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ON THE ORDER OF SEMIREGULAR AUTOMORPHISMS OF CUBIC

VERTEX-TRANSITIVE GRAPHS

MARCO BARBIERI, VALENTINA GRAZIAN, AND PABLO SPIGA

Abstract. We prove that, if Γ is a finite connected cubic vertex-transitive graph, then either
there exists a semiregular automorphism of Γ of order at least 6, or the number of vertices of
Γ is bounded above by an absolute constant.

1. Introduction

A fascinating old-standing question in the theory of group actions on graphs is the so-
called Polycirculant Conjecture: non-identity 2-closed transitive permutation groups contain
non-identity semiregular elements. This formulation of the conjecture was introduced by Klin
[Kli98]. However, the question was previously posed independently by Marušič [Mar81, Prob-
lem 2.4] and Jordan [Jor88] in terms of graphs: vertex-transitive graphs having more than one
vertex admit non-identity semiregular automorphisms.

In this paper, we focus our attention on cubic graphs. In [MS98], Marusič and Scappellato
proved that, each cubic vertex-transitive graph admits a non-identity semiregular automorphism,
settling the Polycirculant Conjecture for such graphs. Their proof did not take into account the
order of the semiregular elements. In this direction, Cameron et al. proved in [CSS06] that,
if Γ is a cubic vertex-transitive graph, then Aut(Γ) contains a semiregular automorphism of
order at least 4. They also conjectured that, as the number of vertices of Γ tends to infinity,
the maximal order of a semiregular automorphism tends to infinity. This was proven false by
the third author in [Spi14] by building a family of cubic vertex-transitive graphs where such
a maximum is precisely 6. In the light of these results, it is unclear whether 6 is optimal in
the sense of minimizing the maximal order of a semiregular element. Broadly speaking, we are
interested in

lim inf
|V Γ|→∞

Γ cubic vertex-transitive

max{o(g) | g ∈ Aut(Γ), g semiregular},(1.1)

where we denote by o(g) the order of the group element g.

Theorem 1.1. The value of (1.1) is 6.

Theorem 1.1 is a consequence of the following result and the main result in [Spi14].

Theorem 1.2. Let (Γ, G) be a pair such that Γ is a connected cubic graph and G is a subgroup
of the automorphism group of Γ acting vertex-transitively on V Γ. Then either G contains a
semiregular automorphism of order at least 6 or the pair (Γ, G) appears in Table 1.

There is a considerable amount of work into the proof of Theorem 1.2. Broadly speaking,
the proof divides into two main cases. In the first main case, the exponent of the group G
is very small, bounded above by 5, and we use explicit knowledge on the finite groups having
exponent at most 5. The second main case is concerned with graphs admitting a normal quotient
which is a cycle. Here, we need to refine our knowledge on the ubiquitous Praeger-Xu graphs
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and on the splitting and merging operators between cubic vertex-transitive graphs and 4-valent
arc-transitive graphs defined in [PSV13].

Remark 1.3. The veracity of Theorem 1.2 for graphs with at most 1 280 vertices has been
proven computationally using the database of small cubic vertex-transitive graphs in [PSV13].
Therefore, in the course of the proof of Theorem 1.2 whenever we reduce to a graph having at
most 1 280 vertices we simply refer to this computation.

Table 1 consists of six columns. In the first column, we report the number of vertices of the
exceptional cubic vertex-transitive graph Γ. In the second column, we report the order of the
transitive subgroups G of Aut(Γ) with G not containing semiregular elements of order at least
6: each subgroup is reported up to Aut(Γ)-conjugacy class. In the third column, we report the
cardinality of Aut(Γ). In the forth column, when |VΓ| ≤ 1 280, we report the number of the
graph in the database of small cubic vertex-transitive graphs in [PSV13]. In the fifth column of
Table 1, we write the symbol when the graph is arc-transitive and the symbol † when the
graph is a split Praeger-Xu graph (see Section 2.5 for the definition of split Praeger-Xu graphs).
Split Praeger-Xu graphs play an important role in our investigation and hence we are keeping
track of this information in the forth column. In the sixth column, for the graphs not appearing
in the database of small cubic vertex-transitive graphs, we give as much information as possible.

|VΓ| |G| |Aut(Γ)| DB / † Comments
4 4, 4, 8, 12, 24 24 1
6 6 12 1

6, 36 24 2
8 8 16 1

8, 8, 8, 8, 16, 24, 24, 48 48 2
10 10 20 1

10 20 2
20, 60, 120 120 3

12 12, 24 24 2
24, 24 48 4 †

16 16, 16, 32, 32, 64, 64 128 2 †
16 32 3
16, 48 96 4

18 18, 108 216 4
36 72 5

20 20 20 2
160, 160 320 3 †
60 120 6
120 240 7

24 24 144 2
24 48 8
24 24 9
24 48 10
24, 24 48 11 †

30 720 1 440 8
60, 120 120 9
60 60 10

32 32 64 2
32, 32, 64, 64 128 3 †
32, 96 192 4

36 36 72 9
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40 160, 160 320 12 †
50 100 200 7

50, 150 300 8
54 108 216 11
60 60 360 2

60, 120 120 3
60 60 4
60 120 5
60 120 6
60, 120 120 7
60 120 8
60 120 9
60 120 10

64 64, 192 384 2
64 256 4
64, 64 128 11 †

80 80, 160 160 29
160, 160 320 31 †

90 720 1 440 20
96 96 192 37
100 100 200 19
128 128 256 5
160 160 160 89

160 160 90
160 320 91
160 320 92
160 320 93 †
160 320 94

180 720 77
360, 720 78

250 500 31
256 256, 768 30
360 360 720 176

360 720 177
360 720 178
360 360 179
360 720 180
360 360 181
360 720 182
360 720 183
360 720 184
360 720 185
720 1 440 268
720 1 440 270

512 512 1 024 734
810 1 620 1 620 198
1 024 1 024, 3 072 6 144 3 470
1 250 2 500 2 500 187
1 280 1 280 2 500 2 591
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2 560 2 560 5 120
6 250 12 500 25 000 covers of the graph with 1 250

12 500 12 500 vertices, there are 2 graphs
31 250 62 500 125 000 covers of the graphs

62 500 125 000 with 6 250 vertices,
62 500 125 000 there are five graphs
62 500 62 500
62 500 62 500

65 610 131 220 ? cover of the graph with 810 ver-
tices, only one graph

2· 5ℓ 4· 5ℓ 7 ≤ ℓ ≤ 34
Table 1: Exceptional cases for Theorem 1.2

2. Main ingredients

2.1. Permutations. A permutation on the set Ω is a derangement if it fixes no elements in
Ω. A permutation is semiregular if all of its cycles have the same length. For instance, any
derangement of prime order is semiregular. A permutation group G on Ω is said to be transitive
if it has a single orbit on Ω, and semiregular if the identity is the only element fixing some points.
If G is both semiregular and transitive on Ω, then G is regular on Ω. Given a permutation group
G, and an element α ∈ Ω, we denote by αG the orbit of α under the action of G.

Lemma 2.1. Let G be a permutation group on Ω, and let p be a prime. If all the elements of
G of order p are derangements, then all p-elements of G are semiregular.

Proof. Let g ∈ G be an element of order pk, for some positive integer k. Aiming for a contra-
diction, assume that g is not semiregular, that is, there exists α ∈ Ω such that |α〈g〉| ≤ pk−1.

Hence gp
k−1

fixes α, which implies gp
k−1

is not a derangement, a contradiction. �

Lemma 2.2. Let G be a permutation group acting on Ω, and let p and q be two distinct primes.
If G has a semiregular element g of order p and a semiregular element h of order q with gh = hg,
then gh is a semiregular element of order pq.

Proof. Since gh = hg, o(gh) = pq and hence it remains to prove that gh is semiregular. Note
that (gh)p = hp is semiregular, and also (gh)q = gq is semiregular. Therefore, each orbit of 〈gh〉
has size pq, proving that gh is semiregular. �

2.2. Graphs. A digraph is a binary relation Γ = (V Γ, AΓ), where AΓ ⊆ V Γ× V Γ. We refer to
the elements of V Γ as vertices and to the elements of AΓ as arcs. In this paper, a graph is a
finite simple undirected graph, that is, a pair Γ = (V Γ, EΓ), where V Γ is a set of vertices, and
EΓ is a set of unordered pairs of V Γ, called edges. In particular, a graph can be thought of as
a digraph where the binary relation is symmetric and anti-reflexive.

The valency of a vertex α ∈ V Γ is the number of edges containing α. A graph is said to
be cubic when all of its vertices have valency 3. A connected graph is a cycle when all of its
vertices have valency 2.

Let Γ be a graph, and let G be a subgroup of the automorphism group Aut(Γ) of Γ. If G
is transitive on V Γ, we say that G is vertex-transitive, similarly, if G is transitive on AΓ, we
say that G is arc-transitive. Moreover, Γ is vertex- or arc-transitive when Aut(Γ) is vertex- or
arc-transitive.

Let α, β ∈ V Γ be two adjacent vertices. We denote by Gα the stabilizer of the vertex α,
by G{α,β} the setwise stabilizer of the edge {α, β}, by Gαβ the pointwise stabilizer of the edge
{α, β} (that is, the stabilizer of the arc (α, β) underlying the edge {α, β}).
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Let Γ be a graph, and let N ≤ Aut(Γ). The normal quotient Γ/N is the graph whose vertices
are the N -orbits of V Γ, and two N -orbits αN and βN are adjacent if there exists an edge
{α′, β′} ∈ EΓ such that α′ ∈ αN and β′ ∈ βN . Note that the valency of Γ/N is at most the
valency of Γ, and that, whenever Γ is conneted, so is Γ/N . Furthermore, if the group N is
normal in some G ≤ Aut(Γ), then G/N acts (possibly unfaithfully) on Γ/N . If the group G
acts vertex- or arc-transitively on Γ, then G/N has the same property on Γ/N .

The following result is inspired by an analogous result for 4-valent graphs in [PS21, Lemma 1.13].

Lemma 2.3. Let Γ be a connected cubic graph, let α be a vertex of Γ, let G be a vertex-transitive
subgroup of Aut(Γ) and let N be a semiregular normal subgroup of G. Suppose Gα is a non-
identity 2-group and that the normal quotient Γ/N is a cycle of length r ≥ 3, and denote by K
the kernel of the action of G on the N -orbits on V Γ. Then either

(1) Gα has order 2 and |Kα| = 1, or
(2) r is even and Gα = Kα is an elementary abelian 2-group of order at most 2r/2.

Proof. Let ∆0,∆1, . . . ,∆r−1 be the orbits of N in its action on V Γ. Since Γ/N is a cycle, we
may assume that ∆i is adjacent to ∆i−1 and ∆i+1 with indices computed modulo r. Moreover,
without loss of generality, we suppose that α ∈ ∆0.

As Gα is a non-identity 2-group, by a connectedness argument, Gα induces a group of order
2 in its action on the neighbourhood of α. In particular, Gα fixes a unique neighbour of α. As
usual, for each β ∈ V Γ, let β′ be the unique neighbour of β fixed by Gβ .

Suppose that {α, α′} is contained in an N -orbit. Since α ∈ ∆0, we deduce α′ ∈ ∆0. Let β
and γ be the other two neighbours of α. As Γ/N is a cycle of length r ≥ 3, we have β ∈ ∆1 and
γ ∈ ∆r−1. Since Aut(Γ/N) is a dihedral group of order 2r and since Gα contains an element
swapping β and γ, we deduce |Gα : Kα| = 2. Now, Kα fixes by definition eachN -orbit and hence
it fixes setwise ∆1 and ∆r−1. Therefore, Kα fixes β and γ, because β is the unique neighbour
of α in ∆1 and γ is the unique neighbour of α in ∆r−1. This shows that Kα fixes pointwise the
neighbourhood of α; now, a connectedness argument shows that Kα = 1. In particular, part (1)
is satisfied. For the rest of the argument, we suppose that {α, α′} is not contained in an N -orbit.

This means that α has two neighbours in an N -orbit, say ∆1, and only one neighbour in
the other N -orbit, say ∆r−1. (Thus α′ ∈ ∆r−1 and β, γ ∈ ∆1.) This implies that r is even
and, for every i ∈ {0, . . . , r/2 − 1}, each vertex in ∆2i has two neighbours in ∆2i+1 and only
one neighbour in ∆2i−1. Therefore, G/K is a dihedral group of order r when r ≥ 8 and G/K
is elementary abelian of order 4 when r = 4. Morever, G/K acts regularly on Γ/N and hence
Gα = Kα. It remains to show that Kα is an elementary abelian 2-group of order at most 2r.

Since N is normal in G, the orbits of N on the edge-set EΓ form a G- invariant partition of
EΓ. We claim that, no two edges incident to a fixed vertex of Γ belong to the same N -edge-orbit.
We argue by contradiction and we suppose that α has two distinct neighbours v and w such
that the edges {α, v} and {α,w} are in the same N -edge-orbit. In particular, there exists n ∈ N
with {α, v}n = {α,w}. This gives αn = α and vn = w, or αn = w and vn = α. Since there
are no edges inside an N -orbit, we cannot have αn = w and vn = α. Therefore, αn = α and
vn = w. Since N acts semiregularly on V Γ, we have n = 1 and hence v = vn = w, which is a
contradiction.

Since G is vertex-transitive, the edges between ∆2i and ∆2i+1 are partitioned into precisely
two N -edge-orbits, let’s call these two orbits Θ2i and Θ′

2i; whereas the edges between ∆2i and
∆2i−1 form one N -edge-orbit, which we call Θ′′

2i.
An element of K (fixing setwise the sets ∆2i and ∆2i+1) can map an edge in Θ2i only to

an edge in Θ2i or to an edge in Θ′
2i. On the other hand, as Gα is not the identity group,

for every vertex v ∈ ∆2i there is an element g ∈ Gv which maps an edge of Θ2i incident to
v to the edge of Θ′

2i incident to v; and this element g is clearly an element of K, because
G/K acts semiregularly on Γ/N . This shows that the orbits of K on EΓ are precisely the sets
Θ2i∪Θ′

2i,Θ
′′
2i, i ∈ {0, . . . , r/2− 1}. In other words, each orbit of the induced action of K on the
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set EΓ/N = {eN : e ∈ EΓ} has length at most 2. Consequently, if X denotes the kernel of the
action of K on EΓ, then K/X embeds into Sym(2)r/2 and is therefore an elementary abelian 2-
group of order at most 2r/2.

Let us now show that X = N . Clearly, N ≤ X . Let v ∈ ∆0. Since N is transitive on ∆0,
it follows that X = NXv. Suppose that Xv is non-trivial and let g be a non-trivial element of
Xv. Further, let w be a vertex which is closest to v among all the vertices not fixed by g, and
let v = v0 ∼ v1 ∼ · · · ∼ vm = w be a shortest path from v to w. Then vm−1 is fixed by g.
Since g fixes each N -edge-orbit setwise and since every vertex of Γ is incident to at most one
edge in each N -edge-orbit, it follows that g fixes all the neighbours of vm−1, thus also vm. This
contradicts our assumptions and proves that Xv is a trivial group, and hence that X = N . �

2.3. Praeger-Xu graphs. To introduce the infinite family of split Praeger-Xu graphs sC(r, s),
we need two ingredients: the Praeger-Xu graphs and the splitting operation. This section is
devoted to introduce the ubiquitous 4-valent Praeger-Xu graphs C(r, s) and their automorphism
group. This infinite family was originally defined in [PX89], and it was studied in detail by
Gardiner, Praeger and Xu in [PX89, GP94], and more recently in [JPW19]. Here, we introduce
them through their directed counterparts defined in [Pra89].

Let r be an integer, r ≥ 3. Then ~C(r, 1) is the lexicographic product of a directed cycle of

length r with an edgeless graph on 2 vertices. In other words, V~C(r, 1) = Zr × Z2 with the
out-neighbours of a vertex (x, i) being (x+ 1, 0) and (x+ 1, 1). We will identify the (s− 1)-arc

(x, ε0) ∼ (x+ 1, ε1) ∼ . . . ∼ (x+ s− 1, εs−1)

with the pair (x; k) where k = ε0ε1 . . . εs−1 is a string in Z2 of length s. For s ≥ 2, let V~C(r, s)

be the set of all (s − 1)-arcs of ~C(r, 1), let h be a string in Z2 of length s − 1 and let ε ∈ Z2.

The out-neighbours of (x; εh) ∈ V~C(r, s) are (x+ 1;h0) and (x+ 1;h1). The Praeger-Xu graph

C(r, s) is then defined as the underlying graph of ~C(r, s). We have that C(r, s) is a connected
4-valent graph with r2s vertices (see [Pra89, Theorem 2.8]).

Let us now discuss the automorphisms of the graphs C(r, s). Every automorphism of ~C(r, 1)

(C(r, 1), respectively) acts naturally as an automorphism of ~C(r, s) (C(r, s), respectively) for

every s ≥ 2. For i ∈ Zr, let τi be the transposition on V~C(r, 1) swapping the vertices (i, 0) and

(i, 1) while fixing every other vertex. This is clearly an automorphism of ~C(r, 1), and thus also

of ~C(r, s) for s ≥ 2. Let

K := 〈τi | i ∈ Zr〉,

and observe that K ∼= Cr
2 . Further, let ρ and σ be the permutations on V~C(r, 1) defined by

(x, i)ρ := (x+ 1, i) and (x, i)σ := (x,−i).

Then ρ is an automorphism of ~C(r, 1) or order r, and σ is an involutory automorphism of C(r, 1)

(but not of ~C(r, 1)). Observe that the group 〈ρ, σ〉 normalises K. Let

H := K〈ρ, σ〉 and H+ := K〈ρ〉.

Then, for every r ≥ 3 and s ≥ 1,

C2wrDr
∼= H ≤ Aut(C(r, s)) and C2wrCr

∼= H+ ≤ Aut(~C(r, s)).

Moreover, H (H+, respectively) acts arc-transitively on C(r, s) (~C(r, s), respectively) whenever
1 ≤ s ≤ r − 1. With three exceptions, the groups H and H+ are in fact the full automorphism

groups of C(r, s) and ~C(r, s), respectively.

Lemma 2.4 ([GP94, Theorem 2.13] and [Pra89, Theorem 2.8]). The automorphism group of a
directed Praeger-Xu graph is

Aut(~C(r, s)) = H+,
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and, if r 6= 4, the automorphism group of a Praeger-Xu graph is

Aut(C(r, s)) = H.

Moreover,

|Aut(C(4, 1)) : H | = 9, |Aut(C(4, 2)) : H | = 3

and |Aut(C(4, 3)) : H | = 2.

The Praeger-Xu graphs also admit the following algebraic characterization.

Lemma 2.5 ([PS21, Lemma 1.11] or [BGS22b, Lemma 3.7]). Let Γ be a finite connected 4-
valent graph, let G be a vertex- and edge-transitive group of automorphisms of Γ, and let N be a
minimal normal subgroup of G. If N is a 2-group and Γ/N is a cycle of length at least 3, then
Γ is isomorphic to a Praeger-Xu graph C(r, s) for some positive integers r ≤ 3 and s ≤ r − 1.

For more details on Praeger-Xu graphs, we refer also to [JPW19, JPW22, BGS22a].

2.4. The splitting and merging operations. The operation of splitting were introduced in
[PSV13, Construction 11]. Let ∆ be a 4-valent graph, let C be a partition of E∆ into cycles.
By applying the splitting operation to the pair (∆, C), we obtain the graph, denoted by s(∆, C),
whose vertices are

V s(∆, C) := {(α,C) ∈ V∆× C | α ∈ V C},

and such that two vertices (α,C) and (β,D) are declared adjacent if either C 6= D and α = β,
or C = D and α and β are adjacent in ∆. Observe that, since ∆ is 4-valent, there are precisely
2 cycles in C passing through α, thus s(∆, C) is cubic and |V s(∆, C)| = 2|V∆|.

Notice that, for any G ≤ Aut(∆) such that its action is C-invariant, G ≤ Aut(s(∆, C)).
Moreover, if G is also arc-transitive on ∆ (in particular, the action of Gα on the neighbourhood
of α is either the Klein four group, or the cyclic group of order 4, or the dihedral group of order
8), then G is vertex-transitive on s(∆, C). For any vertex (α,C) ∈ s(∆, C),

G(α,C) = Gα ∩G{C},

where G{C} is the setwise stabilizer of the cycle C. In particular, whenever G is arc-transitive
on ∆, as Gα switches the two cycles passing through α, |Gα : G(α,C)| = 2.

Now, we introduce the tentative inverse of the splitting operator: the operation of merging
(see [PSV13, Construction 7]). Let Γ be a connected cubic graph, and let G ≤ Aut(Γ) be a
vertex-transitive group such that the action of Gα on the neighbourhood of α is cyclic of order
2. In particular, Gα is a non-identity 2-group. Hence, Gα fixes a unique neighbour of α, which
we denote by α′. Observe that (α′)′ = α and Gα = Gα′ . Thus, the set M := {{α, α′} | α ∈ V Γ}
is a complete matching of Γ, while the edges outside M form a 2-factor, which we denote by F .
The group G in its action on EΓ fixes setwise both F and M, and acts transitively on the arcs
of each of these two sets. Let ∆ be the graph with vertex-set M and two vertices e1, e2 ∈ M
are declared adjacent if they are (as edges of Γ) at distance 1 in Γ. We may also think of ∆
as being obtained by contracting all the edges in M. Let C be the decomposition of E∆ into
cycles given by the connected components of the the 2-factor F . The merging operation applied
to the pair (Γ, G) gives as a result the pair (∆, C).

Two infinite families of cubic graph have degenerate merged graphs, namely the circular and
Möbius ladders. For any n ≥ 3, a circular ladder graph is a graph isomorphic to the Cayley
graph

Cay(Zn × Z2, {(0, 1), (1, 0), (−1, 0)}),

and, for any n ≥ 2, a Möbius ladder graph is a graph isomorphic to the Cayley graph

Cay(Z2n, {1,−1, n}).

Observe that we consider the complete graph on 4 vertices to be a Möbius ladder graph.
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Lemma 2.6. Let Λ be a (circular or Möbius) ladder, and let G ≤ Aut(Λ) be a vertex-transitive
group. Then either |V Λ| ≤ 10 or G contains a semiregular element of order at least 6.

Lemma 2.7. Unless Λ is isomorphic to the skeleton of the cube or the complete graph on 4
vertices, the automorphism group of a (circular or Möbius) ladder Λ contains N ≤ Aut(Λ), a
normal cyclic subgroup of order 2, such that the normal quotient Λ/N is a cycle.

Remark 2.8. Let Γ be a connected cubic graph that is neither a circular nor a Möbius ladder,
and let G ≤ Aut(Γ) be a vertex-transitive group such that the action ofGα on the neighbourhood
of α is cyclic of order 2. Then [PSV13, Lemma 9 and Theorem 10] imply that the merging
operator applied to the pair (Γ, G) gives a pair (∆, C) such that ∆ is 4-valent, and the action
of G on ∆ is faithful, arc-transitive and C-invariant. This result motivates the use of the word
degenerate when referring to the circular and Möbius ladders.

In view of [PSV13, Theorem 12], the merging operator is the right-inverse of the splitting
one, or, more explicitly, unless Γ is a (circular or Möbius) ladder, splitting a pair (∆, C) obtained
via the merging operation on (Γ, G) results in the starting pair. For our purposes, we need to
show that the merging operator is also the left-inverse of the splitting one.

Theorem 2.9. Let ∆ be a 4-valent graph, let C be a partition of E∆ into cycles, and let
G ≤ Aut(∆) be an arc-transitive and C-invariant group. Then the merging operation can be
applied to the pair (s(∆, C), G) and it gives as a result (∆, C).

Proof. Let (α,C) be a generic vertex of s(∆, C), let D ∈ C be the other cycle of the partition
passing through α, and let β, γ ∈ V∆ be the neighbours of α in C. Then, using the fact that G
is arc-transitive on C,

(α,D)G(α,C) = {(α,D)} and (β,C)G(α,C) = (γ, C)G(α,C) = {(β,C), (γ, C)}.

Therefore, for any vertex (α,C) ∈ V s(∆, C), G(α,C) acts on the neighbourhood of (α,C) as a
cyclic group of order 2. Hence, we can apply the merging operation to the pair (s(∆, C), G).
Furthermore, we deduce that

M = {{(α,C), (α,D)} | α ∈ V C ∩ V D}

is a complete matching for (s(∆, C), G). Thus the connected components of the resulting 2-factor
F = Es(∆, C) \M can be identified with the cycles of C. Now, consider the map defined as

θ : M → V∆, {(α,C), (α,D)} 7→ α.

Since a generic vertex α ∈ V∆ belongs to precisely two distinct cycles, θ is bijective. Moreover,
β is adjacent to α in ∆ if, and only if, either {(α,C), (β,C)} or {(α,D), (β,D)} is an edge in
s(∆, C). In particular, θ also induces the bijection

θ̂ : F → E∆, {(α,C), (β,C)} 7→ {α, β},

which sends the connected components of F into disjoint cycles of C. This shows that θ is a
graph isomorphism between ∆ and the 4-valent graph obtained by merging the pair (s(∆, C), G),
and that the resulting cycle partition is isomorphic to C. �

Corollary 2.10. Let ∆ be a 4-valent graph, let C be a partition of E∆ into cycles, and let
G ≤ Aut(∆) be an arc-transitive and C-invariant group (and so G ≤ Aut(s(∆, C))). Suppose
that G ≤ A ≤ Aut(s(∆, C)) is a vertex-transitive group such that, for any vertex α ∈ V s(∆, C),
the action of Aα on the neighbourhood of α is cyclic of order 2, then A ≤ Aut(∆).

Proof. Note that, as G is a subgroup of A, the actions of G and A on the neighbourhood of any
vertex α coincide. In particular, applying the merging operation to the pair (s(∆, C), A) yields
the same result as doing it on the pair (s(∆, C), G), that is, by Theorem 2.9, in both cases we
obtain (∆, C). The result follows by Remark 2.8. �
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2.5. Split Praeger-Xu graphs. In this section, we bring together the information of Sec-
tions 2.3 and 2.4 to define and study the split Praeger-Xu graphs.

All the partitions of the edge set of a Praeger-Xu graph into disjoint cycles were classified
in [JPW19, Section 6]. Regardless of the choice of the parameters r and s, there exists a
decomposition into disjoint cycles of length 4 of the form

(x; 0h) ∼ (x + 1;h0) ∼ (x; 1h) ∼ (x+ 1;h1)

for some x ∈ Zr, and for some string h in Z2 of length s − 1. We denote this partition by S.
Moreover, observe that the only two neighbours of (x; 0h) in the K-orbit containing (x+ 1;h0)
are (x+1;h1) and (x+1;h0), and similarly the only two neighbours of (x+1;h0) in the K-orbit
containing (x; 0h) are (x; 1h) and (x; 0h). Therefore, S is the unique decomposition such that
each cycle intersects exactly two K-orbits.

Definition 2.11. The split Praeger-Xu graph sC(r, s) is the cubic graph obtained from the pair
(C(r, s),S) by applying the splitting operation.

Lemma 2.12. For some positive integers r ≥ 3 and s ≤ r − 1, the automorphism group of the
split Praeger-Xu graph is

Aut(sC(r, s)) = H,

and it acts transitively on V sC(r, s).

Proof. Note that H acts on the set of K-orbits in VC(r, s), thus each automorphism of H maps
any cycle of S to a cycle intersecting exactly twoK-orbits, that is, to an element of S. Thus, H is
S-invariant, and so H ≤ Aut(sC(r, s)). We now show the opposite inclusion. Let α ∈ V sC(r, s)
be a generic vertex, aiming for a contradiction we suppose that Aut(sC(r, s))α does not act on
the neighbourhood of α as a cycle of order 2. Let α′, β, γ be the neighbours of α where α′ is
fixed by the action of Hα, and let δ be the unique vertex at distance 1 from both β and γ. Since
Hα ≤ Aut(sC(r, s))α, our hypothesis implies that there exists an element g ∈ Aut(sC(r, s))α
such that βg = α′ and γg = γ. This yields a contradiction because δg is ill-defined: in fact
there is no vertex of sC(r, s) at distance 1 from both γg and δg. Recall that, from Lemma 2.4,
if r 6= 4, then H = Aut(C(r, s)), and so, by Corollary 2.10, Aut(sC(r, s)) ≤ H . On the other
hand, if r = 4, observe that H is vertex-transitive on sC(r, s) and Aut(sC(r, s))α = Hα, hence
the equality holds by Frattini’s argument. �

Lemma 2.13. Let G be a vertex-transitive subgroup of Aut(sC(r, s)). Then either G contains a
semiregular element of order at least 6, or (sC(r, s), G) is one of the examples in Table 1 marked
with the symbol †.

Proof. From Lemma 2.12, we have G ≤ H = K〈ρ, σ〉. Observe that G/G∩K ∼= 〈ρ, σ〉, otherwise
G is not transitive on the vertices of the split graph sC(r, s). From this, it follows that G =
V 〈ρf, σg〉, for some f, g ∈ K, where V = G ∩K. Since ρ has order r, we get that

(ρf)r = ρfρ . . . (ρfρ)f

= ρfρ . . . (ρ2ρ−1fρ)f

= ρfρ . . . ρ2fρf

= ρfρr−1 . . . fρf

= fρr−1

. . . fρf

is an element of V . Since V is an elementary abelian 2-group, the element ρf has order either
r or 2r. Recalling that V ≤ K,

(ρf)r =

r−1
∏

i=0

τai

i
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with ai ∈ {0, 1}. Furthermore,

(ρf)rρ = ρ(fρ . . . ρfρfρ)

= ρ(ffρ . . . fρr−2

fρr−1

)

= ρ(fρr−1

. . . fρf)

= ρ(ρf)r

thus ρ centralizes (ρf)r. From this, and from the fact that 〈ρ〉 acts transitively on {τ0, . . . , τr−1},
we deduce that

(ρf)r =

r−1
∏

i=0

τai

where a is either 0 or 1. If a = 0, then ρf is a semiregular element of order r. In particular,
either r ≥ 6, or the number of vertices of sC(r, s) is r2s, which is bounded by 5 · 25 = 160, and
we finish by Remark 1.3. On the other hand, if a = 1, ρf has order 2r, and it corresponds to
the so-called super flip of the Praeger-Xu graph C(r, s). Since (ρf)r does not fix any vertex
in C(r, s), and since the vertex-stabilizers for a split graph has index 2 in the vertex-stabilizer
of the starting graph, for any vertex α ∈ V sC(r, s), we obtain that (ρf)r /∈ Gα. Hence ρf is
semiregular of order 2r ≥ 6. �

To conclude this section, we show a result mimicking Lemma 2.5 for cubic graphs.

Lemma 2.14. Let Γ be a connected cubic vertex-transitive graph, let G ≤ Aut(Γ) be a vertex-
transitive group such that the action of Gα on the neighbourhood of α is cyclic of order 2, and
let N be a minimal normal subgroup of G. If N is a 2-group and Γ/N is a cycle of length at
least 3, then Γ is isomorphic either to a circular ladder, or to a Möbius ladder, or to sC(r, s),
for some positive integers r ≥ 3 and s ≤ r − 1.

Proof. We already know by Lemma 2.7 that both ladders admit a cyclic quotient graph, thus we
can suppose that Γ is not isomorphic to a circulant ladder or to a Möbius ladder. By hypothesis,
we can apply the merging operator to (Γ, G), obtaining the pair (∆, C). Since we have excluded
the possibility of Γ being a ladder, by Remark 2.8, ∆ is 4-valent, and the action of G on ∆
is faithful, arc-transitive and C-invariant. Since the action of N cannot map edges in M to
edges in F , the quotient graph Γ/N retains a partition into two disjoint sets of edges, namely
M/N and F/N . Moreover, since M is a complete matching, each edge in M/N is adjacent to
precisely two edges in F/N , and vice versa. This implies that the edges of ∆/N coincide with
the elements of F/N , two of which are adjacent if they share the same neighbour in M/N . If
r ≥ 6, then ∆/N is a cycle of length r/2. From Lemma 2.5, we deduce that ∆ is isomorphic to
C(r, s), for some positive integers r ≥ 3 and s ≤ r − 1. Observe that, as C coincides with the
connected components of F , each cycle in C intersects precisely two K-orbits. This implies that
C = S, and so [PSV13, Theorem 12] yields that Γ is isomorphic to

s(∆, C) = s(C(r, s),S) = sC(r, s). �

Now, suppose that r = 4. In this case, we have that G is a 2-group, hence |N | = 2 and |V Γ| = 8,
and so the only possibility is for Γ to be a (cirular or Möbius) ladder, which we already excluded.

3. Proof of Theorem 1.2

We aim to prove Theorem 1.2 by contradiction. In this section we will assume the following.

Hypothesis 3.1. Let Γ be a connected cubic graph, and let G ≤ Aut(Γ) such that the pair
(Γ, G) is a minimal counterexample to Theorem 1.2, first with respect to the cardinality of V Γ,
and then to the order of G. From Remark 1.3, we have |V Γ| > 1 280. Let α be an arbitrary
vertex of Γ. Let N be a minimal normal subgroup of G.
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Since Γ is connected, the stabilizer Gα is a {2, 3}-group. More generally, if ∆ is a connected
d-regular graph, then no prime bigger than d divides the order of a vertex stabilizer (this follows
from an elementary connectedness argument, see for instance [Spi14, Lemma 3.1] or [MS98,
Lemma 3.2]). Moreover, G must be a {2, 3, 5}-group, otherwise we can find derangements of
prime order at least 7, hence semiregular elements.

Since N is a minimal normal subgroup of G, N is a direct product of simple groups, any two
of which are isomorphic. Clearly, N is a {2, 3, 5}-group, and Nα is a {2, 3}-group. Thus N is
a direct product Sl, for some positive integer l and for some simple {2, 3, 5}-group S. Using
the Classification of Finite Simple Groups, we see that the collection of simple {2, 3, 5}-groups
consists of

C2, C3, C5, Alt(5), Alt(6), PSp(4, 3),

see for instance [LW74].

Lemma 3.2. Under Hypothesis 3.1, if Nα is a 2-group, then N is an elementary abelian p-group,
for some prime p ∈ {2, 3, 5}.

Proof. If N is abelian, then there is nothing to prove. Thus, suppose that N = Sl, where
S ∈ {Alt(5),Alt(6),PSp(4, 3)} and l ≥ 1.

Assume l ≥ 2. Let S and T be two distinct direct factors of N . Then Sα and Tα are 2-groups,
because so is Nα. Thus, by Lemma 2.1, all the 3- and 5-elements of S and T are semiregular.
Applying Lemma 2.2, we obtain that S × T , contains a semiregular element of order 15. Thus
G contains a semiregular element of order exceeding 6, contradicting Hypothesis 3.1.

Assume l = 1. If N = PSp(4, 3), then Lemma 2.1 implies that the 3-elements in N are
semiregular. As PSp(4, 3) contains elements of order 9, G contains a semiregular element of
order 9, contradicting Hypothesis 3.1. Thus, N is either Alt(5) or Alt(6).

We claim that G is almost simple, that is, N is the unique minimal normal subgroup of G.
Aiming for a contradiction, let M be a minimal normal subgroup of G distinct from N . If Γ/M
is a cubic graph, then Mα = 1, and hence each element of M is semiregular. Since [N,M ] = 1,
by Lemma 2.2, G contains a semiregular element of order at least 10, against Hypothesis 3.1.
On the other hand, suppose that Γ/M is not cubic. Regardless of the valency of Γ/M , the group
that G induces in its action on the vertices of Γ/M is a subgroup of a dihedral group, hence it
is a soluble group. In particular, as N is a non-abelian simple group, N acts trivially on the
vertices of Γ/M . This means that N fixes setwise each M -orbit. If M is abelian, then M acts
regularly on each of its orbits. However, as N commutes with M and fixes each M -orbit, this
contradicts the fact that N is non-abelian.1 Therefore, M is not abelian. In particular, there is
a prime p ≥ 5 that divides the order of M , and the elements of M of order p are semiregular.
As before, applying Lemma 2.2, we get that NM contains a semiregular element of order 3p, a
contradiction. We conclude that N is the unique minimal normal subgroup of G.

Notice that Alt(5) ≤ G ≤ Sym(5) or Alt(6) ≤ G ≤ Aut(Alt(6)). A computer computation in
each of these cases shows that, if G ≤ Aut(Γ) has no semiregular elements of order at least 6,
then |V Γ| ∈ {30, 60, 90, 180, 360}, which contradicts Hypothesis 3.1. �

From here on, we divide the proof in five cases:

• Gα = 1;
• Gα 6= 1 and N is transitive on V Γ;
• Gα 6= 1 and N has two orbits on V Γ;
• Gα 6= 1 and Γ/N is a cycle of length at least 3;
• Gα 6= 1 and Γ/N is a cubic graph.

1Recall that, if X ≤ Sym(Ω) is an abelian group and X acts regularly on Ω, then X = CSym(Ω)(X).
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3.1. Gα = 1. In this case Γ is a Cayley graph over G. This means that there exists an inverse-
closed subset I of G with Γ ∼= Cay(G, I). We recall that Cay(G, I) is the graph having vertex
set G where two vertices x and y are declared to be adjacent if and only if yx−1 ∈ I. Since Γ
has valency 3, we have |I| = 3. Moreover, since Γ is connected, we have G = 〈I〉. In particular,
G is generated by at most 3 elements. More precisely, either I consists of three involutions or I
consists of an involution and an element of order greater than 2 together with its inverse.

In what follows we say that a finite group X satisfies P if X is generated by either three
involutions, or by an involution and by an element of order greater than 2. In particular, G
satisfies P .

Since each element of G is semiregular and since G has no semiregular elements of order at
least 6, we deduce that each element of G has order at most 5. As customary, we let

ω(G) := {o(g) | g ∈ G}

be the spectrum of G. Observe that

{1, 2} ⊆ ω(G) ⊆ {1, 2, 3, 4, 5}.

Since G is generated by at most 3 elements, we deduce from Zelmanov’s solution of the restricted
Burnside problem that |G| is bounded above by an absolute constant. We divide the proof
depending on ω(G).

Assume ω(G) = {1, 2}. In this case, G is elementary abelian and, since G is generated by at
most 3 elements, we deduce |G| ≤ 8, which contradicts Hypothesis 3.1.

Assume ω(G) = {1, 2, 4}. Here, either G is generated by an element of order 2 and an
element of order 4, or G is generated by three involutions. We resolve these two cases with a
computer computation. Suppose first that G is generated by an involution and by an element
of order 4. We have constructed the free group F := 〈x, y〉 and we have constructed the set W
of words in x, y of length at most 6. Then, we have constructed the finitely presented group
F̄ := 〈F |x2, {w4 : w ∈ W}〉. We use the “bar” notation for the projection of F onto F̄ . Now, x̄
has order 2 and ȳ has order 4. Furthermore, each element of F̄ that can be written as a word in
x̄ and ȳ of length at most 6 has order at most 4. (The number 6 was chosen arbitrarily but large
enough to guarantee to get an upper limit on the cardinality of G.) A computer computation
shows that F̄ has order 64 and exponent 4. This proves that the largest group of exponent 4
and generated by an involution and by an element of order 4 has order 64. Now, G is a quotient
of F̄ and hence |G| ≤ |F̄ | ≤ 64, which contradicts Hypothesis 3.1. Next, suppose that G is
generated by three involutions. The argument here is very similar. We have considered the free
group F = 〈x, y, z〉, and we have considered the set W of words in x, y, z of length at most 6.
We have verified that 〈F |x2, y2, z2, {w4 : w ∈ W}〉 has order 1024 and exponent 4. This shows
that |G| ≤ 1 024, which contradicts Hypothesis 3.1.

Assume ω(G) = {1, 2, 3}. The groups having spectrum {1, 2, 3} are classified in [Neu37].
Routine computations in the list of groups X classified in [Neu37, Theorem] show that, if X
satisfies P , then |X | ≤ 18, which contradicts Hypothesis 3.1.

Assume ω(G) = {1, 2, 5}. The groups having spectrum {1, 2, 5} are classified in [New79].
As above, since G satisfies P , we deduce from a case-by-case analysis in the groups appearing
in [New79] that |G| ≤ 80, which contradicts Hypothesis 3.1.

Assume ω(G) = {1, 2, 3, 4}. The groups having spectrum {1, 2, 3, 4} are classified in [BS91].
As above, since G satisfies P , we deduce from a case-by-case analysis in the groups appearing
in [BS91, Theorem] that |G| ≤ 96, which contradicts Hypothesis 3.1.

Assume ω(G) = {1, 2, 4, 5}. The groups having spectrum {1, 2, 4, 5} are classified in [GM99].
This case is sligthly more involved and hence we do give more details. We have three cases to
consider:

(1) G = T ⋊D where T is a non-trivial elementary abelian normal 2-subgroup and D is a
non-abelian group of order 10,
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(2) G = F ⋊ T where F is an elementary abelian normal 5-subgroup and T is isomorphic
to a subgroup of a quaternion group of order 8,

(3) G contains a normal 2-subgroup T which is nilpotent of class at most 6 such that G/T
is a 5-group.

Suppose that (1) holds. Clearly, D is the dihedral group of order 10 and T is a module
for D over the field F2 of cardinality 2. The dihedral group D has two irreducible modules
over F2 up to equivalence: the trivial module and a 4-dimensional module W . Since G has no
elements of order 10, we deduce V ∼= W ℓ, for some ℓ ≥ 1. We have verified with a computer
computation that W 3

⋊D does not satisfy P and hence G ∼= W ℓ
⋊D with ℓ ≤ 2. We deduce

that |G| = |V Γ| ∈ {10 · 16, 10 · 162} = {160, 2 560}. From Hypothesis 3.1, we have |V Γ| > 1 280
and hence G ∼= W 2

⋊D. We have constructed all connected cubic Cayley graphs over W 2
⋊D

and we have found only one (up to isomorphism), therefore we obtain the example in Table 1.
Suppose that (2) holds. Since G satisfies P , while the quaternion group of order 8 does not,

we deduce that T is cyclic of order 4. Thus G = F ⋊ 〈x〉, for some x having order 4. As G
satisfies P , this means that G = 〈x, y〉, for some involution y. Clearly, y = fx2 for some f ∈ F .

As G = 〈x, y〉 = 〈x, fx2〉 = 〈x, f〉, we have F = 〈f, fx, fx2

, fx3

〉. Since y = fx2 has order 2 and
x has order 4, we deduce

1 = y2 = fx2fx2 = ffx2

,

that is, fx2

= f−1. Now, F = 〈f, fx, fx2

, fx3

〉 = 〈f, fx, f−1, (fx)−1〉 = 〈f, fx〉. Thus |F | ≤ 25
and hence |G| ≤ 100, which contradicts Hypothesis 3.1.

Suppose that (3) holds. Since G satisfies P , we deduce that G/T is cyclic of order 5. Thus
G = T ⋊ 〈x〉, for some x having order 5. This means that G = 〈x, y〉, for some involution
y. Clearly, y ∈ T . From Hypothesis 3.1, we have |G| = |V Γ| > 1 280. Let N be a minimal
normal subgroup of G. We have N ≤ T and N is an irreducible F2〈x〉-module. The cyclic
group of order 5 has two irreducible modules over F2 up to equivalence: the trivial module and
a 4-dimensional module. Since G has no elements of order 10, x does not centralize N and
hence N is the irreducible 4-dimensional module for the cyclic group of order 5. In particular,
|N | = 24. Consider Ḡ := G/N . Now,

{1, 2, 5} ⊆ ω(Ḡ) ⊆ ω(G) = {1, 2, 4, 5}.

Assume ω(Ḡ) = {1, 2, 5}. From the discussion above (regarding the finite groups having spec-
trum {1, 2, 5} and satisfying P), we have |Ḡ| ≤ 80 and hence |G| = |G : N ||N | ≤ 80 · 16 = 1 280,
which is a contradiction. Therefore, ω(Ḡ) = {1, 2, 4, 5}. Since (Γ, G) was chosen minimal in
Hypothesis 3.1, we have |Ḡ| ≤ 1 280. Therefore (Γ/N, Ḡ) appears in Table 1. An inspection on
the groups appearing in this table shows that there is only one group having spectrum {1, 2, 4, 5}
and is the group of order 1 280. Thus we know precisely Ḡ. Now, the group G is an extension
of Ḡ by N and hence it can be computed with the cohomology package in the computer algebra
system magma. We have computed all the extensions E of Ḡ via N and we have verified that
none of the extensions E has the property that ω(E) = {1, 2, 4, 5} and with E satisfying P .

Assume ω(G) = {1, 2, 3, 5}. The groups having spectrum {1, 2, 3, 5} are classified in [MZ99].
We deduce from [MZ99] that G ∼= A5, which contradicts Hypothesis 3.1.

Assume ω(G) = {1, 2, 3, 4, 5}. The groups having spectrum {1, 2, 3, 4, 5} are classified in [BS91].
We deduce from [BS91, Theorem] that either G ∼= A6 or G ∼= V ℓ

⋊A5 where V is a 4-dimensional
natural module over the finite field of size 2 for A5

∼= SL2(4) and ℓ ≥ 1. The group V 2
⋊A5 does

not satisfy P (this can be verified with a computer computation). Therefore, either G ∼= A6 or
G ∼= V ⋊A5. Thus |G| = |V Γ| ≤ 960, which contradicts Hypothesis 3.1.

3.2. Gα 6= 1 and N is transitive on V Γ. By Hypothesis 3.1, (Γ, G) is a minimal counterex-
ample. This minimality and the fact that N is transitive on V Γ imply that G = N . As N is a
minimal normal subgroup of G, G is simple. Thus G ∈ {Alt(5),Alt(6),PSp(4, 3)}. A computer
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computation in each of these cases shows that, if G ≤ Aut(Γ) has no semiregular elements of
order at least 6, then |V Γ| ∈ {10, 20, 30, 60, 90, 180, 360}, which contradicts Hypothesis 3.1.

3.3. Gα 6= 1 and N has two orbits on V Γ. Suppose N is abelian. By [PS21, Lemma 1.15],
either Γ is complete bipartite, or Γ is a bi-Cayley graph over N and the minimal number of
generators of N is at most 4. (Here, it is not really relevent to introduce the definition of
bi-Cayley graph, however, what is really relevant is the fact that N is generated by at most 4
elements.) Recalling that N is a {2, 3, 5}-group, it follows that |V Γ| = 2|N | ≤ 2 · 54 = 1 250,
and the equality is realized for N = C4

5 . In particular, this contradicts Hypothesis 3.1.
Suppose N is not abelian. By Lemma 3.2, 3 divides the order of Nα. A fortiori, 3 divides the

order of Gα, hence G acts arc-transitively on Γ. We can extract information on the local action
of G by consulting the amalgams in [DM80, Section 4]. In particular, with a direct inspection
(on a case-by-case basis) on these amalgams, it can be verified that, for any edge {α, β} of Γ, G
contains an element y that swaps α and β and its order is either 2 or 4. As α and β belong to
distinct N -orbits, y maps αN to βN . Moreover, as N has two orbits on V Γ, the subgroup N〈y〉
is vertex-transitive on Γ. Therefore, by minimality of G, we have G = N〈y〉.

Assume o(y) = 2. Thus |G : N | = 2. As N = Sl is a minimal normal subgroup of G,
l ∈ {1, 2}. If l = 1, then G is an almost simple group whose socle is either Alt(5), Alt(6) or
PSp(4, 3). A computer computation shows that (Γ, G) satisfies Theorem 1.2, a contradiction.
If l = 2, then 〈y〉 permutes transitively the two simple direct factors of N . Let s ∈ N be a
5-element in a simple direct factor of N , and notice that t := sy is a 5-element in the other
simple direct factor of N . Thus [s, t] = 1. We claim that ys is a semiregular element of order
10. We get

(ys)2 = ysys = ts ∈ N,

(ys)5 = ysysysysys = ys(ts)2 ∈ yN.

We have that (ys)2 is a 5-element in N , thus semiregular, and that (ys)5 has order 2 and,
being an element of yN = Ny, it has no fixed points, hence it is semiregular. Therefore ys is a
semiregular element of order 10, contradicting Hypothesis 3.1.

Assume o(y) = 4. As |G : N | = 4 and N is a minimal normal subgroup of G, l ∈ {1, 2, 4}.
Observe that a Sylow 3-subgroup of Gα has order 3, because Γ is cubic and G is arc-transitive.
Let x ∈ Gα be an element of order 3. As |G : N | = 4, we have x ∈ N ∩ Gα = Nα ≤ Sl. In
particular, we may write x = (s1, . . . , sl), with si ∈ S. Let κ be the number of coordinates of x
different from 1, we call κ the type of x. Since 〈x〉 is a Sylow 3-subgroup of Gα, from Sylow’s
theorem, we deduce that each element of order 3 in G fixing some vertex of Γ has type κ. Let
s ∈ S be an element of order 3 and let t ∈ S be an element of order 5. Suppose l = 4. If
κ 6= 1, then g = (s, t, 1, 1) has order 15 and is semiregular because g5 = (s5, 1, 1, 1) has order
3 but it is not of type κ. Similarly, if l = 4 and k = 1, then g = (s, s, t, 1) has order 15 and is
semiregular. Analogously, when l = 2, if κ 6= 1, then g = (s, t) has order 15 and is semiregular.
When l = 2, κ = 1 and S = PSp(4, 3), the group S contains an element r having order 9 and
hence g = (r, r) is a semiregular element having order 9. Summing up, from these reductions,
we may suppose that either l = 1, or l = 2 and S ∈ {Alt(5),Alt(6)}. These cases can be
dealt with a computer computation: indeed, the invaluable help of a computer shows that no
counterexample to Theorem 1.2 arises.

3.4. Gα 6= 1 and Γ/N is a cycle of length r ≥ 3. The full automorphism group of Γ/N is
the dihedral group of order 2r. Let K be the kernel of the action of G on the N -orbits. The
quotient G/K acts faithfully on Γ/N , that is, it is a transitive subgroup of the dihedral group
of order 2r.

We claim that

(3.1) G/K is regular in its action on the vertices of Γ/N.
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Assume G/K acts on the vertices of Γ/N transitively but not regularly. In particular, G/K is
isomorphic to the dihedral group of order 2r. Thus G has an index 2 subgroup M such that
M is vertex-transitive and M/K is isomorphic to the cyclic group of order r. By minimality of
G, we have G = M , which goes against the choice of M . Hence G/K is regular. In particular,
either G/K is isomorphic to the cyclic group of order r, or r is even and G is isomorphic to the
dihedral group of order r. Later in this proof we resolve this ambiguity and we prove that r is
even and G/K is dihedral of order r, see (3.5).

As G/K acts regularly on the vertices of Γ/N , we have

1G/K =

(

G

K

)

αN

=
GαK

K
.

Therefore

(3.2) Kα = K ∩Gα = Gα.

Assume G is arc-transitive. Let β be a neighbour of α and observe that αN 6= βN . Since Γ
is connected, we have

G = 〈Gα, G{α,β}〉 = 〈Kα, G{α,β}〉 ≤ 〈K,G{α,β}〉 = KG{α,β},

and hence G = KG{α,β}. Recalling that K fixes all the N -orbits,

|G : K| = |KG{α,β} : K| = |G{α,β} : K{α,β}| = |G{α,β} : Gαβ | = 2.

Thus G/K ∼= C2 and r = 2, which is a contradiction. Therefore

G is not arc-transitive.

This implies that Gα does not act transitively on the neighbourhood of α, hence Gα is a
2-group. By (3.2), we deduce Gα = Kα is a 2-group. Actually, Lemma 2.3 shows that

(3.3) Gα = Kα is an elementary abelian 2-group.

If N is an elementary abelian 2-group, then, by Lemma 2.14, Γ is either a circular ladder, or
a Möbius ladder, or a split Praeger-Xu graph sC(r/2, s). Now, in the former cases, the proof
follows from Lemma 2.6, while, in the latter one, we conclude by Lemma 2.13. In particular, for
the rest of the proof we may suppose that N is not an elementary abelian 2-group.

For any minimal normal subgroup M of G, Mα = M ∩ Gα is also a 2-group. Thus, in view
of Lemma 3.2, M is an elementary abelian p-group, for some p ∈ {2, 3, 5}. This is true, in
particular, for N . Let M be a minimal normal subgroup distinct from N . Since [N,M ] = 1,
Lemma 2.2 gives a contradiction unless N and M are both p-groups for the same prime p. Thus,

(3.4) the socle of G is an elementary abelian p-group, for some p ∈ {3, 5}.

Before going any further, we need some extra information on the local action of G on Γ. Since
Gα is a non-identity 2-group, there exists a unique vertex α′ ∈ V Γ adjacent to α that is fixed
by the action of Gα. It follows that {α, α′} is a block of imprimitivity for the action of G on
the vertices. Hence,

Gα ≤ G{α,α′} and |G{α,α′} : Gα| = 2.

We obtain that, for any β ∈ V Γ, neighbour of α distinct from α′,

|G{α,α′} : Gαβ | = 4 and |G{α,β} : Gαβ | = 2.

Let {α′, β, γ} be the neighbourhood of α.
Assume G/K is cyclic of order r. As Γ/N is a cycle of length r, this means that G/K acts

transitively on the vertices and on the edges of Γ/N . Now, β and γ are in the same K-orbit
because Kα = Gα and Gα acts transitively on {β, γ}. In particular, each element in αN has
two neighbours in βN . As G/K is transitive on edges, we reach a contradiction because each
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element in αN would have two neighbours in α′N , contradicting the fact that α has valency 3.
Thus

(3.5) r is even and G/K is dihedral of order r.

Recall that N is an elementary abelian p-group with p ∈ {3, 5}. Thus N is semiregular.
We consider CK(N). Since N ≤ CK(N) and since K = KαN , we deduce CK(N) = N × Q,
for some subgroup Q of Kα. As Kα is a 2-group, so is Q. Therefore, Q is characteristic in
N ×Q = CK(N) and hence Q E G. Since Gα is a core-free subgroup of G, we get Q = 1 and
CK(N) = N .

Since N is a minimal normal subgroup of G, G acts irreducibly by conjugation on it, that is,
N is an irreducible FpG-module. As K EG, by Clifford’s Theorem, N is a completely reducible
FpK-module. As K = NGα and N is abelian, N is a completely reducible FpGα-module. As Gα

is abelian, by Schur’s Lemma, Gα induces on each irreducible FpGα-submodule a cyclic group
action. However, since Gα has exponent 2, we deduce that each irreducible FpGα-submodule
has dimension 1 and Gα induces on each irreducible FpGα-submodule the scalars ±1. Therefore,
Gα acts on N by conjugation as a group of diagonal matrices having eigenvalues in {±1}. In
other words, there exists a basis (n1, . . . , ne) of N as a vector space over Fp such that,

(3.6) for each g ∈ Gα and for each ni, we have ng
i ∈ {ni, n

−1
i }.

Furthermore, the action of G by conjugation on N preserves the direct product decomposition
N = 〈n1〉 × · · · × 〈ne〉.

We claim that

CG{α,β}
(N) = 1,(3.7)

CG{α,α′}
(N) = 1.

In other words, G{α,β} and G{α,α′} both act faithfully by conjugation on N . Let γ ∈ {α′, β}
and suppose, arguing by contradiction, that CG{α,γ}

(N) 6= 1. Since CK(N) = 1 and |G{α,γ} :

K ∩ G{α,γ}| = 2, we deduce CG{α,γ}
(N) = 〈x〉, where x is an involution. Since x /∈ K, x

acts semiregularly on Γ/N and hence x acts semiregularly on Γ. From this and from the fact
that x centralizes N , we deduce that G contains semiregular elements of order 2p ≥ 6, which
contradicts Hypothesis 3.1. Thus (3.7) is proven.

Observe that (3.7) implies that an element of G{α,α′} or of G{α,β} is the identity if and only
it its action on N by conjugation is trivial.

We show that

(3.8) G{α,β} \Gαβ contains an involution.

Let H be the permutation group induced by G{α,α′} in its action on the four right cosets
of Gαβ in G{α,α′}. Since H is a 2-group, H is isomorphic to either C4, or C2 × C2, or to the
dihedral group of order 8. In the first two cases, Gαβ is a normal subgroup of both G{α,α′} and
G{α,β}. As Gαβ is core-free in G and

G = 〈G{α,α′}, G{α,β}〉,

we have that Gαβ = 1. In particular, G{α,β} is cyclic of order 2, hence it contains an involution
and (3.8) follows in this case.

In the latter case, using the notation and the terminology in [Djo80], we have that the triple
(G{α,α′}, Gαβ , G{αβ}) is a locally dihedral faithful group amalgam of type (4, 2) and G is one
of its realizations. Indeed, from the classification in [Djo80], we see that either G{α,α′} \Gα or
G{α,β}\Gαβ contains an involution. If G{α,β}\Gαβ contains an involution, then (3.8) holds true
also in this case. Therefore we suppose τ1 ∈ G{α,α′} \Gα is an involution. We investigate the
action by conjugation of τ1 on N . By (3.1), τ1 is a semiregular automorphism of Γ/K, because
τ1 /∈ K. Therefore, τ1 is a semiregular automorphism of Γ. Since no semiregular involution
commutes with a non-identity element of N , τ1 acts by conjugation on N without fixed points,
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that is, for any n ∈ N , nτ1 = n−1. It follows from (3.6) that τ1 commutes with Gα and hence
G{α,α′} = 〈Gα, τ1〉 is an elementary abelian 2-group. Now, as Gαβ is normal in both G{α,α′}

and G{α,β}, we can conclude, as before, that G{α,β} is cyclic of order 2, hence it contains an
involution. Therefore, in any case, (3.8) holds true.

Let e be the positive integer such that N = Ce
p . We aim to show that

(3.9) e ∈ {1, 2}.

Let τ2 ∈ G{α,β} \ Gαβ be an involution: the existence of τ2 is guaranteed by (3.8). Now, we
look at the action by conjugation of τ2 on N . Observe τ2 /∈ K and hence τ2 is a semiregular
automorphism of Γ. Therefore, arguing as in the previous paragraph (with the involution τ1
replaced by τ2), we deduce that nτ2 = n−1 for every n ∈ N . Let L := 〈τg2 | g ∈ G〉. Since
G/K is a dihedral group and τ2 is an involution, we deduce that |G/K : LK/K| ≤ 2, that is,

|G : LK| ≤ 2. Observe now that, for any n ∈ N , nτg
2 = n−1. Therefore, the group induced

by the action by conjugation of L on N has order 2. This and (3.6) shows that the subgroup
LK of G preserves the direct sum decomposition N = 〈n1〉 × · · · × 〈ne〉. However, since G acts
irreducibly on N and since |G : LK| ≤ 2, we finally obtain e ≤ 2, as claimed in (3.9). Observe
that from this it follows that |N | = pe ∈ {3, 9, 5, 25}.

We are now ready to conclude this case. Observe that Gα contains an element x with
nx = n−1 for every n ∈ N . This is immediate from (3.6) when e = 1, or when e = 2 and
|Gα| = 4. When e = 2 and |Gα| < 4, we have |Gα| = 2 and hence the non-identity element of
Gα acts by conjugation on N inverting each of its elements.

Now, x and τ2 both induce the same action by conjugation on N , contradicting (3.7). This
final contradiction has concluded the analysis of this case.

3.5. Gα 6= 1 and Γ/N is a cubic graph. Under this assumption, any two distinct neighbours
of α are in distinct N -orbits, thus Nα = 1. In particular, Lemma 3.2 gives that N is elementary
abelian. Set Γ̄ := Γ/N , Ḡ := G/N and ᾱ := αN . Since |V Γ̄| < |V Γ|, by Hypothesis 3.1 the pair
(Γ̄, Ḡ) is not a counterexample to Theorem 1.2 and hence (Γ̄, Ḡ) is one of the pairs appearing
in Table 1. Moreover, since Gα 6= 1, we have the additional information that a vertex-stabilizer
Ḡᾱ

∼= Gα is not the identity.
We have resolved this case with a computer computation. Since this computer computation

is quite involved, we give some details. Let (Γ̄, Ḡ) be any pair in Table 1, except for the last row.
For each prime p ∈ {2, 3, 5}, we have constructed all the irreducible modules of Ḡ over the field
Fp having p elements. Let V be one of these irreducible modules. This module V corresponds to
the putative minimal normal subgroup N of G. We have constructed all the distinct extensions
of Ḡ via V . Let E be one of these extensions and let π : E → Ḡ be the natural projection
with Ker(π) = V . This extension E corresponds to the putative abstract group G. For each
such extension, we have computed all the subgroups H of E with the property that π|H is

an isomorphism between H and Ḡᾱ. This subgroup H is our putative vertex-stabilizer Gα.
This computation can be performed in π−1(Ḡᾱ). Next, we have constructed the permutation
representation Ep of E acting on the right cosets of H in E. This permutation group Ep is our
putative permutation group G. If Ep has semiregular elements of order at least 6, then we have
discarded E from further consideration.

For each permutation group Ep as above, we have verified, by considering the orbital graphs
of Ep, whether Ep acts on a connected cubic graph. This is our putative graph Γ. This step is
by far the most expensive step in the computation.

This whole process had to be applied repeatedly starting with the pairs arising from the
census of connected cubic graphs having at most 1 280 vertices.

For instance, the graphs having 65 610 vertices were found by applying this procedure starting
with the graph having 810 vertices and its transitive group of automorphisms having 1 620
elements: here the elementary abelian cover N has cardinality 81 = 34. Incidentally, we have
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found only one pair up to isomorphism. Next, by applying this procedure to this pair, we found
no new examples.

We give some further details of the computation when we applied the procedure with Γ̄ having
1 250 = 2 · 54 vertices and with its corresponding vertex-transitive subgroup Ḡ having order
2 500 = 22 · 54. When we applied this procedure, we have obtained graphs having 2 · 55 = 6 250
vertices and admitting a group of automorphisms having 22 · 55 = 12 500 elements. Actually,
in this step, we have found only one pair up to isomorphism. We have repeated this procedure
two more times, obtaining graphs having 2 · 56 = 31 250 and 2 · 57 = 156 250 vertices. We were
not able to push this computation further. Therefore to complete the proof of Theorem 1.2, we
need to show that any new pair (Γ, G) has the property that |V Γ| = 2 · 5ℓ and |G| = 4 · 5ℓ, with
ℓ ≤ 34.

From the discussion above we may suppose that |V Γ̄| = 2 · 5ℓ and |Ḡ| = 4 · 5ℓ with ℓ ≤ 34.
Moreover, Γ̄ is a regular cover of the graph, say ∆, having 1 250 vertices and Ḡ is a quotient of
the group of automorphisms of ∆, say H , with |H | = 2 500. In particular, a Sylow 2-subgroup
of Ḡ is cyclic and Ḡ has a normal Sylow 5-subgroup. (This information can be extracted from
the analogous properties of H .) Let P̄ be a Sylow 5-subgroup of Ḡ and observe that every
non-identity element of P̄ has order 5 because every semiregular element of Ḡ has order at
most 6. Let P be the subgroup of G with G/N = P̄ . Assume N is not an elementary abelian
5-group. Then N is an elementary abelian p-group for some p ∈ {2, 3}. Let Q be a Sylow
5-subgroup of P and observe that P = N ⋊ Q. The elements in P are semiregular and hence
each element of P has order at most 6. This implies that the elements of P have order 1, 5
or p. This implies that the action, by conjugation, of Q on N is fixed-point-free and P is a
Frobenius group with Frobenius kernel N and Frobenius complement Q. The structure theorem
of Frobenius complements gives that Q is cyclic and hence |Q| = 5, which is a contradiction.
This contradiction has shown that N is an elementary abelian 5-group and hence P is a Sylow
5-subgroup of G. Moreover, G = P ⋊ 〈x〉, where 〈x〉 is a cyclic group of order 4. We have shown

that |V Γ| = 2 · 5ℓ
′

and |G| = 22 · 5ℓ
′

. Therefore, it remains to show that ℓ′ ≤ 34.
Since |Gα| = 2, Gα fixes a unique neighbour of α. Let us call α′ this neighbour. Now, G{α,α′}

has order 4 because {α, α′} is a block of imprimitivity for the action of G on V Γ. Therefore, by
Sylow’s theorem, we may suppose that

G{α,α′} = 〈x〉.

In particular, Gα = 〈x2〉.
Let β and γ be the neighbours of α with β 6= α′ 6= γ. Clearly, |G{α,β}| = 2 and hence, by

Sylow’s theorem,

G{α,β} = 〈(x2)y〉,

for some y ∈ P .
Since Γ is connected, we have

G = 〈G{α,α′}, G{α,β}〉 = 〈x, (x2)y〉 = 〈x, y−1yx
2

〉.

As P EG and o(x) = 4, we deduce

P = 〈y−1yx
2

, (y−1yx
2

)x, (y−1yx
2

)x
2

, (y−1yx
2

)x
3

〉.

Now,

(y−1yx
2

)x
2

= (yx
2

)−1yx
4

= (yx
2

)−1y = (y−1yx
2

)−1.

Therefore, P = 〈y−1yx
2

, (y−1yx
2

)x〉 is a 2-generated group of exponent 5. In view of the
restricted Burnside problem (see [HWW74] and [Zel91]), the order of P is at most 534 and
hence ℓ′ ≤ 34.
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