrams of 156-nm-

thick MoSe2 waveguide using a modeled ab-plane dielectric function with Lorentzian oscillators: 

A B
1 2 2 2 2 2

A A B B

( ) ( ) ( )E E i E
E E i E E E i E

   

 
= + = + +

− −  − − 
.                   (S5) 

To match the experimental optical constants from literature3 (Supplementary Fig. S4), the 

oscillator parameters are set to be 21 = , 2

A 2 eV = , A 1.55 eVE =  (A exciton energy), 

A 0.1 eV =  (A exciton linewidth), 2

B 1.53 eV =  , B 1.85 eVE =  (B exciton energy), and 

B 0.12 eV =  (B exciton linewidth).  

 According to Ref. 4, the exciton linewidth (broadening) in MoSe2 comes from both non-

thermal and thermal processes. The non-thermal processes include defect and impurity scattering 

or electron-electron scattering. The thermal process is mainly due to interactions with longitudinal 

optical phonons. The thermal contribution can be strongly suppressed at low temperature (LT). As 

a result, exciton linewidth at temperature less than 100 K could be less than half of that at room 

temperature (RT). Therefore, we adopted 
A 0.05 eV   as a rough estimation of the linewidths of 

A excitons of bulk MoSe2 at low temperature, which is consistent with the experimental results 

given in Ref. 4.  

 



 
Supplementary Figure S7. a,b, Calculated dispersion color maps of the 156-nm-thick MoSe2 

waveguide with modeled ab-plane optical constants derived from a Lorentzian oscillator with 

exciton linewidths of  =0.1 eV and 0.05 eV, corresponding to room temperature (RT) and low 

temperature (LT), respectively. c,d, Zoomed-in version of panels a and b respectively at the q 

range from 2.2k0 to 2.8k0. The blue crosses in c and d mark the positions with maximum photonic 

spectral weight along the horizontal line cuts.  

 

 The calculated dispersion diagrams with the modeled optical constants (Eq. S5) are given 

in Supplementary Fig. S7, where effects of exciton linewidth on polariton dispersion are clearly 

demonstrated. Here we compare the case of A 0.1 eV   (corresponding to RT, Supplementary 

Fig. S7a and S7c) with that of A 0.05 eV  (corresponding to LT, Supplementary Fig. S7b and 

S7d). In both cases, back-bending dispersion close to the A exciton energy is clearly seen, but the 

polariton mode with 
A 0.05 eV  is back-bended more dramatically, indicating stronger light-

exciton coupling. In addition, the momentum broadening (q) of the EP mode away from the 

exciton energy becomes narrower at A = 0.05 eV suggesting that polaritons have smaller damping 

or longer propagation length.  

 

 

5.  Propagation length of the waveguide exciton polaritons 

In Supplementary Fig. S8a and S8b, we plot the full-scale image and fringe profile of the 

156-nm-thick MoSe2 waveguide taken at E = 1.35 eV. Both the images (Fig. 1) and profiles (Fig. 

3a) shown in the main text are truncated intentionally to fit the diagram. Here in Supplementary 

Fig. S8a and S8b, fringes or oscillations are seen 30 m away from the sample edge, indicating a 

long propagation length (Lp) of these modes. In order to determine quantitatively the propagation 



length (Lp) of the measured waveguide EPs, we first extract the linewidths of the FT peaks shown 

in Fig. 3b of the main text. The FT linewidth data, plotted in Supplementary Fig. S9a, shows an 

increase with energy in the spectral range. Based on the linewidth data, we can then determine Lp 

using Eq. S11 (see discussions below). Thus-obtained Lp data points are plotted in Fig. 3c of the 

main text. Note that the resolution (~1/30 m-1) of the FT profiles (Fig. 3b in the main text) is 

limited by the sample size (~30 m), so the linewidth data point in Supplementary Fig. S9a at the 

lowest photon energy (E = 1.35 eV) is most likely overestimated due to the resolution limit. 

Therefore, the extracted Lp data point at this energy is possibly underestimated compared to the 

realistic values. In Supplementary Fig. S9b, we also plot the number of propagation cycles, namely 

propagate length (Lp) versus polariton wavelength (p), at various photon energies. Here one can 

see that the waveguide EPs can propagate over 30 cycles before losing ~63% (1-1/e) of the 

polariton energy.    

 

 
Supplementary Figure S8. a, Near-field amplitude image (s) of the 156-nm-thick MoSe2 planar 

waveguide taken at E = 1.35 eV in the perpendicular configuration. The near-field amplitude is 

normalized to that of the SiO2/Si substrate. The white dashed line marks the edge of the sample. 

The scale bar represents 1 m. b, Line profile taken from a perpendicular to fringes along the 

green dashed line.  

 

 
Supplementary Figure S9. a, Linewidths of the FT peaks measured from the FT profiles in Fig. 

3b of the main text. b, Estimated number of propagation cycles (Lp/p) of polaritons at various 

photon energies. Vertical dashed lines mark the A exciton energy.  



 

Now we discuss how we convert the linewidths (W) into propagation lengths (Lp) in the 

case of perpendicular configuration. As discussed in the main text and also in Section 1 of the 

Supplementary Information, the total optical signal (Etot) responsible for the observed interference 

fringes comes from photon paths ‘P1’ (E1) and ‘P2’ (E2): Etot = E1 + E2. In path ‘P1’, photons are 

directly back-scattered by the tip to the detector. In path ‘P2’, photons first transfer into the 

waveguide EPs and then scattered back to photons by the sample edge. The momentum of the EP 

mode can be written as: qp = q1 + iq2, where q1 = 2/p and q2 = 1/(2Lp). Throughout the 

measurement, tip is fixed and the sample is scanning, so both the amplitude and phase of E2 is 

dependent on the tip-edge distance (d). Therefore, we can write the amplitude of the total optical 

signal as: 

                  ( )

tot 11 2 2| ( ) | | ( ) | | ( ) |i dd d A A d e = + = +E E E (x > 0) .                               (S6) 

Here A1 is the amplitude of E1, 21/2

2 2( )
dq

A d B d e− −
=  is the amplitude of E2, 

 1 0 0( ) cos( )d q k d = − +   is the relative phase difference between E2 and E1 in the 

perpendicular configuration (Eq. S1). For simplicity, we define 
1 0 cos( )q k  = −  below. The 

constant A1 describes the efficiency of photon back-scattering in ‘P1’. The constant B2 describes 

the conversion efficiency from photons to EPs (via tip) times the conversion efficiency from EPs 

to photons (via edge) in ‘P2’. By substituting the formula of 
2 ( )A d  and ( )d  above into Eq. S6, 

we have 

              02 2 20( ) ( )2 2 1 1/2 1/2

1 2 1 2 1

2

to 2t ( )
q q i d i dd d dq

d A B d e A B d e e A B d e e
− − − + −  +− − −= + + +E .               (S7) 

Considering the low conversion rates between photons and EPs, and also the exponential decaying 

of the EPs with d, we are safe to assume 21/2

2 2 1

q d
A B d e A

−−=  , so Eq. S7 can be written 

approximately as: 

                            0 0 2( ) ( )

tot

1/2

1 2

1
( )

2

i d i d q d
d A B d e e e

 + −  +− −  + + E  .                                  (S8) 

 By performing Fourier transformation (FT) on Eq. S8, we have 

                                0
1/2 1/2

t 2 2

2

ot ( ) ( ) ( )k q i q ki ek
− − − 

 − +− + + E .                               (S9) 

Equation S9 indicates that there should be two peaks at k =   when performing FT analysis of 

the fringe profiles. They are identical in shape and well apart from each other (q2 <<  ), so we 

only need to consider one peak:  

                               
1/4

2 2

2tot ( ) ( )k q k
−

  − +E  .                                            (S10)      

The full width at half maximum of the peak given by Eq. S10 is 22 15k q = . Note that the unit 

of the FT profiles in Figs. 2 and 3 of the main text is 1/⊥ instead of k = 2/ ⊥, so the measured 

linewidth (W) should be scaled by a factor of 2, namely 215 /W q = . Therefore, we have: 

  
1

2(2 ) 15 / (2 )PL q W−= =  .                                                 (S11) 

Based on Eq. S11, we converted the measured FT linewidths (Supplementary Fig. S9a) into the 

propagation lengths at various excitation energies (squares in Fig. 3c).  
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