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Abstract. For a finite simple graph G, the bunkbed graph G± is defined to be

the product graph G�K2. We will label the two copies of a vertex v ∈ V (G)

as v− and v+. The bunkbed conjecture, posed by Kasteleyn, states that for

independent bond percolation on G±, percolation from u− to v− is at least as

likely as percolation from u− to v+, for any u, v ∈ V (G). Despite the plausibility

of this conjecture, so far the problem in full generality remains open. Recently,

Hutchcroft, Nizić-Nikolac, and Kent gave a proof of the conjecture in the p ↑ 1

limit. Here we present a new proof of the bunkbed conjecture in this limit, working

in the more general setting of allowing different probabilities on different edges of

G±.

1. Introduction

In this introduction we state two forms of the bunkbed conjecture, discuss briefly
the known results about special cases of the conjecture, and then proceed to state
the result that we will prove.

If G = (V,E) is a finite simple graph, then the bunkbed graph G± is the box
product G�K2. Thus, G± = (V ±, E±) consists of two copies of G, labelled G+ =
(V +, E+) and G− = (V −, E−), where V + := {v+ : v ∈ V }, and similarly for V −,
together with all ‘vertical’ edges connecting v+ and v− added for all vertices v ∈ V .
That is,

E(G±) = E− ∪ E+ ∪ {v−v+ : v ∈ V }.

For a graph G, we call a function p : E(G)→ [0, 1] an edge-probability function.
We call an edge-probability function on a bunkbed graph G± symmetric if for every
edge xy ∈ E we have p(x+y+) = p(x−y−).

Given an edge-probability function p for a graph G, we can define a percolation
process as follows. We set each edge e ∈ E(G) to be open with probability p(e) and
closed with probability 1− p(e), independently of all other events. We then define
Pp(u ↔ v) to be the probability that there is a path of open edges between two
vertices u and v of G. As usual we call this probability the two-point function.

As discussed by Rudzinski [8] there are several different statements referred to as
‘the bunkbed conjecture’. We first state the conjecture in its most general form.

Conjecture 1.1 (Bunkbed conjecture). Let G = (V,E) be a finite simple graph
with bunkbed graph G±, and let p : E(G±)→ [0, 1] be a symmetric edge-probability
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function. Then for any u, v ∈ V , we have

Pp(u− ↔ v−) ≥ Pp(u− ↔ v+). (1.1)

The special case in which p takes some constant value p ∈ [0, 1] is Bernoulli bond
percolation. In this case we denote the two point function by Pp(u ↔ v), and have
the following weaker form of the conjecture.

Conjecture 1.2 (Uniform bunkbed conjecture). Let G = (V,E) be a finite simple
graph with bunkbed graph G±. Then for any u, v ∈ V and any p ∈ [0, 1], we have

Pp(u− ↔ v−) ≥ Pp(u− ↔ v+). (1.2)

The bunkbed conjecture was first posed by Kasteleyn in 1985, in the form of
Conjecture 1.1, as noted by Kahn and Berg [4, Remark 5]. Despite attracting
significant interest since then, it so far remains unproved.

Several special cases are however known; de Buyer [1] proved Conjecture 1.2 when
G is a complete graph and p = 1/2, and then extended this result to all p ≥ 1/2 [2].
A little later van Hintum and Lammers [9] used a different method to resolve the
case of the complete graph for all p ∈ [0, 1].

Further developments have been made by Richthammer [7], who proved Con-
jecture 1.1 for several other classes of graph, including complete bipartite graphs,
complete graphs minus a complete subgraph, and symmetric complete k-partite
graphs.

More recently, the case of the p ↑ 1 limit has been explored by Hutchcroft, Nizić-
Nikolac, and Kent [3]. Their results build on the work of Linusson [6, 5], and their
paper provides a thorough and detailed account of a proof of the following theorem.

Theorem 1.3. For any graph G there is a constant ε0(G) > 0 such that the uniform
bunkbed conjecture holds for all p ≥ 1− ε0(G).

Our goal here is to generalise Theorem 1.3 to the setting of Conjecture 1.1. This
generalisation is stated as follows.

Theorem 1.4. For any graph G there is a constant ε1(G) > 0 such that the bunkbed
conjecture holds for all symmetric edge-probability functions p satisfying p(e) ≥
1− ε1(G) for all e ∈ E(G±).

Our proof of Theorem 1.4 will be elementary and entirely self-contained, proceed-
ing by way of considering cuts in the graph G±.

2. Definitions and Terminology

We call a set A ⊆ V a (u− v)-cut if A contains precisely one of u and v. Define
the edge-boundary of A to be ∂A := {xy ∈ E : x ∈ A, y /∈ A}. For x ∈ V and cut
A ⊆ V ±, we define

hx(A) := |{x−, x+} ∩ A|. (2.1)
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In many cases we will care only about the value of hx modulo 2. With this in
mind, we define the support of a cut as follows.

supp(A) := {x ∈ V : hx(A) = 1}. (2.2)

We define the support of a collection of cuts to be the union of their supports:

supp(A1, . . . , Ar) := supp(A1) ∪ · · · ∪ supp(Ar). (2.3)

Note that a cut and its complement have the same edge-boundary, and so we
may assume that a (u, v)-cut A contains u and not v. Let S− and S+ be the sets of
(u−− v−)-cuts containing u− and (u−− v+)-cuts containing u− respectively, and let
S± := S− ∪ S+.

We will often consider the connectedness of the support of A, and so define

T± := {A ∈ S± : u, v are in the same component of G[supp(A)]}. (2.4)

with T− and T+ defined similarly in terms of S− and S+ respectively.
To relate cuts to percolation, note that two vertices u, v ∈ V are disconnected

after percolation if and only if there is a (u − v)-cut A such that all edges in ∂A
are closed. An example of such an A is precisely those vertices reachable from u
by paths of open edges. For a cut A, let EA be the event that all edges in ∂A are
closed.

We will be considering our expressions as polynomials, and will say that polyno-
mial g strictly divides h if g divides h and g 6= h.

3. Proof of Theorem 1.4

After some preliminary work, we reduce proving Theorem 1.4 to three claims,
which we prove in turn. First we may rewrite the probability that there is no
percolation in terms of cuts, considering first the case of u− and v− to find

Pp(u− = v−) = Pp

( ⋃
A∈S−

EA

)
. (3.1)

We can expand the union into an alternating sum of intersections via the well-
known inclusion-exclusion principle.

Pp

( ⋃
A∈S−

EA

)
=
∑
A∈S−

Pp(EA)−
∑

A1 6=A2∈S−
Pp(EA1 ∩ EA2) + · · · , (3.2)

with analogous results for S+. Note that, setting q(e) := 1−p(e) for all e ∈ E(G±),
we have

Pp(EA1 ∩ · · · ∩ EAr) = q(e1) · · ·q(ek), (3.3)
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where ∂A1 ∪ · · · ∪ ∂Ar = {e1, . . . , ek}. This gives us an immediate method for
interpreting the expressions like those on the right-hand side of equation (3.2) as
polynomials with variables q(e).

To prove our result, we need to show for fixed u and v that Pp(u− = v+) −
Pp(u− = v−) is positive for vertices u 6= v. To this end we now fix u and v and
define

f(q) := Pp(u− = v+)− Pp(u− = v−), (3.4)

where f(q) is considered as a polynomial with variables {q(e) : e ∈ E(G±)}.
Noting that the limit p ↑ 1 is exactly the same as q ↓ 0, we wish to show that every

monomial in f(q) with negative coefficient is strictly divided by some monomial in
f(q) with positive coefficient.

We are now ready to state the three claims which will prove Theorem 1.4. The
first two claims deal with terms arising from the first summation of equation (3.1).

Claim 3.1. There is a bijection φ : S+ \T+ → S− \T− which preserves the value of
Pp(EA). Thus ∑

A∈S+\T+

Pp(EA)−
∑

A∈S−\T−

Pp(EA) = 0. (3.5)

Claim 3.2. For every cut A ∈ T− there is a B ∈ T+ such that the polynomial
Pp(EB) strictly divides Pp(EA).

The third claim deals with the terms arising from the summations in equation
(3.1) involving more than one cut.

Claim 3.3. For any integer r ≥ 2, each nonzero monomial in the polynomial∑
distinct A1,...,Ar∈S+

Pp(EA1 ∩ · · · ∩ EAr)−
∑

distinct A1,...,Ar∈S−
Pp(EA1 ∩ · · · ∩ EAr) (3.6)

is strictly divided by Pp(EB) for some cut B ∈ T+.

Note that once the claims are proved, Theorem 1.4 follows, as we can rewrite
equation (3.4) using equations (3.1) and (3.2), then apply the results of the claims
to write

f(q) =
∑
C∈T+

Pp(EC)(1 + gC(q)),

for some polynomials gC(q), each with constant coefficient zero. Then as q ↓ 0, the
dominating term in 1 + gC(q) is 1, and so f(q) > 0 for q sufficiently small.

We now prove our three claims.

3.1. Proof of Claim 3.1. Take some cut A ∈ S+ \ T+. Firstly, if v /∈ supp(A),
then we must have hv(A) = 2, so A ∈ S± \ T± and we can set φ(A) = A.

Otherwise, as G[supp(A)] has u and v in different components, we can map A
to the cut B ∈ S− \ T− by swapping x+ with x− for every x in the G[supp(A)]-
component containing v. Note that supp(A) = supp(B), so this map is invertible.
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This gives us a bijection between S+ \T+ and S− \T− which preserves the value
of Pp(EA), as required.

3.2. Proof of Claim 3.2. Take any A ∈ T−, and consider the cut B defined as
follows.

B := {x− : x ∈ supp(A)}. (3.7)

First, we may note that as u and v are in the same component of G[supp(A)],
B ∈ T+. It remains to show that the polynomial Pp(EB) strictly divides Pp(EA).

Take an edge e ∈ ∂B. If e = x−x+ for some x ∈ V , then x− ∈ B, so x ∈ supp(A)
and so e ∈ ∂A as well.

If e = x−y− for some x, y ∈ V with x ∈ supp(A) and y /∈ supp(A), then either
x−y− or x+y+ is in ∂A, as required.

Note that no edge of the form x+y+ is in ∂B, so we have covered all cases and
shown that Pp(EB) divides Pp(EA). It remains to see that this division is strict.

Take a path u = w(1), w(2), . . . , w(l) = v from u to v in supp(A), so for each i

exactly one of w
(i)
− and w

(i)
+ is present in A. Then if qi := q(w

(i)
− w

(i+1)
− ) = q(w

(i)
+ w

(i+1)
+ )

are the variables corresponding to the horizontal edges in this path, then we know
that no qi divides the polynomial Pp(EB). However, u− ∈ A and v+ ∈ A, so for

some j we must have w
(j)
− ∈ A and w

(j+1)
+ ∈ A. But then q2j divides Pp(EA), so the

division is indeed strict, as required.

3.3. Proof of Claim 3.3. We may begin as in the proof of Claim 3.1.
Let S := supp(A1, . . . , Ar). If u and v are in different components of G[S], then

we can flip the sign of the component of v in all of A1, . . . Ar, and the corresponding
terms cancel from the sums in equation (3.6). Thus we are left to consider collections
of cuts with u and v in the same G[S]-component. Now define a cut B as follows.

B := {x− : x ∈ S}. (3.8)

As in the proof of Claim 3.2, we know that B ∈ T+. Note that if x−x+ ∈ ∂B is
a vertical edge, then x− ∈ B and so x ∈ S. Thus hx(Ai) = 1 for some i, and so
x−x+ ∈ ∂Ai.

If x−y− ∈ ∂B, then assume x− ∈ B and y− /∈ B. Then for some i we have
hx(Ai) = 1, and also hy(Ai) 6= 1 (as the latter holds for all i). Thus either x−y− ∈
∂Ai or x+y+ ∈ ∂Ai. Therefore Pp(EB) divides Pp(EA1 ∩ · · · ∩ EAr).

So it suffices to prove that either the polynomial Pp(EA1 ∩ · · · ∩ EAr) strictly
divides Pp(EB), or there is a further cut C ∈ T+ with Pp(EC) strictly dividing
Pp(EB).

If supp(B) = S is not a connected subset of G, then we can define C to be B
restricted to the component of S containing u and v. Then C ∈ T+ and Pp(EC)
strictly divides Pp(EB), as required.

So now assume that S is connected, and assume further for contradiction that
Pp(EA1 ∩ · · · ∩ EAr) = Pp(EB).
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First observe that each Ai must be constant on S and constant on V \ S, as
otherwise we would have a horizontal edge in ∂Ai with no corresponding edge in
∂B. Next, note that as u− ∈ Ai and u+ /∈ Ai, all Ai are equal to B on the support
of B. Thus the only remaining way in which the Ai can differ is by taking different,
constant values on V \ S.

Assume that x−y− ∈ ∂B, with x ∈ S and y /∈ S, and consider hy(Ai).
If hy(Ai) = 1, then y−y+ ∈ ∂Ai, but this vertical edge is not in ∂B, contradicting

our assumption of equality. Thus, as r ≥ 2, the only remaining case is that r = 2,
and wlog hx(A1) = 0 and hx(A2) = 2. But then x−y− ∈ ∂A1 and x+y+ ∈ ∂A2,
giving q(x−y−)2 | Pp(EA1 ∩ EA2), again contradicting our assumption of equality.

Thus for any distinct A1, . . . , Ar, there is a C ∈ T+ for which the polynomial
Pp(EA1 ∩ · · · ∩ EAr) strictly divides Pp(EC). This is exactly the result we require,
so we deduce Claim 3.3, and hence also Theorem 1.4.

4. Concluding Remarks

For the sake of simplicity, we have not bounded the largest value ε1(G) for which
we can prove Theorem 1.4. To find such a bound using the methods presented here,
one would need to count, for each B ∈ T+, the number of terms associated with
B by Claims 3.2 and 3.3. The number of terms in the sums in equation (3.6) is
doubly exponential in n, and the bound attained by our proofs as presented would
reflect this. However, the methods detailed here could be extended to investigate
how terms cancel between the sums in (3.6), which could lead to a much better
bound on ε1(G).

A result of Rudzinski and Smyth [8] shows that if a universal bound ε1(G) > δ > 0
could be established, then Conjecture 1.2 would be proved for all p. However,
achieving such a bound seems, at present, extremely difficult.

As detailed in [3, Section 1.1], if we take our graph to be G = Pn, the path on
n + 1 vertices, set all q(e) = q, and take u and v to be opposite ends of the path,
then our polynomial f(q) as in equation (3.4) is equal to qn+1(1− q)n. In the case
of n = 2, we have f(q) = q5 − 2q4 + q3, which cannot be proved to be positive by
pairing terms off with each other. To extend our method to all values of q, we would
need a technique to collect and factorise sets of terms, so we could write f(q) as a
sum of positive factorised expressions, as in the example above.
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