
ar
X

iv
:2

30
2.

00
04

8v
1 

 [
m

at
h.

A
P]

  3
1 

Ja
n 

20
23

MULTILINEAR OSCILLATORY INTEGRALS AND ESTIMATES FOR

COUPLED SYSTEMS OF DISPERSIVE PDES

AKSEL BERGFELDT, SALVADOR RODRÍGUEZ-LÓPEZ, DAVID RULE,
AND WOLFGANG STAUBACH

Abstract. We establish sharp global regularity of a class of multilinear oscillatory in-
tegral operators that are associated to nonlinear dispersive equations with both Banach
and quasi-Banach target spaces. As a consequence we also prove the (local in time) con-
tinuous dependence on the initial data for solutions of a large class of coupled systems
of dispersive partial differential equations.

1. Introduction

In this paper, we consider the regularity of multilinear oscillatory integral operators
(multilinear OIOs for short) that are associated to nonlinear dispersive equations in the
realm of Banach and quasi-Banach function spaces. Examples include non-linear water-
wave and capillary wave equations, nonlinear wave and Klein–Gordon equations, the non-
linear Schrödinger equations, the Korteweg–deVries-type equations, and higher order non-
linear dispersive equations. To achieve this, we develop a fairly general and complete
framework for the investigation of the regularity of a class of multilinear oscillatory inte-
gral operators with smooth amplitudes.

The literature on multilinear oscillatory integrals is by now quite vast. However if we
confine ourselves to those operators that appear in connection to non-linear PDEs, then
one only has a handful of optimal (i. e. endpoint) results. These are:

i) Sharp global regularity of bilinear and multilinear oscillatory integral operators
(where the phase function of the operator is homogeneous of degree one) with
Banach target spaces see [14] and [15].

ii) Sharp global regularity of bilinear oscillatory integral operators that also include
operators with quadratic behaviour in their phase functions, and with Lebesgue-
type targets in the Banach scales, see the work of F. Bernicot and P. Germain [2].
Also some sharp global results for certain multilinear operators with quadratic
phase functions (different from those considered in [2]) were obtained in [1].

The main contributions of this paper can be briefly summarised as follows:

• From the point of view of nonlinear PDEs, we prove regularity results that can be
used in understanding the interaction of free waves in coupled systems of PDE’s
which can in turn be used to understand more complicated nonlinear problems.

• From the point of view of Fourier analysis, we extend the regularity of multilin-
ear OIOs with homogeneous of degree one phase functions to the case of oper-
ators with inhomogeneous phase functions, and with target spaces that include
quasi-Banach as well as Banach Hardy spaces. In this context and for the given
multiplier operators at hand, our results are optimal.
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In proving boundedness results with quasi-Banach target spaces, although an appro-
priate frequency-space decomposition of the operators into various frequency regimes is
available (see e. g. [15]), the classical duality method of R. Coifman and Y. Meyer [6], is
no longer applicable. Therefore, in this paper we introduce an approach based on

(i) vector-valued inequalities,

(ii) maximal functions of Hardy–Littlewood, Peetre and Park,

(iii) estimates for linear oscillatory integral operators,

which enable us to prove the desired boundedness results.

1.1. Some results concerning boundedness of multilinear oscillatory integral

operators. We start by giving an overview of the previously known regularity results for
OIOs, which are relevant to operators that are considered here.

Definition 1.1. For integers n,N > 1 and m ∈ R, the set of (multilinear) amplitudes
Sm(n,N) is the set of functions σ ∈ C∞(Rn × RnN ) that satisfy

|∂αΞ∂βxσ(x,Ξ)| 6 Cα,β〈Ξ〉m−|α|,

for all multi-indices α and β. Here and in what follows

〈Ξ〉 =


1 +

N∑

j=1

|ξj |2



1/2

for Ξ = (ξ1, . . . , ξN ) ∈ RnN with ξj ∈ Rn, j=1,. . . , N.

The parameter m is referred to as the order or decay of the amplitude.

In what follows, we shall also use

f̂(ξ) =

∫

Rn

f(x)e−ix.ξ dx

as the definition of Fourier transform of f . We now consider multilinear OIOs of the form

(1) TΦ
σ (f1, . . . , fN )(x) =

∫

RnN

σ(x,Ξ)

N∏

j=1

f̂j(ξj) e
iΦ(x,Ξ) d̄Ξ,

where σ ∈ Sm(n,N) and d̄Ξ := dΞ/(2π)nN .

The main goal here is to show that the operator TΦ
σ , initially defined by (1) for

f1, . . . , fN ∈ S (the Schwartz class), extends to a bounded multilinear operator from
Xp1 × . . . × XpN to Xp0 , where Xpj are certain Banach or quasi-Banach spaces. Now,
in the case that 1

p0
=
∑N

j=1
1
pj
, we shall refer to the corresponding regularity results as

Hölder-type (HT for short), otherwise non-Hölder-type (NHT for short).

Given σ ∈ Sm(n,N), the phases Φ in TΦ
a for which regularity results are currently

known take of the following forms:

a) N = 2, Φ(x,Ξ) = λϕ0(Ξ) +
∑2

j=1 x · ξj, Ξ ∈ R2n and λ a parameter;

b) N = 2, Φ(x,Ξ) =
∑2

j=1 ϕj(x, ξj), Ξ ∈ R2n; and

c) N > 1, Φ(x,Ξ) = ϕ0(ξ1 + · · ·+ ξN ) +
∑N

j=1(x · ξj + ϕj(ξj)).

For the phase functions of the form a), one is aiming at non-Hölder-type boundedness
of TΦ

a where part of the goal is also to obtain optimal powers of λ in the boundedness
estimates. In this case Bernicot and Germain [2] proved optimal global NHT regularity
results in Lebesgue spaces, under suitable conditions on the rank of various Hessians of
ϕ0. Their analysis also accommodates quadratic phases.
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For case b) D. Rule, S. Rodŕıguez-López and W. Staubach [14] proved optimal HT lo-
cal regularity results, under the conditions that the mixed Hessian of the phase functions
ϕj(x, ξj) are non-vanishing (the non-degeneracy condition) and that each of these phases
are positively homogeneous of degree one in ξj. Note that this case only accommodates ex-
amples that are relevant to the study of nonlinear wave equation. In [13] it was shown that
for bilinear operators where the phase functions are also allowed to behave quadratically,
one can prove an L2 × L2 → L1 boundedness result. A. Bergfeldt and W. Staubach [1]
extended this to the case of globally defined multilinear operators and all possible Banach
target spaces.

For case c) Rule, Rodŕıguez-López and Staubach [15] proved optimal HT global regu-
larity results in the general multilinear case, under the condition that the phase functions
ϕj are positively homogeneous of degree one. In this context, only the case of Banach
target spaces were investigated.

1.2. Synopsis of the results of the paper. Given our previous discussions, there are
quite a few problems that remain in the context of the regularity of oscillatory integral
operators. Generally speaking, these problems are related to the nature of the amplitudes
a(x,Ξ) and that of the phase functions Φ(x,Ξ) for which one can prove various regularity
results. For example one could lower the regularity of amplitudes or allow the phases
to depend in a particular way on the spatial and/or frequency variables. In this paper
we have chosen to look at the problem of global regularity for multilinear operators with
phase functions of form c) above, partly because of its relevance to the method of space-
time resonance and partly because it is a tractable halfway house that should lead to an
understanding of more general phases.

To implement our agenda, and motivated by examples related to dispersive PDEs, we
consider the following class of phase functions:

Definition 1.2. Let 0 < s < ∞. A function ϕ : Rn → R which belongs to C∞(Rn \ {0})
and satisfies

(2) |∂αϕ(ξ)| 6 cα |ξ|s−|α| for ξ 6= 0 and |α| > 0,

is called a phase function (or phase) of order s.

We note that the case of the water wave equation corresponds to the case s = 1
2 ,

capillary waves to the case s = 3
2 , the Schödinger equation to the case s = 2 and the Airy

equation to the case s = 3.

We shall say that 0 < pj 6 ∞ satisfy the Hölder condition if

(3)
1

p0
=

N∑

j=1

1

pj
.

Now defining the functions spaces Xp as

(4) Xp :=





hp if p 6 1

Lp if 1 < p <∞
bmo if p = ∞,

where Lp is the usual Lebesgue space, hp is the local Hardy space defined in Definition
2.2 below, and bmo is the dual space of h1, and considering phase functions of the form

(5) Φ(x,Ξ) = ϕ0(ξ1 + · · ·+ ξN ) +
N∑

j=1

(x · ξj + ϕj(ξj)),

we have the following HT boundedness result.
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Theorem 1.3. For integers n,N > 2, let the exponents pj ∈ ( n
n+1 ,∞] (j = 0, . . . , N)

satisfy (3). Moreover let

(6) m 6 −(n− 1)




N∑

j=1

∣∣∣∣
1

pj
− 1

2

∣∣∣∣+
∣∣∣∣
1

p0
− 1

2

∣∣∣∣


 .

If σ ∈ Sm(n,N) and Φ is of the form (5) with each phase ϕj being smooth outside the
origin and positively homogeneous of degree one, then the multilinear operator TΦ

σ initially
defined by (1) for f1, . . . , fN ∈ S (the Schwartz class), extends to a bounded multilinear
operator from Xp1 × . . .×XpN to Xp0 . Moreover, the same result holds in case each ϕj(ξ)
is equal to 〈ξ〉, which is an inhomogeneous phase related to the Klein–Gordon equation,
for the range pj ∈ (0,∞].

For the range p0 ∈ [1,∞] (the Banach target-spaces), this theorem for the case of
homogeneous of degree one phase functions (which is the case of the wave-equation) was
proven in [15]. Therefore Theorem 1.3 extends our previous result to the quasi-Banach
target-spaces as well as to the Klein–Gordon case. Note also that the admissible dimensions
in the case of N > 2 are necessarily greater than or equal to two (see [14]), however if
N = 1 then of course n = 1 is also allowed, since this is just the well-known boundedness
result for linear Fourier integral operators [11], [12]. Our second result HT boundedness
result is the following.

Theorem 1.4. For integers N,n > 1, and a real number s ∈ (0,∞), assume that the
exponents pj ∈ ( n

n+min(1,s) ,∞] (j = 0, . . . , N) satisfy (3). Suppose also that σ ∈ Sm(n,N)

and Φ is of the form (5) with each phase ϕj (j = 0, 1, . . . , N) of order s and

(7) m 6 −sn




N∑

j=1

∣∣∣∣
1

pj
− 1

2

∣∣∣∣+
∣∣∣∣
1

p0
− 1

2

∣∣∣∣


 .

Then the multilinear operator TΦ
σ initially defined by (1) for f1, . . . , fN ∈ S , extends to

a bounded multilinear operator from Xp1 × . . . ×XpN to Xp0. Moreover, if the functions
ϕj are all in C∞(Rn) (the Schrödinger case is such an example), then the ranges of the
exponents pj in the theorem can be extended to ∈ (0,∞].

Remark 1.5. If in Theorems 1.3 and 1.4, the phase function ϕ0 = 0 (and n > 1 in the
case of multilinear FIOs), then the order of the decay m can be improved by just removing
the term −sn|1/p0 − 1/2| (or −(n− 1)|1/p0 − 1/2|) from the m’s given in those theorems.

Theorem 1.4 has no predecessor in the literature and covers the cases of water wave,
capillary wave, Schrödinger, Korteweg–deVries and many other higher order dispersive
equations. Moreover, this result, in contrast to Theorem 1.3, applies in all dimensions,
when N > 1.

In proving Theorems 1.3 and 1.4, we make use of several global boundedness results:
Those for linear Klein–Gordon equations, proved by J. Peral [12] (for Xp with 1 < p <∞);
those for linear wave equations, proved by S. Rodŕıguez-López, D. Rule and W. Staubach
[13] (for Xp with n/(n + 1) < p 6 ∞); and those for higher order equations, proved
by A.J. Castro, A. Israelsson, W. Staubach and M. Yerlanov [5] (for Xp with n/(n +
min(1, s)) < p 6 ∞).

The methods involved in proving the multilinear results in the realm of Banach spaces
are essentially the same as the ones used by us to prove the boundedness of multilinear
FIOs in [13], which are based on non-trivial extensions of the Coifman–Meyer methods in
[6] to the case of multilinear operators with nonlinear phase functions.
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Thus, one writes the multilinear operator as a sum of operators whose amplitudes have
specific support properties in the frequency variable Ξ. One term has compact frequency
support, and for the other terms one has either that some |ξj | dominates Ξ, or that
|ξj| ≈ |ξk| for certain j and k on the support of the amplitude in question. Thereafter one
identifies the end-points that are needed to apply complex interpolation and proving these
end-point results creates in turn a number of cases, which are dealt with in accordance
with whether the target spaces are Banach or quasi-Banach.

In the case of Banach target spaces and for the term that is compactly supported
in the frequency, and those where |ξj | dominates Ξ, the machinery of [15] can be used
without difficulty. However for the parts where |ξj | ≈ |ξk| (and for the target spaces bmo
and L2), one needs a result, provided in Proposition 4.4, that demonstrates how certain
oscillatory integral operators give rise to Carleson measures, with an estimate on their
Carleson-norms. With this result at hand, the rest of the analysis is as in the case of
multilinear FIOs in [15].

The major hindrance to overcome here is that in the realm of quasi-Banach spaces, all
Coifman–Meyer-type approaches, including the ones used in [15] or [14] fail because of the
impossibility of using duality arguments. Thus to prove results in the quasi-Banach realm,
it behoves us to use a different method, and this is one of the novelties of the approach
developed in this paper. To obtain the end-point results of this paper, our approach will
be mainly based on various vector-valued inequalities. To our knowledge, using this type
of estimates to derive estimates for multilinear oscillatory integral operators is new. The
treatment that we describe here is rather technical, however it is fairly general in its nature
and can be used in other contexts as well. We should mention, however, that this approach
requires some degree of decay in the terms that represent the portion of multilinear op-
erators where |ξj| ≈ |ξk|. As such, the case of L2-target spaces can not be subsumed in
the quasi-Banach methods due to exactly that lack of decay. In addition to this, a lack
of a convenient vector-valued characterisation for bmo means the method developed here
also can not be applied in the case of a bmo-target space. Fortunately though, the L2 and
bmo-target space cases can be handled by the strategies mentioned earlier so that, in the
end, we arrive at all the desired results for both Banach and quasi-Banach targets, albeit
with a slightly longer proof than one might have hoped.

The main motivation for our work was provided by a series of papers of F. Bernicot
and P. Germain in [2–4] regarding coupled systems of dispersive PDEs, where the authors
derived bilinear dispersive estimates in dimension 1, 2 and 3, for these systems in light of
the method of space-time resonances. To briefly recall the setting of Bernicot-Germain’s
investigation, let ζ(Ξ) be a smooth symbol and let Tζ be the associated multilinear para-
product defined by

(8) Tζ(f1, . . . , fN )(x) :=

∫

RnN

ζ(Ξ)

N∏

j=1

(
f̂j(ξj)e

ix·ξj
)
dΞ,

where ξj ∈ Rn (j = 1, . . . , N) and Ξ = (ξ1, . . . , ξN ) ∈ RnN . Furthermore, for j = 0, . . . , N ,
let

ϕj(D) f(x) =

∫

Rn

ϕj(ξ) f̂(ξ) e
ix·ξ d̄ξ,

where d̄ξ denotes the normalised Lebesgue measure dξ/(2π)n. Consider now the coupled
system of dispersive equations
{
i∂tu+ ϕ0(D)u = Tζ (v1, . . . , vN )
i∂tvj + ϕk(D) vj = 0, j = 1, . . . , N

with

{
u(0, x) = 0
vj(0, x) = fj(x), j = 1, . . . , N.

The functions u and vk are complex valued, and each fk maps Rn to C.
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The above system is used in order to study the nonlinear interaction of free waves, as
a first step towards understanding a nonlinear dispersive equation i∂tu+ ϕ(D)u = F (u),
with a suitable nonlinearity. Thus given fj in some function spaces, one would like to
understand the behaviour of u in some other function spaces.

Using this setting and our estimates for multilinear oscillatory integrals we are able to
establish the validity of the following regularity theorem.

Theorem 1.6. Let s ∈ (0,∞), σk > 0, k = 1, . . . , N , κ = minσk, pj ∈ (1,∞),
j = 0, . . . , N , satisfying the Hölder condition (3), and assume that ϕk ∈ C∞(Rn\0) are pos-
itively homogeneous of degree s, and fk ∈ Hσk ,pk. Assume further that Tζ is the multilinear

multiplier given by (8) with symbol ζ(Ξ) ∈ Smζ (n,N) and set mc(s) := −ns∑N
j=0

∣∣∣ 1pj −
1
2

∣∣∣
for s 6= 1, and mc(1) = −(n − 1)

∑N
j=0

∣∣∣ 1pj −
1
2

∣∣∣. Then for any q ∈ [1,∞] and any T > 0,

there exists a constant CT > 0 such the solution u(t, x) satisfies the regularity estimate

‖u‖
Lq([0,T ])H

κ+mc(s)−mζ,p0(Rn)
6 CT

N∏

j=1

‖fj‖Hσj ,pj ,

provided that κ+mc(s)−mζ > 0 (which is needed in order to land in a space of functions
rather than a space of distributions).

Here for 1 < p < ∞, σ ∈ R, Hσ,p = {f ∈ S ′; (1 −∆)s/2f ∈ Lp(Rn)} is the Lp-based

Sobolev space with the norm ‖f‖Hσ,p := ‖(1 −∆)s/2f‖Lp .

The paper is organised as follows. In Section 2 we recall the basic notions and tools from
Fourier analysis and state some fairly general results that will also be used in the proof of
Theorems 1.3 and 1.4. In Section 3 we briefly discuss the sharpness of the order of the decay
of the operators in the bilinear setting. In Section 4 we state and prove several results in
the vector-valued setting for linear OIOs as well as a key proposition regarding the OIOs
giving rise to Carleson measures. Section 5 recalls briefly the frequency decomposition
that was introduced in [15], and which will be used throughout the paper. In Section 6
we briefly discuss the endpoint cases that are going to be considered in the Banach-target
case. Section 7 contains the proofs of Theorems 1.3 and 1.4. Finally Section 8 is devoted
to the proof of Theorem 1.6 on the Sobolev regularity of the solutions to coupled systems
of dispersive partial differential equations.

2. Definitions and Preliminaries

Here we collect all the definitions and basic results that will be used in the forthcoming
sections, in order to make the paper essentially self-contained.

We shall denote constants which can be determined by known parameters in a given
situation, but whose values are not crucial to the problem at hand, by C or c, sometimes
adding a subscript, for example cα, to emphasis a dependency on a given parameter α.
Such parameters are those which determine function spaces, such as p or m for example,
the dimension n of the underlying Euclidean space, and the constants connected to the
seminorms of various amplitudes or phase functions. The value of the constants may differ
from line to line, but in each instance could be estimated if necessary. We also write a . b
as shorthand for a 6 Cb and a ≈ b when a . b and b . a. By

B(x, r) := {y ∈ R
n : |y − x| < r}

we denote the open ball of radius r > 0 centred at x ∈ Rn.

We also recall the definition of the Littlewood–Paley partition of unity which is a basic
tool in harmonic analysis and theory of partial differential equations.
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Definition 2.1. Let ϑ : Rn → R be a positive, radial, radially decreasing, smooth cut-off
function which satisfies ϑ(ξ) = 1 if |ξ| 6 1 and ϑ(ξ) = 0 if |ξ| > 2. We set ϑ0 := ϑ and

ϑj(ξ) := ϑ
(
2−jξ

)
− ϑ(2−(j−1)ξ),

for integers j > 1. Then one has the following Littlewood–Paley partition of unity:
∞∑

j=0

ϑj(ξ) = 1 for all ξ ∈ R
n.

Using the definition above, let s ∈ R and 0 < p <∞, 0 < q 6 ∞. The Triebel–Lizorkin
space is defined as

F s
p,q(R

n) :=
{
f ∈ S

′(Rn) : ‖f‖F s
p,q(R

n) :=
∥∥∥
{ ∞∑

j=0

2jqs |ϑj(D)f |q
}1/q∥∥∥

Lp(Rn)
<∞

}
,

where S ′(Rn) denotes the space of tempered distributions.

In our analysis of the boundedness of oscillatory integral operators which is based
on multilinear interpolation, the end-points often involve local Hardy spaces which were
introduced by D. Goldberg [8]. One of the main advantages of these spaces is that they
are mapped into themselves under the action of the linear oscillatory integral operators
that are considered in this paper.

Definition 2.2. The local Hardy space hp(Rn), (0 < p <∞) is the Triebel–Lizorkin space
F 0
p,2 (see, for example [18]) with the norm

(9) ‖f‖hp(Rn) ≈ ‖ϑ0(D)f‖Lp(Rn) +

∥∥∥∥∥∥∥




∞∑

j=1

|ϑj(D)f |2



1
2

∥∥∥∥∥∥∥
Lp(Rn)

.

Note that the usual Hardy space H p(Rn) is defined the condition

‖f‖H p :=

(∫
sup
t>0

|ϑ(tD)f(x)|p dx

) 1
p

<∞.

The dual of H 1 is the John–Nirenberg space of functions of bounded mean oscillation
BMO, which consists of all functions f ∈ L1

loc such that

‖f‖BMO := sup
Q

1

|Q|

∫

Q
|f(x)− avgQf | dx <∞,

where avgQf = |Q|−1
∫
Q f , and Q ranges over cubes in Rn. The dual of the local Hardy

space h1 is the local BMO space, which is denoted by bmo and consists of locally integrable
functions that verify

‖f‖bmo ≈ ‖f‖BMO + ‖ϑ(D)f‖L∞ <∞,

where ϑ is the cut-off function introduced in Definition 2.1.

In the analysis of multilinear operators, a basic tool is a certain type of measure whose
definition we now recall. A Borel measure dµ(x, t) on R

n+1
+ is called a Carleson measure

if

‖dµ‖C := sup
Q

1

|Q|

∫ ℓ(Q)

0

∫

Q
|dµ(x, t)| <∞

where the supremum is taken over cubes Q ⊂ Rn and ℓ(Q) denotes the side length of Q
and |Q| its Lebesgue measure. The quantity ‖dµ‖C is called the Carleson norm of dµ. An
equivalent norm is given if cubes are replaced with balls. In this paper we are exclusively
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interested in Carleson measures which are supported on lines parallel to the boundary of
R
n+1
+ . More precisely, in what follows all Carleson measures will be supported on the set

E := {(x, t) : x ∈ Rn and t = 2−k for some k ∈ Z}
so they take the form ∑

k∈Z

dµ(x, t)δ2−k(t),

where δ2−k(t) is a Dirac measure at 2−k. This will be assumed throughout without further
comment.

The following basic results concerning the Carleson measure and the quadratic estimate
are very useful in the context of multilinear operators. See E. M. Stein [16] for the proofs.

Lemma 2.3. Let dµ(x, t) be a Carleson measure. Then if ϕ satisfies |ϕ(x)| . 〈x〉−n−ε

(for some 0 < ε <∞), then

(10)
∑

k

∫

Rn

|ϕ(2−kD)f(x)|2 dµ(x, 2−k) 6 Cn ‖dµ‖C ‖f‖2L2 ,

and if ϕ is a bump function supported in a ball near the origin with ϕ(0) = 1 then one
also has

(11)
∑

k

∫

Rn

|ϕ(2−kD)f(x)| dµ(x, 2−k) 6 Cn ‖dµ‖C ‖f‖h1 .

If ϕ ∈ S is such that ϕ(0) = 0, then

(12)
∑

k

∫ ∣∣∣ϕ(2−kD)f(x)
∣∣∣
2
dx . ‖f‖2L2 .

In our investigations we will also confront three types of maximal operators. The first
one is the Hardy–Littlewood maximal operator

Mf(x) := sup
B∋x

1

|B|

∫

B
|f(y)|dy,

where the supremum is taken over all balls B containing x. For 0 < p < ∞, one also

defines Mpf(x) := (M (|f |p))1/p.
The second one is J. Peetre’s maximal operator [18].

(13) Ma,b(f)(x) :=
∥∥∥ f(x− ·)
(1 + b |·|)a

∥∥∥
L∞

where 0 < a, b < ∞. For any x ∈ Rn, f ∈ S ′ with supp f̂ ⊂ {ξ; |ξ| 6 2b} and a > n
p one

has that

(14) Ma,bu(x) . Mpu(x).

The third type of maximal operator that will be used in this paper is B.J. Park’s
maximal operator [10]: For j ∈ Z, s > 0 and 0 < p 6 ∞

(15) M
p
s,2j

f(x) := 2jn/p
∥∥∥∥

f(x− ·)
(1 + 2j | · |)s

∥∥∥∥
Lp

.

Park’s maximal operator has the following properties: If 0 < p <∞ and s > n/p, then

(16) M
p
s,2j

f(x) . Mpf(x),
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uniformly in j ∈ Z. Moreover if the set of all dyadic cubes in Rn is denoted by D, and
for each j ∈ Z one denotes the elements of D with side length 2−j by Dj , then for every
dyadic cube J ∈ Dj and for every s > 0, 0 < p <∞ and f ,

(17) sup
y∈J

M
p
s,2j

f(y) . inf
y∈J

M
p
s,2j

f(y),

with constants independent of f and j.

Using the maximal operator Ma,b, Park has given a useful characterisation of the Hardy
and BMO spaces, in the following theorem.

Theorem 2.4. [10]. Let Λ ∈ S be a function whose Fourier transform is supported in

the annulus 1/2 6 |ξ| 6 2 and set Λ̂
(
·/2j

)
= Λ̂j so that one has the partition of unity∑

j∈Z
Λ̂j (ξ) = 1 for ξ 6= 0. Assume that 0 < p 6 ∞, 0 < q 6 ∞, 0 < γ < 1, and

s > n/min(p, 2, q). Then for each dyadic cubes Q ∈ D, there exists a proper measurable
subset SQ of Q, depending on γ, s, q and f , such that |SQ| > γ|Q| and

‖f‖Y p ≈

∥∥∥∥∥∥




∑

Q∈Dj

(
inf
y∈Q

M
q
s,2j

(Λj ∗ f) (y)
)
χSQ





j∈Z

∥∥∥∥∥∥
Lp(ℓ2)

where Y p = H p for 0 < p <∞ and Y∞ = BMO.

Now in connection to the Hardy–Littlewood maximal operator defined above, a useful
device in proving multilinear estimates is the Fefferman–Stein vector-valued maximal in-
equality [7, Theorem 1], which states that for r < p, q < ∞, or 0 < p < ∞, q = ∞ or for
p = q = ∞, one has

(18)
∥∥∥{Mrfj}j∈Z

∥∥∥
Lp(ℓq)

.
∥∥∥{fj}j∈Z

∥∥∥
Lp(ℓq)

.

The following theorem gives a corresponding vector-valued inequality involving Park’s
maximal operator.

Theorem 2.5. [10]. Let 0 < p, q, r 6 ∞ and s > n/min(p, q, r). Suppose that the Fourier
transform of fj is supported in a ball of radius A2j for some A > 0. Then for 0 < p <∞
and 0 < q 6 ∞ or for p = q = ∞, one has

(19)

∥∥∥∥
{
M

r
s,2jfj

}
j∈Z

∥∥∥∥
Lp(ℓq)

.
∥∥∥{fj}j∈Z

∥∥∥
Lp(ℓq)

We will also need the following vector valued inequality due to H. Triebel [18, Theorem
2, Section 2.4.9].

Theorem 2.6. If Gk is a sequence of functions with supp Ĝk ⊂ B(0, 2kR), for k = 0, 1, . . .
and R > 1, then for 0 < r < ∞ and 0 < q < ∞ one has the following vector-valued
inequality: For m ∈ Hα(Rn) (the Sobolev space Hα,2 of order α defined in the introduction

section), and ̂m(2−kD)f(ξ) = m(2−kξ)f̂(ξ), with

α > n

(
1

min(1, r, q)
− 1

2

)
,

there is a constant C > 0 independent of R and Gk’s, such that

(20)
∥∥∥
{
m(2−kD)Gk

}
k∈Z

∥∥∥
Lr(ℓq)

6 C‖m‖Hα

∥∥∥
{
Gk

}
k∈Z

∥∥∥
Lr(ℓq)

.

We note that the multilinear amplitudes defined in Definition 1.1 reduce to the classical
Hörmander classes Sm of amplitudes (or symbols) in the case N = 1, that is to say
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Sm = Sm(n, 1). The linear OIOs are the special case of (1) when N = 1, in which case
we have

(21) Tϕ
a f(x) :=

∫

Rn

eix·ξ+iϕ(ξ)a(x, ξ)f̂(ξ) d̄ξ,

for a given amplitude a ∈ Sm and phase function ϕ. In the proofs in the forthcoming
sections we will also use the notion of multilinear pseudodifferential operators which are
operators of the form

Tσ(f1, . . . , fN )(x) =

∫

RnN

σ(x,Ξ)
N∏

j=1

f̂j(ξj) e
i
∑N

j=1 x·ξj d̄Ξ.

For the analysis of the low frequency portion of the operators, where ususally the
singularity of the phase functions lie, we recall a linear result proved in [5], which es-
tablished the hp-boundedness of low-frequency portions of oscillatory integral operators,
whose multilinear generalisations are considered here in this paper.

Lemma 2.7. Let s > 0, sc := min(s, 1), a(x, ξ) be a symbol that is compactly supported
and smooth outside the origin in the ξ-variable and ϕ(ξ) ∈ C∞(Rn \ {0}) be a phase
function. Also assume that the following conditions hold:{

‖∂αξ a(·, ξ)‖L∞(Rn) 6 cα, |α| > 0,

|∂αξ ϕ(ξ)| 6 cα|ξ|s−|α|, |α| > 0,

for ξ 6= 0 and on the support of a(x, ξ). Let

K(x, y) :=

∫

Rn

a(x, ξ) eiϕ(ξ)+i(x−y)·ξ d̄ξ.

Then one has:

(i) |K(x, y)| . 〈x− y〉−n−εsc for any 0 6 ε < 1.

(ii) For every r ∈ (n/(n + εsc), 1] one has, for every f ∈ S ′ with frequency support
inside the unit ball and Tϕ

a defined as in (21), that

|Tϕ
a f(x)| . Mrf(x), x ∈ R

n.

(iii) For every n
n+sc

< p 6 ∞, and all f ∈ Xp,

‖Tϕ
a f‖Xp . ‖f‖Xp .

Proof. The proof of the first statement can be found in [5, Lemma 4.3].

For the second statement we can apply (i) to obtain that

|Tϕ
a f(x)| . |(ϑ(D)f) ∗ 〈·〉−n−εsc | . Mr(ϑ(D)f)(x)

for all f ∈ S , r ∈ ( n
n+εsc

, 1] and ε ∈ (0, 1).

We can prove the third statement by choosing n
n+sc

< r < p and making use of the

boundedness of the maximal operator M on Lp/r to obtain

‖Tϕ
a f‖hp . ‖Tϕ

a f‖Lp . ‖M(|ϑ(D)f |r)‖1/r
Lp/r . ‖ϑ(D)f‖Lp . ‖f‖hp ,

where the last inequality follows by (9) in Definition 2.2. In the case of p = ∞ for which
Xp = bmo, we just observe that the integral kernel of the adjoint of Tϕ

a is given by∫
Rn a(y, ξ) e

−iϕ(ξ)−i(x−y)·ξ d̄ξ, for which one can deduce a similar decay estimate as in (i).
Therefore by the same reasoning as above one has that ‖(Tϕ

a )∗f‖h1 . ‖f‖h1 and hence Tϕ
a

is bounded on bmo. �

As was mentioned earlier, the proofs of Theorems 1.3 and 1.4 also use the following
linear results:
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Theorem 2.8. Let m = −(n− 1)
∣∣∣ 1p − 1

2

∣∣∣ and n
n+1 < p 6 ∞. Then any FIO of the form

Tϕ
σ f(x) =

∫

Rn

σ(x, ξ) eix·ξ+iϕ(ξ)f̂(ξ) d̄ξ,

with an amplitude σ(x, ξ) ∈ Sm and a real-valued phase function ϕ ∈ C∞(Rn \ {0}) that is
positively homogeneous of degree one, satisfies the estimate

‖Tϕ
σ f‖Xp 6 C ‖f‖Xp ,

where Xp is defined in (4). Moreover, the same result also holds for 0 < p <∞, if ϕ(ξ) is
equal to the inhomogeneous phase function 〈ξ〉 (the case of the Klein–Gordon equation).

Proof. For homogeneous phase functions, this result was established in [15, Theorem 3.1].
For the proof for ϕ(ξ) = 〈ξ〉 we sketch an argument from [9]. One first separates the
amplitude σ(x, ξ) into low and high frequency portions. For the low frequency part we
have the result thanks to Lemma 2.7, and for the high frequency part one can write
σ(x, ξ)ei〈ξ〉 = σ̃(x, ξ)ei|ξ| with σ̃ ∈ Sm and thereafter apply Theorem 3.1 from [15] once
again. �

For other classes of OIOs, the following theorem was proven in [5], Theorem 3.5.

Theorem 2.9. Let 0 < s < ∞, m = −ns
∣∣∣1p − 1

2

∣∣∣ and n
n+min(s,1) < p 6 ∞. Then any

linear oscillatory integral operator

Tϕ
σ f(x) =

∫

Rn

σ(x, ξ) eix·ξ+iϕ(ξ)f̂(ξ) d̄ξ,

with an amplitude σ(x, ξ) ∈ Sm and a phase function ϕ satisfying (2), satisfies the estimate

‖Tϕ
σ f‖Xp 6 C ‖f‖Xp .

Moreover, if the phase function ϕ is in C∞(Rn), then the range of p in the theorem can be
extended to ∈ (0,∞].

3. On the sharpness of the orders of the operators

Here, building on the example in [15] and the sharpness results in [11], we construct
examples which show the sharpness of [14, Theorem 2.7] for certain values of the function
space exponents. They also serve as examples which show the sharpness of our main
results here (Theorems 1.3 and 1.4) when the target space is L2. As such, we consider the
case of bilinear operators with ϕ0 = 0, and the failure of Lp × Lq → Lr boundedness (in
the cases p, q 6 2 and p, q > 2). At the very end of the section we consider the case of
ϕ0 6= 0 but only for r = 2.

So let us first consider the operator

B(f, g)(x) =

∫

R2n

a(ξ, η)f̂ (ξ) ĝ(η) eix·(ξ+η) eiϕ(ξ)−iϕ(η) dξ dη,

with ϕ(ξ) = |ξ|s,

a(ξ, η) =
∞∑

k=0

ϑk(ξ)ϑk(−η)b1(ξ)b2(−η),

and bj(ξ) = (1− ϑ0(ξ))|ξ|mj (j = 1, 2), so that a ∈ Sm
1,0(n, 2), with m = m1 +m2.
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The parameter m and the order s of ϕ will be specified later, but we have in mind that
m should fail to satisfy either (6) or alternatively (7) depending on s. We compute
(22)
B(f, g)(x)

=

∫

R2n

( ∞∑

k=0

ϑk(ξ)ϑk(−η)b1(ξ)b2(−η)
)
f̂(ξ) ĝ(−η) eix·(ξ+η) eiϕ(ξ)−iϕ(η) dξ dη

=

∞∑

k=0

(∫

Rn

ϑk(ξ)b1(ξ)f̂(ξ) e
ix·ξ eiϕ(ξ) dξ

)(∫

Rn

ϑk(−η)b2(−η)ĝ(−η) eix·η e−iϕ(η) dη

)

=

∞∑

k=0

(∫

Rn

ϑk(ξ)b1(ξ)f̂(ξ) e
ix·ξ eiϕ(ξ) dξ

)(∫

Rn

ϑk(ξ)b2(ξ)ĝ(ξ) eix·ξ eiϕ(ξ) dξ

)
.

3.1. Fourier integral operators. Consider s = 1 and

m = −(n− 1)

(∣∣∣∣
1

p
− 1

2

∣∣∣∣+
∣∣∣∣
1

q
− 1

2

∣∣∣∣
)
+ ε

for some ε > 0.

If p, q > 2 (so 2r > 1) we choose

λ1 =
n+ 1

2
− 1

p
+
ε

4
,

λ2 =
n+ 1

2
− 1

q
+
ε

4
,

m1 = −n− 1

2
+
n

2r
− 1

p
+
ε

2
, and

m2 = −n− 1

2
+
n

2r
− 1

q
+
ε

2
.

We see directly that m = m1 + m2 and if we define f̂(ξ) = (1 − ϑ0(ξ))|ξ|−λ1e−i|ξ| and
ĝ(ξ) = (1 − ϑ0(ξ))|ξ|−λ2e−i|ξ|, fact (II-i) from [11, page 302] shows us that f ∈ Lp and
g ∈ Lq. We see also that

b1(ξ)f̂(ξ)e
iϕ(ξ) = b2(ξ)ĝ(ξ)e

iϕ(ξ) = (1− ϑ0(ξ))
2|ξ|−n(1−1/(2r))+ε/4 =: F̂ (ξ).

so we can compute from (22) that

(23) B(f, g)(x) =
∞∑

k=0

∣∣∣∣
∫

Rn

ϑk(ξ)F̂ (ξ) eix·ξ dξ

∣∣∣∣
2

=
∞∑

k=0

|ϑk(D)(F )(x)|2 .

If we assume B is bounded from Lp×Lq to Lr, then the Littlewood-Paley characterisation
of h2r and the fact that F is high-frequency localised, yield

‖F‖H2r ∼ ‖F‖h2r .

∥∥∥∥∥∥

( ∞∑

k=1

|ϑk(D)(F )|2
)1/2

∥∥∥∥∥∥
L2r

= ‖T (f, g)‖1/2Lr . ‖f‖1/2Lp ‖g‖1/2Lq .

However, fact (II-i) from [11, page 302] shows us that F 6∈ H2r.

So we arrive at a contradiction, and B cannot be a bounded operator from Lp ×Lq to
Lr.
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If p, q 6 2 we can apply a similar argument but choose instead

λ1 = n

(
1− 1

p

)
+
ε

4
,

λ2 = n

(
1− 1

q

)
+
ε

4
,

m1 =
n− 1

2
− n

p
+

1

2r
+
ε

2
, and

m2 =
n− 1

2
− n

q
+

1

2r
+
ε

2
.

We still have that m = m1 +m2 and if we this time define f̂(ξ) = (1 − ϑ0(ξ))|ξ|−λ1 and
ĝ(ξ) = (1− ϑ0(ξ))|ξ|−λ2 , fact (II-ii) from [11, page 302] shows us that f ∈ Lp and g ∈ Lq.
We once again obtain (23) but with

F̂ (ξ) = (1− ϑ0(ξ))
2|ξ|−(n+1)/2+1/(2r)+ε/4e−i|ξ|,

so the proof of fact (II-ii) from [11, page 302] reveals that F (x) ∼ (1 − |x|)−1/(2r)−ε/4 as
|x| → 1, so again F 6∈ H2r. We have therefore shown, even for p, q 6 2, B is not a bounded

operator from Lp × Lp to Lp/2.

3.2. Oscillatory integral operators. We consider now either 0 < s < 1 or s > 1 and

m = −sn
(∣∣∣∣

1

p
− 1

2

∣∣∣∣+
∣∣∣∣
1

q
− 1

2

∣∣∣∣
)
+ ε

for some ε > 0.

If p, q > 2 we choose

λ1 = n
(
1− s

2

)
− n

(1− s)

p
+
ε

4
,

λ2 = n
(
1− s

2

)
− n

(1− s)

q
+
ε

4
,

m1 = −sn
(
1

2
− 1

p

)
− n

(
1

p
− 1

2r

)
+
ε

2
, and

m1 = −sn
(
1

2
− 1

p

)
− n

(
1

p
− 1

2r

)
+
ε

2
.

then we can carry out an analogous argument to that above for FIOs with f̂(ξ) = (1 −
ϑ0(ξ))|ξ|−λ1e−i|ξ|a and ĝ(ξ) = (1 − ϑ0(ξ))|ξ|−λ2e−i|ξ|a. We use (I-i) instead of (II-i) from
[11] to conclude that f ∈ Lp and g ∈ Lq but B(f, g) 6∈ Lr.

If p, q 6 2 we choose

λ1 = n

(
1− 1

p

)
+
ε

4
,

λ2 = n

(
1− 1

q

)
+
ε

4
,

m1 = −sn
(

1

2r
− 1

2

)
− n

(
1

p
− 1

2r

)
+
ε

2
, and

m1 = −sn
(

1

2r
− 1

2

)
− n

(
1

p
− 1

2r

)
+
ε

2
.

so once again we can carry out the same argument, this time with the help of (II-ii) from

[11], f̂(ξ) = (1 − ϑ0(ξ))|ξ|−λ1 and ĝ(ξ) = (1 − ϑ0(ξ))|ξ|−λ2 . We conclude that f ∈ Lp and
g ∈ Lq but B(f, g) 6∈ Lr.
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Finally turning to the case of bilinear operators of the form

T (f, g)(x) =

∫

R2n

a(ξ, η)f̂ (ξ) ĝ(η) eix·(ξ+η) eiϕ(ξ)−iϕ(η)+iϕ0(ξ+η) dξ dη,

we observe that T (f, g)(x) = eiϕ0(D)(B(f, g))(x), with B(f, g) as above. Therefore the

unitarity of the operator eiϕ0(D) on L2 yields that the boundedness of T from Lp × Lq →
L2 is equivalent to the Lp × Lq → L2 boundedness of B(·, ·), and the discussion above
establishes the sharpness of the parameters involved, in the case 1/p + 1/q = 1/2 and
r = 2.

4. Basic Vector-Valued and Carleson Estimates for Oscillatory Integral

Operators

Before proceeding to the boundedness results, we need the following lemma, which
was proved in the case of FIOs in [15]. We also include the proof, both for the sake of
completeness and for later reference.

Lemma 4.1. Let ϑ : Rn → R be a positive, radial, radially decreasing, smooth cut-off
function which satisfies ϑ(ξ) = 1 if |ξ| 6 1 and ϑ(ξ) = 0 if |ξ| > 2 (as defined in Defini-
tion 2.1), and set θk(ξ) := ϑ(23−kξ). Furthermore let ωk(ξ) be a bump function equal to
one on the support of θk. Now assume that

s > 0, sc = min(s, 1), n/(n+ sc) < p 6 ∞, m = −ns
∣∣∣∣
1

p
− 1

2

∣∣∣∣ ,

and for a fixed but arbitrary vector u ∈ Rn set

b(k, ξ) := 2kmωk(ξ) and P̂ u
k (g)(ξ) := θk(ξ)e

i2−kξ·uĝ(ξ).

If ϕ is a phase function of order s, then one has

(24) sup
k

∥∥(P u
k ◦ Tϕ

b )(f)
∥∥
hp . ‖f‖hp ,

and for n > 1 one also has for m = −ns/2
(25) sup

k

∥∥(P u
k ◦ Tϕ

b )(f)
∥∥
L∞

. ‖f‖bmo and sup
k

∥∥(P u
k ◦ Tϕ

b )(f)
∥∥
h1 . ‖f‖L1 .

The same conclusion holds for FIOs, that is, when s = 1 and ϕ is positively homogeneous

of degree one. In that case (24) is valid for m = −(n− 1)
∣∣∣1p − 1

2

∣∣∣ and n/(n+1) < p 6 ∞,

and (25) is valid when n > 2 and m = −(n− 1)/2.

Proof. The proof of (24) follows from the fact that the amplitude of P u
k ◦ Tϕ

b is in Sm

uniformly in k.

In order to establish the first inequality in (25), we write b = b♭ + b♯ where

(26) b♭(k, ξ) = b(k, ξ)(1 − λ(ξ)), and b♯(k, ξ) = b(k, ξ)λ(ξ).

and λ is a smooth function that vanishes in a neighbourhood of the origin and equal to
one outside a larger neighbourhood of the origin. Now since m 6 0 and 1 − λ is a low
frequency cut-off, one can essentially throw away the ω in the definition of b which would
then make b♭ equal to 2km. Then by the kernel estimates for the OIOs with amplitude b♭

(see e.g. Lemma 2.7), for f ∈ bmo we have that
∥∥∥P u

k T
ϕ

b♭
(f)
∥∥∥
L∞

.
∥∥∥Tϕ

b♭
(f)
∥∥∥
L∞

. ‖(1− λ)(D)f‖L∞ . ‖f‖bmo .

In order to ameliorate (P u
k ◦Tϕ

b♯
)(f) so that we can better understand its action on bmo

functions, we employ an argument from [14, page 27]. According to that argument, for
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n > 1 and m = −ns
2 , one introduces the operator Rk(G)(x) =

∫
Kk(x− y)G(y) dy, with

Kk(z) =
∑

κ6j6k

2jmΨ
(
2k−jz

)
2n(k−j), for some κ

and

(27) Ψ̂(η) = ψ̂(η)2 |η|m =: ψ̂(η) ̂̃Ψ(η),

where ψ̂ is smooth, radial and positive with

supp ψ̂ ⊂
{
ξ : 2−2 6 |ξ| 6 1

}
,

and ∑

j∈Z

ψ̂(2jη)2 = 1 for any η 6= 0.

Moreover, by [14, Lemma 4.8], the kernel Kk has the following properties:
∫
Kk(z) dz = 0;

and for each 0 < δ < ns
2 the estimates

|Kk(x− y)| . 2kn
(
1 +

|x− y|
2−k

)−n−δ

and ∣∣Kk(x− y)−Kk(x− y′)
∣∣ . 2k(n+1)

∣∣y − y′
∣∣

hold for all x, y, y′ ∈ Rn and k ∈ Z. Therefore the operator Rk satisfies

sup
k∈Z

‖Rkf‖Lq . ‖f‖Lq , 1 6 q <∞,

and
sup
k∈Z

‖Rkf‖L∞ . ‖f‖BMO .

The consequence of the above discussion is that we can write

(28) Rk =
∑

κ6j6k

Qj2
(k−j)m

and Qj(D) := Ψ̂(2−jD), which enables one to replace (P u
k ◦ Tϕ

b♯
)(f) by P u

k ◦ Rk ◦ Tϕ
γ (f),

for n > 1, where γ(ξ) := λ(ξ)|ξ|m ∈ S−ns/2.

Using the BMO–L∞ boundedness above, the global bmo-boundedness of OIOs with
amplitudes in S−ns/2 (i.e. Theorem 2.9) and the L∞-boundedness of P u

k , all together
yields that

sup
k

∥∥P u
k T

ϕ
b♯
(f)
∥∥
L∞

= sup
k

∥∥P u
k ◦Rk ◦ Tϕ

γ (f)
∥∥
L∞

. ‖λ(D)f‖BMO 6 ‖f‖bmo . �

Another useful tool in our analysis is the following lemma.

Lemma 4.2. Let

s > 0, n > 1, n/(n+ sc) < p <∞, p 6= 2 and m = −ns
∣∣∣∣
1

p
− 1

2

∣∣∣∣ .

Assume that b(k, ξ) and P u
k are given by the same expressions as in Lemma 4.1. Then for

an OIO Tϕ
b one has

∥∥∥
( ∞∑

k=0

|P u
k T

ϕ
b (f)|2

)1/2∥∥∥
Lp

. ‖f‖hp .

For an FIO Tϕ
b the same result is valid under the conditions that n > 2, m = −(n −

1)
∣∣∣ 1p − 1

2

∣∣∣ and n/(n+ 1) < p 6 ∞ with p 6= 2.
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Proof. We only prove the result for the case of OIOs since the corresponding proof for
FIOs is carried out in a similar manner. Observe that P u

k T
ϕ
b is an oscillatory integral with

amplitude

ei2
−kη·u2kmω̂k(η)θ̂(2

−kη)

and phase function x · η + ϕ(η). One can also write the amplitude as

ei2
−kη·u2kmω̂k(η)θ̂(2

−kη)

= λ(η)ei2
−kη·u2kmω̂k(η)θ̂(2

−kη) + (1− λ(η))ei2
−kη·u2kmω̂k(η)θ̂(2

−kη)

:= αk + βk,

where λ is the high frequency localisation introduced in (26).

We first consider the case of
∥∥∥
(∑∞

k=0 |P u
k T

ϕ
αk(f)|2

)1/2∥∥∥
Lp
. Replacing Tϕ

αk with P u
k ◦

Rk ◦ Tϕ
γ , with γ ∈ Sm

1,0, matters reduce to proving the desired boundedness for

(
∑

k>0

|(P u
k ◦Rk ◦ Tϕ

γ )f |2)1/2,

where Tϕ
γ and Rk are as in Lemma 4.1. Now if we introduce a smooth cut-off function χ

such that Rk = Rk(1 − χ(D)) and using Theorem 2.9 for OIOs (or Theorem 2.8 in the
case of FIOs), it is enough to prove

(29)



∫ 
∑

k>0

|P u
k RkG(x)|2




p/2

dx




1/p

. ‖G‖hp .

At this point, for the sake of simplicity of the notation, we replace P u
k by Pk in what

follows. This modification will not cause any problems since the difference between the
two operators only lies in a harmless factor ei(·)·u. Observe now that using the integral
representation of Rk, one has

PkRkG(x) =
∑

κ6j6k

2jm
∫ (

θk ∗ Ψ̃2j−k

)
(y)
(
ψ2j−k ∗G

)
(x− y) dy,

where Ψ̃ is defined in (27) and Ψ̃(·)(x) := (·)−nΨ̃( x
(·)), and ψ2j−k is defined in a similar

way. Then for any ν > 0 (to be later determined)

|PkRkG(x)| 6
∑

κ6j6k

2jm
(∫ ∣∣∣θk ∗ Ψ̃2j−k(y)

∣∣∣
(
1 +

|y|
2j−k

)ν

dy

)
Mν,2k−j (ψ2j−k ∗G)(x),

where Mν,2k−j is the Peetre maximal function as defined in (13).

Now by (14) we have

Mν,2k−j (ψ2j−k ∗G)(x) . Mn/ν(ψ2j−k ∗G),
for any x ∈ Rn. Moreover by fairly standard estimates for convolution-type integrals one
has for any N > n+ ν

∣∣∣θk ∗ Ψ̃2j−k(y)
∣∣∣ . (2−k max

(
2j , 1

)
)−n

(
1 +

|y|
2−k max (2j , 1)

)−N

,

which in turn implies that

sup
κ6j6k

∫ ∣∣∣θk ∗ Ψ̃2j−k(y)
∣∣∣
(
1 +

|y|
2j−k

)ν

dy . 1.

Thus, we have the pointwise inequality

|PkRkG(x)| .
∑

κ6j6k

2jm
[
M
(
|ψ2j−k ∗G|

n
ν

)
(x)
] ν

n
.
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Therefore, for any q > max
(
n
ν , 1
)


∑

k>0

|PkRkG(x)|q



1/q

.

∞∑

j=κ

2jm


∑

k>j

[
M
(
|ψ2j−k ∗G|

n
ν

)
(x)
] qν

n




1
q

6 Cm


∑

k>0

[
M
(
|ψk ∗G|

n
ν

)
(x)
] qν

n




1
q

= Cm


∑

k>0

[
Mn/ν (ψk ∗G) (x)

]q



1
q

where Cm =
∑∞

j=κ 2
jm < +∞.

Hence, for any p > n
ν the Fefferman-Stein’s estimate (18) yields that

∥∥∥∥∥∥∥


∑

k>0

|PkRkG|q



1/q
∥∥∥∥∥∥∥
Lp(Rn)

.



∫ 
∑

k>0

|ψk ∗G(x)|q



p
q

dx




1
p

.

Finally the last term is equal to


∫ 
∑

k>0

|ψk ∗G(x)|q



p
q

dx




1
p

. ‖G‖F 0
p,q
.

Taking q = 2 and ν > n/p, and using Definition 2.2, we obtain


∫ 
∑

k>0

|PkRkG(x)|2



p/2

dx




1/p

. ‖G‖hp .

This proves (29).

Now to treat
∥∥∥
(∑∞

k=0 |P u
k T

ϕ
βk
(f)|2

)1/2∥∥∥
Lp
, we observe that by an argument similar to

the proof of Lemma 4.1 (that is to say, essentially use (24)) we have

∥∥∥
( ∞∑

k=0

|P u
k T

ϕ
βk
(f)|2

)1/2∥∥∥
p

Lp
.
∥∥∥
( ∞∑

k=0

2km|P u
k T

ϕ
1−λf |2

)1/2∥∥∥
p

Lp

.

∞∑

k=0

2pkm/2
∥∥P u

k T
ϕ2

1−λf
∥∥p
Lp

)

.

( ∞∑

k=0

2pkm/2

)
sup
k>0

∥∥P u
k T

ϕ2

1−λf
∥∥p
Lp

. ‖f‖php . �

Remark 4.3. A re-examination of the proofs of Lemmas 4.1 and 4.2 reveals that if

b(k, ξ) = 2km0ωk with m0 < 0 and 1 < p <∞, m(p) = −ns
∣∣∣1p − 1

2

∣∣∣ then one has

∥∥∥
( ∞∑

k=0

|P u
k T

ϕ
b (f)|2

)1/2∥∥∥
Lp

. ‖f‖Hm0−m(p),p .

where Hs,p = F s
p,2 is the Lp-based Sobolev space.
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For the boundedness of multilinear OIOs with target spaces L2 or bmo, we need the
following result about oscillatory integrals giving rise to Carleson measures, whose coun-
terpart in the case of FIOs was proven in [15]. The proposition below doesn’t require any
homogeneity from the phase function as in the case of FIOs.

Proposition 4.4. Let s > 0, d ∈ S−ns/2, u ∈ Rn and let

Qu
kf(x) =

1

(2π)n

∫
ψk(ξ)e

i2−kξ·uf̂(ξ)eix·ξ dξ,

where k > k0 ∈ Z and

(30) ψk(ξ)
2 := ϑ(2−1−kξ)2 − ϑ(22−kξ)2,

and ϑ is as in Lemma 4.1. Then if ϕ is a phase function of order s > 0 and f ∈ bmo one
has that

dµk(x, t) =

∞∑

ℓ=0

|(Qu
k+ℓ ◦ Tϕ

d )(f)(x)|2δ2−ℓ(t) dx

is a Carleson measure with Carleson norm bounded by Cε2
−εk‖f‖2bmo. Here, for any

δ ∈ (0, 1), ε is given by min(ns/2, nδ).

Proof. Since we can write Qu
k+ℓ ◦ T

ϕ
d = Qu

k+ℓ ◦ T
ϕ
d ◦ Q̃u

k+ℓ, where Q̃u
k+ℓ : bmo → L∞

uniformly in k, we first consider the case of f ∈ L∞. Also for simplicity of the exposition
we set u = 0 in what follows.

Now since the operator Qk+ℓ ◦ Tϕ
d is essentially the (k + ℓ)-th component of the

Littlewood–Paley decomposition of the operator Tϕ
d , setting j = k + ℓ > k0 we carry

out a second microlocalisation of Qj ◦ Tϕ
d in the following way.

Take a non-negative real number µ, to be fixed later, and for each j, fix O(2nµj)
vectors ξνj , ν = 1, . . . , O(2nµj), distributed evenly in suppψj . Let {ρνj }ν be a family of

smooth functions, where suppρνj is a ball of radius 2(1−µ)j centred at ξνj , chosen in such

a way that the supports of {ρνj }ν cover suppψj . One may for example take a smooth
bump function β supported in a ball of radius 1 about the origin and from this form
ρνj (ξ) = β(2(µ−1)j(ξ − ξνj ))/

∑
κ β(2

(µ−1)j(ξ − ξκj )).

It is clear that these cut-off-functions satisfy

|∂αρνj (ξ)| 6 Cα2
|α|(µ−1)j .

With this partition of unity, we may therefore write the integral kernel of Qj ◦ Tϕ
d as

Kj(x, y) =
∑

ν K
ν
j (x, y), with

Kν
j (x, y) =

∫
d(ξ)ρνj (ξ)ψj(ξ)e

i(x−y)·ξ+iϕ(ξ) d̄ξ.

In order to get desired estimates for the kernel, we rewrite the phase of this integral as

(x− y) · ξ + ϕ(ξ) = (x− y +∇ϕ(ξνj )) · ξ + hνj (ξ),

with hνj (ξ) = ϕ(ξ)−∇ϕ(ξνj ) · ξ,
which in turn yields

Kν
j (x, y) =

∫
bνj (ξ)e

i(x−y+∇ϕ(ξνj ))·ξ d̄ξ,

where bνj (ξ) = d(ξ)ρνj (ξ)ψj(ξ)e
ihν

j (ξ). The mean-value theorem then yields that ∂ih
ν
j (ξ) =

∇∂iϕ(η) · (ξ − ξνj ) for some η on the line segment between ξ and ξνj . On suppψj ρ
ν
j , we

therefore have from (2) that

|∂αhνj (ξ)| .
{
2(s−µ−1)j |α| = 1

2(s−|α|)j |α| > 1.
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If we take µ 6 s/2, the worst terms of |∂αξ eih
ν
j (ξ)| are hence bounded by a constant times

2(s−µ−1)|α|j .

With these estimates at hand, we find that on the support of ψj ρ
ν
j ,

|∂αbνj (ξ)| 6 Cα

∑
∑

αℓ=α

∣∣∂α1d(ξ)∂α2ρνj (ξ)∂
α3ψj(ξ)∂

α4
ξ (eih

ν
j (ξ))

∣∣

6 Cα

∑
∑

αℓ=α

2(−ns/2−|α1+α3|+(µ−1)|α2|+(s−µ−1)|α4|)j 6 Cα2
(−ns/2+(s/2−1)|α|)j ,

where we have fixed µ to be the optimal µ = s/2. For later convenience, we define
λ = s/2− 1.

We are now ready to take on the Carleson norm estimates. To that end, we fix a ball
B of radius r < 1 and centre x0. Let then τ ∈ (0, 1) be given by

τ =

{
1− s/2 if s < 2

1− δ otherwise,

where δ ∈ (0, 1) is arbitrary, and let Rν be the ball of radius 2 · 2(λ+τ)(j−k0)rτ and centre
x0 +∇ϕ(ξνj ). Clearly then,

QjT
ϕ
d f(x) =

∑

ν

Sν
j (χRνf)(x) +

∑

ν

∫

Rc
ν

Kν
j (x, y)f(y) dy,

where Sν
j is the operator with kernel Kν

j .

For the parts inside the balls Rν , we use that |ψ(2−jξ)d(ξ)| . 2−nsj/2, and hence Sν
j is

bounded L2 → L2 with operator norm estimated by 2−nsj/2. Using this and the fact that
the symbols have almost disjoint support – that is, with a finite number of overlaps – we
find that for each ν,

∫

B

∣∣∣
∑

ν

Sν
j (χRνf)(x)

∣∣∣
2
dx .

∫ ∣∣∣
∑

ν

Sν
j (χRνf)(x)

∣∣∣
2
dx .

∑

ν

2−nsj‖χRνf‖2L2

6
∑

ν

2−nsj |Rν |‖f‖2L∞ . (2jr)(τ−1)n|B|‖f‖2L∞ .

To find a similar estimate for the parts outside Rν we start by noting that the triangle
inequality and the fact that λ+ τ > 0 and j > k0 yield that for r 6 1, any x ∈ B and any
y with y + x0 +∇ϕ(ξνj ) ∈ Rc

ν we have

|x− x0 − y| > |y| − r >
1

2
|y|+ 2(λ+τ)(j−k0)jrτ + r >

1

2
|y| & 2(λ+τ)jrτ .

We therefore have for any x ∈ B and non-negative integer N that
∫

Rc
ν

|Kν
j (x, y)|dy =

∫

Rc
ν

∣∣∣
∫
bνj (ξ)

( (x+∇ϕ(ξνj )− y) · ∇ξ

|x+∇ϕ(ξνj )− y|2
)N

ei(x+∇ϕ(ξνj )−y)·ξ d̄ξ
∣∣∣dy

=

∫

Rc
ν

∣∣∣
∫
ei(x+∇ϕ(ξνj )−y)·ξ

((x+∇ϕ(ξνj )− y) · ∇ξ

|x+∇ϕ(ξνj )− y|2
)N

bνj (ξ) d̄ξ
∣∣∣dy

.

∫

Rc
ν

2−nsj/2+Nλj|supp ρνj |
|x+∇ϕ(ξνj )− y|N dy

=

∫

y+x0+∇ϕ(ξνj )∈Rc
ν

2−nsj/2+Nλj|supp ρνj |
|x− x0 − y|N dy

.

∫

|y|>2(λ+τ)jrτ

2−nsj/2+(N−n)λj

|y|N dy . 2−nsj/2(2jr)(n−N)τ .
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Now choose N large enough to make 2(N − n)τ > n(1 − τ) =: ε. Note that from the
definition of τ , we have that ε = min(ns/2, nδ), where δ ∈ (0, 1) is arbitrary. Combining

with the result from the part from inside Rν and summing over the O(2nsj/2) balls, this
then yields that

∫
B |QjT

ϕ
d (f)(x)|2 dx . (2jr)−ε|B|‖f‖2L∞ . Hence

∫

B×[0,r]
|dµk(x, t)| =

∑

2−ℓ6r

∫

B
|Qk+ℓ ◦ Tϕ

d ◦ Q̃k+ℓ(f)(x)|2 dx(31)

.
∑

2−ℓ6r

(2k+ℓr)−ε|B|‖Q̃k+ℓ(f)‖2L∞

. 2−εk
∑

2−ℓ6r

(2−ε)ℓr−ε|B|‖f‖2bmo . 2−εk|B|‖f‖2bmo,

which shows the requested Carleson estimate for balls of radius smaller than 1.

Now if the radius r of B is larger than one, then we cover B by balls Bj of radius
1/2, observing that there are O(rn) such balls needed for this covering. Furthermore we
observe that for r > 1, (31) yields that

∫

B×[0,r]
|dµk(x, t)| =

∫

B×[0,1]
|dµk(x, t)| 6

∑

O(rn)

∫

Bj×[0,1]
|dµk(x, t)|

.
∑

O(rn)

2−εk2−n ‖f‖2bmo . 2−εk|B| ‖f‖2bmo . �

5. Frequency decomposition of the oscillatory integral operator

Following the method in [15] for the decomposition of the amplitude σ(x,Ξ) ∈ Sm(n,N),
we reduce the problem of regularity of TΦ

σ into considering three frequency regimes: When
Ξ lies inside a compact set; when one component of Ξ = (ξ1, . . . , ξN ) dominates the others;
and when two fixed components of (ξ1, . . . , ξN ) are comparable to each other. In what
follows we only describe the aspects of the amplitude decomposition which are crucial to
the later sections of the paper. For the remaining details, we refer the reader to [15].

Here and in all that follows we take N > 1. First we define the component of σ
with frequency support contained in a compact set. We introduce a cut-off function
χ : RnN → R, such that χ(Ξ) = 1 for |Ξ| 6 1/8 and χ(Ξ) = 0 for |Ξ| > 1/4 and define

(32) σ0(x,Ξ) = χ(Ξ)σ(x,Ξ).

To define the components of σ where one frequency dominates all the others, we construct
a cut-off function ν : RnN → R such that ν(Ξ) = 0 for |ξ1| 6 32

√
N − 1 |Ξ′| and ν(Ξ) = 1

for 64
√
N − 1 |Ξ′| 6 |ξ1|, where Ξ′ := (ξ2, . . . , ξN ). This can be done by taking Λ ∈ C∞(R)

such that Λ(t) = 1 if t 6 c1 and Λ(t) = 0, if t > c2 for two suitably chosen real numbers
0 < c1 < c2 < 1.

Define

(33) ν(Ξ) = 1− Λ

(
|ξ1|2

|Ξ|2

)
∈ C∞(RnN \ 0).

Now given j = 1, . . . N we define Ξ′
j := (ξ1, . . . , ξj−1, ξj+1, . . . , ξN ) and

νj(Ξ) := ν(ξj,Ξ
′
j),

for all Ξ ∈ RnN . We then define the component of σ for which ξj dominates the other
frequency components to be

(34) σj(x,Ξ) = (1− χ(Ξ)) νj(Ξ)σ(x,Ξ), for j = 1, . . . N .
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What remains of σ will be split into functions on whose support two frequency com-
ponents are comparable (see [15] pages 22–23 for the details). Thus σ can be finally
decomposed as

σ(x,Ξ) = σ0(x,Ξ) +
N∑

j=1

σj(x,Ξ) +
∑

j 6=k

σj,k(x,Ξ),

where σ0 has compact Ξ-support, |ξj| dominates |Ξ| on the Ξ-support of σj , and |ξj | ≈ |ξk|
on the Ξ-support of σj,k. More specifically, σj,k and σj are supported away from the origin,
and

(35) c |ξj|2 > |Ξ|2

on the Ξ-support of σj, for a suitably chosen c > 1.

One can also check that if σ ∈ Sm(n,N) then σj and σj,k are also in Sm(n,N) for all
j, k = 1, . . . , N and σ0 ∈ Sµ(n,N) for all µ ∈ R.

We shall now proceed by giving explicit representations for the multilinear OIOs TΦ
σ0
,

TΦ
σ1

and TΦ
σ1,2

, which as will be clarified in Section 6, are the prototypes of the operators
for which the boundedness results will be established here. Moreover, the boundedness
of TΦ

σ can be reduced to the boundedness of these three types of operators. However
further reductions are needed to make the representations of the aforementioned operators
amenable to the vector-valued- and maximal-function-based proofs that are utilised in this
paper.

5.1. Representation of TΦ
σ0

. We note that by (32), the support of σ0 is in a fixed

compact set. Therefore as was demonstrated in [15, page 44] the operator TΦ
σ0

can be
written as

(36) TΦ
σ0
(f1, . . . , fN )(x) =

∑

K∈ZnN

aK(x)Tϕ0

θ(·/
√
N)




N∏

j=1

T
ϕj

θ ◦ τ 2πkj
L

(fj)


 (x),

where τhf(x) := f(x− h), θ ∈ C∞
c (Rn) and aK(x) is a smooth function satisfying

(37) |∂αaK(x)| . (1 +

N∑

j=1

|kj |2)−M

for all x ∈ Rn and M > 0, with K = (k1, . . . , kN ).

5.2. Representation of TΦ
σ1

. Let ϑ be the function introduced in Definition 2.1 and
recall or define

• θk(ξ) := ϑ(23−kξ),

• ψk(ξ)
2 := ϑ(2−1−kξ)2 − ϑ(22−kξ)2,

• φk(ξ)
2 := ϑ(2−3−kξ)2 − ϑ(24−kξ)2.

From the support properties of σ1, it follows that if ψk (ξ1) 6= 0 and σ1(x,Ξ) 6= 0 then

∣∣∣2−kΞ′
1

∣∣∣ 6
∣∣2−kξ1

∣∣
32
√
N − 1

6
2−3

√
N − 1

,

which implies that θk (ξj) = 1 for j = 2, . . . , N , and one also has that

(38)

1

8
6 |2−k(ξ1 + · · ·+ ξN )| < 8

which implies φk(ξ1 + · · ·+ ξN ) = 1.
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Using these facts, there exists k0 ∈ Z (independent of x) such that we can write TΦ
σ1

as

TΦ
σ1
(f1, . . . , fN )(x)

=

∫

RnN

∑

k>k0

ψk(ξ1)
2

N∏

j=2

θk(ξj)
2φk(ξ1 + . . .+ ξN )2σ1(x,Ξ)f̂1(ξ1)

×
N∏

j=2

f̂j(ξj) e
ix·(ξ1+···+ξN )eiΦ(Ξ) d̄Ξ.

See [15, page 24] for the details of all these deductions.

We also introduce a high frequency cut-off χ0 that satisfies{
χ0(ξ) = 1, for |ξ| > 2k0−4, and

χ0(ξ) = 0, for |ξ| 6 2k0−5,

where k0 can be chosen appropriately, and let m0, . . . ,mN be a (non-integer) partition of
the decay m of the amplitude σ, so that

m =

N∑

j=0

mj ,

and mj = −ns|1/pj − 1/2|. Based on these frequency cut-offs, we introduce the following
localisation operators as well as amplitudes

Q̂0
k(f)(ξ) = φk(ξ)f̂(ξ), b0(ξ) = |ξ|m0χ0(ξ),

Q̂u1
k (f)(ξ) = |2−kξ|m−m0−m1ψk(ξ)e

i2−kξ·u1 f̂(ξ), b1(ξ) = |ξ|m1χ0(ξ),

̂P
uj

k (f)(ξ) = θk(ξ)e
i2−kξ·uj f̂(ξ), bj,k(ξ) = 2kmjωk(ξ),

for j = 2, . . . , N , ωk(ξ) := θk(ξ/2) is the bump function introduced in Lemma 4.1 equal
to one on the support of θk.
Also note that for any m 6 0 the symbol 2kmωk(ξ) ∈ Sm uniformly in k, since whenm 6 0
one has that |2kmω(2−kξ)| . 2km〈2−kξ〉m 6 〈ξ〉m, since ω is Schwartz, and moreover we
also have that for any N > 0 and |α| > 0

|∂α(2kmω(2−kξ))| . 2km2−k|α|(1 + 2−k|ξ|)−N . 2km2−k|α|2kN (1 + |ξ|)−N ,

which by choosing N = |α| −m > 0, yields that |∂α(2kmω(2−kξ))| . 〈ξ〉m−|α|.

Using these operators one can show [15, page 26] that for any M > 0, the operator TΦ
σ1

can be written as

(39) TΦ
σ1
(f1, . . . , fN )(x)

=

∫ ∞∑

k>k0

Mm ◦ Tϕ0

b0
◦ P 0

k


(Qu1

k ◦ Tϕ1

b1
)(f1)

N∏

j=2

(P
uj

k ◦ Tϕj

bj,k
)(fj)


 (x)

× ei2
−kΞ·U

(1 + |U |2)M d̄U,

whereMm denotes the operator of multiplication bym = m(k, x, U) with U = (u1, . . . , uN ),
and m is a smooth function depending on σ1, with uniformly bounded derivatives of all
orders. It was shown in [15, page 26] that boundedness of TΦ

σ1
can been reduced to showing

the boundedness of

(40)

B(f1, . . . , fN )(x)

:=
∑

k>k0

χ0(2D)Q0
k


(Qu1

k ◦ Tϕ1

b1
)(f1)

N∏

j=2

(P
uj

k ◦ Tϕj

bj,k
)(fj)


 (x),
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where the symbol of the high-frequency cut-off χ0 belongs to S0.

5.3. Representation of TΦ
σ1,2

. With the same choice of ψk, θk, χ0 and ωk as above, and

with a suitable choice of the integer k1 and setting

ζk(ξ)
2 := ϑ

(
2−k−k1−2ξ

)2 − ϑ
(
23+k1−kξ

)2
,

it was demonstrated in [15] page 42, that for some k0 ∈ Z one has the representation

TΦ
σ1,2

(f1, . . . , fN ) (x)

=

∫

RnN

∑

k>k0

ψk (ξ1)
2 ζk (ξ2)

2 σ1,2(x,Ξ)χ0 (ξ1) f̂1 (ξ1)×

χ0 (ξ2) f̂2 (ξ2)

N∏

j=3

θk (ξj)
2 f̂j (ξj) e

ix·(ξ1+···+ξN )+iΦ(Ξ)dΞ.

Now we introduce the following localisation operators and amplitudes:

(41)

P̂ 0
k (f)(ξ) = θk(ξ)f̂(ξ), d0(ξ) = 2km0ωk(ξ),

Q̂u1
k (f)(ξ) =

∣∣∣2−kξ
∣∣∣
m−m1−m2

ψk(ξ)e
i2−kξ·u1 f̂(ξ), d1(ξ) = |ξ|m1χ0(ξ),

Q̂u2
k (f)(ξ) = ψk(ξ)e

i2−kξ·u2 f̂(ξ), d2(ξ) = |ξ|m2χ0(ξ),

̂P
uj

k (f)(ξ) = θk(ξ)e
i2−kξ·uj f̂(ξ), dj,k(ξ) = 2kmjωk(ξ),

for j = 3, . . . , N .

Using these operators one can show [15, page 26] that for any M > 0, the operator
TΦ
σ1,2

can be written as

TΦ
σ1,2

(f1, . . . , fN )

=

∫ ∞∑

k>k0

Mm ◦ Tϕ0

d0
◦ P 0

k


(Qu1

k ◦ Tϕ1

d1
)(f1) (Q

u2
k ◦ Tϕ2

d2
)(f2)

N∏

j=3

(P
uj

k ◦ Tϕj

dj,k
)(fj)




× 1

(1 + |U |2)M d̄U,

for a certain smooth function m depending on σ1,2, with uniformly bounded derivatives of
all orders. Therefore one can reduce the analysis of boundedness of TΦ

σ1,2
, to the study of

the boundedness of the multilinear operator

(42)

D(f1, . . . , fN )(x)

=
∞∑

k>k0

Mm ◦ Tϕ0

d0
◦ P 0

k


(Qu1

k ◦ Tϕ1

d1
)(f1) (Q

u2
k ◦ Tϕ2

d2
)(f2)

N∏

j=3

(P
uj

k ◦ Tϕj

dj,k
)(fj)


 (x),

see [15] for further details.

6. A catalogue of end-point cases

The method by which we prove the boundedness of the components TΦ
σ0
, TΦ

σ1
and TΦ

σ1,2

splits into four separate cases. For TΦ
σ1

and TΦ
σ1,2

we use vector-valued inequality techniques
to deal with almost all function spaces Xp. However, as mentioned in the introduction,
this method fails when p = 2 or p = ∞, so we make use of different techniques when
these functions spaces are present. This failure is due in the first case to a lack of usable
decay in the amplitude and in the second case due to a lack of a suitable characterisation
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of bmo, and means we use three different techniques to deal with TΦ
σ1

and TΦ
σ1,2

. Finally,

we make use of a fourth method, which deals with TΦ
σ0

for all values of the function space
exponents.

As far as boundedness of TΦ
σ1

is concerned, due to the symmetry of (40) in the indices
j = 2, . . . , N, as was shown in [15], we only need to consider endpoint cases (p0, . . . , pN )
which are distinct within the equivalence class of permutations of (p2, . . . , pN ). Thus, there
are three possibilities for the function space with exponent p1: h

p1 , L2 or bmo. Then for
the exponents p2, . . . , pN we can have a Cartesian product of the same spaces:


∏

j∈I2
L2


×


 ∏

j∈I∞
bmo


×


∏

j∈If
hpj


 ,

where the index sets I2, I∞ and If are the sets of all j such that pj = 2, pj = ∞ and pj
is any other value, respectively.

Similarly, regarding TΦ
σ1,2

, due to the symmetry of the form of (42) in the indices j = 1, 2

and j = 3, . . . , N , we only need to consider endpoint cases (p0, . . . , pN ) which are distinct
within the equivalence class of permutations of (p1, p2) and (p3, . . . , pN ). (We have, there-
fore, (3 + 3) × (3 + 3 + 1) − 3 = 39 cases, since the possibility of three or more copies of
L2 appearing is ruled out because p0 > 2/3.)

For the Banach target spaces, both for later use in Section 8 and for the convenience
of the reader, we recall the endpoint-cases that need to be considered and the orders of
decay of the amplitude that are involved in each case. This is of course quite similar to
the analysis that was carried out in [15, Section 5], with the only difference that here we
also consider the cases of various multilinear OIOs. However the interpolation procedure
towards the establishment of Banach-target results remain the same. We summarise this
in the following lemma:

Lemma 6.1. Let m =
∑N

j=0mj ,
1
p0

=
∑N

j=1
1
pj
, and σ(x,Ξ) ∈ Sm(n,N) and ϕj be phase

functions of order s with s > 0. Let also
(43)

m(p) =




−(n− 1)

∣∣∣ 1p − 1
2

∣∣∣ , n > 1, ϕj
′s positively homogeneous of degree 1, n

n+1 < p <∞
−ns

∣∣∣1p − 1
2

∣∣∣ , ϕj
′s of order s, n

n+min(1,s) < p <∞.

For Banach-target spaces (i.e. Xp with p ∈ [1,∞]), it is enough to prove Theorem 1.4 for
the following values of exponents:

(i) Target bmo.
∏N

j=1 bmo → bmo, i.e. (pj,mj) = (∞,m(∞)) for all j = 1, . . . N ;

(ii) Target L2. (p0,m0) = (2, 0), and for each 1 6 j 6 N , (pj ,mj) = (2, 0) and
(pk,mk) = (∞,mk(∞)) for k 6= j;

(iii) Target h1. (p0,m0) = (1,m(1)) and any pair 1 6 j1 < j2 6 N , (pj1 ,mj1) =
(pj2 ,mj2) = (2, 0) and (pk,mk) = (∞,m(∞)) for j1 6= k 6= j2; and

(iv) Target h1. (p0,m0) = (1,m(1)) and for any 1 6 j 6 N , (pj ,mj) = (1,m(1)),
and (pk,mk) = (∞,m(∞)) for k 6= j.

Proof. This is a standard application of multilinear interpolation, as was also done in
[15]. In short, we take two end points, PA = (pA,1, . . . , pA,N ) and PB , from the list

above, with corresponding amplitude orders mA =
∑N

j=1m(pA,j) and likewise for mB .

We then form the amplitude family σz given by σz(x,Ξ) = σ̊(x,Ξ)〈Ξ〉(1−z)mA+zmB , where
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σ̊ ∈ S0
1,0(n,N) is arbitrary, so that σ0 ∈ SmA

1,0 and σ1 ∈ SmB
1,0 . Notice that for any Schwartz

f1, . . . , fN , the map z 7→ TΦ
σz
(f1, . . . , fN ) is analytic, and that the bounds in our proof

depend polynomially on Im z. This ensures that we can use the mentioned interpolation
result, showing the boundedness of TΦ

σz
for z ∈ [0, 1]. Since σ̊ was arbitrary boundedness

holds for any TΦ
σz

with amplitude σz ∈ S
(1−z)mA+zmB

1,0 (n,N), z ∈ [0, 1] and source space

Xp1 × · · · ×XpN where P−1 = (p−1
1 , . . . , p−1

N ) = (1− z)P−1
A + zP−1

B . One can then do this
for any two points PA and PB in the convex polygon of studied P to get the full range
of exponents, but it suffices to show boundedness at corners and where the function m
ceases to be linear. �

7. Boundedness of the multilinear operators

In this section we shall very briefly indicate the modifications that are needed in the
proofs that were provided in [15], in order to prove the corresponding results for multilin-
ear OIOs.

As far as boundedness results are concerned, due to the symmetry of (40) in the indicies
j = 2, . . . , N, as was shown in [15], we only need to consider endpoint cases (p0, . . . , pN )
which are distinct within the equivalence class of permutations of (p2, . . . , pN ). Similarly,
due to the symmetry of the form of (42) in the indicies j = 1, 2 and j = 3, . . . , N we only
need to consider endpoint cases (p0, . . . , pN ) which are distinct within the equivalence class
of permutations of (p1, p2) and (p3, . . . , pN ).

This reduces the analysis of boundedness of TΦ
σ to the investigation of just one of the

TΦ
σj
)’s say TΦ

σ1
, one of TΦ

σj,k
’s say TΦ

σ1,2
and of course also the boundedness of low-frequency

part TΦ
σ0
. All the other cases can be studied in essentially identical ways as these.

In each case we fix

1

p0
=

N∑

j=1

1

pj
, 1 6 pj 6 ∞, j = 0, . . . , N,

and mj := m(pj), j = 0, . . . , N, with m(pj) given as in (43) and consider fj ∈ Xpj for
j = 1, . . . , N . The rest of the analysis is identical to that of multilinear FIOs as carried
out in Section 8 of [13], Having this lemma at our disposal, we can run the machinery of
the proofs in the case of multilinear FIOs and obtain the desired results.

7.1. Boundedness of TΦ
σ0

. Here, due to the localised nature of the amplitude and in
contrast to the other parts of the OIO, we can furnish a proof which covers both the
quasi-Banach and Banach target spaces cases. In order to control TΦ

σ0
defined in (36), we

observe that since θ ∈ C∞
c (Rn), Lemma 2.7 yields that

∥∥Tϕj

θ (f)
∥∥
Xp . ‖f‖Xp and

∥∥∥Tϕ0

θ(·/
√
N)

(f)
∥∥∥
Xp

. ‖f‖Xp

for n/(n + sc) < p 6 ∞. Applying these two estimates, the fact that each term is
frequency localised, the translation invariance of the norms and Hölder’s inequality (using
the Littlewood–Paley characterisation of local Hardy spaces) altogether yield

∥∥∥∥∥∥




N∏

j=1

T
ϕj

θ ◦ τ 2πkj
L

(fj)



∥∥∥∥∥∥
hr

.

N∏

j=1

‖fj‖hpj .

Combining these estimates one has
∥∥∥∥∥∥
Tϕ0

θ(·/
√
N)




N∏

j=1

T
ϕj

θ ◦ τ 2πkj
L

(fj)



∥∥∥∥∥∥
Xp0

.

N∏

j=1

‖fj‖Xpj ,
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for all the endpoint cases of p0, p1, . . . , pN in Lemma 6.1. Finally, the boundedness of Tϕ0
σ0

follows by applying (37) with the inclusions C1
b ·hp ⊆ hp, L∞ ·L2 ⊆ L2 and C1

b ·bmo ⊆ bmo
(see [8]).

Therefore, for the purely low-frequency portion of the operator, we have now established
the boundedness with both Banach and quasi-Banach target spaces.

7.2. Boundedness of TΦ
σ1

. Due to the symmetry of the representation (40) of TΦ
σ1

(in
the indicies j = 2, . . . , N) we only need to consider endpoint cases (p0, . . . , pN ) which are
distinct within the equivalence class of permutations of (p2, . . . , pN ).

7.2.1. Boundedness with Banach targets. Having this, then all the boundedness re-
sults with target spaces L2 and bmo (in accordance to Theorem 6.1) are proven in exactly
the same way as in the case of multilinear FIOs in [15], where one replaces −(n − 1)/2
of multilinear FIOs by −ns/2 of multilinear OIOs and noting that no restriction on the
dimension (as in the FIO case) is necessary, since −ns/2 < 0.

7.2.2. Boundedness with quasi-Banach targets. As discussed earlier in connection to
representation (40), matters can be reduced to the study of the regularity of the multilinear
operator

I :=

∞∑

k=k0

Q0
k


(Qu1

k ◦ Tϕ1

b1
)(f1)

N∏

j=2

(P
uj

k ◦ Tϕj

bj,k
)(fj)


 .(44)

Our goal is to prove the boundedness of TΦ
σ1

with target in hp0 with n/(n+sc) < p0 <∞
and p0 6= 2. We also note that the cases p0 > 1 are all Banach, but our method of proof
will cover these cases as well. Using (44), we infer that the boundedness of TΦ

σ1
, could via

(9), be investigated by considering

ϑ0(D)(I) =

3∑

k=k0

ϑ0(D)Q0
k(D)

[
(Qu1

k ◦ Tϕ1

b1
)(f1)

N∏

ℓ=2

(P uℓ
k ◦ Tϕℓ

bℓ,k
)(fℓ)

]
,(45)

and for j > 1

ϑj(D)(I) =
∞∑

k=k0,|k−j|64

ϑj(D)Q0
k(D)

[
(Qu1

k ◦ Tϕ1

b1
)(f1)

N∏

ℓ=2

(P uℓ
k ◦ Tϕℓ

bℓ,k
)(fℓ)

]

=

4∑

ℓ=−4

1[k0,∞)(ℓ+ j)ϑ(2−jD)φ(2−(j+ℓ)D)[FU
j+ℓ],

where for all k ∈ Z

FU
k = (Qu1

k ◦ Tϕ1

b1
)(f1)

N∏

ℓ=2

(P uℓ
k ◦ Tϕℓ

bℓ,k
)(fℓ).

Now given an (N − 1)-tuple (p2, . . . , pN ), we define

I2 = {j ∈ {2, . . . , N} : pj = 2}, If = {j ∈ {2, . . . , N} : 2 6= pj <∞}
and

I∞ = {j ∈ {2, . . . , N} : pj = ∞}.
Using this notation we can write

(46) FU
k := (Qu1

k ◦Tϕ1

b1
)(f1)

∏

j∈I2
(P

uj

k ◦Tϕj

bj,k
)(fj)

∏

j∈If
(P

uj

k ◦Tϕj

bj,k
)(fj)

∏

j∈I∞
(P

uj

k ◦Tϕj

bj,k
)(fj).

Taking (9) into account for a generic piece of FU
k , we shall see that the following

proposition will be useful in dealing with various cases that arise in connection to the
proof of hp0-regularity of I (given by (44)).
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Proposition 7.1. Given p1 > 0 and N1 > 2, assume that 1
r0

= 1
p1

+ N1−1
2 and Xp1 be

defined as in (4). Then one has

‖
( ∞∑

k=k0

|(Qu1
k f1)

N1∏

j=2

(P
uj

k (fj)|2
)1/2∥∥∥

Lr0
. ‖f1‖Xp1

N1∏

j=2

‖fj‖2 .

Proof. By the translation invariance of the norm of the spaces Xp, we can reduce the
study to the case where u1 = . . . = uN1 = 0.

Consider the multilinear pseudodifferential operator

Tk (f1, . . . , fN1) (x) := Qkf1

N1∏

j=2

Pkfj

with the symbol

ρk(Ξ) = ψ(2−kξ1)

N1∏

j=2

θ(2−kξj).

Now since, in addition to the frequency localisations |2−kξ1| ∼ 1, |2−kξj | . 1 for
2 6 j 6 N1, one also has that |Ξ| 6 c|ξ1| on the support of σ1 (note that the later follows
from (33) and (34)), then the Leibniz rule, the aforementioned support properties, and
finally (35) yield

|∂αΞ(ρk(Ξ))| . 〈Ξ〉−|α|,

which yields that ρk ∈ S0
1,0(n,N), uniformly in k.

Let assume first that p1 <∞. Khinchin’s inequality yields that

∥∥∥
( ∞∑

k=−5

|(Qkf1)

N1∏

j=2

(Pkfj)|2
)1/2∥∥∥

Lr0
≈

∥∥∥∥∥∥
∑

k>−5

εk(t)Qkf1

N1∏

j=2

Pkfj

∥∥∥∥∥∥
L
r0
x,t(R

n×[0,1])

=

∥∥∥∥∥∥
∑

k>−5

εk(t)Tk(f1, . . . , fN1)

∥∥∥∥∥∥
L
r0
x,t(R

n×[0,1])

,

where {εj(t)}j are the Rademacher functions. Now the family of multilinear pseudodiffer-
ential operators

∑∞
k=−5 εk(t)Tk(f1, . . . , fN1), has the symbol

ρt(ξ1, . . . , ξN1) :=

∞∑

k=−5

εk(t)ρ
k(ξ1, . . . , ξN1) ∈ S0

1,0(n,N),

uniformly in t. Therefore, the boundedness of multilinear pseudodifferential operators of
order zero from

∏N
j=1 h

lj → Lr [17, Theorem 1.1] yields
∥∥∥∥∥∥
∑

k>−5

εk(t)Tk(f1, . . . , fN1)

∥∥∥∥∥∥
L
r0
x,t(R

n×[0,1])

. ‖f1‖hp1

N1∏

j=2

‖fj‖L2 .

Now let us assume now that p1 = ∞. Note that we are also allowed to assume (38) on
the support of ρk, which yields that

Tk(f1, . . . , fN1)(x)

=

∫

(RnN1)
2N1nkφ∨

(
2k (x− y1) , . . . , 2

k (x− yN1)
) N1∏

j=2

Pk (fj) (yj)Qk (f1) (y1) dY.
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Hölder’s inequality, the translation invariance of the Lebesgue measure and the definition
of the maximal operator Mp

a,b in (15) yield

|Tk(f1, . . . , fN1)(x)| 6

2N1nk

{∫

RnN1

〈2kY 〉sq′
∣∣∣φ∨(2kY )

∣∣∣
q
dY

}1/q′




∫

RnN1

N1∏

j=2

|Pk (fj) (yj)|q
〈2k(x− yj)〉sq/N1

|Qk (f1) (y1)|q
〈2k(x− y1)〉sq/N1

dY





1/q

. 2−N1nk/q′2N1nkM
q
s/N1,2k

(Qkf1)(x)2
−kn/q

N1∏

j=2

M
q
s/N1,2k

(Pkfj)(x)2
−kn/q

. M
q
s/N1,2k

(Qkf1)(x)

N1∏

j=2

M
q
s/N1,2k

(Pkfj)(x)

where we have also used that for all z ∈ RnN1

(1 + 22ℓ |z1|2 + . . . + 22ℓ |zN1 |2)N1 >

N1∏

k=1

(1 + 22ℓ |zk|2).

Now denoting the set of all dyadic cubes in Rn by D, and denoting for each k ∈ Z the
elements of D with side length 2−k by Dk, we have by inequality (17) that for every dyadic
cube J ∈ Dk and every f

sup
y∈J

M
q
s/N,2k

(f)(y) . inf
y∈J

M
q
s/N,2k

(f)(y),

with constants independent of f and k.

Therefore, since there is no overlap between Dk’s, we have

∥∥∥
( ∞∑

k=−5

|Tk(f1, . . . fN1)|2
)1/2∥∥∥

Lr0
=
∥∥∥
( ∞∑

k=−5

∑

J∈Dk

|Tk(f1, . . . fN1)|2χJ

)1/2∥∥∥
Lr0

6

∥∥∥∥∥∥∥


∑

k>−5

∑

J∈Dk

N1∏

j=2

∣∣∣Mq
s/N1,2k

(Pkfj)(x)
∣∣∣
2 ∣∣∣Mq

s/N1,2k
(Qkf1)

∣∣∣
2
χJ




1/2
∥∥∥∥∥∥∥
Lr0

6

∥∥∥∥∥∥∥


∑

k>−5

∑

J∈Dk

N1∏

j=2

inf
y∈J

∣∣∣Mq
s/N1,2k

(Pkfj)(x)
∣∣∣
2
∣∣∣∣ infy∈J

M
q
s/N1,2k

(Qkf1)

∣∣∣∣
2

χJ




1/2
∥∥∥∥∥∥∥
Lr0

6

∥∥∥∥∥∥∥


∑

k>−5


 ∑

J∈(Dk)

N1∏

j=2

inf
y∈J

M
q
s/N1,2k

(Pkfj)(x) inf
y∈J

M
q
s/N1,2k

(Qkf1)χJ




2


1/2
∥∥∥∥∥∥∥
Lr0

.

(47)

Now by Theorem 2.4, given r0 ∈ (0,∞], 0 < q 6 ∞, γ ∈ (0, 1) and s/N1 >
n/(min (2, q, r0)), for any dyadic cube J ∈ D there exists a measurable subset SJ ⊂ Q,
depending on γ, fk, q, s,N1 such that |SJ | > γ |J |. For this SJ and any 0 < ρ < ∞ one
has for x ∈ J that

χJ(x) = 1 <
1

γ1/ρ
|SJ |1/ρ
|J |1/ρ =

1

γ1/ρ

(
1

|J |

∫

J
χρ
SQ

(y)dy

)1/ρ

6 γ−1/ρMρ (χSJ
) (x).
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Hence, using this and the vector-valued maximal inequality (18), one can bound the
last term in (47) by

(48)

∥∥∥∥∥∥∥


∑

k>−5


∑

J∈Dk

N1∏

j=2

inf
y∈J

M
q
s/N1,2k

(Pkfk)(x) inf
y∈J

M
q
s/N1,2k

(Qkf1)χSJ




2


1/2
∥∥∥∥∥∥∥
Lr0

.

We also note that the characterisation of BMO given in Theorem 2.4 implies that,
given 0 < q 6 ∞, γ ∈ (0, 1) and s/N1 > n/(min (2, q)), one has

∥∥∥∥∥∥∥


∑

k>−5


∑

J∈Dk

inf
y∈J

M
q
s/N1,2k

(Qkf1)χSJ




2


1/2
∥∥∥∥∥∥∥
L∞

≈ ‖Γ(D)f1‖BMO 6 ‖f1‖bmo .

where Γ(D) is a high-frequency cut-off.

Therefore, Hölder’s inequality, Theorem 2.5 and the L2-boundedness of Hardy-Littlewood’s
maximal functions yield that the expression in (48) is bounded by

∥∥∥∥∥∥

N1∏

j=2

sup
k

M
q
s/N1,2k

(Pkfj)

∥∥∥∥∥∥
Lr0

∥∥∥∥∥∥∥


∑

k>−5


 ∑

J∈(Dk)

inf
y∈J

M
q
s/N1,2k

(Qkf1)χSJ




2


1/2
∥∥∥∥∥∥∥
L∞

.

N1∏

j=2

∥∥∥∥sup
k

M
q
s/N1,2k

(Pkfj)

∥∥∥∥
L2

‖f1‖bmo .

N1∏

j=2

∥∥∥∥sup
k

|Pkfj|
∥∥∥∥
L2

‖f1‖bmo

.

N1∏

j=2

‖Mfj‖L2 ‖f1‖bmo .

N1∏

j=2

‖fj‖L2 ‖f1‖bmo .

�

Now we turn to the study of the regularity of the multilinear operators associated to
TΦ
σ1
. This will be divided in the following cases:

Case I. I2 6= ∅. Observe that by our previous considerations the frequency support
of FU

k (given by (46)) is contained in B(0, 2kR), for some R > 1. Therefore, for ℓ ∈ [−4, 4],

the frequency support of FU
j+ℓ is contained in B(0, 2j(2ℓR)). Hence using (20) we have

∥∥∥
( ∞∑

j=1

|ϑj(D)(I)|2
)1/2∥∥

Lp0
.
∥∥∥
( ∞∑

k=−5

|FU
k |2
)1/2∥∥∥

Lp0
.

Note that for j ∈ I2, the bj,k’s dependence on k could be suppressed due to the fact
that for these terms the corresponding mj’s are equal to zero and one can replace the
amplitudes by the constant function one. Hence using the uniform boundedness given in
(25), the embedding ℓ1(N) ⊂ ℓ2(N) jointly with the Cauchy–Schwarz inequality, Hölder’s
inequality, Lemma 4.2, Proposition 7.1 and the boundedness of linear oscillatory integrals
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given in Theorem 2.9, yield

∥∥∥
( ∞∑

k=−5

|FU
k |2
)1/2∥∥∥

Lp0

.
∥∥∥
( ∞∑

k=−5

|(Qu1
k T

ϕ1

b1
)f1)

∏

I2

(P
uj

k T
ϕj

1 )(fj)|2
)1/2∥∥∥

Lr0

×
∏

If

∥∥∥
( ∞∑

k=−5

|(P uj

k T
ϕj

bj,k
)(fj)|2

)1/2∥∥∥
Lpl

∏

I∞

‖fj‖bmo

.
∥∥∥Tϕ1

b1
f1

∥∥∥
Xp1

∏

I2

∥∥Tϕj

1 (fj)
∥∥
L2

∏

If

‖fj‖hpj

∏

I∞

‖fj‖bmo .

N∏

j=1

‖fj‖Xpj ,

(49)

where

1

p0
=

1

r0
+
∑

ℓ∈If

1

pℓ
,

1

r0
=

1

p1
+

|I2|
2
.

Case II. I2 = ∅. In this case r0 = p1 and if moreover p1 <∞ the we have

(50)
∥∥∥
( ∞∑

k=−1

|(Qu1
k T

ϕ1

b1
)f1)|2

)1/2∥∥∥
Lr0

. ‖f1‖hp1 ,

and we can proceed as in (49) to reach the desired estimate. However, if p1 = ∞ then
the classical Fefferman–Stein estimate yields that

(51) sup
k

∥∥Qu1
k (f1)

∥∥
∞ . ‖f1‖bmo .

Hence Lemma 4.2 yields

∥∥∥
( ∞∑

k=−5

|FU
k |2
)1/2∥∥∥

Lp0

. ‖f1‖bmo

∏

If

∥∥∥
( ∞∑

k=−5

|(P uj

k T
ϕj

bj,k
)(fj)|2

)1/2∥∥∥
Lpj

∏

I∞

‖fj‖bmo .

N∏

j=1

‖fj‖Xpj .

Finally, for the low frequency part (45), we only need to estimate the Lp0 norm of FU
k .

To that end, we use the following generalised Hölder’s inequality

(52) ‖
N∏

j=1

fj‖Lp0 .
∏

I2∪If
‖fj‖hpj

∏

I∞

‖fj‖L∞ ,

where 1
p0

=
∑N

j=1
1
pj
, which is is a consequence of [17, Theorem 1.1], together with Lemma

4.1, which concludes the proof.

7.3. Boundedness of TΦ
σ1,2

. In the analysis of the boundedness of TΦ
σj,k

, the symmetry

of the operators form under permutations of the frequency variables allows us to restrict
our attention to just one of the σj,k, the argument for all the others being identical. For
definiteness, we choose to study σ1,2, so we have that |ξ1| and |ξ2| are comparable to each
other.
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7.3.1. Boundedness with Banach targets. The demonstrations of the boundedness of
TΦ
σ1,2

with target spaces bmo and L2 are idential to that of multilinear FIOs as carried out

in Section 8 of [13]. However the analysis in [13] required a result about Carleson measures
associated to linear FIOs. The analogue of that result was provided in Proposition 4.4
above, and with that proposition at hand, we can run the machinery of the proofs in the
case of multilinear FIOs in [15] and obtain the boundedness of TΦ

σ1,2
with target spaces

bmo and L2.

7.3.2. Boundedness with quasi-Banach targets. Using the representation (42), we
are dealing with the hp0-regularity of the multilinear operator

(53) D(f1, . . . , fN )(x) =

∞∑

k=k0

Mm ◦ Tϕ0

d0
◦ P 0

k

[
GU

k

]
(x),

where

GU
j := (Qu1

j ◦ Tϕ1

d1
)(f1)(Q

u2
j ◦ Tϕ2

d2
)(f2)

∏

ι∈I2
(P uι

j ◦ Tϕι

dι,j
)(fι)

×
∏

ι∈If
(P uι

j ◦ Tϕι

dι,j
)(fι)

∏

ι∈I∞
(P uι

j ◦ Tϕι

dι,j
)(fι)

Now given an (N − 2)-tuple (p3, . . . , pN ), we define

J2 = {j ∈ {3, . . . , N} : pj = 2}, Jf = {j ∈ {3, . . . , N} : 3 6= pj <∞}
and

J∞ = {j ∈ {3, . . . , N} : pj = ∞}.
Now, by using (26) we can rewrite

d0(k, ξ) = d♭0(k, ξ) + d♯0(k, ξ),

and observe that the supports of ωk and χ0 allow us to write

Tϕ0

d♭0
◦ P 0

k = 2km0Tϕ0

Ω0
◦ P 0

k0 ,

where Ω0 := 1− χ0.

The analysis concerning d
♯
0. For d

♯
0(k, ξ), we replace (T

ϕ0

d♯0
◦P 0

k )(f) by T
ϕ0
γ ◦Rk ◦P 0

k (f),

where γ(ξ) := χ0(ξ)|ξ|m0 ∈ Sm0 with m0 < 0, and Rk is as in (28). This yields that

∞∑

k=k0

Mm ◦ Tϕ0

d♯0
◦ P 0

k

[
GU

k

]
(x)

=
∑

j>k0

∑

k>j

2(k−j)m0MmT
ϕ0
γ QjP

0
k

[
GU

k

]
(x)

=
∑

k>0

2km0
∑

j>k0

Mmj+k
Tϕ0
γ QjP

0
k+j

[
GU

k+j

]
(x).

(54)

Remark 7.2. Note that here the fact that m0 < 0 (which excludes target-space L2) is
crucial in the analysis that follows below.

Now we observe that one can write

Mmj+k
◦ Tϕ0

γ ◦Qj =




j+1∑

j′=j−1

TU
j,j′,k


 ◦Qj =




1∑

ℓ=−1

∑

j′−j≡ℓ (mod 3)

TU
j′+ℓ,j′,k


 ◦Qj
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where TU
j,j′,k is the oscillatory integral with amplitude m(j + k, x, U) γ(ξ)φj′(ξ) and phase

ϕ0. Observe that

T U
j,k :=

1∑

ℓ=−1

∑

j′−j≡ℓ (mod 3)

TU
j′+ℓ,j′,k

is periodic in j with period 3, and is an oscillatory integral with amplitude in Sm0 uniformly
in k.

Thus (54) can be rewritten as

∑

k

2km0

2∑

ℓ=0

T U
ℓ,k (Dℓ,k(f1, . . . , fN )) (x),

where

Dℓ,k(f1, . . . , fN )(x) := χ0(2D)
∑

j≡ℓ (mod 3), j>k0

Q0
jP

0
k+j

[
GU

j+k

]
(x),

and χ0 is the same high-frequency cut-off introduced previously (with a symbol in S0).

For the high-frequency part of the multilinear operator we observe that

‖Dℓ,k(f1, . . . , fN )‖hp0 .
∥∥∥

∑

j≡ℓ (mod 3), j>k0

Q0
jP

0
k+j

[
GU

j+k

] ∥∥∥
hp0
.

Now since the spectrum of Q0
jP

0
k+j

[
GU

j+k

]
is inside an annulus of size 2j , a theorem in

Section 2.5.2 on page 79 of [18], together with estimate (20) and finally the Cauchy-Schwarz
inequality (using the boundedness of the operators Tϕ1

d1
and Tϕ2

d2
), yield that

∥∥∥
∑

j≡ℓ (mod 3), j>k0

Q0
jP

0
k+j

[
GU

j+k

] ∥∥∥
hp0

.
∥∥∥
( ∑

j≡ℓ (mod 3), j>k0

∣∣∣Q0
jP

0
k+j

[
GU

j+k

] ∣∣∣
2) 1

2
∥∥∥
Lp0

.
∥∥∥
( ∑

j>k+k0

∣∣∣GU
j

∣∣∣
2) 1

2
∥∥∥
Lp0

.

(55)

Now we proceed by dividing the regularity results into cases which we shall deal with
accordingly.

Case I. p1 < ∞
Let us first assume that p2 < ∞. Here we use the same reasoning as in the paragraph
preceding the displayed equation (49) and note that the left-hand side term of (55) is
bounded by

∥∥∥∥∥∥∥


∑

j>2k0

∣∣∣(Qu1
j ◦ Tϕ1

d1
)(f1)

∣∣∣
2




1/2
∥∥∥∥∥∥∥
Lp1

×
∥∥∥
( ∑

j>2k0

∣∣∣(Qu2
j ◦ Tϕ2

d2
)(f2)

∏

ι∈J2∪Jf∪J∞
(P uι

j ◦ Tϕι

dι,j
)(fι)

∣∣∣
2) 1

2
∥∥∥
Lr1

,

where
1

p0
=

1

p1
+

1

r1
,
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and the term (Qu2
j ◦ Tϕ2

d2
)(f2)

∏
ι∈J2∪Jf∪J∞(P uι

j ◦ Tϕι

dι,j
)(fι) is essentially F

U
k given in (46).

Now since we have that∥∥∥∥∥∥∥


∑

j>2k0

∣∣∣(Qu1
j ◦ Tϕ1

d1
(f1)

∣∣∣
2




1/2
∥∥∥∥∥∥∥
p1

.
∥∥∥Tϕ1

d1
(f1)

∥∥∥
hp1

. ‖f1‖hp1 ,

the same argument as the one involved in deriving estimate (50) for the case N = 2 and
(49) for N > 3, yield the desired bound.

Now if p2 = ∞, then by using Fefferman–Stein’s estimate (51), one extracts the ‖f2‖bmo

from the left-hand side of (55) and the remaining term will be
∥∥∥
( ∑

j>2k0

∣∣∣(Qu2
j ◦ Tϕ2

d2
)(f1)

∏

ι∈J2∪Jf∪J∞
(P uι

j ◦ Tϕι

dι,j
)(fι)

∣∣∣
2) 1

2
∥∥∥
Lr1

,

for which the boundedness can be established as was done previously.

Case II. p1 = ∞.

In this case, applying Fefferman–Stein’s estimate (51), one has that (55) is bounded by

‖f1‖bmo

∥∥∥
( ∑

j>2k0

∣∣∣(Qu2
j ◦ Tϕ2

d2
)(f2)

∏

ι∈J2∪Jf∪J∞
(P uι

j ◦ Tϕι

dι,j
)(fι)

∣∣∣
2) 1

2
∥∥∥
Lp0

.

If we assume that p2 <∞, we just proceed as in the analysis of (49) (or Case I above).

Now if p2 = ∞, since p0 <∞, then J2 ∪ Jf 6= ∅. If J2 6= ∅, (55) is bounded by

‖f1‖bmo

∥∥∥
( ∑

j>2k0

∣∣∣(Qu2
j ◦ Tϕ2

d2
)(f2)

∏

ι∈J2
(P uι

j ◦ Tϕι
1 )(fι)

∣∣∣
2) 1

2
∥∥∥
Lr2

×
∏

Jf

∥∥∥∥∥∥

( ∑

j>2k0

∣∣∣(P uι
j ◦ Tϕι

dι,j
)(fι)

∣∣∣
2) 1

2

∥∥∥∥∥∥
Lpι

∏

J∞

‖fι‖bmo ,

where
1

r2
=

|J2|
2
.

Therefore, the same analysis as in (49) yields the result.

If J2 = ∅, then Jf 6= ∅. Therefore applying Fefferman–Stein’s estimate (51), yields that
(55) is bounded by

‖f1‖bmo ‖f2‖bmo

∏

Jf

∥∥∥∥∥∥

( ∑

j>2k0

∣∣∣(P uι
j ◦ Tϕι

dι,j
)(fι)

∣∣∣
2) 1

2

∥∥∥∥∥∥
Lpι

∏

J∞

‖fι‖bmo

and using Lemma 4.2 concludes the discussion of this case.

The analysis concerning d♭
0. The following lemma will be useful in to proving the

desired regularity result.

Lemma 7.3. Let k0 be fixed, 0 < p0 <∞ and 0 < pj 6 ∞ so that

1

p0
=

N∑

j=1

1

pj
.

Then one has that

sup
k

∥∥P 0
k0

(
GU

k

)∥∥
hp0

. ck0

N∏

j=1

‖fj‖Xpj .
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Proof. We shall give the proof for the case that p0 6 1. A small modification of the
argument yields the case for p0 > 1.

First we assume that p1+p2 <∞. We use the Littlewood-Paley characterisation of hp0 ,
and the inclusion ℓp0 ⊂ ℓ1 ⊂ ℓ2. Then applying [18, p.17] and the fact that the frequency
support of ϑj(D)P 0

k0
is included in a ball of radius O(2k0) followed by Hölder’s inequality

(52) and Lemma 4.1, we find that

∥∥P 0
k0

(
GU

k

)∥∥
hp0

∼

∥∥∥∥∥∥∥




N(k0)∑

j=0

∣∣ϑj(D)P 0
k0

(
GU

k

)∣∣2



1/2
∥∥∥∥∥∥∥
p0

.




N(k0)∑

j=0

∥∥ϑj(D)P 0
k0

(
GU

k

)∥∥p0
p0




1/p0

.
∥∥GU

k

∥∥
p0

6

2∏

ι=1

∥∥Quι
k ◦ Tϕι

dι
(fι)

∥∥
hpι

∏

ι∈J2∪Jf

∥∥∥P uι
k ◦ Tϕι

dι,k
(fι)

∥∥∥
hpι

∏

ι∈J∞

∥∥∥P uι
k ◦ Tϕι

dι,j
(fι)

∥∥∥
L∞

.

2∏

ι=1

‖fι‖hpι

∏

ι∈J2∪Jf
‖fι‖hpι

∏

ι∈J∞
‖fι‖bmo

In the case that p1 = ∞ or p2 = ∞, a modification of the argument above, where one
just uses that supk>k0 ‖QkG‖L∞ . ‖G‖bmo , yields the result. �

Finally to deal with
∑∞

k=k0
Mm ◦ Tϕ0

d♭0
◦ P 0

k

[
GU

k

]
(x) we observe that Lemma 7.3 yields

∥∥∥∥∥∥

∞∑

k=k0

2km0Mm ◦ Tϕ0

Ω0
◦ P 0

k0

[
GU

k

]
∥∥∥∥∥∥

p0

hp0

6

∞∑

k=k0

2km0p0
∥∥P 0

k0

[
GU

k

]∥∥p0
hp0

.

N∏

j=1

‖fj‖Xpj .

Summing up and using the fact thatm0 < 0, we deduce the boundedness ofD(f1, . . . , fN ),
with target hp0 .

8. Space-time estimates for systems of dispersive PDEs

In this section we shall prove Theorem 1.6, which amounts to showing Sobolev estimates
for the solution u of the system of coupled PDEs{

i∂tu+ ϕ0(D)u = Tζ (v1, . . . , vN )
i∂tvj + ϕj(D) vj = 0, j = 1, . . . , N

with

{
u(0, x) = 0
vj(0, x) = fj(x), j = 1, . . . , N,

where ϕj ∈ C∞(Rn \ 0), fj ∈ Hσj ,pj , σj > 0, j = 0, . . . , N are assumed to be positively
homogeneous of degree s ∈ (0,∞) and Tζ is the multilinear multiplier given by (8) with
symbol ζ ∈ Smζ (n,N) for some mζ 6 0, to be specified later. The solution can be
represented using the Duhamel formula as

(56) u(t, x) =

∫ t

0

∫

RnN

ζ(Ξ)
N∏

j=1

(
f̂j(ξj) e

ix·ξj+irϕj(ξj)
)
ei(t−r)ϕ0(ξ1+···+ξN ) dΞ dr.

This formula contains a multilinear oscillatory integral, and should therefore be suitable
for analysis with the results of this paper. There are, however, two reasons why we cannot
directly apply Theorems 1.4 and 1.3. Firstly, we must deal with the time dependency of
u, and secondly, proving bounds in Sobolev spaces introduces more complicated ampli-
tudes, which are a product of the multilinear amplitudes we have seen earlier and linear
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amplitudes in each variable. The following two results solve the first problem and extend
regularity estimates of oscillatory integral operators with space-dependent phases to the
corresponding time-dependent operators. We then proceed to prove Theorem 1.6 as a
scholium to Theorems 1.4 and 1.3.

We shall start with the following lemma which yields time-dependent Lp estimates for
linear evolutions.

Lemma 8.1. Let ϕ ∈ C∞(Rn \ 0) be a phase function positively homogeneous of degree
s > 0. Then if s 6= 1 then for all t > 0,

(57) ‖〈D〉−sn|1/p−1/2|eitϕ(D)u‖Lp . 〈t〉n|1/p−1/2|‖u‖Lp ,

and for s = 1

(58) ‖〈D〉−(n−1)|1/p−1/2|eitϕ(D)u‖Lp . 〈t〉(n−1)|1/p−1/2|‖u‖Lp .

Proof. We only prove the case of s 6= 1, the remaining case is proven in a similar manner
using Theorem 2.8. First note that Theorem 2.9 yields that for 1 < p <∞

‖eiϕ(D)〈D〉−ns| 1
p
− 1

2
|u‖Lp . ‖u‖Lp .

To include t-dependence, we first note that in the case t 6 1, tϕ(ξ) is a phase of order s
uniformly in t and therefore satisfies the estimate

(59) ‖eitϕ(D)u‖Lp . ‖〈D〉sn|1/p−1/2|u‖Lp 6 〈t〉a‖〈D〉sn|1/p−1/2|u‖Lp ,

for any a > 0. When t > 1, we write m(p, s) = −ns|1/p − 1/2| and perform a change of
variables (and using homogeneity of ϕ), finding

∫
eix·ξ+itϕ(ξ)〈ξ〉m(p,s)û(ξ) d̄ξ = t−n/s

∫
eit

−1/sx·ξ+iϕ(ξ)〈t−1/sξ〉m(p,s)û(t−1/sξ) d̄ξ

= t−m(p,s)/s

∫
eit

−1/sx·ξ+iϕ(ξ)σt(ξ)û(t1/s·)(ξ) d̄ξ,
(60)

where σt(ξ) = tm(p,s)/s〈t−1/sξ〉m(p,s) satisfies |∂αξ σt(ξ)| 6 Cα〈ξ〉m(p,s)−|α| when t > 1 and

m(p, s) > 0. Therefore the Lp−bound given by Theorem 2.9, (59) and (60) yield the
desired result. �

A useful multilinear generalisation of this result is the following.

Lemma 8.2. Let ϕj ∈ C∞(Rn \0), j = 0, . . . , N , be phase functions that are homogeneous
of degree s > 0 and σ ∈ Sm(n,N) with m ∈ R. Define

T (t)
σ (f1, . . . , fN ) :=

∫

RNn

eitϕ0(ξ1+···+ξN )σ(Ξ)
N∏

j=1

f̂j(ξj) e
ix·ξj+itϕj(ξj) dΞ.

Assume that for some 1 < p0, . . . , pN <∞ and r0, . . . , rN ∈ R one has the estimate

‖〈D〉−r0T (1)
σ (f1, . . . , fN )‖Lp 6 C(σ,Φ)

N∏

j=1

‖〈D〉rjfj‖Lpj ,

where C(σ,Φ) only depends on a finite number of seminorms of σ and upper bounds on
the size of a finite number of derivatives of ϕj . Then it follows that, for all t > 0

‖〈D〉−r0T (t)
σ (f1, . . . , fN )‖Lp 6 C(σ,Φ)〈t〉(max(−m,0)+

∑N
j=0 max(rj ,0))/s

N∏

j=1

‖〈D〉rjfj‖Lpj .
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Proof. For 0 6 t 6 1, there is an upper bound on the derivatives of tΦ that is uniform in
t, so this case is clear. When t > 1, we let gj = 〈D〉rjfj, so that

〈D〉−r0T (t)
σ (f1, . . . , fN )(x) =

∫

RNn

eix·(ξ1+···+ξN )+itϕ0(ξ1+···+ξN )+
∑N

j=1 itϕj(ξj)

× 〈ξ1 + · · ·+ ξN 〉−r0σ(Ξ)

N∏

j=1

〈ξj〉−rj ĝj(ξj) dΞ

= t−Nn/s

∫

RNn

eit
−1/sx·(ξ1+···+ξN )+iϕ0(ξ1+···+ξN )+

∑N
j=1 iϕj(ξj)

× 〈t−1/s(ξ1 + · · ·+ ξN )〉−r0σ(t−1/sΞ)

N∏

j=1

〈t−1/sξj〉−rj ĝj(t
−1/sξj) dΞ

= t(max(−m,0)+
∑N

j=0 max(rj ,0)−Nn)/s

∫

RNn

eit
−1/sx·(ξ1+···+ξN )+iϕ0(ξ1+···+ξN )+

∑N
j=1 iϕj(ξj)

× 〈ξ1 + · · ·+ ξN 〉−r0tmin(m,0)/sσ(t−1/sΞ)

( N∏

j=1

〈ξj〉−rj ĝj(t
−1/sξj)

)

× t−max(r0,0)/s〈t−1/s(ξ1 + · · ·+ ξN )〉−r0

〈ξ1 + · · ·+ ξN 〉−r0

N∏

j=1

t−max(rj ,0)/s〈t−1/sξj〉−rj

〈ξj〉−rj
dΞ

= t(max(−m,0)+
∑N

j=0 max(rj ,0))/s

× S0〈D〉−r0T (1)
σt

(〈D〉−r1S1g1(t
1/s·), . . . , 〈D〉−rNSNgN (t1/s·))(t−1/sx),

where

Sj = t−max(rj ,0)/s〈t−1/sD〉−rj 〈D〉rj ,
σt(Ξ) = tmin(m,0)/sσ(t−1/sΞ).

Now, σt ∈ Sm(n,N) uniformly in t, so we can use the known boundedness of 〈D〉−r0T
(1)
σt .

The operators Sj are furthermore Mikhlin multipliers uniformly in t and hence bounded
Lp → Lp. It follows that

‖〈D〉−r0T (t)
σ (f1, . . . , fN )‖Lp0 . t(max(−m,0)+

∑N
j=0 max(rj ,0))/s

N∏

j=1

‖〈D〉rjfj‖Lpj . �

Now let us return to the Duhamel representation (56). Here we set

T
(r)
ζ (f1, . . . , fN )(x) :=

∫

RnN

ζ(Ξ)

N∏

j=1

(
f̂j(ξj) e

ix·ξj+irϕj(ξj)
)
dΞ,

and observe that

u(t, x) =

∫ t

0
ei(t−r)ϕ0(D)〈D〉m(p0,s)〈D〉−m(p0,s)T

(r)
ζ (f1, . . . , fN )(x) dr.

Let

σ0 = κ +mc −mζ , κ := min
j=1,...,N

σj,

where mc = mc(s) is as in the statement of Theorem 1.6. From this and Lemma 8.1 we
immediately obtain

(61) ‖u‖Hσ0,p0 .

∫ t

0
〈t− r〉−m(p0,s)/s‖〈D〉−m(p0,s)T

(r)
ζ (f1, . . . , fN )‖Hσ0,p0 dr,
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for 1 < p0 < ∞. Using Lemma 8.2 it will therefore be enough for us to study the right-
hand norm in the case where r = 1. Now, using the decomposition of Section 5 we can

decompose ζ and reduce the analysis of T
(1)
ζ to the study of multilinear operators Tζ0 ,

Tζ1 and Tζ1,2 . It should however be noted that for these terms the method only takes
advantage of the added regularity on the first argument (i. e. f1). For the similar terms
Tζ2 , Tζ2,3 , etc. one can take advantage of a different σj . This is the reason why κ is the
minimum of the σj , j = 1, . . . , N .

Treatment of Tζ0. Here we make use of the representation given in (36), which in our
case with x-independent amplitude translates to

I := 〈D〉−m(p0,s)Tζ0(f1, . . . , fN )

=
∑

K∈ZnN

aK〈D〉−m(p0,s)θ(D/
√
N)

( N∏

j=1

T
ϕj

θ ◦ τ 2πkj
L

(fj)

)
.

The method in Subsection 7.1 can then be carried out to show that for any σ ∈ R

‖I‖Hσ,p0 .

N∏

j=1

‖fj‖Xpj .

N∏

j=1

‖fj‖Hσj ,pj .

Treatment of Tζ1. Using (39) and (40), with the same notation as was introduced there,
its Lp-boundedness can be inferred from that of the multilinear operator

II := 〈D〉−m(p0,s)Tζ1(f1, . . . , fN ) =

∫
ĨIU

1

(1 + |U |2)M d̄U,

where

ĨIU = 〈D〉−m(p0,s)
∑

k>k0

χ0(2D)Q0
k


(Qu1

k ◦ Tϕ1

b1
)(f1)

N∏

j=2

(P
uj

k ◦ Tϕj

bj,k
)(fj)




=
∑

k>k0

χ0(2D)〈D〉−m(p0,s) ◦ Q0
k


(Qu1

k ◦ Tϕ1

b1|·|−σ1
)(|D|σ1f1)

N∏

j=2

(P
uj

k ◦ Tϕj

bj,k
)(fj)




= χ0(2D)〈D〉−m(p0,s) |D|mζ+m(p0,s)−mc(s)−σ1

◦
∑

k>k0

Q1
k


(Q2

k ◦ Tϕ1

b̃1
)(|D|σ1 χ0(2D)f1)

N∏

j=2

(P
uj

k ◦ Tϕj

b̃j,k
)(fj)


 ,

where b1 ∈ Sm1 and bj,k ∈ Smj . Q1
k has symbol

φk(ξ)|2−kξ|−mζ+mc(s)−m0(p0,s)+σ1 ,

Q2
k has symbol

ψk(ξ)|2−kξ|mζ−m(p1,s)−σ1e2
−kξ·u1 ,

and we define

b̃1(ξ) = χ0(ξ) |ξ|m(p1,s) ∈ Sm(p1,s),

b̃j,k(ξ) = 2m(pj ,s)kωk(ξ), j = 2, . . . , N.

Now since the operator
∑

k>k0
Q1

k

[
(Q2

k ◦ T
ϕ1

b̃1
)(f1)

∏N
j=2(P

uj

k ◦ Tϕj

bj,k
)(fj)

]
is of the form

(44) the boundedness of the latter yields that

‖II‖Hσ0,p0 . ‖II‖
H

σ1+mc−mζ,p0 . ‖f1‖Hσ1,p1

N∏

j=2

‖fj‖Xpj .

N∏

j=1

‖fj‖Hσj,pj .
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Treatment of Tζ1,2. For this part we will need to invoke an interpolation argument. To
that end, we fix σj’s , 0 6 j 6 N with σ0 > 0. Then the goal is to show that the N -linear
operator W given by

W (f1, . . . , fN ) := 〈D〉σ0−m(p0,s)Tζ1,2(〈D〉−σ1f1, . . . , 〈D〉−σN fN )

is bounded
∏

j X
pj → Xp0 , provided that mζ = mc − σ0 + κ. Observe that mc depends

linearly on the 1/pj between any two adjacent endpoints in Lemma 6.1, and hence the
same goes for mζ . We can therefore use the interpolation argument in Lemma 6.1 on W .

Just as in the treatment of II, we only use the Sobolev regularity in f1, and that of
f2, . . . , fN will only be used in the analogous estimates for other ζi,j.

Now, using the representation (53), we need to study the boundedness of

III := 〈D〉−m(p0,s)Tζ1,2(f1, . . . , fN ) =

∫
ĨIIU

1

(1 + |U |2)M d̄U,

where U = (u1, . . . , uN ) and

ĨIIU =
∞∑

k>k0

Mmd0(D)〈D〉−m(p0,s)P 0
k


(Qu1

k ◦ Tϕ1

d1
)(f1) (Q

u2
k ◦ Tϕ2

d2
)(f2)

N∏

j=3

(P
uj

k ◦ Tϕj

dj,k
)(fj)


 ,

with Mm being the operation of multiplication by m(k, U), which is uniformly bounded in

k. Moreover d0 = 2k(mζ−mc+m(p0,s))ωk(ξ) and the amplitudes for each OIO are defined by
(41).

We shall consider the norm of ĨIIU in Hσ0,p0 where p0 = 2, p0 = 1 and p0 = ∞, which
by duality corresponds to estimating

S :=

∫
ĨIIU (x)f0(x) dx

with f0 ∈ H−σ0,p′0 (p′0 is the Hölder dual of p0). First we observe that

P 0
k = Pk0 +

k∑

ℓ=k0+1

Qℓ

and therefore one can write S = Sp + Sq with

Sp =

∫ ∞∑

k>k0

Mmd0(D)〈D〉−m(p0,s)Pk0f0(x)Q
u1
k T

ϕ1

d1
f1(x)Q

u2
k T

ϕ2

d2
f2(x)

N∏

j=3

P
uj

k T
ϕj

dj,k
fj(x) dx

Sq =

∫ ∞∑

k>k0

k∑

ℓ=k0+1

MmQℓd0(D)〈D〉−m(p0,s)f0(x)Q
u1
k T

ϕ1

d1
f1(x)Q

u2
k T

ϕ2

d2
f2(x)

N∏

j=3

P
uj

k T
ϕj

dj,k
fj(x) dx

To show the needed boundedness of these parts, we shall rely on the method laid out
in detail in Section 8.1 of [15]. The terms S, and Sp correspond in that text to the
expressions (60) and (61), respectively. For the term Sq we note that using the condition
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κ +mc −mζ > 0, we have that

(62)
∑

k>k0

k∑

ℓ=k0+1

∣∣∣
∫ (

MmQℓd0(D)〈D〉−m(p0,s)f0

)
(x)
(
Qu1

k ◦ Tϕ1

d1

)
(f1) (x)

×
(
Qu2

k ◦ Tϕ2

d2

)
(f2) (x)

N∏

j=3

(
P

uj

k ◦ Tϕj

dj,k

)
(fj) (x)dx

∣∣∣

6
∑

k>k0

k∑

ℓ=k0+1

2(k−ℓ)(m(p0,s)−σ1−mc+mζ)
∣∣∣
∫ (

Mm2
−km(p0,s)Qℓd̃0(D)〈D〉−σ1−mc+mζf0

)
(x)

×
(
Qu1

k ◦ Tϕ1

d1

)
(|D|σ1f1) (x)

(
Qu2

k ◦ Tϕ2

d2

)
(f2) (x)

N∏

j=3

(
P

uj

k ◦ Tϕj

dj,k

)
(fj) (x) dx

∣∣∣

6
∑

k>k0

k∑

ℓ=k0+1

∣∣∣
∫ (

MmQℓd̃0(D)〈D〉−σ1−mc+mζf0

)
(x)
(
Qu1

k ◦ Tϕ1

d1

)
(|D|σ1f1) (x)

×
(
Qu2

k ◦ Tϕ2

d2

)
(f2) (x)

N∏

j=3

(
P

uj

k ◦ Tϕj

dj,k

)
(fj) (x)dx

∣∣∣

=

∞∑

ℓ=k0

∞∑

k=0

∣∣∣
∫ (

MmQℓd̃0(D)〈D〉κ−σ0−σ1f0

)
(x)
(
Qu1

k+ℓ ◦ T
ϕ1

d1

)
(|D|σ1f1) (x)

×
(
Qu2

k+ℓ ◦ T
ϕ2

d2

)
(f2) (x)

N∏

j=3

(
P

uj

k+ℓ ◦ T
ϕj

dj,k

)
(fj) (x) dx

∣∣∣

where d̃0(ξ) = ωk(ξ). This last expression corresponds to the sum in k of expression (62)
in [15].

With this set, one can follow the procedure in [15] to show the required end-point
estimates. However, in order for every step of that proof to translate to this setting, we
need to show some additional facts about our terms.

First we consider the target space Hσ0,2, and to make use of duality take f0 such that
〈D〉−σ0f0 ∈ L2. To deal with Sp we hence have to estimate

∑

k>k0

∣∣∣
∫ (

MmPk0d0(D)〈D〉−m(p0,s)f0

)
(x)

× (Qu1
k ◦ Tϕ1

d1
)(f1)(x) (Q

u2
k ◦ Tϕ2

d2
)(f2)(x)

N∏

j=3

(P
uj

k ◦ Tϕj

dj
)(fj)(x) dx

∣∣∣

Now since k0 is fixed, the symbol of the multiplier Pk0 is a Schwartz function and therefore

MmPk0d0(D)〈D〉−m(p0,s)f0

= (Pk0〈D〉−m(p0,s)〈D〉σ1+mc−mζ ◦ d0(D) ◦ Pk ◦Mm)(〈D〉−σ1−mc+mζf0)

= K ∗ ((Pk ◦Mm)(〈D〉−σ1−mc+mζf0)),

for k > k0, with |K(·)| . 〈·〉−N , for any N > 0, which shows that this term has the
required form for the steps on page 36 in [15] to go through.

Following those steps, we therefore see that III is bounded in L2 provided that for
j = 1, 2 and f ∈ bmo the measure

dµk(x, t) =
∞∑

ℓ=0

∣∣∣
(
Q

uj

k+ℓ ◦ T
ϕj

dj

)
(f)(x)

∣∣∣
2
δ2−ℓ(t)dx
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is Carleson with a decay in ℓ in the Carleson norm. However, in Proposition 4.4 it was
shown that the Carleson norm is bounded by a multiple of 2−εk‖f‖2bmo, for some ε > 0.
This decay in k is needed to be able to deal with double sum in (62) in various cases that
are handled below.

This fact enables us to use the arguments in Section 8.1 on page 35 of [15], in accordance
with case (ii) of Lemma 6.1 to conclude that

‖〈D〉σ0III‖L2 . ‖〈D〉σ1f1‖Xp1

N∏

j=2

‖fj‖Xpj .

N∏

j=1

‖〈D〉σjfj‖Xpj ,

and therefore

‖W (f1, . . . , fN )‖L2 .

N∏

j=1

‖fj‖Xpj .

Next, we deal with the target space with norm ‖〈D〉σ0 · ‖h1 , and therefore take f0 such
that 〈D〉−σ0f0 ∈ bmo. Therefore if 〈D〉σ1f1 ∈ bmo and fj ∈ bmo for j = 2, . . . ,M , then
for any 3 6M 6 N it is not hard (mainly using Proposition 4.4) to see that the measure

dµk(x, t) :=

∞∑

ℓ=0

(
QℓMmd̃0(D)〈D〉−σ1−mc+mζf0(x)

)

×



(
Qu1

k+ℓ ◦ T
ϕ1

d1

)
(|D|σ1f1) (x)

(
Qu1

k+ℓ ◦ T
ϕ2

d2

)
(f2) (x)

M∏

j=3

(
P

uj

k+ℓ ◦ T
ϕj

dj

)
(fj) (x)


 dx δ2−l(t)

is a Carleson measure with the Carleson norm bounded by a multiple of

2−εk
∥∥〈D〉−σ0f0

∥∥
bmo

‖〈D〉σ1f1‖bmo

M∏

j=2

‖fj‖bmo,

for some ε > 0. Moreover by estimate (25) we also have that

sup
ℓ>k0

∥∥∥QℓMmd̃0(D)〈D〉−σ1−mc+mζf0

∥∥∥
L∞

.
∥∥〈D〉−σ0f0

∥∥
bmo

and

sup
ℓ>k0

∥∥∥
(
Q

uj

k+ℓ ◦ T
ϕj

dj

)
(fj)

∥∥∥
L∞

. ‖fj‖bmo for j = 1, 2 when pj = ∞,

where the hidden constant in the above estimate is uniform in k. These facts together
with estimates (10), (11) and (12) enable us to run the arguments of Section 8.2 on page
40 of [15] to prove various boundedness results corresponding to the cases (iii) and (iv) of
Lemma 6.1 and finally arrive at

‖〈D〉σ0III‖h1 . ‖〈D〉σ1f1‖Xp1

N∏

j=2

‖fj‖Xpj .

N∏

j=1

‖〈D〉σjfj‖Xpj ,

and hence

‖W (f1, . . . , fN )‖h1 .

N∏

j=1

‖fj‖Xpj .

The last case to deal with is when f0 in the duality arguments above has the property
that 〈D〉−σ0f0 ∈ h1. Here we observe that the measure

dµk(x, t) =
∞∑

ℓ=0

(
Qu1

k+ℓ ◦ T
ϕ1

d1

)
(|D|σ1f1) (x)

(
Qu1

k+ℓ ◦ T
ϕ2

d2

)
(f2) (x)

M∏

j=3

(
P

uj

k+ℓ ◦ T
ϕj

dj

)
(fj) (x) dxδ2−l(t)
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is Carleson with Carleson norm bounded by a multiple of

2−εk ‖〈D〉σ1f1‖bmo

N∏

j=2

‖fj‖bmo,

for some ε > 0. Therefore (11) yields that

‖〈D〉σ0III‖bmo . ‖〈D〉σ1f1‖Xp1

N∏

j=2

‖fj‖Xpj .

N∏

j=1

‖〈D〉σjfj‖Xpj ,

yielding

‖W (f1, . . . , fN )‖bmo .

N∏

j=1

‖fj‖Xpj .

With all the end point estimates set, we can by interpolation finally deduce that

‖W (f1, . . . , fN )‖Xp0 .

N∏

j=1

‖fj‖Xpj , p0, . . . , pN ∈ [0,∞],

which means that

‖III‖Hσ0,p0 .

N∏

j=1

‖fj‖Hσj,pj , p0, . . . , pN ∈ (0,∞).

Returning now to (61), we recall that T
(1)
ζ is a sum of operators, of the type Tζ0 , Tζ1

and Tζ1,2 and the bounds obtained above for I, II and III can therefore be used to show
that

‖〈D〉−m(p0,s)T
(1)
ζ (f1, . . . , fN )‖Hσ0,p0 .

N∏

j=1

‖fj‖Hσj ,pj .

Lemma 8.2 then yields that

‖〈D〉−m(p0,s)+κ+mc−mζT
(r)
ζ (f1, . . . , fN )‖Lp0 . 〈r〉(−mζ+κ′+

∑N
j=1 σj)/s

N∏

j=1

‖fj‖Hσj,pj ,

where κ′ := max(m(p0, s)− κ −mc +mζ , 0). Thus we conclude that for the solution u in
(61) one has

‖u(t, ·)‖Hσ0 ,p0(Rn) .

∫ t

0
〈t− r〉−m(p0,s)/s〈r〉(−mζ+κ′+

∑N
j=1 σj)/s dr

N∏

j=1

‖fj‖Hσj ,pj

from which one obtains the space-time estimate

‖u‖
Lq([0,T ])H

κ+mc−mζ,p0 (Rn)
6 CT

N∏

j=1

‖fj‖Hσj ,pj ,

which is valid for any q ∈ [1,∞], any T ∈ (0,∞). Theorem 1.6 is thereby proven.
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