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Abstract. This note aims to clarify the deep relationship between
birational modifications of a variety and semiorthogonal decompositions
of its derived category of coherent sheaves. The result is a conjecture on
the existence and properties of canonical semiorthogonal decompositions,
which is a noncommutative analog of the minimal model program. We
identify a mechanism for constructing semiorthogonal decompositions
using Bridgeland stability conditions, and we propose that through this
mechanism the quantum differential equation of the variety controls
the conjectured semiorthogonal decompositions. We establish several
implications of the conjectures: one direction of Dubrovin’s conjecture on
the existence of full exceptional collections; the D-equivalence conjecture;
the existence of new categorical birational invariants for varieties of
positive genus; and the existence of minimal noncommutative resolutions
of singular varieties. Finally, we verify the conjectures for smooth
projective curves by establishing a previously conjectured description of
the stability manifold of P1.
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The derived category of coherent sheaves Db(X) of a smooth projective
variety X often reveals hidden structure in the geometry of X. We recall
two examples of this phenomenon:

In their seminal preprint [BO], Bondal and Orlov first glimpsed a deep
relationship between birational modifications of varieties and the structure of
their derived categories. A birational transformation X 99K X ′ that preserves
the canonical bundle is expected to induce an equivalence of derived categories
Db(X) ∼= Db(X ′), which is now known as the D-equivalence conjecture [K1].
More generally, for a KX -negative birational contraction π : X 99K X ′,
meaning there is a smooth projective W with birational morphisms f : W →
X and g : W → X ′ resolving π such that g∗(KX′) − f∗(KX) is effective,
then Db(X ′) is expected to be a factor in a semiorthogonal decomposition of
Db(X).

In a different context, Beilinson observed in [B1] that Pn admits a
full exceptional collection, which is the extreme form of a semiorthogonal
decomposition in which all of the factors are equivalent to Db(pt). Many other
examples of Fano manifolds admit large semiorthogonal decompositions of
Db(X) that do not directly come from birational geometry, such as Lefschetz
decompositions [K1]. Motivated by mirror symmetry, Dubrovin conjectured
in [D2, Conj. 4.2.2] that a Fano manifold admits a full exceptional collection
if and only if the quantum cohomology of X is generically semisimple.

In this note, we attempt to clarify these phenomena, and to propose a
mechanism for obtaining canonical semiorthogonal decompositions of derived
categories. We formulate a conjecture, the noncommutative minimal model
program (MMP), that implies the D-equivalence conjecture (see Corollary 17)
as well as a version of Dubrovin’s conjecture (see Proposition 22). Although
the conjectures are inspired by homological mirror symmetry, our mechanism
is independent of mirror symmetry and, we believe, well-motivated by the
classical MMP.

The space of Bridgeland stability conditions on Db(X), which we refer
to as Stab(X), plays a central role. We will shortly observe in Lemma 1
that an unbounded path in Stab(X) satisfying certain conditions naturally
determines a semiorthogonal decomposition of Db(X). The noncommutative
MMP, Conjecture II, proposes the existence of certain canonical paths of this
kind, and hence canonical semiorthogonal decompositions of Db(X), with
nice formal properties. These formal properties alone are enough to imply
the D-equivalence conjecture, and more generally the existence of canonical
admissible subcategories MX ⊂ Db(X) that are preserved under birational
modifications of X (see Proposition 16).

Then in Proposal III, we give a more precise proposal for the canonical
paths in Stab(X). Specifically, one can view solutions of the quantum
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differential equation as defining paths in the dual of the algebraic cohomology
H∗

alg(X) ⊂ Heven(X;C), and we propose that these paths should be the
central charges for the canonical paths in Stab(X). To avoid convergence
issues, and motivated by the classical MMP, we will truncate the quantum
differential equation by only counting sufficiently KX -negative curves.

For the purposes of illustration, in Section 3 we describe these canonical
paths on Stab(X) when X is a smooth projective curve. In order to do this,
we establish the description of Stab(P1) predicted by homological mirror
symmetry in Proposition 25, which to our knowledge has not been explicitly
proved before.

We fix a base field k ⊂ C, and use the term “variety” to refer to a reduced
and geometrically irreducible finite type k-scheme.

The Key Lemma. Let C be a pre-triangulated dg-category, fix a “Chern
character" homomorphism v : K0(C) → Λ to a finite rank free abelian group
Λ, and fix a reference norm on Λ. Recall that a Bridgeland stability condition
on (C,Λ) consists of [B3]:

i) A collection of full subcategories P = {Pϕ ⊂ C}ϕ∈R, known as the
categories of semistable objects of phase ϕ, such that Pϕ[1] = Pϕ+1,
Hom(Pϕ,Pφ) = 0 if ϕ > φ, and every object E ∈ C admits a finite
R-weighted descending filtration such that grϕ(E) ∈ Pϕ; and

ii) A central charge homomorphism Z : Λ → C, which we regard as a
function on K0(C) via v, such that Z(Pϕ \ 0) ⊂ R>0 · eiπϕ and

inf
ϕ∈R

E∈Pϕ\0

|Z(E)|
∥v(E)∥ > 0.

The set of stability conditions Stab(C) admits a metric topology such that
the forgetful map Stab(C) → Λ∗

C = Hom(Λ,C) that takes (Z,P•) 7→ Z is a
local homeomorphism [B3, Thm. 1.2].

On the other hand, a semiorthogonal decomposition C = ⟨C1, . . . , Cn⟩
consists of a collection of full subcategories C1, . . . , Cn ⊂ C such that Ci[1] = Ci,
Hom(Ci, Cj) = 0 for i > j, and every E ∈ C admits a descending filtration
indexed by i = 1, . . . , n such that gri(E) ∈ Ci. Despite the formal similarities
in these notions, the difference in how Pϕ and Ci behave under homological
shift causes these structures to behave very differently.

Now consider a continuous path σt = (Zt,Pt
•) ∈ Stab(C) for t ∈ [t0,∞)

that satisfies:
(1) For any E ∈ C the σt Harder-Narasimhan (HN) filtration of E

stabilizes for t ≫ 0. We call this the eventual HN filtration, and we
call an object eventually semistable if its eventual HN filtration has
length 1.
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(2) For any eventually semistable object E there are αE , βE ∈ C such
that

logZt(E) = αEt+ βE + o(1) as t → ∞,

where the real part ℜ(βE) > C + ln∥v(E)∥ for some constant C
independent of E, and

(3) If the imaginary part ℑ(αE − αF ) = 0, then αE = αF .

This is a special case of the more general concept of a quasi-convergent path
developed with Alekos Robotis and Jeffrey Jiang in [HLJR]. For the purpose
completeness here, we will explain the key property of such a path:

Lemma 1. A path σt satisfying conditions (1),(2), and (3) above determines:
• A finite set of complex constants such that αE ∈ {α1, . . . , αn} for any

eventually semistable E, indexed so that ℑ(αi) is increasing in i;

• A semiorthogonal decomposition C = ⟨C1, . . . , Cn⟩, where Ci is the
subcategory of objects whose eventual HN subquotients all have αE =
αi;

• A direct sum decomposition Image(v) =
⊕

i Λi, where Λi = v(Ci); and

• A stability condition on each Ci (with respect to v : K0(Ci) →
Λi) whose semistable objects are precisely the eventually semistable
objects E with αE = αi, and whose central charge is Zi(E) =
limt→∞ e−αitZt(E).

We sketch the proof, leaving some of the details to [HLJR].

Proof idea. We begin by showing that the categories Cβ generated by eventually
semistable E with αE = β define a semiorthogonal decomposition indexed
by the set {αE |E eventually semistable} ⊂ C, ordered by imaginary part.
The condition Hom(Cβ, Cγ) = 0 for ℑ(β) > ℑ(γ) holds because for eventually
semistable objects E,F with ℑ(αE) > ℑ(αF ), for t large enough both E and
F are σt-semistable with E having a larger phase. The condition Ci[1] = Ci
follows from the fact that Harder-Narasimhan filtrations are preserved by
homological shift. Finally, consider an object E ∈ C, and let gri(E) denote
the ith associated graded object for the eventual HN filtration of E with
respect to σt. Because the phase of gri(E) is increasing in i, we must have
ℑ(αgr1(E)) ≤ · · · ≤ ℑ(αgrm(E)). We then coarsen this filtration by grouping
all associated graded pieces that have the same value of ℑ(αgri(E)) to obtain
a descending filtration of E with gri(E) ∈ Ci.

The fact that the images v(Ci) are linearly independent, and thus only
finitely many values of αE can appear, follows from the observation that
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condition (2) implies that for any collection of Ei ∈ Ci with Zt(Ei) ̸= 0 for all
i and t ≫ 0, the functions Zt(Ei) ∈ C0([t0,∞)) are linearly independent. □

By Bridgeland’s theorem, a path in Stab(C) is uniquely determined by
its starting point (Z0,P0

• ) ∈ Stab(C) and a path Zt in Hom(Λ,C) extending
Z0. So, the remarkable thing about Lemma 1 is that it suggests that once
you fix a reference stability condition on C, one can study semiorthogonal
decompositions of C simply by studying interesting paths in the complex
vector space Hom(Λ,C).

Noncommutative birational geometry. [HLJR] establishes a partial
converse to Lemma 1: If C is smooth and proper [KS, §8], then any
semiorthogonal decomposition C = ⟨C1, . . . , Cn⟩ such that the Ci all admit
Bridgeland stability conditions arises from a suitable quasi-convergent path
in Stab(C)/Ga via Lemma 1. So, perhaps it is reasonable to restrict our
focus to these semiorthogonal decompositions.

On a more philosophical note, Kähler structures, in the form of ample
divisor classes, are essential to making sense of birational geometry in the
minimal model program. For a smooth projective variety X, the categorical
analogue of a Kähler structure on X is a Bridgeland stability condition on
Db(X). (See [B4, §7.1].) We argue that stability conditions are as essential
to studying semiorthogonal decompositions of Db(X) as Kähler classes are
to studying birational geometry. This suggests the following:

Principle. Noncommutative birational geometry is the study of semi-
orthogonal decompositions of smooth and proper pre-triangulated dg-categories
in which every factor admits a stability condition.

We hope this principle helps to explain some recent failures of folk
expectations in the field, such as the failure of the Jordan-Hölder property
[BGvBS]. Perhaps restricting to semiorthogonal decompositions of C that
are polarizable, in the sense that every factor admits a stability condition,
may rehabilitate some of these predictions.

Example 2. The paper [BGvBKS] constructs surfaces X with a semi-
orthogonal decomposition Db(X) = ⟨L1, . . . , L11, C⟩, where Li are exceptional
line bundles and C is a phantom, meaning K0(C) and HH∗(C) vanish. A
non-zero phantom does not admit a Bridgeland stability condition, so this
semiorthogonal decomposition could not arise from Lemma 1. More is true,
though: We will see in Lemma 23 that if a semiorthogonal decomposition
appears to come from a full exceptional collection on the level of K-theory,
and every factor admits a stability condition, then it does come from a full
exceptional collection. So if one lets C′ be the subcategory generated by C and
L11, then Db(X) = ⟨L1, . . . , L10, C′⟩ can not arise from a quasi-convergent
path in Stab(X)/Ga.

Weaker conditions on paths. The notion of a quasi-convergent path in
[HLJR] is much more general than the one in Lemma 1. For one thing, the
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proof of Lemma 1 holds verbatim for a more general asymptotic estimate,
such as

logZt(E) =

:=αE(t)︷ ︸︸ ︷
αpt+ αp−1t

(p−1)/p + · · · + α1t
1/p + α−1 ln(t) +βE + o(1).

The paths we study in Proposal III below have this form. In addition, the
genericity condition (3) in Lemma 1 can be removed entirely. For such a path
one obtains a slightly weaker structure on C: still only finitely many functions
appear as αE(t) for some eventually semistable E, but now Ci consists of
objects whose eventual HN subquotients have ℑ(αE(t)) = fi(t) for some set
of real functions f1(t), . . . , fn(t). Then, each Ci admits a filtration by thick
triangulated subcategories, generated by eventually semistable objects with
ℜ(αE(t)) ≤ g(t) as t → ∞ for certain functions g(t), and the associated
subquotient categories canonically admit stability conditions. We refer to
[HLJR] for more details.1

The notion of quasi-convergence is generalized even further in [HLR]. First,
observe that it is natural to work with the quotient manifold Stab(C)/Ga

rather than Stab(C). Indeed, the conclusion of Lemma 1 only depends on
the image of the path σt in Stab(C)/Ga, and the stability conditions on the
factors in Lemma 1 are only naturally defined up to the action of Ga on
Stab(Ci). In [HLR] we construct a partial compactification Stab(C)/Ga ⊂
AStab(C) whose points correspond to augmented stability conditions. An
augmented stability condition consists of stability conditions on a collection
of subquotient categories of C, where the subquotient categories are part of a
structure that we call a multi-scale decomposition of C, a generalization of a
semiorthogonal decomposition. Under mild hypotheses, any quasi-convergent
path converges to an augmented stability condition.

As a result, the most flexible (and most plausible) versions of our main
conjectures, Conjecture II and Proposal III, should refer to paths in Stab(C)/Ga

that converge to an augmented stability condition, rather than quasi-converget
paths. For the sake of completeness, because [HLR] is still in preparation,
we will instead refer only to quasi-convergent paths in Stab(C)/Ga in this
paper.

Related work and author’s note. As we will discuss in Section 2.4, the
formulation of Proposal III is closely related to and inspired by the Gamma II
conjecture of [GGI], which predicts the existence of full exceptional collections
whose Chern characters give solutions of the quantum differential equation
with special asymptotic properties. The paper [SS] generalizes Dubrovin’s
conjecture and the Gamma conjectures to predict the existence of canonical
semiorthogonal decompositions for Db(X) for any Fano manifold X, whose
factors again correspond to solutions of the quantum differential equation with
prescribed asymptotic properties. Maxim Kontsevich has also given several

1The condition (1) on stabilization of HN filtrations is also significantly relaxed in
[HLJR], but this is not essential to our discussion here.
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talks [K3] in which he conjectures the existence of canonical semiorthogonal
decompositions of Db(X), whose factors correspond to the eigenspaces of
quantum multiplication by c1(X), and speculates about the implications.

The main contributions of this paper are: 1) to suggest an underlying
mechanism for the conjectures above; 2) to extend the conjectures to non-
Fano X in a way that avoids convergence issues for the quantum differential
equation; and 3) to propose a specific conjecture on the compatibility of
these semiorthogonal decompositions with birational morphisms and to prove
some interesting implications.

I thank Jeffrey Jiang and Alekos Robotis for many enlightening discussions
about Bridgeland stability conditions. In addition, I thank Tom Bridgeland,
Davesh Maulik, Tudor Pădurariu, Daniel Pomerleano, Claude Sabbah, and
Nicolas Templier for helpful suggestions on this project.

1. The NMMP conjectures

We will formulate a noncommutative minimal model program (NMMP)
associated to a contraction of a smooth projective variety X, meaning a
surjective morphism to a projective variety X → Y with connected fibers. (Y
is not necessarily smooth, but it must be normal by the uniqueness of Stein
factorization.) The NMMP predicts canonical semiorthogonal decompositions
of Db(X). The first piece of our program is the following difficult folk
conjecture:

Conjecture I. Db(X) admits stability conditions for any smooth projective
variety X.

We define the lattice ΛX = H∗
alg(X) as the image of the twisted Chern

character homomorphism v := (2πi)deg /2 ch : K0(X) → H∗(X;C). We only
consider stability conditions on Db(X) defined with respect to v.2 To simplify
notation, we let Stab(X) := Stab(Db(X)) for a scheme X.

In our first and most flexible formulation of the conjectures, we will use
ψ to denote a generic, unspecified, parameter. Below we will specify more
precisely what ψ might be. We formulate the conjectures relative to a fixed
normal variety Y that need not be smooth. (The most interesting case might
be Y = pt.)

Conjecture II. Let π : X → Y be a contraction of a smooth projective
variety X.

(A) One can associate to π a canonical class of quasi-convergent paths
{σπ,ψt } in Stab(X)/Ga. Generic values of the parameter ψ give rise

2In general if v : K0(C) → Λ has image Λ′ ̸= Λ, then after choosing a splitting
ΛC ∼= Λ′

C ⊕ W one can identify StabΛ(C) ∼= StabΛ′ (C) × W ∗. Also the quantum differential
equation preserves H∗

alg(X). So, our entire discussion would work just as well using⊕ (2πi)n

n! H2n(X;Z)/{torsion} instead of H∗
alg(X), but it is a bit simpler to assume that v

is surjective.
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to a semiorthogonal decomposition of Db(X), e.g., via Lemma 1, and
different generic values of ψ give mutation-equivalent semiorthogonal
decompositions.3

(B) For a generic value of ψ, the semiorthogonal factors of Db(X) are
closed under tensor product with complexes of the form π∗(E) for
E ∈ Perf(Y ).

(C) Given a further contraction Y → Y ′, for some values of the parameters,
the semiorthogonal decomposition of Db(X) associated to the composition
X → Y ′ refines the semiorthogonal decomposition associated to
X → Y .

To formulate the final conjecture, we recall that if π : X → X ′ is a morphism
of smooth varieties and Rπ∗(OX) = OX′, then π∗ is fully faithful and we
have a semiorthogonal decomposition

Db(X) = ⟨ker(π∗), π∗(Db(X ′))⟩. (1)

We again consider a composition of contractions X → X ′ → Y .
(D) If X ′ is smooth and Rπ∗(OX) = OX′, then for some values of the

parameters, the semiorthogonal decomposition of Db(X) associated
to X → Y refines the semiorthogonal decomposition obtained by
combining the semiorthogonal decomposition of π∗(Db(X ′)) ∼= Db(X ′)
associated to X ′ → Y with (1).

We expect several of the most basic examples of semiorthogonal decompositions
in geometry to arise in this way. The following examples may be regarded as
extensions of Conjecture II.

Example 3. In the special case where X is the blowup of Y along a
smooth subvariety S ↪→ Y of codimension n + 1, we expect the canonical
semiorthogonal decomposition associated to X → Y to agree with the
semiorthogonal decomposition from [BO, Prop. 3.4]

Db(X) = ⟨Db(S)(−n), . . . ,Db(S)(−1), π∗(Db(Y ))⟩.

Example 4. If X = P(E) for some locally free sheaf E on Y of rank n and
π : X → Y is the projection, then we expect that for a suitable choice of
parameter the semiorthogonal decomposition in (A) is

Db(X) =
〈
π∗(Db(Y )), π∗(Db(Y )) ⊗ O(1), . . . , π∗(Db(Y )) ⊗ O(n)

〉
.

3Because X is smooth and proper, any semiorthogonal decomposition of Db(X) is
admissible, meaning arbitrary mutations exist. See [BK].
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1.1. The truncated quantum differential equation. We now formulate a
more precise proposal for the canonical quasi-convergent paths in Stab(Db(X))
conjectured in (A).

The small quantum product ⋆τ onH∗
alg(X), parameterized by τ ∈ H2(X;C),

is defined by the formula
(α1 ⋆τ α2, α3)X =

∑
d∈NE(X)Z

⟨α1, α2, α3⟩X0,3,deτ ·d, (2)

where α1, α2, α3 ∈ H∗
alg(X;C), (−,−)X denotes the Poincaré pairing on

H∗
alg(X), NE(X)Z denotes the numerical equivalence classes of 1-cycles with

nonnegative integer coefficients, and ⟨α1, α2, α3⟩X0,3,d denotes the Gromov-
Witten invariant that counts curves of class d on X. Let us consider a
function of a single complex parameter ζ = ζ(u) ∈ H∗

alg(X;C). The quantum
differential equation is

0 = u
dζ

du
+ c1(X) ⋆ln(u)c1(X) ζ.

In general, if neither c1(X) := −c1(KX) or −c1(X) is ample, then the sum
in (2) is infinite and thus this is only a formal differential equation in u. We
propose to modify this differential equation by replacing c1(X) ⋆ln(u)c1(X) (−)
by an operator Eψ(u) whose definition involves only finite sums.

Definition 5. For d ∈ NE(X)Z with c1(X) ·d ≥ 0, let Td ∈ End(H∗
alg(X;Q))

be defined by the identity (Tdα1, α2)X = ⟨α1, α2⟩X0,2,d for all α1, α2 ∈
H∗

alg(X;Q).

When α1 has degree 2, the divisor equation ⟨α1, α2, α3⟩X0,3,d = (α1 ·
d)⟨α2, α3⟩X0,2,d allows one to express

α1 ⋆τ (−) = α1 ∪ (−) +
∑

d∈NE(X)Z\{0}
(α1 · d)eτ ·dTd.

We let NE(X/Y )Z denote the numerical equivalence classes of effective
integral 1-cycles spanned by curves that are contracted by π, and note the
natural injective map NE(X/Y )Z → NE(X)Z. We make the following key
observation:

Lemma 6. If ω ∈ H2(X;R) is the Chern class of a relatively ample R-divisor
for a contraction π : X → Y , then Td is homogeneous of degree 2(1−c1(X)·d)
with respect to the cohomological grading. As a result, there are only finitely
many classes d ∈ NE(X/Y )Z such that: 1) d · (c1(X) − ω) > 0; and 2)
Td ̸= 0.

Proof. First let H be an ample Cartier divisor on Y that is large enough
such that ω+π∗(H) is ample on X. Because the moduli space M0,2,d(X) has
virtual dimension c1(X)·d+dim(X)−1, one has (Tdα1, α2)X = ⟨α1, α2⟩X0,2,d =
0 whenever 1

2(deg(α1)+deg(α2)) ̸= c1(X) ·d+dim(X)−1. This implies that
deg(Tdα) − deg(α) = 2(1 − c1(X) · d), so Td = 0 for degree reasons unless
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c1(X) · d− 1 ∈ [− dim(X), dim(X)]. Combining this with the constraint (1)
gives

(ω + π∗(H)) · d = ω · d < c1(X) · d ≤ dim(X) + 1 (3)
There are finitely many numerical equivalence classes of cycles satisfying this
bound, by [KM, Cor.1.19]. □

Definition 7. Let ψ := ω + iB ∈ NS(X)C/2πiNS(X) be a class whose real
part ω is the Chern class of a relatively ample R-divisor for the contraction
π : X → Y . We define the truncated quantum endomorphism Eψ(u) :
H∗

alg(X;C) → H∗
alg(X;C) by the formula

Eψ(u) = c1(X) ∪ (−) +
∑

d∈NE(X/Y )Z s.t.
(c1(X)−ω)·d>0

(c1(X) · d)uc1(X)·de−ψ·dTd.

The restriction d · (c1(X) − ω) > 0, is motivated by the Cone Theorem,
which states that the (c1(X) − ω)-positive piece of the cone of curves is
polyhedral, and its rays are generated by rational curves with c1(X) · d ∈
(0,dim(X) + 1]. This is precisely the bound in (3), outside of which Td = 0
for degree reasons.

Without this restriction, and when Y = pt, the sum defining Eψ(u) would
agree with the definition of c1(X)⋆−ψ+ln(u)c1(X) (−). Eψ(u) keeps terms that
dominate the sum as |u| → ∞. We therefore regard Eψ(u) as a polynomial
approximation

Eψ(u) ≈ c1(X) ⋆rel
−ψ+ln(u)c1(X) (−) (4)

that is valid when ω is close to 0 and |u| ≫ 0, and where ⋆rel denotes a
relative quantum product for the morphism X → Y that only counts classes
of contracted curves. In fact, if c1(X) is relatively ample for the contraction
π : X → Y , such as when Y = pt and X is Fano, and ω is small enough that
c1(X) − ω is still relatively ample, then (4) becomes an equality.

Now, a path in Stab(X) is uniquely determined by a starting point (Z1,P1)
and a path Z• : [1,∞) → Hom(ΛX ,C) starting at Z1. We will construct paths
in Hom(Λ,C) by studying solutions of the truncated quantum differential
equation:

0 = t
dζ(t)
dt

+ 1
z
Eψ(t)ζ(t), (5)

where z ∈ C is a parameter, ψ the parameter in Definition 7, and ζ(t) ∈
H∗

alg(X)C. Note that this agrees with the usual quantum differential equation
when X is Fano, Y = pt, and ω is sufficiently small.

Following [GGI], we will analyze the differential equation (5) by making
the change of variables ζ̃(t) := tµζ(t), where µ := (deg − dim(X))/2 is the
grading operator on H∗

alg(X). Lemma 6 implies that tEψ(1)tµ = tµEψ(t), so
(5) becomes

dζ̃

dt
+ 1
z
Eψ(1)ζ̃ − 1

t
µζ̃ = 0, (6)
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which is much simpler because it has only three terms, with a regular
singularity at t = 0 and a pole of order ≤ 2 at t = ∞.

The Hukuhara-Turritin theorem [W, Thm. 19.1] says that a differential
equation of the form (6) has a fundamental solution of the form

Φt = A(t1/p)eD(t1/p)+ln(t)C , (7)
where D(s) is a diagonal matrix with polynomial entries, C is a constant
matrix that commutes withD(s) for all s, and A(s) is a holomorphic invertible
matrix-valued function that converges as s → ∞. In the special case of (6),
we can be more precise.

Proposition 8. The differential equation (6) has a holomorphic fundamental
solution of the form Φt = Y (t)etD+B(t) for |t| > t0 in some sector S ⊂ C
centered at the origin and containing R>0, where

(1) Y (t) is an invertible matrix that admits a uniform asymptotic expansion
Y (t) ∼ Y0 +Y1t

−1/p+Y2t
−2/p+ · · · on S, for some p ∈ Z>0, such that

the columns of Y0 are a basis of generalized eigenvectors of −1
z Eψ(1),

(2) D is the diagonal matrix of eigenvalues of −1
z Eψ(1) corresponding to

the columns of Y0, and

(3) B(t) = Dp−1t
(p−1)/p + · · · + D2t

2/p + D1t
1/p + C ln(t) for certain

constant diagonal matrices D1, . . . , Dp−1 and a constant matrix C,
all of which commute with D. In particular, ∥B(t)∥ = O(t(p−1)/p).

Furthermore, if Eψ(1) is semisimple, then one can arrange that Dp−1 =
Dp−2 = · · · = D1 = 0, and if the eigenvalues of Eψ(1) are distinct, then one
can arrange B(t) = 0.

We will apply Proposition 8 here, and postpone its proof to the end of
this subsection. It implies that for any solution ζ(t) of (5), we have

lim sup
t→∞

ln∥ζ(t)∥
t

= r,

where r is the real part of an eigenvalue of −1
z Eψ(1).Using this, we can state

a more precise elaboration on what the canonical quasi-convergent paths in
Conjecture II(A) should look like:

Proposal III. There are quasi-convergent paths in Stab(X)/Ga whose
central charges have the form Zt(α) =

∫
X Φt(α), where Φt ∈ End(H∗

alg(X)C)
is a fundamental solution of the truncated quantum differential equation (5)
with parameters z ∈ C and ψ = ω + iB ∈ NS(X)C, where ω is small and
relatively ample for X → Y .

Furthermore, the following spanning condition holds: for any r ∈ R that
is the real part of an eigenvalue of −1

z Eψ(1), the subspace
F rΛC := {α ∈ ΛC s.t. ln∥Φt(α)∥ ≤ rt+ o(t) as t → ∞}
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should be spanned over C by the classes of eventually semistable E ∈ Db(X)
with lim inft→∞ |Zt(E)|/∥Φt(E)∥ > 0.

The proposal is inspired by Iritani’s quantum cohomology central charge
[I], which has previously been conjectured to be the central charge of a
family of stability conditions on Db(X) [D1]. The main innovations here: 1)
the modification of the quantum differential equation to reflect the relative
geometry of X → Y and to only count sufficiently KX -negative curves, 2) the
assertion that the resulting paths in Stab(X)/Ga are quasi-convergent, and
3) the spanning condition, which is analogous to the Gamma II conjecture
[GGI, Conj. 4.6.1].

We will see in Proposition 22 that the spanning condition is crucial, because
it guarantees that when the eigenvalues of −1

z Eψ(1) have distinct real parts,
the semiorthogonal factors coming from the canonical quasi-convergent paths
are in bijection with the eigenvalues of −1

z Eψ(1). These eigenvalues are
precisely the αj that arise in the key lemma, Lemma 1.

Without the spanning condition, the proposal is nearly a tautology. Indeed,
the central charge Zt in Proposal III always converges in the projective space
P(Λ∗

C) as t → ∞ to a point Z∞. If Z∞ lifts to a point in Stab(X)/Ga, then
for sufficiently large t the central charges Zt will also lift to Stab(X)/Ga,
and the resulting path is quasi-convergent in the tautological sense that it
converges in Stab(X)/Ga.

Remark 9. Because
∫
X t

µ(−) = tdim(X)/2 ∫
X(−), and the path in Stab(X)/Ga

only depends on the central charge Zt up to scale, Proposal III is unchanged
if we assert instead that Φt is a solution of (6) rather than (5). We have
used (5) to be compatible with [I].

Remark 10 (The meaning of small ample classes). If ω ∈ NS(X)R is
relatively ample for X → Y , then for r ≫ 0, there will be no classes in
d ∈ NE(X/Y )Z such that (c1(X) − rω) · d > 0. So if ω were large, one
would have Eψ(1) = c1(X) ∪ (−), and Proposal III could not produce an
interesting semiorthogonal decomposition. On the other hand, as r → 0+,
the condition (c1(X) − rω) · d > 0 will include more and more terms in
Eψ(1). The intuition behind requiring ω to be “small” in Proposal III is that
as r → 0+, the resulting semiorthogonal decomposition of Db(X) should
stabilize. Then Conjecture II(A) predicts that in this stable range, the
semiorthogonal decomposition is independent of ω up to mutation.

Remark 11 (Refined proposal). The spanning condition in Proposal III only
addresses the leading order asymptotics of solutions. A more precise spanning
condition is that one can arrange in Proposition 8 that for each function
φ(t) appearing as a diagonal entry of tD + t(p−1)/pDp−1 + · · · + t1/pD1, the
solution space with exponential factor eφ(t) is spanned by Φt(v(E)) for some
collection of eventually semistable E. In this case the quasi-convergent path
in Stab(X)/Ga would lead to a semiorthogonal decomposition indexed by the
φ(t) that appear, and Proposal III would only see the coarser decomposition
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that merges categories corresponding to φ with the same leading coefficient.
We have not emphasized this for the following reason: In situations where (6)
agrees with the quantum differential equation, such as when X is Fano, it is
conjectured in [KKP, Conj. 3.4] that the connection ∇∂t = d+(1

zEψ(1)−1
tµ)dt

on H∗(X;C)[t±1] is of non-ramified exponential type. In that case, one can
take B(t) = 0 in Proposition 8, and if z is chosen generically so that the
eigenvalues of 1

zEψ(1) have distinct real parts, this refined formulation agrees
with that in Proposal III.

Remark 12 (Canonical fundamental solution). We have left some flexibility
as to which fundamental solution Φt to use in Proposal III. In [GGI,
Prop. 2.3.1], it is shown that when X is Fano, so that (5) agrees with
the quantum differential equation, there is a unique fundamental solution
Φt ∈ End(H∗

alg(X)C) of (5) of the form T (t)t−c1(X) such that both T (t)
and S (t) := tµT (t)t−µ are holomorphic in t and regular at t = 0, with
T (0) = S (0) = idΛC . In fact, the proof applies verbatim to the truncated
quantum differential equation (5) in general. The canonical fundamental
solution is defined to be

Φt(α) = T (t)t−c1(X)Γ̂X ∪ α, (8)

where α ∈ H∗
alg(X), Γ̂X =

∏dimX
i=1 Γ(1 + δi), and δi are the Chern roots of the

tangent bundle TX . Iritani’s quantum cohomology central charge [I] is then

Zt(E) ∝
∫
X

T (t)t−c1(X)Γ̂X ∪ v(E). (9)

It is tempting to use the canonical fundamental solution (8) in Proposal III.
However, outside of the Fano situation, more investigation is needed to settle
on a final interpretation of Proposal III:

For varieties such that Db(X) admits no semiorthogonal decompositions,
one natural interpretation is that the quasi-convergent paths in Proposal III
should converge to a point in Stab(X)/Ga itself. We will see in Section 3.2
that for higher genus curves one can arrange this, but the fundamental
solutions needed do not appear to be canonical. A second natural interpretation
is that the paths in Proposal III are quasi-convergent in the more general
sense studied in [HLJR], but the filtration that they induce on Db(X) is
not admissible. This is the behavior one sees for the canonical fundamental
solution in the case of curves of higher genus.

Remark 13. We do not have a specific prediction as to a starting point
for the canonical paths σπ,ψt . In many examples, Stab(X) has a “geometric"
region in which all skyscraper sheaves of points are stable of the same phase.
It would be satisfying if one could start with a stability condition (Z1,P1)
in the geometric region, and show that the path in Hom(ΛX ,C) defined
by (5) lifts to a quasi-convergent path in Stab(X)/Ga. In this sense the
truncated quantum differential equation would “discover" semiorthogonal
decompositions that were not already known.
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Remark 14 (Alternative differential equations). Eψ(1) is meant to approximate
c1(X)⋆−ψ (−) by an a priori convergent expression. However, when c1(X)⋆−ψ
(−) is known to converge for ψ in a neighborhood of ψ0 this approximation is
not necessary. In this case, the equation (6) admits a well-known isomonodromic
deformation where c1(X)⋆−ψ (−) is replaced with the “big” quantum product
E ⋆τ (−) where τ ∈ Heven(X;C) rather than H2 and E is the Euler vector
field (see [GGI, 2.2.3]). There are known examples of varieties with full
exceptional collections for which this full isomonodromic deformation is
needed to get an operator with distinct eigenvalues [GMS]. So the full
deformation is needed for the converse implication of Dubrovin’s conjecture, or
its refinement as the Gamma II conjecture [GGI] to hold. In these situations,
we would expect the semiorthogonal decomposition arising from the full
isomonodromic deformation to refine the semiorthogonal decomposition
arising from Proposal III.

1.1.1. Proof of Proposition 8. The first part of the analysis works for any
vector-valued differential equation of the form X ′(t) = A(t)X(t), where A(t)
is a holomorphic matrix-valued function that admits an asymptotic expansion
A(t) ∼ A0 + A1t

−1 + A2t
−2 + · · · as t → ∞ in some sector S. As in the

proof of the Hukuhara-Turritin theorem, we begin by using [W, §11 and
Thm. 12.2] to construct a holomorphic change of variables X(t) = P (t)Z(t)
such that the equation for X(t) becomes Z ′(t) = Q(t)Z(t), where: i) P (t)
admits an asymptotic expansion P (t) ∼

∑
n≥0 Pnt

−n on S with P0 a matrix
of generalized eigenvectors for A0; ii) there is an asymptotic expansion
Q(t) ∼

∑
n≥0Qnt

−n with A0 = P0Q0P
−1
0 ; and iii) Q(t) = R1(t) ⊕ · · · ⊕Rk(t)

is block diagonal, where the leading term of each Ri(t) as t → ∞ has a single
eigenvalue. Therefore, the entire differential equation for Z splits as a direct
sum of differential equations of the original form in which A0 has a single
eigenvalue, and it suffices to prove the claim in this case.

So let us return to the original notation and assume that A0 has a single
eigenvalue λ. Making the substitution X(t) = eλtZ(t), the equation for X(t)
becomes Z ′(t) = P (t)Z(t), where P (t) := A(t) − λI admits an asymptotic
expansion in t−1 whose leading term is nilpotent. At this point, if A0 = λI,
then the resulting differential equation has a pole of order 1 at ∞, and the
result follows. Otherwise, we apply the general Hukuhara-Turritin theorem
[W, Thm. 19.1] to conclude that the equation for Z has a fundamental
solution of the form

Z(t) = Y (t)eDmtm/p+···+D1t1/p+ln(t)C , (10)

where: i) Y (t) is holomorphic on a (potentially smaller) sector S′ ⊂ S
containing R>0 and admits an asymptotic expansion on S′ in powers of
t−1/p with invertible leading term; ii) Dj are diagonal constant matrices and
commute with the constant matrix C. The proof of the first part of the
Proposition will be complete once we show that Dj = 0 for j ≥ p.
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Let Z(t) be a particular solution of Z ′(t) = P (t)Z(t). Choose a Hermitian
norm ∥−∥ on ΛC and fix a small ϵ > 0. We compute

d∥Z(t)∥2

dt
= 2ℜ⟨Z(t), Z ′(t)⟩ = 2ℜ⟨Z(t), P (t)Z(t)⟩.

If ∥P (t)∥ denotes the operator norm, then because P (t) converges to P0 as
t → ∞, we can choose a t0 such that for any t ≥ t0, we have ∥P (t)∥ ≤ N :=
(1 + ϵ)∥P0∥ for all t ≥ t0. Now applying the Cauchy-Schwartz inequality to
the computation above gives

−2N∥Z(t)∥2 ≤ d∥Z(t)∥2

dt
≤ 2N∥Z(t)∥2.

Now y(t) := ∥Z(t)∥2 is a smooth nonnegative real-valued function of t ∈ R
such that f(t) := 2Ny(t) − y′(t) ≥ 0 and g(t) := 2Ny(t) + y′(t) ≥ 0 for all
t ≥ t0. Solving these first order ODE’s for y(t) gives

y(t) = e2Nt
(
e−2Nt0y(t0) −

∫ t

t0
e2Nsf(s)ds

)
= e−2Nt

(
e2Nt0y(t0) +

∫ t

t0
e2Nsg(s)ds

)
.

It follows from the nonnegativity of f and g that letting c1 := e−Nt0
√
y(t0) ≤

c2 := eNt0
√
y(t0), we have

c2e
−Nt ≤ ∥Z(t)∥ ≤ c1e

Nt (11)

for all t ≥ t0.
Observe that, after adjusting the constants c1 and c2, the bounds in (11)

continue to hold if we replace ∥Z(t)∥ with ∥Z(t)∥ref for some other Hermitian
norm ∥−∥ref . Thus if we fix a reference norm ∥−∥ref , we have shown that
for any Hermitian norm ∥−∥, there are constants c1, c2, t0 > 0 such that

c2e
−(1+ϵ)∥P0∥t ≤ ∥Z(t)∥ref ≤ c1e

(1+ϵ)∥P0∥t

for all t ≥ t0. On the other hand, because P0 is nilpotent, one can choose
Hermitian norms in which ∥P0∥ is arbitrary small. Indeed, one can choose a
basis in which P0 is r times a sum of nilpotent Jordan matrices, and in the
norm in which this basis is orthonormal one has ∥P0∥ ≤ (rank(P0) − 1)r.

It follows that for any r > 0, there are constants c1, c2, t0 > 0 such that
c2e

−rt ≤ ∥Z(t)∥ref ≤ c1e
rt for all t ≥ t0. If ℜ(Dj) ̸= 0 for any j ≥ p in the

fundamental solution (10), then one of the columns of this matrix would
violate this bound for some r. Hence we conclude that ℜ(Dj) = 0 for all
j ≥ p. However, an analysis identical to the one above gives the same bounds
for the function ∥Z(eiθt)∥, where θ is any angle close enough to 0 that the
ray eiθR>0 lies in the sector S′ on which Y (t) and P (t) are defined and
satisfy the desired asymptotic estimate. It follows that ℜ(Dje

iθj/p) = 0 for
all sufficiently small θ and j ≥ p, and hence Dj = 0 for all j ≥ p. This
completes the proof of the main claim.
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For the further claim when the eigenvalues of Eψ(1) are distinct, we
use a different argument. It follows from the symmetry of the two-point
function in Definition 5 that Td and hence Eψ(1) is symmetric with respect
to the Poincaré pairing (−,−)X on H∗

alg(X)C, and it is easy to show that
the grading operator µ is anti-symmetric with respect to (−,−)X . Now, an
endomorphism that is symmetric with respect to a non-degenerate complex
bilinear form need not be diagonalizable, but its generalized eigenspaces are
orthogonal to one another, and the restriction of the form to each generalized
eigenspace is still non-degenerate.

It follows that if the eigenvalues of Eψ(1) are distinct, then this endomorphism
admits an orthonormal eigenbasis. In this basis, the matrix D of Eψ(1) is
diagonal with distinct diagonal entries, and the matrix M for µ satisfies
MT = −M . In particular the diagonal entries of M are all 0. After a change
in variables u = 1/t, our differential equation (6) becomes

dζ

du
+

(
D

u2 + M

u

)
ζ = 0.

We are now in the setting of [BTL, Sect.8]. The vanishing of the diagonal of
M implies the conditions (D) and (F), and the fundamental solution near
u = 0 described in [BTL, Sect.8] gives the claim of Proposition 8.

□

1.2. The Hodge-theoretic MMP. For a smooth projective complex variety
X, the topological K-theory Ktop

i (X) admits a canonical weight-i pure Hodge
structure induced by the twisted Chern character Ch : Ktop

i (X) ⊗ C ∼=
H i+2∗(X;C). Concretely, after tensoring with Q we have an isomorphism of
Hodge structures Ktop

i (X) ⊗ Q ∼=
⊕
H i+2n(X;Q)(n), where (n) denotes the

Tate twist.
In fact, this Hodge structure can be reconstructed entirely from Db(X):

The paper [B2] constructs a topological K-theory spectrum for a dg-category
over C, and a canonical isomorphism with periodic cyclic homology

Ch : Ktop(X) ⊗ C ∼= Ktop(Db(X)) ⊗ C
∼=−→ HP(Db(X)),

which takes the Bott element to the periodic parameter in periodic cyclic
homology. The degeneration of the noncommutative Hodge-de Rham spectral
sequence for HP(Db(X)) induces the Hodge filtration on Ktop(X), and this
is enough to reconstruct the Hodge structure.

Both Ktop(C) and the noncommutative Hodge-de Rham sequence for
HP(C) are additive invariants of dg-categories, and therefore take finite
semiorthogonal decompositions to direct sum decompositions. Thus an
immediate consequence of Conjecture II is the following de-categorified
variant, which can be investigated independently:

Conjecture IV (Hodge-theoretic MMP). Let X → Y be a contraction of a
smooth projective variety.
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(A/B) There is a canonical direct sum decomposition of Hodge structures
Ktop(X)Q ∼= H1,ψ ⊕ · · · ⊕Hn,ψ (12)

that is upper triangular with respect to the Euler pairing and closed
under multiplication by classes from Y . This decomposition depends
on a parameter ψ, but different values of ψ give mutation-equivalent
decompositions.4

(C) Given another contraction Y → Y ′, the decomposition of Ktop(X)Q
associated to X → Y ′ refines the decomposition associated to X → Y
for suitable parameters.

(D) If π : X → X ′ is a morphism of smooth varieties with Rπ∗(OX) =
OX′ , then for suitable values of the parameters, the decomposition of
Ktop(X)Q associated to X → Y refines the decomposition obtained by
combining the canonical decomposition Ktop(X)Q ∼= Ktop(X ′)Q

⊕
ker(π∗)

with the decomposition of Ktop(X ′)Q associated to X ′ → Y .
In fact in (D), if π : X → Y is a blowup of Y along a smooth center S of

codimension n+1, then one expects the decomposition of Ktop(X)Q associated
to X → Y ′ to refine the canonical decomposition Ktop(X)Q ∼= Ktop(Y )Q ⊕
(Ktop(S)Q)n combined with the canonical decompositions associated to Y →
Y ′ and S → π(S) ⊂ Y ′.

We expect the decomposition in (12) to arise in the same way as in
Proposal III. Namely, under a suitable fundamental solution of (6), the
lattice in each Hi,ψ should span the space of solutions with exponential
growth rate eαit as t → ∞, where α1, . . . , αn are the eigenvalues of −1

z Eψ(1).
Remark 15. The decategorification Conjecture IV (specifically part (D)) is
a variant of the blowup formula conjectured and investigated by Katzarkov,
Kontsevich, Pantev, and Yu [K3]. Although our conjecture deals with
decompositions of rational Hodge structures rather than (formal) Frobenius
manifolds, we expect that these conjectures would have many of the same
applications to rationality questions that have been announced for the blowup
formula.

2. Applications

2.1. Minimal models and the D-equivalence conjecture. Our first
application defines a dg-category MX/Y that is a relative birational invariant
of a contraction X → Y , where X has positive geometric genus. We call
MX/Y the noncommutative minimal model of X relative to Y .

4Consider a direct sum decomposition of a finite rank free abelian group Λ = Λ1 ⊕· · · Λn

that is upper-triangular with respect to a non-degenerate bilinear pairing [−, −) on Λ. To
any braid on n-strands, with underlying permutation s, the mutation along this braid is a
new direct sum decomposition Λ = Λ′

s(1) ⊕ . . . ⊕ Λ′
s(n), and it is equipped with canonical

isomorphisms Λi
∼= Λ′

s(i). See [SS, §2.2] for a discussion.
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Proposition 16. Let X → Y be a contraction of projective varieties with
X smooth and pg(X) > 0. Assuming Conjecture I and Conjecture II(A,D)
for varieties over Y , there is an admissible subcategory MX/Y ⊂ Db(X) that
contains an object whose support is X and that has the following property:

For any other contraction X ′ → Y such that X ′ is birationally
equivalent to X relative to Y , there is an admissible embedding
MX/Y ↪→ Db(X ′) as well.

Furthermore, assuming Conjecture II(B) for varieties over Y , MX/Y has
a canonical Perf(Y )⊗-module structure such that the embeddings MX/Y ↪→
Db(X ′) are Perf(Y )⊗-linear.

As the proof will show, MX/Y arises as one of the semiorthogonal factors
coming from the NMMP for some birational cover of X.

Proof. Let Db(X) = ⟨C1, . . . , Cn⟩ denote the semiorthogonal decomposition
that Conjecture II(A) associates to π and a generic choice of parameter ψ.
Because pg > 0, KX has a non-vanishing section, i.e., the base locus of |KX |
has positive codimension. It follows from [KO, Thm. 1.2] that exactly one of
the categories Ci contains an object whose support is all of X. Let us call
this category CX,ψ.

Conjecture II(A) asserts that different choices of ψ give mutation equivalent
semiorthogonal decompositions, but any mutation of ⟨C1, . . . , Cn⟩ gives a
canonical equivalence between the subcategories containing a densely supported
object, so CX,ψ ∼= CX,ψ′ for different generic values of the parameter. We
therefore denote CX = CX,ψ for any fixed choice of ψ and suppress ψ from
the notation below. Conjecture II(B) implies that CX,ψ is a module category
for Perf(Y )⊗, and the mutation equivalences respect this structure, so CX
has a well-defined Perf(Y )⊗-module structure.

Now let f : Z → X be a projective birational morphism, with Z smooth,
and consider the NMMP of Z relative to Y . Then Conjecture II(D) implies
that for suitable choices of parameter, CZ ⊂ f∗(CX) ∼= CX is an admissible
subcategory. Furthermore, by hypothesis CZ corresponds to a direct summand
of the charge lattice of CX . Because this charge lattice is finite dimensional,
there must be a birational morphism Z → X such that for any further
birational morphism Z ′ → Z → X, CZ ∼= CZ′ . For any other contraction
X ′ → Y that is birational to X relative to Y , one can find a smooth projective
Z ′ with birational maps Z ′ → Z and Z ′ → X ′ that are compatible with the
given birational equivalence over Y . It follows that CZ = CZ′ ⊂ CX′ ⊂ Db(X ′)
are admissible inclusions. □

Proposition 16 explains why birationally equivalent Calabi-Yau manifolds
should have equivalent derived categories. In fact, we have the stronger
statement:

Corollary 17. Assuming Conjecture I and Conjecture II(A,D) hold for
varieties over Spec(k), if X and X ′ are birationally equivalent smooth
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projective varieties and |KX | is base-point free, then there is a canonical
admissible embedding Db(X) ↪→ Db(X ′), which is an equivalence if |KX′ | is
also base-point free.

Proof. If KX is base-point free, then Db(X) admits no semiorthogonal
decompositions [KO, Thm. 1.2]. By Proposition 16, it suffices to show that
MX/ Spec(k) = Db(X). To see this, consider a birational morphism f : Z → X
with Z smooth and projective. If we apply the NMMP for Z → Spec(k),
Conjecture II(D) implies that for a suitable choice of parameter, the unique
semiorthogonal factor CZ ⊂ Db(Z) that is densely supported must lie in
f∗(Db(X)) and thus must be equal to f∗(Db(X)). □

Remark 18. In Corollary 17, it suffices to verify 1) Conjecture II(A) only for
X in the birational equivalence class of interest; and 2) Conjecture II(D) holds
when X → X ′ is the blowup of the smooth variety X ′ along a smooth center,
but with the stronger requirement that the semiorthogonal decomposition of
Db(X ′) obtained as a piece of the semiorthogonal decomposition of Db(X)
agrees with (rather than refines) the decomposition associated to X ′ →
Spec(k).

Proof. By the weak factorization theorem, the birational morphism X 99K X ′

can be factored as a sequence of birational maps X = X1 99K X2 99K
· · · 99K Xn = X ′, where each morphism or its inverse is a blowup of a
smooth variety along a smooth center. One can then use Conjecture II(D) for
blowups to argue by induction that in the decomposition of Db(Xi) associated
to Xi → Spec(k) by Conjecture II(A), the unique generically supported
semiorthogonal factor is indecomposable and equivalent to Db(X). □

2.2. Minimal resolutions. A similar application of Conjecture II is to
define for any variety Y a dg-category RY that we regard as the minimal
noncommutative resolution of Y .5 Below we will use the monoidal structure
on the ∞-category of small idempotent complete module categories over a
small idempotent complete symmetric monoidal stable ∞-category A⊗, which
is induced from that on presentable stable module categories over Ind(A⊗).
Namely M⊗AN is the category of compact objects in Ind(M)⊗Ind(A)Ind(N ).
The key fact is that for a Tor-independent cartesian diagram of schemes, Y ′ ∼=
X ′ ×X Y , one has Perf(Y ′) ∼= Perf(X ′)⊗Perf(X) Perf(Y ) by [BZFN, Thm. 1.2].

Proposition 19. Let Y be a reduced variety (possibly singular), and assume
that Conjecture II(A,B,D) holds for any birational morphism from a smooth
projective variety X → Y . There is a canonical smooth and proper dg-
category RY equipped with a Perf(Y )⊗-module structure such that:

(1) If U ⊂ Y is the smooth locus, then Perf(U) ⊗Perf(Y ) RY
∼= Perf(U);

and

5Several different notions of noncommutative resolution of singularities exist in the
literature, but we are not aware of one that agrees with what we establish here.
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(2) For any resolution of singularities X → Y , there is a Perf(Y )⊗-linear
admissible embedding RY ↪→ Db(X).

Proof. The proof is identical to that of Proposition 16, except that we
use the following definition for the admissible subcategory CX ⊂ Db(X)
associated to a resolution π : X → Y : Conjecture II(A,B) gives a Perf(Y )⊗-
linear semiorthogonal decomposition Db(X) = ⟨C1,ψ, . . . , Cn,ψ⟩ associated
to π and a parameter ψ. For any U ⊂ Y such that π−1(U) → U is an
isomorphism, Perf(U) ∼= Perf(π−1(U)) ∼= Perf(X) ⊗Perf(Y ) Perf(U). Using
base change for Perf(Y )⊗-linear semiorthogonal decompositions [K2], one
obtains a Perf(U)⊗-linear semiorthogonal decomposition

Perf(U) = ⟨Perf(U) ⊗Perf(Y ) C1,ψ, . . . ,Perf(U) ⊗Perf(Y ) Cn,ψ⟩.

In particular, each Perf(U) ⊗Perf(Y ) Cj,ψ is a thick ⊗-ideal of Perf(U), and
thus by [T, Thm. 3.15] is the category of complexes supported on some
subspace Zi ⊂ |U | that is a union of closed subspaces (with quasi-compact
complement, but that is automatic here). U is irreducible, so Perf(U) =
Perf(U) ⊗Perf(Y ) Ci,ψ for the unique index i such that Zi contains the generic
point of U , and thus Perf(U)⊗Perf(Y ) Cj,ψ = 0 for all j ̸= i. The identification
of this distinguished index i does not depend on the specific choice of U . Also,
as in the proof of Proposition 16, Conjecture II(A,B) implies that up to a
canonical Perf(Y )⊗-linear equivalence, the category Ci,ψ does not depend on
ψ, so we define CX := Ci,ψ for this i. The rest of the proof of Proposition 16
now applies verbatim. □

Remark 20. In the lectures [K3], Maxim Kontsevich has also speculated
about the existence of canonical noncommutative resolutions for varieties with
canonical singularities in the context of the blowup formula. Proposition 19
explains how a version of this follows from the formal properties laid out in
Conjecture II.

2.3. Example: simple flips and flops. It might not stand out in Conjecture II(A),
but the key idea behind Corollary 17 is that canonical semiorthogonal
decompositions associated to different birational morphisms X → Y and
X → Y + should be related via mutation. For example, let Y be a smooth
projective variety with a smooth embedding Pn ↪→ Y with normal bundle
OPn(1)⊕m+1, where m ≤ n. Then one has a diagram

Pn × Pm �
� j

//

p

zz

X
π

zz

π+

!!

Pn �
�

// Y Y +

, (13)

where π+ is the blow up, with exceptional divisor Pn × Pm, of the smooth
projective variety Y + along an embedded Pm ↪→ Y + with normal bundle
OPm(1)⊕n+1. It is shown in [BO] that the composition of derived functors
π∗(π+)∗ : Db(Y +) → Db(Y ) is fully faithful, and an equivalence when m = n.
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In the simple case where m = 1, we can recover this fact using mutations
of semiorthogonal decompositions. We let Eqp := j∗(OPn×Pm(p, q)) which is
an exceptional object in Db(X).

Example 21 (Atiyah flops). Consider the above set up with n = m = 1, so
that (13) is a flop of 3-folds. The semiorthogonal decomposition of Example 3
combined with the semiorthogonal decomposition Db(P1) = ⟨O(−1),O⟩ gives
semiorthogonal decompositions

Db(X) = ⟨E−1
−1 , E

−1
0 ,Db(Y )⟩

= ⟨E−2
−1 , E

−1
−1 ,Db(Y +)⟩

Using the fact that ωX |Pn×Pm ∼= O(−n,−m), one sees that the right orthogonal
complement of E−1

0 agrees with the left orthogonal complement of E−2
−1 , and

both objects are left orthogonal to E−1
−1 . It follows that we have the following

mutations

E−1
−1 E−1

0 Db(Y )

E0
−1

E−1
−1E−2

−1 Db(Y +)

Composing mutation equivalence functors gives an equivalence Db(Y ) ∼=
Db(Y +).

In the more general situation where m = 1 and n ≥ 1, the semiorthogonal
decomposition of Example 3 applied to π+ combined with the Beilinson
exceptional collections on P1 gives

Db(X) = ⟨

Db(P1)(−n)︷ ︸︸ ︷
E−2

−n, E
−1
−n,

Db(P1)(−n+1)︷ ︸︸ ︷
E−1

−n+1, E
0
−n+1,

Db(P1)(−n+2)︷ ︸︸ ︷
E−1

−n+2, E
0
−n+2, . . . ,

Db(P1)(−1)︷ ︸︸ ︷
E−1

−1 , E
0
−1,Db(Y +)⟩.

We first mutate this to

Db(X) = ⟨E−1
−n,

Db(P1)(−n+1)︷ ︸︸ ︷
E−1

−n+1, E
0
−n+1,

Db(P1)(−n+2)︷ ︸︸ ︷
E−1

−n+2, E
0
−n+2, . . . ,

Db(P1)(−1)︷ ︸︸ ︷
E−1

−1 , E
0
−1,Db(Y +), E−1

0 ⟩.
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If we mutate the objects E−1
−n, . . . , E

−1
0 to the left over the other summands,

one obtains a collection of exceptional objects A−n+1, . . . , A−1 fitting into a
semiorthogonal decomposition

Db(X) = ⟨

Db(Pn)(−1)︷ ︸︸ ︷
E−1

−n, . . . , E
−1
0 , A−n+1, . . . , A−1,B⟩,

where mutation gives a canonical equivalence B ∼= Db(Y +). This last semi-
orthogonal decomposition refines Db(X) = ⟨E−1

−n, . . . , E
−1
0 ,Db(Y )⟩ coming

from the morphism π, hence we have
Db(Y ) = ⟨A−n+1, . . . , A−1,Db(Y +)⟩.

More precisely, because the right projection onto Db(Y ) ⊂ Db(X) is π∗π∗, the
fully faithful functor Db(Y +) ↪→ Db(Y ) coming from this mutation agrees
with π∗(π+)∗, and one has Ai = π∗π∗(E0

i ), which as an object of Db(Y )
corresponds to OPn(i).

2.4. Dubrovin’s conjecture. Dubrovin conjectured [D2] that for a Fano
manifold X, Db(X) admits a full exceptional collection if and only if the
quantum cohomology QH∗(X) is generically semisimple. Here we observe
that the NMMP conjectures imply one direction, that generic semisimplicity
implies the existence of a full exceptional collection.

Proposition 22. Let X be a smooth projective variety for which Proposal III
holds for generic z. If in addition ch : K0(Db(X)) ⊗ Q → H∗(X;Q) is an
isomorphism and there is a ψ such that Eψ(1) ∈ End(H∗

alg(X) ⊗ C) is
semisimple with distinct eigenvalues, then Db(X) admits a full exceptional
collection consisting of eventually semistable objects.

The condition that ch is an isomorphism can often be checked in practice.
For instance, it holds for compact homogeneous spaces of reductive groups,
smooth and proper toric varieties, and more generally any variety that admits
an affine paving. Note that the result above does not require X to be Fano,
and does not explicitly require QH∗(X) to be generically semisimple.

Lemma 23. Let C be a regular proper idempotent complete pre-triangulated
dg-category, and let C = ⟨C1, . . . , Cn⟩ be a semiorthogonal decomposition
such that, dim(K0(Ci) ⊗ Q) = 1 for all i, and each Ci admits a stability
condition. Then each Ci is generated by a single exceptional object, i.e., the
semiorthogonal decomposition arises from a full exceptional collection in C.

Proof. Because the property of being regular and proper is inherited by
semiorthogonal factors, it suffices to prove this for the trivial semiorthogonal
decomposition, i.e., in the case n = 1. If C admits a Bridgeland stability
condition and dim(K0(C) ⊗ Q) = 1, then all semistable objects in the heart
have the same phase. It follows that the heart P(0, 1] is Artinian. We will
prove that if dim(K0(C) ⊗ Q) = 1 and C is regular, proper and admits a
bounded t-structure with Artinian heart, then C ∼= Db(k).
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Let A ⊂ C be the heart of the t-structure. Then K0(A) = K0(C), and
the former has a basis given by the classes of simple objects in A. Because
K0(A) has rank 1, there is a unique simple module E. Because every object
in A has a Jordan-Holder filtration, whose graded pieces must be isomorphic
to E, we see that C is the smallest triangulated category containing E. We
will complete the proof by showing that E is an exceptional object.

Let A = RHom(E,E) be the dg-algebra of endomorphisms of E. We claim
that there is a A-module M such that H∗(M) = k. Indeed, because H i(A) =
0 for i < 0 and H0(A) = k, by [K2, Lem. 3.5] there is a dg-subalgebra B ⊂ A
that admits a strictly unital A∞ morphism f : B → k. Then f∗(k) is a B-
module whose homology is k in degree 0, and pullback induces an equivalence
A -Mod → B -Mod that preserves homology of modules [K2, Prop. 6.2].

Because E generates C and C is idempotent complete, the functor RHom(E,−) :
C → Perf(A) is an equivalence of dg-categories. Also, because C is regular
and proper, an A-module is perfect if and only if its underlying complex of
k-vector spaces is perfect [O2, Thm. 3.18]. In particular, M ∈ Perf(A), and
so there is an object E′ ∈ C such that RHom(E,E′) ∼= k as complexes. We
will show that E′ ∼= E to conclude the proof.

Let n ≥ 0 be the largest i such that H i(RHom(E,E)) ̸= 0. Then
examining the long exact cohomology sequence for RHom(E,−) of an
extension of objects shows that for F ∈ A, n = max{i|H i(RHom(E,F ))} as
well. Likewise, if Hi(−) denotes the cohomology object with respect to the
t-structure on C, then for any F ∈ C,

max{i|H i(RHom(E,F )) ̸= 0} = n+ max{i|Hi(F ) ̸= 0}.

This is proved by inductively by examining the long exact cohomology
sequence for RHom(E,−) applied to the exact triangle τ<m(F ) → F →
Hm(F )[−m], where m is the highest non-vanishing cohomology object of F .
The same reasoning shows that

min{i|H i(RHom(E,F )) ̸= 0} = min{i|Hi(F ) ̸= 0}

for any F ∈ C. Applying this to F = E′, we see that

min{i|Hi(E′) ̸= 0} = n+ max{i|Hi(E′) ̸= 0}.

This can only hold if n = 0, hence E is exceptional. □

Proof of Proposition 22. Let us fix a z close to 1 such that −1
z Eψ(1) has

distinct eigenvalues u1, . . . , un with distinct real parts. Proposition 8 then
implies that for any solution Φt of (6), ∥Φt∥ ∼ eℜ(uj)t for some j. Also, if
E is an eventually semistable object such that |Zt(E)| ∼ ∥Φt(E)∥ ∼ eℜ(uj)t,
then Zt(E) ∼ eujt. Proposal III then implies that every eigenvalue uj must
occur for some eventually semistable E with |Zt(E)| ∼ ∥Φt(E)∥. This implies
that the semiorthogonal decomposition C = ⟨C1, . . . , Cn⟩ associated to the
quasi-convergent path stipulated in Proposal III has length n = dim(ΛQ).
The assumption that K0(C)Q → ΛQ is an isomorphism then implies that
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dim(K0(Ci) ⊗ Q) = 1 for all i. Hence C admits a full exceptional collection
consisting of eventually semistable objects by Lemma 23

□

Finally, let us make the following connection with the Gamma II conjecture
of [GGI]. This conjecture states that, in the situation where X is a Fano
manifold with a full exceptional collection and generically semisimple quantum
cohomology, there is a full exceptional collection Db(X) = ⟨E1, . . . , En⟩ such
that for the canonical fundamental solution Φt of the quantum differential
equation (see Remark 12), Φt(v(Ei)) give the “asymptotically exponential”
basis of solutions, characterized uniquely in [GGI, Prop. 2.5.1].6 We observe
that, in a sense, the Gamma II conjecture is equivalent to Proposal III in
this context, where we let Φt be the canonical fundamental solution.

Proposition 24. Let X be a Fano manifold with generically semisimple
quantum cohomology that admits a full exceptional collection Db(X) =
⟨E1, . . . , En⟩ such that Φt(v(Ei)) give the asymptotically exponential basis
of solutions of the quantum differential equation. Then this full exceptional
collection arises from a quasi-convergent path as in Proposal III.

Proof. After a homological shift, we may assume that the collection Ei is “Ext-
exceptional” in the language of [M, Def. 3.10], meaning Hom≤0(Ei, Ej) = 0
for all i ≠ j. Let u1, . . . , un ∈ C be the eigenvalues of −1

zEψ(1), ordered
so that ℑ(ui) is strictly increasing in i, after fixing a generic choice of z
(see [GGI, Rem. 2.6.5]). It is observed in [GGI, §4.7] that if the Gamma
II conjecture holds, then up to an overall scalar multiple, the quantum
cohomology central charges Zt(Ei) have asymptotic estimates in our notation
Zt(Ei) ∼ cie

tui as t → ∞ for some constants ci ̸= 0.
Let t0 ∈ R be such that Zt(Ei) ̸= 0 for all i and all t ≥ t0. Then

after choosing a branch for ln(Zt0(Ei)), we can lift Zt(Ei) uniquely to a
function ln(Zt(Ei)) that is continuous in t ≥ t0 for each i. The asymptotic
estimate above implies that ln(Zt(Ei)) = tui + βi + o(1) as t → ∞. We can
therefore choose t1 ≥ t0 such that for all t ≥ t1, ϕi,t := ℑ(ln(Zt(Ei)))/π is
strictly increasing in i. The collection Ei[−⌊ϕi,t⌋] is still Ext-exceptional,
so by the discussion following [M, Prop. 3.17], there is a unique stability
condition with central charge Zt such that the Ei[−⌊ϕi,t⌋] are all in the
heart and semistable, and hence Ei is semistable of phase ϕi,t for all i. This
defines a quasi-convergent path σt ∈ Stab(X) for t ≥ t1 such that the Ei
are eventually semistable, and it recovers the semiorthogonal decomposition
Db(X) = ⟨E1, . . . , En⟩. □

6Some notational comments are in order: our variable t corresponds to the variable 1/z
in the terminology of [GGI]. On the other hand, the parameter z in our (6) is set to one in
[GGI, Eq. 2.2.3]. Instead, they introduce an auxiliary parameter ϕ and consider solutions
in a sector centered on the ray R>0eiϕ, which is equivalent to setting z = eiϕ in (6) and
considering solutions centered on the positive real axis, as we do.
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The quasi-convergent paths constructed in Proposition 24 lie entirely in the
region of stability conditions that are glued from the given full exceptional
collection. While these paths technically satisfy Proposal III, due to its
flexible formulation, it would be more satisfying to give a description of the
paths that does not make a priori use of the full exceptional collection. For
instance, it is an interesting question as to whether the paths in Proposition 24
extend in the t → 0 direction into a geometric region in Stab(X)/Ga. (See
Remark 13.)

3. Example of curves

3.1. The projective line.

The stability manifold of P1. In [O1], it is shown that

Stab(P1)/Ga =
⋃
k∈Z

Xk
∼= C,

where Xk ⊂ Stab(P1)/Ga is the open submanifold of stability conditions in
which O(k) and O(k − 1) are stable. The map φk : Xk → C defined by

φk(σ) = logZσ(O(k)) − logZσ(O(k − 1))

defines an isomorphism between Xk and the open upper half plane H ⊂ C.
Under this isomorphism, the strip {x+ iy|y ∈ (0, π)} lies in Xk for all k, and
these stability conditions coincide with slope stability, up to the canonical
action of G̃L

+
(2,R) on Stab(X) [B3, Lem. 8.2]. The short exact sequence

0 → O(k− 1) → O(k)⊕2 → O(k+ 1) → 0 implies that on this common strip,
the coordinate functions φk are related by the equation

eφk+1 = 2 − 1
eφk

. (14)

The isomorphism Stab(P1)/Ga
∼= C is not explicit in [O1], so let us give

an explicit parameterization. The central charge will be described in terms
of modified Bessel functions of the first and second kind I0(u) and K0(u),
which are a basis of solutions to the modified Bessel differential equation

(u d
du

)2Z(u) = u2Z(u). (15)

The function I0 is entire, but the function K0 has a branch point at 0, and
we will use the principal branch with branch cut along i(−∞, 0]. These are
characterized among solutions of (15) by the following asymptotic estimates
as u → 0

I0(u) = 1 +O(|u|2)
K0(u) = − ln(u2 ) − Ceu +O(|u|2| ln(u)|) , (16)

where Ceu = 0.57721... is Euler’s constant, and we also take the principle
branch of ln with branch cut along i(−∞, 0].
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Proposition 25. For any k ∈ Z and τ ∈ R + iπ[k − 1, k], there is a unique
(up to homological shift [2]) stability condition on Db(P1) such that O(k − 1)
and O(k) are stable, and the central charge is determined by

Zτ (Op) = iπI0((−1)k−1eτ ), and
Zτ (O(k − 1)) = K0((−1)k−1eτ )

The resulting maps Bk : R + iπ[k − 1, k] → Stab(P1)/Ga glue to give an
isomorphism of complex manifolds B : C ∼= Stab(P1)/Ga, such that the
action of O(1) ⊗ (−) on Stab(P1)/Ga is identified with the shift τ 7→ τ + iπ
on C.

Note that (−1)k−1eτ ∈ H ∪ R \ 0 in the formulas above.

Lemma 26. For x ∈ C with ℜ(x) > 0, we have K0(−x) = K0(x) − iπI0(x)
and I0(−x) = I0(x).

Proof. K0(−x) and I0(−x) are also solutions of the modified Bessel differential
equation, so they are expressible as linear combinations of K0(x) and
I0(x). The coefficients are determined by the asymptotic estimates (16)
as x → 0. □

Lemma 27. ℑ(xK0(x)(K0(x) + iπI0(x))) > 0 for x ̸= 0 with ℑ(x) ≥ 0.

We thank Nicolas Templier for his assistance in proving this Lemma.

Proof. Let g(x) = xK0(x)(K0(x) + iπI0(x)), and observe that because of
the asymptotics (16), g(x) extends continuously over the origin by letting
g(0) = 0. We will need the following asymptotic estimates as |u| → ∞ with
−π/2 + δ ≤ arg(u) ≤ 3π/2 − δ for some small δ > 0, from [L, 10.40.2 and
10.40.5]:

K0(u) =
√

π
2ue

−u(1 − 1
8u + 9

128u2 +O( 1
|u|3 ))

I0(u) = eu
√

2πu(1 + 1
8u + 9

128u2 +O( 1
|u|3 )) + i e

−u
√

2πu(1 − 1
8u + 9

128u2 +O( 1
|u|3 ))

.

(17)
These imply the following estimate for x ∈ H ∪ R with |x| large:

g(x) = iπ

2 (1 + 1
8x2 ) +O( 1

|x|3
).

It follows that there is some r0 > 0 such that ℑ(g(x)) > 0 for all |x| > r0. For
x ∈ R>0, both K0(x) > 0 and I0(x) > 0, so ℑ(g(x)) = πxK0(x)I0(x) > 0.
Using the identity of Lemma 26, one can compute for x < 0 that ℑ(g(x)) =
πxI0(−x)K0(−x) > 0 as well.

We now apply the maximum principle to the non-constant continuous real-
valued function ℑ(g(x)) on the closed half disc {x ∈ C||x| ≤ r and ℑ(x) ≥
0} for some r > r0. This function is harmonic on the interior {|x| <
r and ℑ(x) > 0} and we have shown that ℑ(g(x)) ≥ 0 on the boundary, with
strict inequality except at x = 0. We conclude ℑ(g(x)) > 0 on the interior
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and on the boundary away from x = 0. Because r was arbitrary, the claim
follows. □

Proof of Proposition 25. As X1 ⊂ Stab(P1)/Ga is the open subset where O
and O(1) are stable, and X1 is identified with H ⊂ C by the coordinate φ1,
we first describe the map B1 : R + i[0, π] → X1 via the formula τ 7→ f(eτ ),
where

f(x) := ln
(
Zlnx(O(1))
Zlnx(O)

)
= ln

(
K0(x) + iπI0(x)

K0(x)

)
.

The ln(−) is defined because Lemma 27 implies that K0(x) ̸= 0 and K0(x) +
iπI0(x) ̸= 0 if ℑ(x) ≥ 0 and x ≠ 0. For x ∈ R \ 0, we interpret ln(−) above
as the principle branch of the logarithm with branch cut along (−∞, 0]. But
as x varies in H ∪ R \ 0, (K0(x) + iπI0(x))/K0(x) crosses this branch cut
many times, so we define the ln(−) as the unique lift along the exponential
covering C → C∗. The asymptotics (16) imply that f extends continuously
over the origin by letting f(0) = 0, and we use this convention.
Claim 1: f(x) maps R \ 0 to the curve

C := {a+ ib|0 < b < π/2 and e|a| cos(b) = 1} :

For x ∈ R>0, K0(x) > 0 and I0(x) > 0, so ln(1 + iπI0(x)/K0(x)) ∈
ln(1+iR>0), which lies on the curve {a+ib|ea+ib−1 ∈ iR, 0 < b < π/2, 0 < a}.
On the other hand, for x < 0, Lemma 26 implies that ℜ(K0(−x)) > 0 and
I0(−x) > 0, and this implies

f(x) = ln
(

K0(−x)
K0(−x) − iπI0(−x)

)
= − ln

(
1 − iπ

I0(−x)
K0(−x)

)
.

This lies on the curve {a+ ib|e−a−ib − 1 ∈ iR, 0 < b < π/2, a < 0}. C is the
union of these two curves.
Claim 2: f maps H ∪ R \ 0 injectively to the region of C lying on or above
C ∪ {0}:

Abel’s identity allows one to compute the WronskianK0(x)I ′
0(x)−I0(x)K ′

0(x) =
1/x, and using this we compute

f ′(x) = iπ

xK0(x)(K0(x) + iπI0(x)) .

Lemma 27 implies that ℜ(f ′(x)) > 0 for all x ∈ H ∪ R \ 0. It follows that for
any x, v ∈ H ∪ R with v ̸= 0,

ℜ(v̄(f(x+ v) − f(x))) =
∫ 1

0
|v|2ℜ(f ′(x+ tv))dt > 0.

Therefore, f(x+ v) ̸= f(x), and so f is injective. If we apply this inequality
specifically to x = a ∈ R and v = ib ∈ iR>0, then it implies ℑ(f(a+ ib)) −
ℑ(f(a)) > 0. So Claim 1 implies that f(a+ ib) lies above the curve C ∪ {0}.
Verifying that the maps Bk glue:
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The description of the map Bk from the strip Sk := R + iπ[k − 1, k] to
Xk in the proposition simply results from applying O(1) ⊗ (−) on the one
hand, and τ 7→ τ + iπ on the other, so these maps are well-defined. We must
show that they glue to a holomorphic map C → Stab(P1)/Ga, which will
then automatically be Z-equivariant.

It suffices, by Z-equivariance, to show that B0 and B1 glue to a holomorphic
map in a neighborhood of the boundary S1 ∩ S0 = R. The first map is given
in coordinates by φ0 = f(−ex) for x ∈ R, whereas the second map is given by
φ1 = f(ex). Using the relation (14), showing that these maps agree amounts
to showing that

K0(ex) + iπI0(ex)
K0(ex) = 2 − K0(−ex)

K0(−ex) + iπI0(−ex) .

This follows from the identities proved in Lemma 26. Both sides of this
identity are holomorphic and agree in an open neighborhood of R, which
implies the claim.
Showing B is an isomorphism:

Claim 2 above shows that the image of Bk is contained in the region
in Xk

∼= H on or above the curve C ∪ {0}. In [O1], it is shown that this
region in Xk is a fundamental domain for the action of Z on Stab(P1)/Ga.
It follows from Z-equivariance that B is injective, because it is injective on
Sk and no other strip Sk′ can map to this region in Xk (except for the two
boundary components Sk−1 ∩ Sk and Sk ∩ Sk+1). We also know from [O1]
that Stab(P1)/Ga

∼= C, so B is an injective entire function, which implies it
is an isomorphism. Alternatively, the little Picard theorem implies that B is
surjective, because by Z-equivariance, if there is one point that is not in the
image of B, then there are infinitely many.

□

Mirror symmetry and the noncommutative MMP. We begin by studying the
quantum differential equation. (See [FLZ] for a very thorough discussion.)
Let us use the standard basis 1, H := c1(O(1)) for the cohomology of P1. The
quantum cohomology ring is C[H, q]/(H2 − q), and the quantum differential
equation in the basis {1, H} and parameters ψ = 2aH and z = e−b is

t
dΦt

dt
= −eb(2H) ⋆2(ln(t)−a)H Φt = −2eb

[
0 e−2at2

1 0

]
Φt. (18)

For any solution of (18), the function Zt(E) =
∫
P1 Φt(E) satisfies the second

order equation

(t d
dt

)2Zt(E) =
(
2eb−a

)2
t2Zt(E). (19)

Choose a k such that ℑ(b − a) ∈ π[k − 1, k], which guarantees that κ :=
(−1)k−12eb−a lies in H. After a change of variables u = κt, (19) is the
modified Bessel differential equation (15), so we have Zt(E) = c1(E)I0(κt) +
c2(E)K0(κt) for some constants c1 and c2 depending on E.
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⟨O,O(1)⟩

⟨O(−1),O⟩

⟨O(−2),O(−1)⟩

Figure 1. A visualization of Stab(P1)/Ga
∼= C. The red

region is the G̃L
+

(2,R)-orbit of slope stability. The blue
regions are stability conditions that are glued from the
full exceptional collections shown, which correspond to the
regions with imaginary part > π in each of the coordinate
charts Xk. The black path is determined by a particular
solution to the quantum differential equation. The green
vertical line represents the line added at infinity in the partial
compactification of Stab(P1)/Ga. The dotted horizontal lines
differ by integer multiples of πi.

We have shown in Proposition 25 that the paths
σt := B(ln(2t) + b− a) ∈ Stab(P1)/Ga

for t ∈ [1,∞) have central charges of the form above. Let us show that for
generic values of b− a, σt is quasi-convergent as t → ∞:

For any value of b−a ∈ C, the path σt lies entirely in Xk. In the coordinate
φk on Xk, the paths have the form

φk = ln
(
K0(κt) + iπI0(κt)

K0(κt)

)
.

Using the asymptotic estimates (17), we have

φk = ln(1 + ie2κt) +O( 1
|κt|

) = i
π

2 + 2κt+O( 1
|κt|

)

If ℑ(κ) > 0 this path therefore eventually enters the region of Xk where
ℑ(φk) > π. In this region, the only stable objects are O(k − 1) and O(k),
and they remain stable for all t ≫ 0. Therefore, these paths satisfy the
conditions of Lemma 1, and the only eventually semistable objects are of the
form O(k − 1)⊕m[n] and O(k)⊕m[n].
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Remark 28. For non-generic values of b−a, meaning those for which κ ∈ R,
the paths above also converge in the partial compactification of Stab(P1)/Ga

constructed in [HLJR], but recovering the semiorthogonal decomposition is
a bit more complicated than applying Lemma 1.

In order to verify Proposal III, we must describe a fundamental solution of
the quantum differential equation (18) whose integral is the path of central
charges Zt underlying σt. We will do this with SYZ mirror symmetry:

The mirror of P1 is the Landau-Ginzburg model (C∗,Wt(x) = x+ t2

e2ax
),

where t is regarded as a parameter. It is straightforward to check that

1
2

∫
L
e−ebWt(x)(H · dx

x
+ 1 · t

2dx

e2ax2 ) ∈ H∗(P1;C)

solves the differential equation (18) whenever L ⊂ C∗ is a contour such
that ℜ(ebWt(x)) → ∞ at the ends. For simplicity, let us assume L lies on
the ray R>0e

−b in a neighborhood of ∞, and lies on the ray R>0e
b−2a in a

neighborhood of 0. Under Proposal III, up to a constant multiple one has
(after substituting ebx for x)

Zt(E) =
∫
P1

Φt(E) = 1
2

∫
L(E)

e
−

(
x+ (κt)2

4x

)
dx

x
, (20)

where Lκ(E) is the Lagrangian, or formal sum of Lagrangians, in C∗ that
is SYZ-dual to E. Because of the substitution of variables, the Lagrangian
Lκ(E) ⊂ C∗ lies along R>0 in a neighborhood of ∞, and along R>0e

2(b−a)

in a neighborhood of 0.
We can define Lκ(E) so that Zt(E) matches the central charges of the

paths σt = B(ln(2t) + b− a) as follows:
• For any closed point p ∈ P1, we let Lκ(Op) be the closed contour
Lκ(Op) := {eiθ}2π

θ=0. Because this contour is compact, the resulting
function Zt(Op) is a solution of (19) that extends holomorphically to
t = 0, and the residue theorem implies Z0(Op) = 1

2
∫
e−xdx/x = πi.

The aymptotics (16) then imply that Zt(Op) = πiI0(κt).

• For any θ ∈ R, let Cθ ⊂ C∗ be the image under exp : C → C∗ of
the contour {t + iθ}0

t=−∞ ∪ {it}0
t=θ ∪ {t}∞

t=0. Note that as long as
ℜ(κ2eiθ) > 0, the contour integral (20) over Cθ is convergent, and it
is independent of θ in this range by Cauchy’s theorem. This implies
that if we let Lκ(O(k− 1)) be the contour C2ℑ(b−a)−2π(k−1), then the
formula for Zt(O(k− 1)) in (20) is holomorphic in κ. When κ ∈ R>0,
(20) recovers a known integral formula for K0(κt) [L, 10.32.10],
which can be proven using the method of steepest descent. We
therefore conclude that with this choice of Lκ(O(k − 1)), we have
Zt(O(k − 1)) = K0(κt) for all κ ∈ H ∪ R \ 0.
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These values of Zt(Op) and Zt(O(k−1)) precisely match the characterization
of B(ln(2t)+b−a) in Proposition 25, and Lκ(Op) and Lκ(O(k−1)) determine
a fundamental solution of (18) because [O(k − 1)] and [Op] are a basis for
K0(P1).

3.2. Higher genus curves. If X is a smooth projective curve of genus
g > 1, then the set of stable objects for any stability condition consists of
shifts of line bundles and structure sheaves of points (see [M, Thm. 2.7]).
Choosing some point p ∈ X, the map

Stab(X)/Ga → C taking (P, Z) 7→ Z(Op)/Z(OX)
is injective and identifies Stab(X)/Ga with the upper half space H. Therefore,
a path in the space of central charges lifts to Stab(X)/Ga if and only if it is
contained in H.

Let us use the standard basis 1, H for H∗
alg(X), where H ∈ H2(X;Z) is

the generator of degree 1. Because there are no non-trivial maps from P1 to
X, the equation (5) has a particularly simple form:

t
Φt

dt
= −1

z
c1(X) ∪ Φt = 2g − 2

z

[
0 0
1 0

]
Φt.

When g = 1, this equation is trivial, so we assume that g > 1. Any
fundamental solution has the form

Φt = t
−1
z
c1(X)A =

(
1 + 2g − 2

z
ln(t)

[
0 0
1 0

])
A, (21)

for some invertible 2 × 2 matrix A.

Remark 29. This phenomenon is more general: For any smooth projective
variety X that is minimal in the sense that KX is nef, Eψ(u) = c1(X)∪(−) is
nilpotent and independent of both ψ and u, and every fundamental solution
of (5) has the form t

−1
z
c1(X)A for some invertible matrix A.

Now let us imagine a family of stability conditions satisfying Proposal III,
i.e., such that for any E ∈ Db(X),

Zt(E) =
∫
X

Φt(E) =
[
0, 1

]
×

(
1 + 2g − 2

z
ln(t)

[
0 0
1 0

])
×A× v(E).

Here v : K0(X) → H∗(X;C) is the twisted Chern character, so v(OX) =
[1, 0]T and v(Op) = [0, 2πi]T . (The twist by (2πi)deg /2 appears in [I],
and is justified by the fact that the twisted Chern character gives an
isomorphism Ktop

0 (X) ⊗ C ∼= H∗(X;C) that is compatible with the natural
Hodge structures on each group.) Because we are in Stab(X)/Ga, we only
need to determine A up to scalar multiple. Let us write

A =
[
a aτ∞

2πi
1 τ0

2πi

]
for some constants a, τ0, τ∞ ∈ C. It is convenient to reparameterize the path
above using the parameters eiθ = z̄/|z| and s = (2g− 2) ln(t)/|z| ∈ (−∞,∞),
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and we are interested in paths starting at s = 0 and going towards s = ∞.
We compute

τ(s) := Zs(Op)
Zs(OX) = aeiθsτ∞ + τ0

aeiθs+ 1
This is a linear fractional transformation applied to the line eiθR ⊂ C, so the
resulting path traces out a generalized circle, starting at τ0 when s = 0 and
limiting to τ∞ as s → ±∞. For the path τ(s) to stay in H for all s ∈ (0,∞),
and thus lift uniquely to Stab(X)/Ga it is necessary to have τ0, τ∞ ∈ H, but
not sufficient. One choice of a that works for all τ0 and τ∞ is the following:

Lemma 30. Let a = e−iθ. Then for any τ0, τ∞ ∈ H the formula above
gives a solution of the quantum differential equation such that the associated
central charge Zs lifts uniquely to Stab(X)/Ga. The associated paths begin
at τ0 when s = 0 and limit to τ∞ as s → ∞.

Proof. If one substitutes a = e−iθ above, it is clear that τ(s) remains on the
line segment connecting τ0 and τ∞ for s > 0 and thus remains in H. □

In fact, it is not hard to show that the conclusion of the lemma only holds
if a ∈ R>0e

−iθ.
This shows that Proposal III can be carried out in the case where X is a

higher genus curve. In this case, the path in Stab(X)/Ga is quasi-convergent
for a trivial reason – it converges to a point in Stab(X)/Ga itself. Rather
than being canonical, the limit point τ∞ ∈ Stab(X)/Ga depends on the
choice of fundamental solution of the quantum differential equation.

The canonical fundamental solution. Unlike the solution constructed above,
the quantum cohomology central charge (9), corresponding to the canonical
fundamental solution (8) of the quantum differential equation, Φt = T (t)t−c1(X)Γ̂X
from [GGI], does not lift to a convergent path in Stab(X)/Ga. For any
minimal variety X, one has T (t) = idΛC . Because dim(X) = 1 in our
situation, one has Γ̂X = exp(−Ceuc1(X)) [GGI, §3.4]. Therefore, the
canonical fundamental solution corresponds to (21) above with matrix

A =
[

1 0
2(g − 1)Ceu 1

]
Up to rescaling, this is the solution with a = 1/(2(g − 1)Ceu), τ∞ = 0, and
τ0 = πi/((g − 1)Ceu), and the path of this solution in C is parameterized by

τ(s) = 2πi
eiθs+ 2(g − 1)Ceu

.

If θ ∈ (−π/2, π/2), then this path stays in H for s ≥ 0 and thus lifts to
Stab(X)/Ga.

Regardless of θ, this path in H ∼= Stab(X)/Ga always limits to 0 as s → ∞,
and hence does not have a limit in Stab(X)/Ga. On the other hand, this path
is still quasi-convergent in the most general sense studied in [HLJR]. Rather
than a semiorthogonal decomposition, it recovers the two-step filtration by
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thick triangulated subcategories 0 ⊂ {torsion complexes} ⊂ Db(X), along
with stability conditions on the associated graded categories. Therefore
the canonical solution of the quantum differential equation also verifies
Proposal III in this case.
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