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We propose a novel way of modulating exceptional topology by implementing Floquet engineering
in non-hermitian (NH) systems. We introduce Floquet exceptional topological insulator which
results from shining light on a conventional three-dimensional NH topological insulator. Light-
matter interaction facilitates the quantum phases of matter to exhibit a novel phenomenon, where,
the point gaps in the bulk host surface states. These distinct surface states either fill the point gap
in the complex eigenspectrum or exhibit exceptional points in the presence of a magnetic field. We
also highlight the existence of a quantum anomaly generated by photo-induced modulation. The
existence of the Floquet biorthogonal Chern number and spectral winding number show that the
momentum slices exhibit NH skin effect, even though the system as a whole does not. We also
employ wave-dynamics evolution to illustrate the NH surface skin effect.

Introduction.— The non-hermitian (NH) topological
phases have been the center of attraction for theoretical
as well as experimental studies [1, 2]. Many experimen-
tally realizable models of NH systems have been proposed
in condensed matter physics hosting exceptional points
(EPs), lines, rings, and nodal planes [3, 4]. Recently,
NH generalization of topological insulators (TI) known
as Exceptional TIs has been studied where the surface
hosts either a 2D band structure with a single EP (a
point where both eigenenergies and eigenvectors coalesce)
or a single band, which represents a vortex [5]. This is
obtained either by varying the imbalance between the g-
factors of the orbitals or the magnetic field strength while
keeping it isotropic along [111] direction. On the other
hand, the Floquet engineering of the topological phases
in Hermitian [6–17], as well as NH systems, has defined
exotic ramifications in stroboscopic limits which are oth-
erwise not realizable in their static counterparts[18, 19].
Therefore, Floquet engineering of exceptional topology
has captured the desirable attention [20].

In this letter, we interlink these two ideas and in-
troduce a 3D Floquet exceptional topological insulator
(FETI). We also aim to answer the following questions.
Is it possible to achieve the ETI phase without an exter-
nal magnetic field, convert a hugely defective point into
non-defective points, and modulate exceptional topology
using Floquet theory? In order to answer these ques-
tions, we start with conventional 3D NHTI and shine
circularly polarised light (CPL) on it [21]. The system
hosts a central point gap in the bulk which can be tran-
sitioned into a central line gap by tuning the amplitude
of the vector potential of CPL. The point gaps, which
are characterized by the quantized value of topological
invariant in the bulk, host an infernal point [5] lead-
ing to the defectiveness of the system in the static part.
However, in the stroboscopic phase, the system experi-
ences a photo-induced pseudo-magnetic field and hosts
robust non-defective doubly degenerate surface states lo-
calized at opposite surfaces. The doubly degenerate sur-
face states fill the point gap and exhibit different disper-

FIG. 1: Schematic picture of a cubic lattice with s and p
orbital at each site where a CPL light is irradiated along ~n
direction with θ and φ being the angles of polarization.

sion relations. The surface state appears as a single sheet
which represents a vortex without an anti-vortex partner
giving rise to the quantum anomaly in 3D NHTI systems.
This sheet can be shown to establish homotopy with a
torus-shaped 2D Brillouin zone (BZ).

However, when the system is subjected to a constant
and isotropic magnetic field, it hosts a single second-
order EP on the surface of the 3D NHTI models. In
the presence of CPL, it also experiences a photo-induced
pseudo-magnetic field which couples with the external
magnetic field [22] to modulate the EP on the surface.
Thus, a constant magnetic field in the static phase gains
dynamics in the stroboscopic picture thereby dramati-
cally photo-modulating the Landé-g-factor. The system
possesses NH surface skin effect (NHSSE) [23, 24] in both,
static as well as dynamic phases. Here we explain this
surface quenching phenomenon with the help of wave
dynamics[25, 26] without analyzing the photovoltaic and
chiral transport phenomenons associated with it.

Static model— We start with the quantum mechanical
model of spin-full 3D NHTI, given by following Hamilto-
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FIG. 2: (a) Bulk complex eigenspectrum for point gap region

satisfying |M + A2

2
− 3| ≤ δ, cyan (pink) color highlights the

value of W3D = 1(−2). (b) represents the central point gap
region of complex eigenspectrum for OBC along the z axis.
The degenerate surface states fill the point gap completely
and appear as a single sheet structure. (c) Plot of Abs(E) as
a function of kx for ky = 0, hosting a surface Dirac node at
kx = 0. Notably, when ky is non-zero the surface is gapped
and the states fill the Dirac cone completely as appears in the
contour plot (d). System parameters are M = 2.5, λ = 1,
δ = 1, A2

0/ω = 1/5 and momentum resolution ∆k = π/400.

nian,

H0(k) =
∑

j=x,y,z

[
(cos kj −M) τzσ0 + λ sin kjτxσj

]
+ i δ τxσ0. (1)

In the tight-binding model, the system has s and p or-
bital at each lattice site [5, 25] (implying four degrees of
freedom at each site) see Fig. 1(a), σµ and τµ denotes
the Pauli matrices acting independently of spin and or-
bit degrees of freedom respectively where µ = 0, 1, 2, 3.
Here, M accounts for the band inversion for the s and
p orbital, λ controls the intrinsic spin-orbit coupling, δ
denotes the NH contribution either from electron-phonon
scattering or via short-lived f -electron coupling to the s
and p orbitals [5]. We note that the Hermitian counter-
part of the above model mentioned in Eq. 1 resembles
a four-band model of 3D TI hosting a Dirac node. The
static Hamiltonian hosts two kinds of gaps in the bulk
due to its NH property, point gap for |M − 3| ≤ δ as
shown in Fig. 1(b) and line gap for |M − 3| ≥ δ.

Floquet exceptional topological insulator (FETI).—
We irradiate CPL [27] along the direction ~n =
(sin θ cosφ, sin θ sinφ, cos θ), where, θ and φ are polar
and azimuthal angles respectively in conventional spher-
ical polar coordinates(see Fig. 1). The vector potential

has the following form,

~A = A0[cos (ωt) ~e1 + η sin (ωt) ~e2], (2)

where, A0 and ω represent the amplitude of the vector
potential and frequency of the CPL, respectively. The
parameter η regulates the orientation of the polarization
(η = +1(−1) for left (right) CPL). All the three unit
vectors ~e1, ~e2, and ~n must be orthogonal to each other.
Thus, we choose unit vectors ~e1 = (cos θ cosφ, cos θ sinφ,-
sin θ) and ~e2 = (sinφ,− cosφ, 0). We derive an effective
stroboscopic Hamiltonian invoking the high-frequency
Floquet formalism (see [28]), given by following form,

HF (k) =
∑

j=x,y,z

[
(cos kj −M −A2/2)τzσ0 + λ sin kjτxσj

]
+ τ0 (~n.~σ) + i δ τxσ0, (3)

where, the vector ~n is given by,

~n =
ηλ2A2

ω
(sin θ cosφ, sin θ sinφ, cos θ). (4)

Here, the term coupled to the unit direction ~n can be
defined as the photo-induced magnetic field generated
by the light-matter interaction as a result of the Floquet
driving [29]. This pseudo-magnetic field is analogous to
artificial gauge fields realized in ultra-cold atoms but dif-
fers in the sense that, the pseudo-magnetic field compo-
nents are the functions of parameters of irradiated light
into the system which is generally anisotropic. The mag-
nitude of the pseudo-magnetic field scales inversely to the
frequency of the drive and its direction can be altered by
changing the orientation of the polarization.

Thus, the stroboscopic phase represents a FETI re-
sulting from the periodic driving of static 3DNHTI in
the high-frequency limit. As the time-reversal symmetry
of the Hamiltonian is broken due to the pseudo-magnetic
field, the model hosts a pair of chiral Weyl nodes along
any desired axis with a suitable choice of θ and φ and
gets connected over the imaginary axis due to NH term,
thus giving rise to the point gap. Hence, for FETI, the

system hosts a point gap for |M + A2

2 − 3| ≤ δ [see Fig.

2(a)] and a line gap for |M + A2

2 − 3| ≥ δ, see [28]. The
Floquet Hamiltonian has A2/2 onsite term in the diago-
nal, thereby modulating M , which is responsible for the
band inversion. Therefore, the FETI phase can be real-
ized in the system even if its static counterpart is in the
trivial phase.

Surface States.— We define the critical angles of po-
larization as, θc = tan−1(

√
2) and φc = π/4. This

makes the pseudo-magnetic field isotropic along [111] di-
rection. At these critical values of the angle, in the com-
plex energy spectrum, the point gap is filled isotropically
with the doubly degenerate surface states having a sin-
gle Fermi point, shown in Fig. 2(b). We also consider
another unconventional model where two Fermi points
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FIG. 3: For one axis OBC along the z axis, (a) depicts a signature of second order EP in the static phase for M = 3, λ = 1,
δ = 1, B0 = 0.2 by an octagon shape. (b)-(d) represents the dynamics of the EP via Floquet driving the 3DNHTI in the

presence of the magnetic field. We periodically vary
A2

0
ω

sinχ and magnetic field as B0 cosχ for χ = 0.6, 0.65, 0.7 in (b), (c),
and (d) respectively. As χ varies, the two second-order EPs collide with each other and form a third-order EP which further
splits into two second-order EPs. Other parameters are the same as (a) along with M = 2.5 and A2

0/ω = 1/5.

can appear, see [28]. Therefore, it exhibits a single-
sheet structure. The degenerate partners of surface states
are localized to the opposite edges of the truncated lat-
tice. The surface state has a dispersion relation kx+ iky,
whereas, its degenerate partner has the dispersion rela-
tion ky + ikx. Thus, we infer that the single sheet es-
tablishes homotopy with 2D torus-shaped Brillouin zone
(BZ), see [28] for more details. Additionally, the sur-
face states appear as a Dirac cone in the kx−ky plane as
shown in Figs. 2(c) and (d). However, the photo-induced
homotopy does not remain futile from the infinitesimal
perturbation from the critical angle. We also note that
the Hamiltonian hosts a hugely defective infernal point at
kx = ky = 0 in the complex eigenspectrum which leads to
numerical instability in the static model, see [28]. How-
ever, for the dynamic case due to the pseudo-magnetic
field, this infernal point converts into doubly degenerate
non-defective points.

Effect of external magnetic field— We consider the
system in the presence of an external magnetic field,
by adding the term τz( ~B0 · ~σ) to the Hamiltonian writ-
ten in Eq.(1) and Floquet Hamiltonian also changes to

HF + τz( ~B0 · ~σ). Thus, a constant magnetic field in the
static phase gains dynamics in the stroboscopic limit.
The resultant magnetic field modulates the imbalance be-
tween lande-g-factors between the s and p orbital. Thus
we can photo-modulate the Landé-g-factor by parameter-

izing Floquet term as
λ2A2

0

ω sinχ and the magnetic field
B0 cosχ with

χ = tan−1

(
λA2

0

ωB0

)
. (5)

The bulk Hamiltonian has a point gap however, the
finite system along the z axis, possesses a single second-
order EP on the surface for the non-zero magnetic field
accounting for a quantum anomaly on the surface, see
Fig. 3(a). We note that if there is nth order EP, then
one has to take 4n turns around it to come back to the

original state in the square momentum grid [5]. The dy-
namics and the order of the EP residing on the surface
can be photo-tuned by Floquet driving which can never
be realized in its static counterpart with a constant unidi-
rectional magnetic field. By adiabatically varying χ, two
second-order EPs come closer and collide with each other,
thereby creating a third-order EP. This third-order EP
can then be further transformed into two second-order by
moving them away from each other (see Figs. 3(b)-(d)).

We then apply open boundary condition (OBC) along
y and z, while retaining periodic BC along the x axis.
In the absence of the magnetic field, the surface states
in the point gaps are localized in opposite corners. This
remarkable phenomenon is the well-known NH surface
skin effect (NHSSE) and can be related to the higher-
order skin effect [30, 31]. However, as the magnetic field
is turned on, the surface states get confined in one of the
corners (refer Figs. 4(a),(b)). To demonstrate this novel
effect, we prepare a trial wavefunction localized at a finite
y − z sheet of dimension L2. The trial wavefunction is
given by:

|ψ0〉 = N0e
− (y−y0)2

α2 e
− (z−z0)2

β2 eikxax |ζ0〉 (6)

where, N0 is the normalization factor of the wave func-
tion, y0 and z0 are constants that determine the local-
ization of the wave function in the finite sheet, α and
β control its Gaussian width, and |ζ0〉 is a spinor. We
perform the time evolution of the trial wavefunction as
e−iHt|Ψ0〉 with respect to the Hamiltonian obtained by
truncating y and z axes. The skin modes are not com-
pletely localized at the corners and they have noticeable
overlap with the bulk modes (Figs. 4(a)-(b)). So this
effect allows the wavepacket which was initially localized
at one of the edges, to travel into the opposite edge by
permeating into the bulk (Figs. 4(c)-(f)). However, there
is a significant dynamical quenching of the time-evolved
probability of the trial wavefunction at the edges where
surface states are localized.
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FIG. 4: Probability amplitudes demonstrate the NHSEE for
(a) B0 = 0 and (b) B0 = 0.2. (c)-(f) demonstrates the dy-
namical evolution of the trial wavefunction from time t = 0
to t = 60. The constants α and β are set to be 2 and 6 re-
spectively. We choose the spinor |ζ0〉 as [1, i, 0, 0], and the
momentum kx is evaluated numerically considering those val-
ues which experience NHSSE. Other system parameters are
the same as Fig. 3

.

Topological Invariants.— We compute three topolog-
ical invariants starting with the spectral winding num-
ber along a particular momentum axis say kz while
fixing the other two momenta values at kx0 and ky0.
Thereafter, along the kz axis, the Hamiltonian be-
comes one-dimensional and can be defined as HF

1D(kz) =
HF (kx0, ky0, kz). We calculate the spectral winding num-
ber as,

νkx0,ky0(Ep) =
1

2πi

∫ π

−π
dkzTr[Q1D(kz)], (7)

where Q1D(kz) = [HF
1D(kz)−Ep]−1∂kz [H

F
1D(kz)−Ep]

with Ep as a reference energy inside the corresponding
spectral region. Thus, for a suitable choice of com-
plex reference energy in the eigenspectrum, the quan-
tized value of the spectral winding number implies bro-
ken bulk-boundary correspondence (BBC) resulting an
NH skin effect for those particular kx0 and ky0 along kz
direction. As shown in Fig. 5(a), there are four bands
with different values of ν along with the zero-valued re-
gion that can be visualized as the outcome of adding two
ν’s in the overlapping complex eigenspectrum.

Furthermore, along with three spectral winding num-
bers in three directions [24], system has three 1D winding
numbers W1D,l defined as,

W1D,l = −i
∫

d3k

(2π)3
Tr[Ql(k)]. (8)

where Ql = [HF (k)−E]−1∂kl [H
F (k)−E] with E being

the reference energy in the point gap. For our system,
W1D,l = 0 for all values of l, which also necessitates the
absence of NHSE [24, 32]. Thus, the uniqueness of the
model is evident from the fact that the system as a whole
does not exhibit the collapse of the BBC although the
momentum slice in the Hamiltonian experience NHSE.
There is also presence of another 3D topological invariant

W3D[33–36] defined in the bulk spectrum which is given
by,

W3D =
−1

24π2

∫
d3kεijkTr[Qi(k)Qj(k)Qk(k)]. (9)

The topological invariant defined in the bulk deter-
mines the fate of the surface states. The quantization
of W3D, however, does not require any symmetry for
its stabilization. Finally, we also employ a biorthog-
onal approach to compute the Floquet open-boundary
Chen number for each kx value [37]. This unique ap-
proach, however, re-establishes the BBC. The Floquet
open-boundary Chern number is given by;

Cα =
2πi

l′yl
′
z

Tr′
(
P̂α[[r̂y, P̂α], [r̂z, P̂α]]

)
. (10)

Here r̂y (r̂z) is the coordinate operator along y (z) di-
rection and defined as r̂y(z)mn = ry(z)δmn with rx, ry ≤ l,
l × l is the size of the system and l′y = l′z = l − 2l0
where l0 is a boundary layer that has been removed
from lx/y, see [28]. The bulk band projection operator,
Pβ =

∑
n∈β |nR〉〈nL|, where β denotes all the unoccu-

pied bands with |nL〉 (|nR〉) being the left (right) eigen-
states of Floquet Hamiltonian. The Floquet biorthogo-
nal Chern number gives the quantized value of one where
there are surface states in the Hamiltonian [see Figs. 2(c)

and 4(b)] and can be modulated by varying
A2

0

ω .

FIG. 5: (a) The quantized spectral winding number in the
complex eigenspectrum plane for kx0 = −π and ky0 = −π.
(b) represents the Floquet biorthogonal Chen number depict-
ing the quantized value of one in the region where there are
surface states. System parameters are the same as in the
previous figure with B0 = 0.

In conclusion, we have studied 3D NHTI in the pres-
ence of CPL. The system hosts a novel phase of quantum
matter, namely, FETI in the stroboscopic limit with no
static counterpart. FETI has a point gap that is filled
by either a single band at the surface or a 2D band with
EPs when 3D NHTI is subjected to an external mag-
netic field. Due to the NH fermion doubling theorem, an
odd number of Fermi points or EPs are impossible in a
2D model. That’s why the surface states in FETI are
anomalous. The exceptional topology i.e. the number
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of EPs can also be modulated using CPL. We also es-
tablished using different topological invariants, that the
NH skin effect does not exist in the entire system, but
it is present in momentum slices. Finally, the NHSSE
exhibited by FETI has been explained by the dynamical
quenching of the wave-function. Thus, a photo-induced
modulation of the transport and quantum anomaly can
also be realized in such a modeled NH system.
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SUPPLEMENTARY MATERIAL: Floquet Exceptional Topological Insulator

Gaurab Kumar Dash, Subhajyoti Bid, Manisha Thakurathi
Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India 110016

3D NON-HERMITIAN TOPOLOGICAL INSULATOR

The Hermitian counterpart of the Hamiltonian H0(k) written in the main text is a four-band model of 3DTI hosting
a Dirac node. For 1 ≤ |M | ≤ 3, the system exhibits a trivial phase. The phase transition from trivial to topological
phase occurs at |M | = 1 and |M | = 3. Due to the NH property, the Hamiltonian is accompanied by two kinds of
gaps in the complex eigenspectrum[1, 5, 25]. For |M − 3| ≤ δ and |M − 3| ≥ δ, it showcases a central point gap and
a central line gap respectively [refer Fig. S1(a)].

The Hamiltonian is hugely defective in the surface for kx = ky = 0 and leads to numerical instability (refer Fig.
S1(b)-(e)). Thus, the model exhibits an infernal point in the thermodynamic limit at kx = ky = 0, which accounts
for the states to be localized at one of the edges. An analytical derivation of the dispersion relation of the infernal
point is presented in [5]

FIG. S1: (a) shows a line gap for M = 2.3, λ = 1, δ = 0.5, B0 = 0. (b)-(d) shows the complex eigenspectrum of the Hamiltonian
defined in Eq. S1 for lattice site N = 10, 30, and 70 respectively accounting for the numerical instability of the system.

LATTICE REALIZATION OF 3DNHTI

The Hamiltonian in the main text can be realized in a cubic lattice with an electron with spin up and down in s
and p orbital respectively. Thereafter, the tight binding Hamiltonian is given by,

H =
∑
r,γ

C†r,γH(k)Cr,γ , (S1)

where, r = x, y, z denotes the position of lattice and γ = 0(1) notifies the s(p) orbitals. We try to expand each term
on the basis of the lattice mentioned in the main text. The constant part of the onsite term in the second quantization
notation is written as,

https://link.aps.org/doi/10.1103/PhysRevB.82.235114
https://link.aps.org/doi/10.1103/PhysRevB.82.235114
https://link.aps.org/doi/10.1103/PhysRevLett.123.246801
https://link.aps.org/doi/10.1103/PhysRevLett.123.246801
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∑
r,γ

C†r,γ(−M)τzσ0Cr,γ =
∑
r,γ

(
C†r,s,↑ C†r,s,↓ C†r,p,↑ C†r,p,↓

)
−M 0 0 0

0 −M 0 0
0 0 M 0
0 0 0 M



Cr,s,↑
Cr,s,↓
Cr,p,↑
Cr,p,↓


=
∑
r

[−MC†r,s,↑Cr,s,↑ −MC†r,s,↓Cr,s,↓ −MC†r,p,↑Cr,p,↑ −MC†r,p,↓Cr,,↓]

= −M
∑
r,γ

(−1)γC†r,γσ0Cr,γ (S2)

where, C†r,γ =
(
C†r,γ,↑ C†r,p,γ,↑

)
.

The k dependent onsite terms are of the following form,

∑
r,γ

C†r,γ(cos kx)τzσ0Cr,γ =
∑
r

(
C†r,s,↑ C†r,s,↓ C†r,p,↑ C†r,p,↓

)
cos kx 0 0 0

0 cos kx 0 0
0 0 − cos kx 0
0 0 0 − cos kx



Cr,s,↑
Cr,s,↓
Cr,p,↑
Cr,p,↓


=
∑
r

[cos kxC
†
r,s,↑Cr,s,↑ − cos kxC

†
r,s,↓Cr,s,↓ − cos kxC

†
r,p,↑Cr,p,↑ − cos kxC

†
r,p,↓Cr,p,↓]

=
1

2

∑
r

(C†r+ex,s,↑Cr,s,↑ + C†r+ex,s,↓Cr,s,↓ − C
†
r+ex,p,↑Cr,p,↑ − C

†
r+ex,p,↓Cr,p,↓)

=
1

2

∑
r,γ

(−1)γC†r+ex,γσ0Cr,γ +H.C. (S3)

Hence, the collective term cos kx + cos ky + cos kz can be evaluated as:∑
r,γ

C†r,γ(cos kx + cos ky + cos kz)τzσ0Cr,γ =
1

2

∑
r,γ

∑
i=x,y,z

(−1)γC†r+ei,γσ0Cr,γ +H.C. (S4)

Similarly, following the same steps of the calculation, the rest of the terms can be converted as:∑
r,γ

∑
i=x,y,z

C†r,γ(sin ki)τxσiCr,γ =
λ

2i

∑
r,γ

∑
i=x,y,z

(−1)γC†r+ei,γ+1σiCr,γ +H.C, (S5)

∑
r,γ

∑
i=x,y,z

C†r,γ(Bτzσi)Cr,γ = B
∑
r,γ

∑
i=x,y,z

(−1)γC†r,γσiCr,γ +H.C, (S6)

and ∑
r,γ

∑
i=x,y,z

C†r,γiδτxσ0Cr,γ = iδ
∑
r,γ

(−1)γC†r,γ+1σ0Cr,γ . (S7)

After collecting the terms the lattice Hamiltonian takes the following form,

H = −M
∑
r,γ

(−1)γC†r,γσ0Cr,γ + [
1

2

∑
r,γ

(−1)γC†r+ex,γσ0Cr,γ +H.C]

+
λ

2i

∑
r,γ

∑
i=x,y,z

(−1)γC†r+ei,γ+1σiCr,γ +H.C.

+B
∑
r,γ

∑
i=x,y,z

(−1)γC†r,γσiCr,γ +H.C.+ iδ
∑
r,γ

(−1)γC†r,γ+1σ0Cr,γ , (S8)

where, the NH part in the Hamiltonian can be realized as the electron-phonon interaction between s and p orbital.
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FORMALISM FOR FLOQUET THEORY

We define a non-unitary time evolution operator U(t, t
′
) which evolves the system from time t to t′ with periodicity

τ = 2π
ω , then the Floquet theorem states that,

U(t+ nτ, t0) = U(t, t0)[U(t0 + τ, t0)]n (S9)

and we define the non-unitary Floquet Hamiltonian as:

U(t0 + τ, t0) = exp(
iHF τ

~
) (S10)

where, HF is the Floquet NH Hamiltonian. For the stroboscopic analysis, we can always set t0 = 0, without the
loss of generality, as the original time period of the periodically driven system dominates any time scale that may
be acquired by the unitary operator. The eigenstates corresponding to the Floquet operators defined above for time
t0 = 0 are called the Floquet modes and are given by ψα(0). Thus, the Floquet operator can be rewritten as[22],

U(τ, 0) =
∑
α

e−iεατ/~ |ψα(0)〉 〈ψα(0)| , (S11)

where, εα are the complex eigenvalues corresponding to the Floquet NH Hamiltonian[38]. The Floquet modes also
satisfy the periodic relation as, ψα(τ) = ψα(0). The time evolution of the Floquet modes is given by:

Ψα(t) = e−iεαt/~ψα(0). (S12)

Substituting the time-dependent ansatz into the time-dependent Schrodinger’s equation we get,

[H(t)− i~ ∂
∂t

]Ψα(t) = εαΨα(t), (S13)

where, K(t) = H(t)− i~ ∂
∂t can be termed as Floquet extended Hamiltonian.

Floquet-space-time representation of periodically driven systems

We can further expand the Floquet modes in the time-periodic Fourier series as:

Ψα(t) =

∞∑
j=−∞

|φα,j〉 eijωt. (S14)

Plugging this into the above equation yields:

∞∑
j=−∞

Hj−j′φα,j + j~ωφα,j = εαφα,j , (S15)

where,

Hj−j′ = Hn =
1

τ

∫ τ/2

−τ/2
H(k, t)einωt. (S16)

Thus, the above equation can be written in matrix formulation as:

Hslab =



H0 H−1 0 . . . 0 0 0
H1 H0 − ~ω H−1 . . . 0 0 0
0 H1 H0 − 2~ω . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . .
. . . H−1 0

0 0 0 . . . H1
. . . H−1

0 0 0 . . . 0 H1 H0 − j~ω


. (S17)
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FIG. S2: The Floquet variable onsite terms as the slabs and temporal hoppings are shown by red arrows

Thus, the harmonic indices j and j
′
represent the fictitious temporal direction such that a d-dimensional Hamiltonian

can always be visualized in the d+ 1 dimensional space-time representation(refer Fig. S2). The term j~ω represents
the variable onsite term (similar to a 1D chain under stark electric field) and H

′

j−j represents the hopping between j

and j
′

temporal site. In addition to this, quasi-energy also satisfies the periodic relation of εα = εα + j~ω. Thus the
space-time picture can also equally be mapped into the Wannier-Stark ladder[39].

considering the periodicity of the drive to be very high, we can write the Hamiltonian as :

H = H0 +H1e
iωt +H−1e

−iωt. (S18)

In the infinite frequency domain, the hopping along the temporal direction becomes completely ineffective breaking
a d+ 1-dimensional system (4-dimensional system in our case) to the isolated d-dimensional systems. However, in the
low energy approximation, the perturbation theory yields unique results in the second order. If ε is the energy which
is associated with the zeroth mode level(H0), then going from n = 0 and n = 1 and coming back is described by the

term H−1
1

(ε+~ω)−εH
†
1 and going from n = 0 to n = −1 and coming back is described by the term H1

1
(ε−~ω)−εH

†
−1.

Thus, the whole process described above can be mathematically written as:

Heff = H0
F +

inf∑
n=1

1

ω
[H−nF , Hn

F ]. (S19)

FLOQUET DRIVING OF 3DNHTI

We use the above-developed perturbation theory in the conventional 3DNHTI and try to develop FETI. We use
the vector potential(mentioned in the main text) as:

A = A0[cosωt~e1 + η sinωt~e2], (S20)

where, A0 is the amplitude and ω is the frequency of the driven system. η = ±1 signifies the right circularly and
left circularly polarized light respectively. We choose e1 = (cos θ cosφ, cos θ sinφ, sinθ) and e2 = (sinφ,− cosφ, 0).
Thus, the vector potential is given by:

A = A0 (cos θ cosφ cosωt+ η sinφ sinωt, cos θ sinφ cosωt− η cosφ sinωt,− sin θ cosωt) , (S21)

with minimal coupling the time-dependent Hamiltonian becomes,

H(k) =
∑
j(cos kj −M − A2

0

4 (1 + η2))τzσ0 + λ
∑
j [sin kx −A0(cos θ cosφ cosωt+ η sinφ sinωt)τxσx

+ sin ky −A0(cos θ sinφ cosωt− η cosφ sinωt)τxσy + sin kz −A0(− sin θ cosωt)τxσz] + iδτxσ0. (S22)
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Thus, the various Floquet terms can be recovered as:

H0 =
∑
j

(cos kj −M −
A2

0

4
(1 + η2))τzσ0 + λ

∑
j

sin kjτxσj + iδτxσ0, (S23)

H1 = −λA0

2
([cos θ cosφ+ iη sinφ]τxσx + [cos θ sinφ− iη cosφ]τxσy + sin θτxσz), (S24)

and

H−1 = −λA0

2
([cos θ cosφ− iη sinφ]τxσx + [cos θ sinφ+ iη cosφ]τxσy + sin θτxσz). (S25)

Thus, in the Fourier space-time representation, each onsite term represents a 3DNHTI with onsite loss and gain
term whereas the hopping between two connected 3DNHTI can be modulated by the angle of polarization. Thus the
whole system can be modulated by A0, θ, φ to realize exotic quantum phases of matter.

We neglect the periodic fluctuating terms with coefficient
A2

0

ω . Thus, by using equation 13 the effective Hamiltonian
can be calculated as:

H(k) =
∑
j

(cos kj −M −
A2

4
(1 + η2))τzσ0 + λ

∑
j

sin kjτxσj + τ0(n.σ) + iδτxσ0, (S26)

where, the vector n is given by :

n =
λ2A2η

ω
(sin θ cosφ, sin θ sinφ, cos θ). (S27)

However, in the presence of the extrinsic magnetic field, the Hamiltonian in the stroboscopic phase is given by:

H(k) =
∑
j

(cos kj −M −
A2

4
(1 + η2))τzσ0 + λ

∑
j

sin kjτxσj + (nτ0 +Bτz).σ + iδτxσ0 . (S28)

LATTICE REALIZATION OF FETI

The FETI can also be calculated in the cubic lattice as:

H = −(M +
A2

0

2 )
∑
r,γ(−1)γC†r,γσ0Cr,γ + [ 1

2

∑
r,γ(−1)γC†r+ex,γσ0Cr,γ +H.C]

+[ λ2i
∑
r,γ

∑
i=x,y,z(−1)γC†r+ei,γ+1σiCr,γ +H.C]∑

r,γ

∑
i=x,y,z(ni +B(−1)γ)C†r,γσiCr,γ + iδ

∑
r,γ C

†
r,γ+1σ0Cr,γ . (S29)

Thus, irradiating light in a 3DNHTI generates Onsite excitation due to the coupling of light-matter interaction
which is analogous to a photo-induced magnetic field. The uniqueness of such a fictitious magnetic field reveals its
true nature from the fact that it is generally anisotropic(except at the critical angle defined in the main text). The
amplitude of such a field is dependent on the frequency and handedness of the light used.

PHOTO-INDUCED HOMOTOPY IN FETI

We truncate x-axis while retaining PBC along y and z axes. For simplicity, we use the angle of polarization as
θ = 0 and φ = φ′ where 0 ≤ φ′ ≤ 2π. Then the truncated hamiltonian can be written as:

H = 1
2 [
∑
x C
†
x+1(τzσ0 + iλτxσx)Cx +

∑
x C
†
x−1(τzσ0 − iλτxσx)Cx]

+C†x[(2−M − A2
0

2 )]τzσ0 +
λ2A2

0

ω τ0σz + iδτxσ0]Cx. (S30)
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We use the trial wavefunction as:

|Ψ1̄00〉 =
∑
x

αx |x〉 |ζ0〉 (S31)

We write the Harper’s equation (Γ0 = τzσ0) as[25],

Γ0

(
1− λτyσx

2
α−1 +

1 + λτyσx
2

α+ [(2−M − A2
0

2
) +

λ2A2
0

ω
τzσz − δτyσ0]

)
|ζ0〉 = 0 (S32)

The terms τzσz and τyσ0 commutes with τyσx.Thus the eigenstates of τyσx are given by:

|ψ1〉 =
(−i, 0, 0, 1)T√

2
(S33)

|ψ2〉 =
(0,−i, 1, 0)T√

2
(S34)

|ψ−1〉 =
(i, 0, 0, 1)T√

2
(S35)

|ψ−2〉 =
(0, i, 1, 0)T√

2
(S36)

Thus we write the spinor |ζ0〉 as:

|ζ0〉 = p1 |ψ1〉+ p2 |ψ2〉 (S37)

We set p1 = cos θ′ and p2 = sin θ′eiφ
′
. Thus, after normalization, the Harper equation reduces to:(

α−M − A2
0

2
+
λ2A2

0

ω

)
cos θ′ − δ sin θ′eiφ

′
= 0 (S38)

(
α−M − A2

0

2
+
λ2A2

0

ω

)
sin θ′eiφ

′
− δ cos θ′ = 0 (S39)

Thus the value of the constants are given by

α =

√
(δ2 + (

λ2A2
0

ω
)2) + (M +

A2
0

2
)− 2 (S40)

θ′ = tan−1(
α−M − A2

0

2 + 2 +
λ2A2

0

ω

δ
) (S41)

φ′ = 0 (S42)

Following the similar steps, we can write the trial wavefunction for (100) surface as :

|Ψ1̄00〉 =
∑
x

αx |x〉 |ζ ′0〉 (S43)

Then , after normalisation, the surface states are given by:

|Ψ1̄00〉 =
∑
x

αL−x |x〉 [cos θ′ |ψ−1〉 − sin θ′ |ψ−2〉] (S44)
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|Ψ100〉 =
∑
x

αx |x〉 [cos θ′ |ψ−1〉+ sin θ′ |ψ−2〉] (S45)

For the system to establish homotopy with the torus shaped BZ and exhibits a single sheet in the surface, the top
and buttom surfaces must couple to each other demanding the surface state in the complex eigenspectrum to be a
superposition of |Ψ100〉 and |Ψ1̄00〉.Thus we assume the surface state to have the following form.

|ψ〉 =
(|Ψ100〉)± (|Ψ1̄00〉)√

2
. (S46)

We then consider the perturbative correction of ky and kz respectively. Since 〈ψ1| τxσy |ψ1〉 = −〈ψ2| τxσy |ψ2〉 =
〈ψ−1| τxσy |ψ−1〉 = 〈ψ−2| τxσy |ψ−2〉 = 1.Hence 〈Ψ1̄00| τxσy |Ψ1̄00〉 = −〈Ψ100| τxσy |Ψ100〉 = cos 2θ′, thus ky terms
results in the energy splitting of ± cos 2θ′ky for small value of ky which would cage the surface states to localise
at one surface. Following the similar calculations for the kz term, we have, 〈ψ1| τxσy |ψ2〉 = −〈ψ2| τxσy |ψ1〉 =
−〈ψ−1| τxσy |ψ−2〉 = 〈ψ−2| τxσy |ψ−1〉 = i. But kz dependent terms are not diagonal unlike the ky dependent terms.
So, |Ψ100〉 and |Ψ1̄00〉 are not the good basis of the perturbed Hamiltonian when kz dependent perturbations are
included in the system. To Tackle this difficulty, we re-solve the Harper’s equation again without the NH terms.

Γ0

(
1− λτyσx

2
α−1 +

1 + λτyσx
2

α+ [(2−M − A2
0

2
) +

λ2A2
0

ω
τzσz − δτyσ0 + i sin kzτyσz]

)
|ζ0〉 = 0 (S47)

As [τyσz, τxσy] = 0,the kz dependent term inter-twins and mixes the Hilbert space of the unperturbed Hamiltonian
since τyσz |ψ1〉 = |ψ−2〉, τyσz |ψ2〉 = |ψ−1〉, τyσz |ψ−2〉 = |ψ1〉, and τyσz |ψ−1〉 = − |ψ2〉.Thus for (1̄00) surface we
redefine the spinor as

|ζ〉 = cos θ1 |ψ1〉+ sin θ1e
iφ1 |ψ−2〉 (S48)

Re-solving the Harper’s equation we get

α′ =
β1 + β2

β3
(S49)

β1 = −1 + (
λ2A2

0

ω
)2 − (sin kz)

2 − (M +
A2

0

2
) (S50)

β2 = −
√

(1− (
λ2A2

0

ω
)2 + (sin kz)2) + 4((

λ2A2
0

ω
)2 − (M +

A2
0

2
)2) + (M +

A2
0

2
)2 (S51)

β3 = 2(M +
A2

0

2
− λ2A2

0

ω
) (S52)

θ1 = − tan−1(
sin kz

α′ +M +
A2

0

2 +
λ2A2

0

ω

) (S53)

φ1 = −π
2

(S54)

similarly for (100) surface, we can write

|ζ1〉 = cos θ1 |ψ1〉 − i sin θ1 |ψ2〉 (S55)

|ζ2〉 = cos θ1 |ψ−1〉+ i sin θ1 |ψ−2〉 (S56)

Now including the NH electron-phonon interaction in the Hilbert space of |ζ1,2〉: 〈ζ1| iτxσ0 |ζ1〉 = 〈ζ2| iτxσ0 |ζ2〉 =
i sin 2θ1. Thus the NH interaction splits the energy level equally. For small kz, θ1 is directly proportional to kz and
energy splitting in the NH complex energy is directly proportional to ikz. Thus, the surface states have zero energy
for finite δ since the NH term does not alter the surface states for kz = 0 as θ1 = 0 when kz = 0 thereby forming a
single sheet in the complex eigenspectrum.
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PHASE SPACE OF FETI

We neglect A2

ω terms in the Hamiltonian to invoke the hidden sub-lattice symmetry of it by rotating the basis as,
τx ⇒ τy ⇒ τz ⇒ τx. Then the Hamiltonian can be converted into the off-block diagonal form[5],

H(k,M, λ, δ, A) =
∑
j(cos kj −M − A2

4 (1 + η2))τxσ0 + λ
∑
j sin kjτyσj + iδτyσ0

⇒ H(k,M, λ, δ, A) =

(
0 h†UR
hLL 0

)
, (S57)

where, h†UR and hLL denotes the upper right and lower left matrices respectively and given by,

h†UR =

(
f(k,M,A)− iλ sin kz + δ −iλ sin kx − λ sin ky
−iλ sin kx + λ sin ky f(k,M,A) + iλ sin kz + δ

)
(S58)

and

hLL =

(
f(k,M,A) + iλ sin kz − δ iλ sin kx + λ sin ky

iλ sin kx − λ sin ky f(k,M,A)− iλ sin kz − δ

)
. (S59)

Here, f(k,M,A) =
∑
j(cos kj−M−A

2

4 (1+η2) we can then defineQi = H−1∂kjH =

(
h−1
LL∂kihLL 0

0 (h†UR)−1∂kihLL

)
.

The topological invariant W3D can then be expressed as,

W3D = WLL
3D −WUR

3D . (S60)

We can further link both of the off diagonal matrices as considering,

hLL(k,M,A, λ, δ) = h0(k,M +
A2

4
(1 + η2) + δ, λ), (S61)

h†UR(k,M,A, λ, δ) = h0(k,M +
A2

4
(1 + η2)− δ, λ) (S62)

and the Hamiltonian h0 is written in the form,

h0 = dµσµ (S63)

where, dµ = (cos kj−M
′
, iλ sin kx, iλ sin ky, iλ sin kz) and σµ = (σ0, σ1, σ2, σ3). Thus it represents a two-band model

of 3DTI with NH spin-orbit-coupling. For vanishing point gap the system demands that h0(k,M
′
, λ) = 0, implies,

cos kj = M
′
. This yields, M

′
= ±1,±3 which decides the phase space of the block matrices. Thus, the winding

number can be expressed as,

W3D = W 0
3D(k,M +

A2

4
(1 + η2) + δ, λ)−W 0

3D(k,M +
A2

4
(1 + η2)− δ, λ), (S64)

and, M
′

= ±3 implies |M + A2

4 (1 + η2) |= 3. Thus, |M + A2

4 (1 + η2)− 3 |≤ δ corresponds to a central point-gap

whereas | M + A2

4 (1 + η2) − 3 |≥ δ corresponds to a central line-gap. Let us consider the model to be in static
topological phase boundary for which it demands the value of M = 3. Then by shining light on such a quantum
phases of matter in the topological phase boundary, a phase transition from point gap to the line gap can be achieved.
A2

4 (1 + η2) ≤ δ demands a central point gap and A2

4 (1 + η2) ≥ δ demands a central line gap.
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FIG. S3: (a)-(h) corresponds to the dynamic evolution of the probabilities of the trial wavefunction defined in the main text
for M = 3,δ = 1,λ = 1,B0 = 0.2,from time t = 0 to t = 70 in the interval of 10. |ζ0〉 = [1, 0, i, 0] and the value of α and β
remains same as in the main text.

SLAB CALCULATION AND WAVE DYNAMICS

We prepare a trial wave function, defined in the main text, and evolve it with respect to the slab Hamiltonian in
which two of the axes are truncated. In the tight-binding representation, it is given by,

H =
∑
i,j

H0C
†
i,jCi,j +

(
tyC

†
i,jCi+1,j + tzC

†
i,jCi,j+1 +H.C

)
(S65)

where, H0 is given by,

H0 =
∑
j

(
cos kj −M −

A2

2

)
τzσ0 + λ sin kyτxσy + τ0 (n.σ) + τz (B.σ) + iδτxσ0. (S66)

The hoppings takes the following form,

ty =
1

2
(τzσ0 − iλτxσx) , (S67)

t†y =
1

2
(τzσ0 + iλτxσx) , (S68)

tz =
1

2
(τzσ0 − iλτxσz) , (S69)

and

t†z =
1

2
(τzσ0 + iλτxσz) . (S70)

We have mentioned wave-dynamics evolution for critical angles in the main text. In this section, we demonstrate
the wave-dynamics evolution of the wave function for the static case in the presence of an external magnetic field.

The wave-packet initially localized in one of the corners of the 2D sheet permeates into the bulk to travel to the
opposite corner and returns to the same corner when the system evolved with respect to time. This evolution of an
arbitrary Gaussian wave-packet account for the mimic phenomena of NHSSE exhibited by the model in the static
phase with an external magnetic field where part of the wave-function probabilities are always quenched dynamically
along the corners (see Fig.S3(a)-(h)). Thus, although the time evolution makes the wave-function to get absorbed
into the bulk, it immediately escapes the bulk by penetrating to the other corner since the duration for which the it
remains in the bulk is negligible compared to the duration for which it remains in the corners.
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UNCONVENTIONAL 3DNHTI

We define an unconventional 3DNHTI as a cubic lattice of 3DNHTI (mentioned in the main text) with intrinsic
spin orbit coupling (SOC) preserving the spin alignment controlled by the parameter ∆. The rest of the terms has
usual meaning as discussed for the previous model. The tight binding Hamiltonian is given by,

H(k) =
∑
j

(cos kj −M)τzσ0 + λ
∑
j

sin kjτxσj + ∆
∑
j

sin kjτyσ0 + iδτxσj . (S71)

The model exhibits similar complex eigenspectrum as that of 3DNHTI. For |M − 3| ≤ δ and |M − 3| ≥ δ, it
showcases a central point gap and a central line gap respectively (refer Fig. S4(a)-(b)).It is, however, a band strained
version of 3DNHTI near the BZ which accounts for the flatness of the bands at BZ boundary. However, the phase
diagram of this unconventional 3DNHTI remains same as the 3DNHTI discussed above.

FIG. S4: (a) and (b) depicts the central point gap and line gap for M = 3,λ = 1,δ = 1,∆ = 1 and M = 2.3,λ = 1,δ = 0.5,∆ = 1
respectively.(c) shows a single sheet structure in the complex eigenspectrum for M = 2.5,λ = 1,δ = 1,∆ = 1,A0 = 1,ω = 5
when the model is truncated along z-direction.

LATTICE REALIZATION OF UNCONVENTIONAL 3DNHTI

We express its tight binding Hamiltonian in the cubic lattice as,

H = −M
∑
r,γ(−1)γC†r,γσ0Cr,γ + [ 1

2

∑
r,γ(−1)γC†r+ex,γσ0Cr,γ +H.C]

+[ λ2i
∑
r,γ

∑
i=x,y,z(−1)γC†r+ei,γ+1σiCr,γ +H.C]

+[∆
2

∑
r,γ C

†
r+ex,γ+1σ0Cr,γ +H.C] + +iδ

∑
r,γ(−1)γC†r,γ+1σ0Cr,γ . (S72)

FLOQUET DRIVING OF UNCONVENTIONAL 3DNHTI

With the vector potential defined in equation S21, minimal coupling yields the time-dependent Hamiltonian,

H(k) =
∑
j(cos kj −M − A2

0

4 (1 + η2))τzσ0 + λ[sin kx −A0(cos θ cosφ cosωt+ η sinφ sinωt)τxσx

+ sin ky −A0(cos θ sinφ cosωt− η cosφ sinωt)τxσy + sin kz −A0(− sin θ cosωt)τxσz]

∆((sin kx −A0(cos θ cosφ cosωt+ η sinφ sinωt)) + (sin ky −A0(cos θ sinφ cosωt− η cosφ sinωt))

+(sin kz −A0(− sin θ cosωt)))τyσ0 + iδτxσ0. (S73)

The various Floquet modes are extracted as,

H0 =
∑
j

(cos kj −M −
A2

0

4
(1 + η2))τzσ0 + λ

∑
j

sin kjτxσj + ∆
∑
j

sin kjτyσ0 + iδτxσ0, (S74)
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H1 = −λA0

2 ([cos θ cosφ+ iη sinφ]τxσx + [cos θ sinφ− iη cosφ]τxσy

+ sin θτxσz)−−∆A0

2 ([cos θ cosφ+ iη sinφ]

+[cos θ sinφ− iη cosφ] + sin θ)τyσ0, (S75)

and

H−1 = −λA0

2 ([cos θ cosφ− iη sinφ]τxσx + [cos θ sinφ+ iη cosφ]τxσy

+ sin θτxσz)−−∆A0

2 ([cos θ cosφ− iη sinφ]

+[cos θ sinφ+ iη cosφ] + sin θ)τyσ0. (S76)

Thus, expanding the time dependent Hamiltonian in the stroboscopic phase yields:

H(k) =
∑
j

(cos kj −M −
A2

2
)τzσ0 + λ

∑
j

sin kjτxσj + ∆
∑
j

sin kjτyσ0 − τ0(n.σ)− τz(n′.σ) + iδτxσ0 , (S77)

where, n is the photodressed vector obtained above and n′ vector is given by,

n′ = (cos θ − sin θ sinφ, cos θ − sin θ cosφ, sin θ(cosφ− sinφ)) . (S78)

FIG. S5: (a) denotes an Abs(E) contour plot for M = 2.5,λ = 1,δ = 1,∆ = 1,A0 = 1,ω = 5,θ = tan−1
√

2 and φ = π
4

.(b) and
(c) show the sliding of two of the sheets M = 2.5,λ = 1,δ = 1,A0 = 1,ω = 5,θ = π

2
and φ = π

4
by changing ∆ as -0.6 and -0.9

respectively.

Thus, the Floquet driving generates two kinds of photo-dressed vectors that behave like the magnetic field. For
the critical angle, the vectors become isotropic and exhibit a single sheet hosting two Fermi point(unlike the single
sheet of FETI hosting a single Fermi point) and establish homotopy with the BZ (see Fig. S4(c) and S5(a)), but for
the choice of the suitable angle of polarization, the single sheet evolves into a double sheet by sliding over each other
hosting a non-degenerate edge state at each of the surfaces (see Fig. S5(b)-(c)). Therefore, the angle of polarization
helps one to switch between both cases of the band spectrum on the surface. Hence ∆ modulates the photo-dressed
Landé-g-factor, in the sense, deciding the alignment of s and p orbital along the photo-dressed magnetic field even
when the system does not experience any external magnetic field. The interaction which gives rise to additional
spin-orbit coupling in the static phase and transforms a conventional 3DNHTI into an unconventional 3DNHTI also
gives rise to the photo-dressed lande-g-factor for the dynamic case.
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LATTICE REALIZATION OF FLOQUET UNCONVENTIONAL 3DNHTI

The FETI can be realized in the cubic lattice as,

H = −(M +
A2

0

2 )
∑
r,γ(−1)γC†r,γσ0Cr,γ + [ 1

2

∑
r,γ(−1)γC†r+ex,γσ0Cr,γ +H.C]

+[ λ2i
∑
r,γ

∑
i=x,y,z(−1)γC†r+ei,γ+1σiCr,γ +H.C]

+[∆
2

∑
r,γ C

†
r+ex,γ+1σ0Cr,γ +H.C] +

∑
r,γ niC

†
r,γσiCr,γ

+
∑
r,γ(−1)γn

′

iC
†
r,γσiCr,γ + iδ

∑
r,γ C

†
r,γ+1σ0Cr,γ . (S79)

SLAB HAMILTONIAN AND WAVE DYNAMICS EVOLUTION

As mentioned in Eq. 26, we determine the slab Hamiltonian and calculate the onsite and hopping part of the
Hamiltonian. These are given by,

H0 =
∑
j

(
cos kj −M −

A2

2

)
τzσ0 + λ sin kyτxσy + τ0 (n.σ) + τz

(
n
′
.σ
)

+ iδτxσ0, (S80)

ty =
1

2
(τzσ0 − iλτxσy − i∆τyσ0) , (S81)

t†y =
1

2
(τzσ0 + iλτxσy + i∆τyσ0) , (S82)

tz =
1

2
(τzσ0 − iλτxσz − i∆τyσ0) , (S83)

and

t†z =
1

2
(τzσ0 + iλτxσz + i∆τyσ0) (S84)

respectively. For case (1), the surface states are localized in one of the edges and it has a significant amount of
overlap integral with the bulk (refer Fig. S6(a)-(h)). So, the wavefunction initially localized in the middle of the
Z-axis also has a significant amount of non-vanishing amplitude in the bulk which makes the localized wavefunction
penetrate into the bulk and allow a part of it to travel along the edges. The wavepacket stays on the edge for the
longer time where the surface states are caged.

For the second case, the wavefunction initially localized in one of the corners travels to the other corners and gets
localized with a quasi-static phase in the dynamic evolution (see Fig. S7(a)-(h)). The localization of the wavefunction
increases at the corner where the majority of them are trapped. So, the wave dynamic evolution of the localized
Gaussian wavefunction is guided by the NHSSE entrailed within the Hamiltonian which can be modulated by varying
the angle of polarization of the CPL.
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FIG. S6: (a)-(h) corresponds to the dynamic evolution of the probabilities of the trial wavefunction initially localized at the
middle of one of the edges for M = 2.5,δ = 1,λ = 1,∆ = 1 = 0.2,A0 = 1,ω = 5,θ = tan−1

√
2 and φ = π

4
from time t = 0 to

t = 70 in the interval of 10.|ζ0〉 = [1, i, i, 0] and the value of α and β remains same as in the main text.

FIG. S7: (a)-(h) corresponds to the dynamic evolution of the probabilities of the trial wavefunction initially localized at one
of the corners for M = 2.5,δ = 1,λ = 1,∆ = 1 = 0.2,A0 = 1,ω = 5,θ = tan−1

√
2 and φ = π

4
from time t = 0 to t = 70 in the

interval of 10.|ζ0〉 = [1, i, i, 0] and the value of α and β remains same as in the main text.
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