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Non-Hermitian systems have been widely explored in platforms ranging from photonics to electric
circuits. A defining feature of non-Hermitian systems is exceptional points (EPs), where both
eigenvalues and eigenvectors coalesce. Tropical geometry is an emerging field of mathematics at
the interface between algebraic geometry and polyhedral geometry, with diverse applications to
science. Here, we introduce and develop a unified tropical geometric framework to characterize
different facets of non-Hermitian systems. We illustrate the versatility of our approach using several
examples, and demonstrate that it can be used to select from a spectrum of higher-order EPs in
gain and loss models, predict the skin effect in the non-Hermitian Su-Schrieffer-Heeger model, and
extract universal properties in the presence of disorder in the Hatano-Nelson model. Our work puts
forth a new framework for studying non-Hermitian physics and unveils a novel connection of tropical
geometry to this field.

INTRODUCTION

Several branches of mathematics show an unreason-
able effectiveness in formulating and understanding a
myriad of physical phenomena [1]. Striking recent ex-
amples include the role of topology in condensed matter
systems [2, 3], advent of knot theory in quantum field
theory [4], and applications of graph theory in statistical
mechanics [5].

Tropical geometry is a branch of modern mathematics
at the interface between algebraic geometry and polyhe-
dral geometry [6, 7]. The tropical approach has not only
had applications to geometry, but also to areas such as
physics, number theory, genetics, economics, optimiza-
tion theory, and computational biology [8–11]. Notable
has been the role of tropical geometry in understanding
physical systems. Deep connections of tropical geome-
try to string theory have been discovered [12, 13], while
tropical algebra has been used to analyze frustrated sys-
tems such as spin ice and spin glasses [14]. Another
recent successful application of tropical ideas has been
in understanding self-organized criticality in dynamical
systems [15]. Tropical geometric tools such as the loga-
rithmic transformation offer drastic computational sim-
plification, and, interestingly, the low-temperature limit
of statistical physics can be studied in terms of such a
tropical mapping [9, 16].

Hermiticity of operators is a central principle in quan-
tum mechanics, ensuring that a system has real eigenen-
ergies and orthogonal eigenstates, and leads to the con-
servation of probability [17]. In recent decades the no-
tion of non-Hermiticity has been introduced in a variety
of physical contexts [18–20]. A unique feature of non-
Hermitian systems are degeneracies called exceptional
points (EPs), where both eigenvalues and eigenvectors

coalesce [21]. The energy level-splitting, ∆λ, upon mov-
ing away from an EP follows a distinctive fractional de-
pendence on the perturbation. AnN -th order EP [EP-N ,
where two or more eigenvectors (N ≥ 2) coalesce] shows
a splitting of the form ∆λ ∼ ν1/N , where ν is an external
perturbation [22, 23]. Recent advances have led to con-
trollable realization of EPs in a variety of platforms [24–
30]. Their control has enabled the exploration of novel
phenomena, such as uni-directional sensitivity [31, 32],
laser mode selectivity [33, 34], and non-Hermitian skin
effect (NHSE) [35].

In this work, we propose and develop a general tropical
geometric framework for understanding and characteriz-
ing various facets of non-Hermitian systems. We demon-
strate that the tropical geometric information encoded
in the characteristic polynomial of the non-Hermitian
Hamiltonian can be used to identify and classify EPs us-
ing valuation and tropical roots – concepts that naturally
emerge in the tropical setting. We show that EPs of dif-
ferent orders and their transitions can be captured in an
elegant manner by amoebas and Newton polygons. We
illustrate our framework using experimentally-realized
gain and loss models, and show how it allows obtaining a
higher-order EP or choosing from a spectrum of EPs. Us-
ing the paradigmatic non-Hermitian Su-Schrieffer-Heeger
(SSH) model, we demonstrate how our tropical geomet-
ric approach can be used to predict the NHSE. Our ap-
proach naturally allows extracting the universal proper-
ties of EPs in the presence of disorder, which we high-
light using the celebrated Hatano-Nelson model. Our
framework allows a unified approach to different facets
of non-Hermitian phenomena, including EPs, NHSE, and
holonomy.
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FIG. 1. Illustration of the tropical geometric frame-
work with two site gain and loss model. (a) Schematic
of the two site gain and loss model with γ as the gain and
loss parameter and κ as the coupling between the sites. (b)
Using tropicalization to find the order of EP. The tropical
polynomial contains different linear monomials with integer
coefficients (see Eq. 5). The bend locus of the monomials
(encircled in red) gives the tropical root ω0 = 1/2 implying a
second order EP.

Tropical characterization of exceptional points

Basics of tropical geometry. We begin by briefly
summarizing the fundamental ideas of tropical geometry
(see supplemental material [36] for a detailed discussion).
Broadly speaking, tropical geometry studies solutions of
systems of polynomials by transforming them into piece-
wise linear subsets of Euclidean space [37]. The basic
algebraic object underlying tropical geometry is the trop-
ical semiring, (R ∪ {∞},⊕,⊙). This denotes a set that
is the union of the set of real numbers R, together with
an element “infinity”, and two operations on it, namely
tropical addition ⊕ and tropical multiplication ⊙. The
tropical sum of two numbers is their minimum and the
tropical product is their usual sum,

x⊕ y = min(x, y), x⊙ y = x+ y. (1)

Many of the usual axioms of arithmetic remain valid in
the tropical setting. These operations satisfy all the ring
axioms except for the existence of an additive inverse and
thus turn (R ∪ {∞},⊕,⊙) into a semiring.

Defining order of exceptional points. In the fol-
lowing, we define the notion of order of an EP of a non-
Hermitian system. To the best of our knowledge, this
definition is consistent with the literature on this topic.
Let H(ν) be the Hamiltonian of a non-Hermitian sys-
tem in one variable ν with an EP at ν = 0 and let
p(ν, λ) ∈ C[ν, λ] be its characteristic polynomial. In the
following, we regard p as a polynomial in one variable
λ and with coefficients in the field C{{ν}} of Puiseux
series.

Definition .1. Let p ∈ C{{ν}}[λ] have at least one non-
zero root. Suppose that p has a non-trivial Puiseux series
root, i.e. a root s such that the least exponent of s is

non-zero. In this case, the order of this EP (at ν = 0)
is the maximum absolute value of the denominator n of
m/n ∈ Q (in reduced form) where m/n varies over the
least exponent in the Puiseux series expansion over all
the non-trivial roots of p. Otherwise, if all the roots of p
have zero as their least exponent, then ν = 0 is called a
degenerate point.

Consider a system at an EP-N (at ν = 0) given by
the HamiltonianH0(x1, x2, ...) where x1, x2... are system-
dependent parameters. When we perturb this system
around the EP, the eigenvalues of the perturbed Hamil-
tonian H(ν) = H0 + νH1 follow a Puiseux series in ν,

λ(ν) = γ1ν
1/N + γ2ν

2/N + ..., (2)

where ν is the perturbation strength. To leading order,
the response goes as ∆λEP−N ∝ ν1/N . Our tropical
geometric approach features a characterization of EPs
by determining such leading order behavior.

Characterizing exceptional points using tropi-
cal geometry. Next, we present the tropical geometric
framework that can be used to reveal the structure of EPs
and characterize as well as tune them in various physical
platforms.

For a field K, a valuation on K is defined as a function
val : K → R ∪ {∞} such that:

• val(a) = ∞ if and only if a = 0;

• val(ab) = val(a) + val(b) ;

• val(a+ b) ≥ min{val(a), val(b)} for all a, b ∈ K.

In our framework, we primarily deal with the field of
Puiseux series with coefficients in the complex numbers
C. This field has a natural valuation which is given by
taking a non-zero Puiseux series to the lowest exponent
that appears in its expansion. For example, val(t2− 2t+
3) = min{val(t2), val(−2t), val(3)} = min{2, 1, 0} = 0
and val(t1/2 − t3/4 + t1 + t2 + . . . ) = 1/2.

In its most basic form, tropical geometry gives a
method to compute the valuations of the non-zero roots
of a non-zero polynomial p ∈ K[λ] in terms of the val-
uations of the coefficients of p. More precisely, given a
non-zero polynomial p =

∑d
i=0 aiλ

i ∈ K[λ], its tropi-
calization trop(p) : R → R is defined as trop(p)(ω) =
mini{val(ai) + i · ω}.

A real number ω0 is called a tropical root of trop(p) if
the minimum defining trop(p)(ω0) is attained by at least
two distinct terms val(aj)+j·ω0 and val(ak)+k·ω0 for j ̸=
k. Equivalently, the tropical roots of trop(p) precisely
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are the real numbers where trop(p) is not differentiable,
called the bend locus of trop(p).

The fundamental theorem of tropical geometry asserts
that the set of tropical roots of trop(p) is precisely the set
of valuations of the non-zero roots of p [37, Chapter 3,
Section 2]. This leads us to one of the main propositions
of our framework. For a non-Hermitian Hamiltonian,
H(ν), with a characteristic polynomial p(ν, λ) ∈ C[ν, λ],
as described before, p can be regarded as an element in
C{{ν}}[λ], where C{{ν}} is equipped with its standard
valuation that takes a non-zero Puiseux series s to the
exponent of the leading order term of s.

Proposition .2. Suppose that trop(p(ν, λ)) has a non-
zero tropical root. The order of the EP at ν = 0 of
H(ν) is the maximum absolute value of the denominator
n of m/n (in reduced form) where m/n varies over all
the non-zero tropical roots of trop(p(ν, λ)). Otherwise, if
trop(p(ν, λ)) has no non-zero tropical roots, then ν = 0
is a degenerate point.

Proof. By the fundamental theorem of tropical geome-
try [37, Chapter 3, Section 2], the set of tropical roots
of trop(p) is precisely the set {val(s)}s where s varies
over all the non-zero Puiseux series solutions of p(ν, λ) ∈
C{{ν}}[λ]. With this information at hand, the statement
follows from the definition of the order of an EP.

To simply illustrate our framework, we consider an ex-
perimentally realizable non-Hermitian system consisting
of two coupled sites with gain and loss (see Fig. 1a). The
Hamiltonian reads

H2 =

(
α+ iγ κ

κ −α− iγ

)
. (3)

Here α quantifies the onsite energies, γ is the corre-
sponding gain/loss coefficient, and κ is the coupling be-
tween the sites. This system has an EP at α = 0 if
γ = κ. The characteristic polynomial and the corre-
sponding tropicalization for γ = κ are

p(α, λ) = −2iκα− α2 + λ2, (4)

trop (p(α, λ)) (ω) = min (1, 2ω) . (5)

The root of the tropical polynomial is given by the
bend locus of trop(p(α, λ))(ω) which occurs at ω0 = 1/2,
as shown in Fig. 1b. Using the fundamental theorem of
tropical geometry, we then conclude that p(α, λ) has a
non-zero root with valuation s = 1/2. This implies that
the roots of p(α, λ), i.e., the eigenvalues of H have the
form λ ∼ α1/2 near the EP at α = 0. Thus, the EP at

a

b

FIG. 2. Characterization of exceptional points through
amoebas in a three-site gain and loss model. Realiza-
tion of Newton polygon (left), amoeba (center), and the spine
of the amoeba for (a) ϕ = −π/6 and (b) ϕ = −π/4. The con-
vex slope of the Newton polygon defines the order of EPs.
We obtain third-order EPs in (a) and second-order EPs in
(b). The interior point in the Newton polygon in (a) results
in a vacuole in the amoeba. The amoeba structures abruptly
change from (a) to (b) while transitioning from third-order to
second-order EPs. We set γ =

√
2κ and κ = 1.0.

α = 0 is a second-order EP (see the supplement [36] for
a detailed discussion). Further, in the supplement [36],
we use tropicalization to illustrate how our framework
provides a natural way to characterize and tune to higher-
order EPs using companion matrices.

Relation to amoebas and Newton polygons.
Above, we saw how tropical geometry can be used to
determine the order of EPs. A precursor to tropical ge-
ometry is a construction called the amoeba of a complex
algebraic variety due to Gelfand, Kapranov and Zelevin-
sky [38]. Let V ⊆ (C⋆)n be the set of solutions, all of
whose coordinates are non-zero, of a finite set of Lau-
rent polynomials in n variables. Let Log : (C⋆)n →
Rn be the logarithmic map that takes (z1, . . . , zn) to
(log(|z1|), . . . , log(|zn|)). The amoeba of V is the image
of the logarithmic map restricted to V . A related and im-
portant notion is the spine of the amoeba and is defined
as the limit as t → ∞ of the parameterized logarithmic
map Logt(z1, . . . , zn) = (logt(|z1|), . . . , logt(|zn|)). In the
Methods section we present the connection of amoeba to
tropicalization.

We are primarily concerned with amoebas of polyno-
mials in two variables with complex coefficients, namely
characteristic polynomials of a non-Hermitian Hamilo-
tian in one variable. Typical examples of such amoebas
are shown in Fig. 2, which will be discussed shortly. The
amoeba of a typical polynomial contains (unbounded)
rays that are called its tentacles. We recall that the New-
ton polygon of p is the convex hull of the exponents of
the monomials in the support of p. The following propo-
sition that relates the edges of the Newton polygon of p
and the amoeba (of the algebraic variety) associated to
p is of fundamental importance to our framework.

Proposition .3. The set of directions of the tentacles
of the amoeba associated to p is precisely the set of outer
normals of the edges of the Newton polygon of p.
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FIG. 3. Detecting skin effect in the non-Hermitian
SSH model with higher-order EPs via tropical geom-
etry (a) Schematic of SSH model with non-reciprocal hop-
ping and a weak link connecting the last site to the first.
The inter-unit cell hopping is a constant t2, but the left and
right intra-unit cell hoppings are given by t ± γ incorporat-
ing non-Hermiticity in the system. (b) Newton polygons and
the concomitant amoebas for SSH model with odd number
of sites. Here we choose t1 = 2.0, γ = 1.0 and t2 = 1.0.
The structure is similar for all values t1 ̸= γ. (c) At t1 = γ
the Newton polygon abruptly transforms to a single line with
slope 1/N at t1 = γ, indicative of a higher order EP and the
skin effect. The amoeba collapses to a single line perpendicu-
lar to the Newton polygon, characterizing the non-Hermitian
phase transition. Panel (d) shows the tropicalization for the
general case corresponding to Eq. 10. Each straight line rep-
resents a term in Eq. 10. (e) Tropicalization for the case of
t1 = γ, wherein the coefficients of all the points corresponding
to λM vanish, other than M = 0, N . The bend locus gives
the tropical root ω0 = 1/N , which indicates the presence of
an N -th order EP and, correspondingly, the occurrence of a
non-Hermitian skin effect. Here we choose N = 5.

We refer to Proposition 1.9 [38] and Section 1.4 [37]
for a more general version of this proposition.

We illustrate this proposition using a three-site non-
Hermitian trimer model with balanced gain and loss and
an asymmetric onsite potential. The Hamiltonian for the
trimer is

H3 =

α+ iγ κ 0
κ 0 κ
0 κ β − iγ

 , (6)

where the different symbols have a meaning analogous
to the two-site model. We use the transformation β =
α tanϕ to scan all angles in the α-β parameter plane.
Using the formalism developed above, we can find the
tropical roots to reveal the nature of EPs. In Fig. 2
we illustrate the amoebas and the concomitant Newton
polygons for various ϕ. Note that the steepest slope of
the Newton polygon ∆ determines the order of the EPs.
Interestingly, the integer points of the Newton polygon

correspond to the vacuole in the amoeba (see Fig. 2a).
The structure of the amoeba drastically transforms from
ϕ = −π/4 to π/4 while the tropical roots change from
1/2 to 1/3 with a transition from second-order to third-
order EPs. Therefore, the structure of the amoeba can
be directly used to identify the various non-Hermitian
phases.

Tropical analysis of the Su-Schrieffer-Heeger model

Below we apply the complete tropical approach de-
veloped in this work to the paradigmatic non-Hermitian
SSH Hamiltonian with non-reciprocal hopping [39, 40].
We demonstrate how our tropical geometric approach
can detect the NHSE, which is a unique feature of non-
Hermitian systems where a large number of states ac-
cumulate at boundaries of open systems [35, 41]. The
Hamiltonian of the non-Hermitian SSH model reads

HSSH = −
∑
i

[t1(c
†
i,Aci,B + h.c.) + t2(c

†
i+1,Aci,B + h.c.)]

+
∑
i

γ(c†i,Bci,A − c†i,Aci,B), (7)

where c†i,α(ci,α) is the fermionic creation (annihilation)
operator at site i for sublattice α = A,B. The intra-
and inter-unit cell hopping amplitudes are given by t1
and t2, respectively, and γ introduces a non-reciprocity
only in the intra-unit cell hopping, resulting in non-
Hermiticity (see Fig. 3a). We introduce a perturbation,
σt2, σ ∈ [0, 1], which connects the last and first sites.
The Hamiltonian takes the matrix form (ϵ = σt2)

HSSH(ϵ) =


0 t− γ 0 · · · ϵ

t+ γ 0 t2 · · · 0
0 t2 0 · · · 0
...

...
...

. . .
...


N×N

. (8)

The characteristic equation, in turn, is

p(ϵ, λ) = mod(N − 1, 2){γ2 − t21}
N
2 − t

N−2
2

2 (t1 + γ)N/2ϵ

+
∑

M=N,N−2,···
[zM{γ2 − t21}

N−M
2 + t2OM ]λM ,

(9)

where each zM is a constant, zM ∈ Z. The tropical
polynomial is calculated to be
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FIG. 4. Holonomy characterization of disordered Hatano-Nelson model. (a) Riemann surface for a quartic root
in the complex plane. (b) The Hatano-Nelson model exhibits anisotropic exceptional behaviour in the parameter space as
illustrated by the different projection of eigenbands along different parameter planes (the number of petals representing the
order of EP) (c), (d) Swapping of eigenmodes arising from Riemann sheet exchange while tracing a loop in parameter space
given by R = ceiψ, ψ ∈ (0, 2π). We show the holonomy properties when the loop (c) critically touches EP and (d) encloses
the EP. Note that in (d) the N eigenmodes undergo a cyclic permutation among themselves while in (c) eigenmode evolution
forms N petals in the complex energy plane where N is the order of EP. Tropicalization and tropical roots showing (e) fourth-
(θ = 0, ϕ = π/4), (f) second- (θ = 0, ϕ = 0), and (g) third-order (θ = π/4, ϕ = 0) EPs for different values of ϕ and θ. The
insets show holonomy characterization in the presence (brown) and absence (blue) of disorder. Disorder preserves the stability
of EPs but renormalizes the spectral properties.

trop (p(ϵ, λ)) (ω) = min{m, · · · (N − 2)ω,Nω}, (10)

where m = 0 (1) for even (odd) sites. The tropical-
ization and bend locus for p(ϵ, λ) are shown in Fig. 3d
and 3e. Strikingly at t1 = γ and t2 → 0, the coefficients
of all the terms in p(ϵ, λ) vanish other than the ϵ1 and
the λN terms which lead to the solution λ = ϵ1/N . This
fractional exponent, in turn, shows that higher-order EPs
appear for t1 = ±γ with an algebraic multiplicity that
scales with system size while the geometric multiplicity
remains unity. This is a signature of the NHSE, wherein
all the bulk modes collapse to one state and are exponen-
tially localized at the edge under open boundary condi-
tions.

This physics can be beautifully captured by the amoe-
bas and their corresponding Newton polygons. In Fig. 3b
and 3c, we present the Newton polygon and associated
amoeba for this model. The edges of the Newton polygon
are perpendicular to the tentacles of the amoeba. The
structure of the amoeba remains invariant unless we have
t1 = γ, where the amoeba and the corresponding New-
ton polygon strikingly collapse to a single straight line,
as shown in Fig. 3c. The Newton polygon in the latter
case has a slope of 1/N , establishing the presence of an
EP-N .

Application to disorder and holonomy

Our tropical geometric framework can be used to ex-
tract universal properties of EPs even in the presence of
disorder as we show next. To illustrate, we consider the
celebrated Hatano-Nelson model [42] under open bound-
ary conditions with N sites, along with upper corner per-
turbations, i.e., additional couplings in the (1, j)-th en-
tries of the Hamiltonian, where j = N,N − 2 · · · . For 4
sites, the Hamiltonian reads

H4 =


0 δ η ∆

(2 + δ) 0 δ 0
0 (2 + δ) 0 δ
0 0 (2 + δ) 0

 . (11)

The Hamiltonian can be written as a sum of two com-
panion matrices indicating that it features different ex-
ceptional behaviour along different sections of the param-
eter space. To study the structure of EPs in the parame-
ter space of δ, ∆ and η, we shift to generalized spherical
coordinates δ = r cos θ cosϕ, ∆ = r cos θ sinϕ, η = r sin θ
and study the tropicalization of the characteristic equa-
tion p(r, λ). We find highly anisotropic behaviour result-
ing in EP-2, EP-3 or EP-4 along various directions, as
summarized in Fig. 4. Please refer to the supplement for
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a more detailed analysis [36].

Here, we will use the N = 4 case as an example to show
that the exceptional behaviour in Hatano-Nelson model
remains universal even in the presence of certain kinds of
disorder, and the disordered Hamiltonians are homotopic
to each other with respect to the tropicalization. The
Hamiltonian, H4, in the presence of a general form of
scaling disorder reads

Hdis =


0 aδ η ∆

(2 + δ)c 0 δb 0
0 (2 + δ)d 0 δm
0 0 (2 + δ)n 0

 , (12)

where a, b, c,m and n are arbitrary real numbers that
introduce disorder in the asymmetric hopping terms.
Such models are well-studied and can be experimentally
realized in different physical settings [43]. The form of
the characteristic equation now changes, but remarkably,
its tropicalization remains the same as for H4.

trop (p(r, λ)(ω)) = min(4ω, 2ω + 1, ω + 1, 1), (13)

for cos θ, sin θ, cosϕ, sinϕ ̸= 0. The tropical polyno-
mial remains invariant to the values of disorder scaling
parameters suggesting the exceptional behaviour remains
invariant, or is universal in the presence of disorder. Our
framework makes this apparent through the tropicaliza-
tion. A complementary view is to analyze the holonomy
around the EPs. Consider varying some system param-
eters to form a loop in the parameter space while si-
multaneously tracing the evolution of the complex eigen-
modes. If the loop encloses an EP-N , N eigenmodes
would undergo a cyclic permutation, which can be un-
derstood using holonomy matrices [44, 45]. Whereas,
if the loop marginally touches an EP-N , the projection
of the eigenmode evolution forms N petals in the com-
plex energy plane, as shown in Fig. 4c. We used such a
marginally touching loops to study the holonomy prop-
erties for Hdis. We find that in the presence of disor-
der, the eigenvalues get scaled, however their holonomy
properties do not change, as shown in insets of Fig. 4e-g.
As the tropicalization remains invariant, the set of dis-
ordered Hamiltonians are homotopically connected and
the EPs are universal.

OUTLOOK

Our work opens up several avenues for exploration.
While we have formulated the tropical geometric frame-
work for a single variable, we envisage that it should be

possible to generalize this to several variables – this will
allow treating multiple perturbations on the same foot-
ing. It will be interesting to use our approach to clas-
sify the different non-Hermitian symmetry classes, and
explore potential connections of tropical geometry to K
theory [46]. Since our approach allows treating disorder
in a natural way, it could be interesting to connect trop-
ical geometry and random matrices, which have appli-
cations in many different fields of physics [47]. We also
expect our analytical approach to be practically useful
for tuning to EPs and identifying conditions for NHSE in
various experimental arenas. Finally, we note that, very
recently, amoebas have been used to determine the gen-
eralized Brillouin zone for non-Hermitian systems [48].
In summary, we have introduced and developed a new
framework to characterize EPs using tropical geometry.
We have illustrated its implications using paradigmatic
SSH and Hatano-Nelson models. Our work, bridging
the fields of tropical geometry and non-Hermitian phe-
nomena, is particularly timely given the surge of interest
in non-Hermitian systems. We hope that our findings
motivate further synergy between mathematics and non-
Hermitian physics.
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METHODS

Fundamentals of tropical geometry. Here we
summarize some of the fundamentals of tropical geom-
etry. The algebraic structure of tropical geometry is also
known as the min-plus algebra. Many of the usual ax-
ioms of arithmetic remain valid in the tropical setting.
For instance, addition and multiplication are commuta-
tive

x⊕ y = y ⊕ x, x⊙ y = y ⊙ x. (14)

Associative property also holds, as does the distribu-
tive law

x⊙ (y ⊕ z) = x⊙ y ⊕ x⊙ z. (15)

Both tropical operations have an identity element –
infinity for addition and zero for multiplication.

x⊕∞ = x, x⊙ 0 = x. (16)

A distinct feature of tropical arithmetic is the absence
of subtraction operation. On the other hand, tropical
division is the classical subtraction. So, (R ∪ {∞},⊕,⊙)
satisfies all the ring axioms except for the existence of
additive inverse – such algebraic structures are termed
semirings.

Newton polygon formalism. We briefly discuss the
Newton polygon formalism which is dual to amoebas. Let
us start with the Puiseux series solution of the equation
f(x, y) = 0 in a suitable neighbourhood of the origin (in
our case an EP (ν = 0)). Any polynomial f(x, y) with
the form

f(x, y) =
∑
η,ζ

aηζx
ηyζ , (17)

admits a solution y = txµ, where t is a complex number
and µ = p/q is a positive rational number. One can find
a solution by substituting y = txµ in Eq. 17, to obtain

f(x, txµ) =
∑
η,ζ

aηζx
η+µζtζ = xξ

∑
η,ζ

aηζt
ζ . (18)

The above equation puts a constraint that f(x, y) con-
tains only monomials xηyζ for which η + µζ = ξ, which
is the essential feature of the Newton polygon. The ge-
ometric interpretation of Newton polygon is embedded
in the following mapping. Each monomial xηyζ maps to
the pair (η, ζ) of natural numbers comprising a set of N2

lattice points with integer coordinates for non-zero co-
efficients aηζ ̸= 0. This set of lattice points forms the
carrier ∆(f) of f , thus

∆(f) = {(η, ζ) ∈ N2|aηζ ̸= 0}. (19)

For a convergent power series f(x, y) with a carrier
∆ (f), one can define a convex hull from each point of
the carrier ∆ (f). The boundary of the convex hull, de-
lineating a compact polygonal path, gives the Newton
polygon of f . The steepest segment of the Newton poly-
gon gives the lowest order term for the Puiseux series
solution, thus defining the order of EP [49, 50]. More
concretely, the condition η + µζ = ξ for all (η, ζ) ∈ ∆(f)
indicates that all points of ∆(f) lie on a line, with a slope
− 1

µ , and the line meets the α−axis at η = ξ.
Amoeba and tropicalization. We next present the

connection between amoeba and tropicalization as used
in the main text. The absolute value |.| over the complex
numbers satisfies the archimedean property [51, Chapter
9, page 313]. Any field F has an absolute value |.|t that is
non-archimedean, i.e., does not satisfy the archimedean
property: |0F |t = 0 and |c|t = 1 for all c ̸= 0F in F ,
where 0F is the additive identity of F . This is usu-
ally called the trivial absolute value on F . Otherwise,
the non-archimedean absolute value is called non-trivial.
Fields such as the rational numbers Q, the field C((t)) of
formal Laurent power series in one variable (with com-
plex coefficients) are naturally equipped with non-trivial
(non-archimedean) absolute values. More explicitly, i.
|n|p := e−valp(n) for any n ∈ Q where p is a prime, valp(n)
is ordp(r) − ordp(s) where n = r/s such that r, s ∈ Z,
s ̸= 0 and ordp(i), for an integer i, is the largest power
of p that divides i, ii. |ℓ(z)| for a Laurent power series
ℓ(z) is defined as e−ord(ℓ(z)) where ord(ℓ(z)) is the least
exponent of z in the support of ℓ. The rational num-
ber ord(ℓ(z)) is also called the valuation of ℓ(z) and is
denoted by val(ℓ(z)).
Suppose that K is an algebraically closed field (every

polynomial of degree at least one in K[t] has a root)
equipped with a non-trivial, non-archimedean absolute
value |.|K. Our primary example of such a field is the
field C{{t}} of Puiseux series is one variable. The notion
of amoeba that we defined over the complex numbers
can also be mimicked over K as follows. Suppose that
V ⊆ (K⋆)n is the set of solutions, all of whose coordinates
are non-zero, to a finite set of Laurent polynomials in n-
variables with coefficients in K. Let LogK : (K⋆)n → Rn

be the map LogK(s) = − log |s|K (note that s ̸= 0K) [52].
The tropicalization of V is defined as the image of the
map LogK restricted to V . Hence, the tropicalization of
V is a non-archimedean analogue of an amoeba.
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