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Abstract 

Subtyping neuropsychiatric disorders like schizophrenia is essential for improving the diagnosis and 
treatment of complex diseases. Subtyping schizophrenia is challenging because it is polygenic and 
genetically heterogeneous, rendering the standard symptom-based diagnosis often unreliable and 
unrepeatable. We developed a novel network-based machine-learning approach, netMoST, to subtyping 
psychiatric disorders. NetMoST identifies polygenic risk SNP-allele modules from genome-wide genotyping 
data as polygenic haplotype biomarkers (PHBs) for disease subtyping. We applied netMoST to subtype a 
cohort of schizophrenia subjects into three distinct biotypes with differentiable genetic, neuroimaging and 
functional characteristics. The PHBs of the first biotype (36.9% of all patients) were related to 
neurodevelopment and cognition, the PHBs of the second biotype (28.4%) were enriched for neuroimmune 
functions, and the PHBs of the third biotype (34.7%) were associated with the transport of calcium ions and 
neurotransmitters. Neuroimaging patterns provided additional support to the new biotypes, with unique 
regional homogeneity (ReHo) patterns observed in the brains of each biotype compared with healthy 
controls. Our findings demonstrated netMoST’s capability for uncovering novel biotypes of complex 
diseases such as schizophrenia. The results also showed the power of exploring polygenic allelic patterns 
that transcend the conventional GWAS approaches.   



INTRODUCTION 

Schizophrenia (SCZ) is a devastating neuropsychiatric disorder with considerable morbidity and 
mortality1-3 and exerts substantial health and socioeconomic burdens4. It has a strong genetic 
predisposition and heritability estimated at 60-80%5,6. Significant heterogeneities in etiology, 
pathophysiology and symptom characterize the disease. SCZ shares genetic and clinical characteristics with 
other psychiatric disorders, such as bipolar disorder (BD) and major depressive disorder (MDD)7-9. The 
current diagnostic criteria for SCZ are primarily based on behavioral and cognitive indicators10-12, which are 
challenging to quantify, inconsistent and subjective. As a result, SCZ diagnosis often results in poorly 
informed therapeutic strategies, unpredictable treatment outcomes, and frequent relapses. 

To explore and exploit the abovementioned heterogeneities to improve the diagnosis and treatment of 
SCZ, it is crucial to adequately delineate SCZ into subtypes that provide deep insight into disease 
pathogenesis, pathophysiology, and therapeutic options. One common approach for subtyping SCZ is based 
on the presence or absence of symptom profiles. For example, Dickison et al.13 identified two subgroups of 
SCZ based on psychotic symptoms, a “deficit” subtype and a “distress” subtype. Lim et.al14 discovered four 
homogeneous groups of individuals with SCZ of different severity of cognitive impairment. However, SCZ 
symptoms may vary depending on the illness stages, comorbid conditions, and medication15. This instability 
can make it challenging to classify patients into proper subtypes and make it difficult to track disease 
progression or predict treatment response. Moreover, symptom-based subtyping provides little information 
on the underlying disease mechanisms and translates poorly into effective therapeutic strategies. Another 
subtyping approach is based on objective neurobiological endophenotypic features, including MRI-based 
neuroanatomical measures16,17, functional magnetic resonance imaging (fMRI)18, and combinations of 
electrophysiology and cognition19. Despite extensive research, valid neurobiological subtypes of SCZ remain 
elusive. This is primarily because the number of subtypes and their underlying biological features vary 
across studies, even when utilizing the same neuroimaging features. For example, Chand et al.16 and Xiao et 
al.17 independently identified two and three distinct neuroanatomical SCZ subtypes using gray matter 
volume as a neurobiological marker. 

Manifestation of psychiatric symptoms and endophenotypes, such as brain activities and functional 
connectivities, result from the interaction between genetic predispositions and environmental triggers. 
Therefore, genetic risk factors are objective and more reliable biomarkers for inheritable psychiatric 
disorders like SCZ. However, little has been done to leverage SCZ genetics for diagnosis. Luo et al.20 used a 
peripheral epigenome-wide DNA methylation array to cluster 63 SCZ patients into two biotypes. One 
biotype displayed prominent methylation abnormalities and was associated with dysregulated immune 
function. Another recent study21 applied multi-view clustering to clinical and single nucleotide 
polymorphism (SNP) data and grouped a small group of SCZ subjects into three biotypes with differential 
cognitive measures and disease courses. While these methods used genotyping data, they did not identify 
subtype-specific genetic risk factors that might be used as potential biomarkers for the disease. 

Subtyping and identifying genetic biomarkers for SCZ are difficult because the two are intertwined. 
Discovering biomarkers for complex diseases typically requires comparing diseased and healthy groups to 
identify critical genetic features. However, individuals with a complex disease are often genetically 
heterogeneous and may carry multiple distinct biomarkers. This genetic heterogeneity can impede our 
ability to identify statistically significant biomarkers from the entire samples, leading to inconsistent and 
non-reproducible results. Overcoming this impediment requires subtyping the subjects and identifying 
biomarkers for every subtype. On the other hand, disease subtyping involves partitioning samples into 
groups with homogenous members. The similarity among group members depends on selecting the right 
patient features. Therefore, it is necessary to find essential biomarkers as features to quantify similarity for 
subtyping. However, as discussed earlier, biomarker identification depends on accurate subtyping. 



Therefore, disease subtyping and biomarker identification are interrelated. To our knowledge, no method 
has been developed for this issue. 

Another challenge in subtyping SCZ is its polygenicity. Complex diseases, including SCZ, are caused by 
the interactions or associations of multiple genetic factors. Genome-wide association studies (GWAS) can 
help identify individual candidate genetic risk factors. However, these studies have limited power in finding 
genetic risk factors for complex diseases22,23. GWAS methods are designed to look for individual risk factors, 
so they fail to identify groups of related genetic factors, each of which may have small effect sizes when 
examined in isolation24. Several approaches, such as the polygenic risk score (PRS)25, have been attempted 
to address these limitations by looking for combinations of genetic variants to increase statistical power. 
However, these methods are designed for evaluation rather than discovery. Therefore, "present PRSs 
typically explain only a small fraction of trait variance"26. 

We propose a novel network module-based method for subtyping (netMoST) to simultaneously 
address the challenge of subtyping and identifying polygenic biomarkers for complex diseases. Taking SCZ 
as a case study, we applied netMoST to group SCZ into three biotypes. The new biotypes were validated 
utilizing multimodal data, including genetic variations, brain neuroimaging patterns and clinical features. 
We identified subtype-specific polygenic risk factors to understand the pathogenetic and 
pathophysiological features of SCZ. A noteworthy finding is an SCZ subtype defined by modules of genomic 
alleles on immune genes in the major histocompatibility complex of the human genome, suggesting the 
involvement of immunity in the pathogenesis and pathophysiology of SCZ. 

RESULTS 

Identifying subtypes and polygenic haplotype biomarkers for complex disease  

Complex diseases, such as schizophrenia (SCZ), are polygenic, meaning that variations at multiple 
genomic loci rather than individual ones drive the onset of disease phenotypes and disease progression. 
Many complex diseases are also genetically heterogeneous, meaning that the same symptoms in different 
patients may be attributed to various genetic factors, indicating the existence of multiple disease 
mechanisms. As a result, complex diseases like SCZ have numerous polygenic risk factors. Genetic 
heterogeneity and multiple disease mechanisms make it necessary to adequately define diseased cases into 
biotypes for accurate diagnosis and effective treatment. 

We developed a novel network module-based method for subtyping (netMoST) complex diseases like 
SCZ (Figure 1). Our new approach hinged upon two ideas: focusing on SNP alleles instead of SNPs to deal 
with genetic heterogeneity and adopting network analysis to facilitate the identification of polygenic 
biomarkers. The new algorithm first constructs an SNP-allele network based on the Custom Correlation 
Coefficient (CCC), a measure designed to capture genetic heterogeneity by computing a multi-faceted 
collection of correlation27,28. The algorithm then detects communities in the network to identify modules of 
functionally associated SNP alleles. Modules of multiple SNP alleles that are statistically significantly 
correlated with the disease are selected as polygenic features. Unsupervised clustering is then applied to 
group the disease into biologically homogeneous subgroups. The subtypes are further characterized by 
subtype-specific polygenic SNP-allele modules using the same SNP-allele module finding scheme. 

The central theme of netMoST is defining and identifying polygenic risk factors. We conceptualize 
polygenic risk factors as modules of highly correlated SNP alleles across the entire genome. Utilizing SNP 
alleles can address genetic heterogeneity28,29, and SNP-allele modules may capture long-range genomic 
associations within a chromosome and across different chromosomes. Moreover, SNP-allele modules are 
specific to SCZ subjects, enabling distinction between SCZ cases and healthy controls. We termed these 
SNP-allele modules polygenic haplotype biomarkers (PHBs). 

We formulated the problem of finding PHBs as a problem of identifying modules of highly correlated 



nodes in a network of SNP alleles. We split the problem into two. The first was constructing a network of 
nodes representing SNP alleles and edges representing correlations between pairs of SNP alleles using the 
CCC measure27. The second problem was the general problem of finding modules of highly correlated 
nodes in a network, which has been extensively studied30. We used the Louvain network-module detection 
method31 in the current implementation of netMoST.  

NetMoST defines three biological subtypes of schizophrenia 

Polygenic haplotype biomarkers define three biotypes of schizophrenia 

We applied NetMoST to subtype schizophrenia. A total of 425 participants were recruited, including 
141 SCZ patients and 284 healthy controls (HCs). After preprocessing and quality control of the genotyping 
data (see Methods), we identified 404,078 SNPs for the 141 SCZ patients and 283 HCs (Figure 2A). These 
SNPs were used to construct an SNP-allele network where 480,339 interactions connected 192,409 nodes 
(SNP alleles). The Louvain network-module finding method31 detected 36,576 SNP-allele modules from the 
network. Among these modules, 426 had Odds Ratios (ORs) and Risk ratios (RRs) greater than 1.2 (Figure 
2A) and were taken as SCZ risk SNP-allele modules for subtyping the disease. The 426 risk modules spanned 
over 8,953 (4.7% of 192,409) SNP alleles, had an average of 19.4 alleles and a maximum of 150 alleles per 
module and had ORs ranging from 1.23 to 8.22 with an average of 1.78 (Figure 2B, Supplemental File 1). 
When analyzed separately, the individual SNPs within the risk modules had smaller OR values distributed 
around 1, indicating that they contributed insignificantly to SCZ phenotypes individually (Figure 2B). In 
contrast, the OR values of the SNP-allele modules were statistically significant, showing that schizophrenia 
was a polygenic disorder and suggesting that the disease was due to the interaction among the variations in 
multiple genes or genomic loci. 

Taking the 426 risk SNP-allele modules as features, we define three subtypes or clusters of the SCZ 
subjects using the Principle Component Analysis (PCA)32 and the KMeans clustering algorithm33. Biotype 1 
consisted of 36.9% (n = 52) of the SCZ participants, biotype 2 of 28.4% (n = 40), and biotype 3 of 34.7% (n = 
49) (Figure 2C). Demographic and clinical details of the biotypes are in Supplementary eTables 1 and 2.  

We applied the same network construction and module detection methods to every biotype to 
discover subtype-specific risk SNP-allele modules using more stringent criteria: OR ≥ 1.5, a lower limit of 1.1 
for the 95% confidence interval (CI), and Yates's Correction p-value < 0.05. We adopted subtype-specific risk 
SNP-allele modules as PHBs of SCZ. We found 264 PHBs for biotype 1, 83 PHBs for biotype 2, and 144 PHBs 
for biotype 3. Notably, the ORs of PHBs of the three biotypes were significantly greater than before 
subtyping (Figure 2D), showing that subtyping can enhance the detection of genetic risks of SCZ. Among 
the three biotypes, biotype 1 had the smallest p-value (biotype 1: 3.55E-59, biotype 2: 2.27E-31, biotype 3: 
3.20E-41) and the most significant mean OR (biotype 1: 2.93, biotype 2: 2.84, biotype3: 2.73), indicating 
that it was the most distinct from HCs among the three biotypes. 

To gain insight into the unique etiologies of the three SCZ biotypes, we performed a gene function 
enrichment analysis on the host genes of or genes nearest to the SNPs in the PHBs of each biotype using 
the FUMA online portal34 (Figures 2E-2G). The SNP alleles in the biotype-1 PHBs were primarily associated 
with genes related to neurodevelopmental processes, including neurogenesis and neuron development and 
differentiation (Figure 2E). These biological pathways suggest that biotype-1 PHBs significantly influence 
neural systems, making biotype 1 a representative of the neurodevelopment of SCZ. The biological 
functions of SNP alleles in the biotype-2 PHBs were enriched considerably with immune functions, 
including regulating immune processes, immune response, defense response, and innate immune response 
(Figure 2F). These findings highlighted the relationship between immunity or inflammation and SCZ, 
suggesting that biotype 2 may constitute a highly inflammatory SCZ subgroup whose genetic variations lead 
to immune dysfunction and inflammation and contribute to SCZ pathophysiology. The SNP-alleles in the 



biotype-3 PHBs were enriched in the transport of calcium ions and neurotransmitters (Figure 2G), which are 
mediators of physiological functions in the central nervous system and have been implicated in the 
pathogenesis of psychiatric diseases. Some genetic risk factors of biotype 3 are also involved in glycoprotein 
biosynthetic processes, suggesting glycosylation’s role in SCZ. These results revealed distinctive genetic 
patterns of the three biotypes, reflecting a significant heterogeneity among them. 

Subtype-specific polygenic haplotype biomarkers  

To assess the power of subtype-specific PHBs as biomarkers, we compared their effect sizes and the 
risk SNPs chosen by the standard association analysis using the logistic regression model in PLINK v1.935. 
Every patient in biotype 1 possessed at least 158 (60%) of the 264 PHBs. Every individual in biotype 2 
carried at least 49 (59%) of the 83 PHBs, with a mean of 61 PHBs for all SCZ subjects. In biotype 3, every 
subject was covered by at least 99 (69%) of the 144 PHBs, with an average of 109 (76%) PHBs across all 
patients. Therefore, these PHBs are robust biomarkers for SCZ. Approximately 31.5% of the PHBs (biotype 1: 
39.8%, biotype 2: 21.7%, and biotype 3: 22.2%) contained SNP loci spanning more than one chromosome, 
many of which were located in noncoding and intergenic regions.  

 To characterize the PHBs as genetic signatures of the biotypes, we analyzed their potential biological 
functions in SCZ. We present the results on the PHB with a significant odds ratio (OR) and a sufficient 
number of SNP alleles in genic regions from every subtype. We analyzed the potential functions of these 
PHBs using the functions of the host genes of the SNP alleles in the PHBs. Notably, the top 10 ranked PHBs 
of biotype 1 had significant ORs, ranging from 4.22 to 57.68 (Supplemental File 1). Many SNP alleles in 
these PHBs were located in noncoding or intergenic regions. We selected a representative PHB with 84.5% 
of SNP-alleles in protein-coding genes for functional analysis. This PHB appeared in 30% of the biotype-1 
cases but 7.2% of HCs, giving rise to an OR of 5.46 (CI: 2.56-11.65). It was composed of 71 SNP alleles from 
11 genes (GRM5, NOTCH4, SORBS2, IL1RAPL1, STK19, TNXB, PPT2, RNF5, PBX2, TMEM132D, and FLRT2) 
spanning eight chromosomes (Figure 3A, eFigure 1), representing a long-range haplotype over multiple 
genes across multiple chromosomes (eFigure 1). In contrast, the standard association analysis using PLINK 
detected only one SNP (rs9994907 in gene SORBS2) with statistical significance (OR: 1.56, p-value < 0.05, 
logistic regression analysis) (Figure 3B). The SNP-alleles of this PHB in NOTCH4 (Notch Receptor 4) on 
chromosome 6, GRM5 (Glutamate Metabotropic Receptor 5) on chromosome 11, and IL1RAPL1 (Interleukin 
1 Receptor Accessory Protein Like 1) on chromosome X exhibited significant network centralities, including 
average neighbor degrees, closeness centralities, and pagerank indices (eFigure 2). These three genes were 
involved in the development of SCZ. Specifically, fifteen SNP alleles were in GRM5, which has been 
regarded as a promising target for treating cognitive deficits of SCZ36. NOTCH4, hosting eight SNP alleles in 
this PHB, was known to be strongly associated with SCZ37. IL1RAPL1 resided in a critical region on 
chromosome X that has been reported to be associated with a non-syndromic form of X-linked intellectual 
disability38. IL1RAPL1 was expressed abundantly in post-natal brain structures involved in the hippocampal 
memory system, suggesting a critical role in regulating physiological processes underlying memory and 
cognition abilities38. These results revealed that the SNP alleles in this PHB might function in neural system 
development and cognition.  

The PHB for biotype 2 consisted of 71 SNP alleles and, surprisingly, were distributed across nine 
chromosomes (Figure 3C). Twenty-five percent of the SCZ subjects in biotype 2 carried this PHB, compared 
to 6.2% of healthy controls, resulting in the highest OR of 5.04 (CI: 2.03-12.50) for biotype 2. Moreover, 43 
(60.6%) of the SNP alleles of this PHB resided in the major histocompatibility complex (MHC) on 
chromosome 6, which is critical to immunity39 (eFigure 3). Two SCZ-susceptible genes, HLA-DQA1 and HLA-
DQB140,41, are also located in this region (Figure 3C, eFigure 3). Furthermore, we computed various 
centrality measures for every SNP allele in the PHB, including the degree centrality42, average neighbor 



degree43, closeness centrality44, and pagerank index45,46. The result showed that the SNP alleles in the MHC 
region had greater centrality, average neighbor degree, closeness centrality, and pagerank index, indicating 
their functional importance (eFigure 4). We also compared the OR for every SNP in this PHB using the 
association analysis based on the logistic regression model in PLINK35. Fifteen (21.1% of the 71) SNPs were 
statistically significant (p-value < 0.05). The SNP with the highest OR (MHC:rs9268199 in gene C6orf10) 
appeared in 28.8% of the cases in biotype 2 versus 12.2% of the healthy controls, resulting in an OR of 2.96 
(CI: 1.71- 5.11), significantly smaller than the OR of 5.04 for the top-ranked PHB (Figures 3C-3D). 

Biotype 3 had a representative PHB with an OR of 12.39 (CI: 3.46-44.32). It appeared in 15.56% of the 
biotype-3 subjects but 1.47% of HCs. This PHB comprised 67 SNP alleles on thirteen chromosomes. Most 
SNP alleles existed in three genes, CDKAL1, PTPRD, and CACNA2D1 (Figure 3E, eFigure 5). Twenty-six SNP 
alleles were located in CDKAL1, a gene that rendered individuals with SCZ predisposed to type 2 diabetes, 
suggesting CDKAL1 as a shared genetic risk factor for both diseases47. The SNP alleles in CDKAL1 had a 
greater centrality and average neighbor degree, highlighting their importance in this PHB. Gene PTPRD 
contained eight SNP alleles, which encoded a molecule for signal transduction, may function as a crucial 
neuronal cell adhesion molecule and synaptic specifier48. CACNA2D1, hosting four SNP alleles, encoded a 
voltage-gated calcium channel-related gene and was critical for mediating intracellular Ca2 + influx and 
responsible for signaling transmission across synapses49. Like the other two biotypes, the SNPs selected by 
the single-marker method PLINK had much smaller ORs, detecting only one statistically significant 
candidate SNP (Figure 3F). 

In summary, the PHBs identified by netMoST for the three biotypes had more significant ORs than the 
single-SNP counterparts determined by standard association analysis using the logistic regression model in 
PLINK (Figure 3). The significance of this result was multifold. First, netMoST was able to capture genetic 
risks that were missed by the conventional single-marker-based methods such as PLINK. In particular, 
netMoST could identify combinatorial, polygenic risk factors spanning multiple chromosomes (Figures 3A, 
3C and 3E), which none of the existing genome-wide association studies could detect. These genetic risk 
factors were large haplotypes representing long-range linkage associations across the genome (eFigures 1, 
3, 5). Third, using SNP alleles instead of SNPs could stratify SCZ diagnoses with subtle genetic or behavior 
differences and reveal proper latent biotypes. Fourth and importantly, the PHBs identified by netMoST 
were excellent genetic signatures of SCZ with sufficient effect sizes, making them ideal biomarkers for SCZ 
diagnosis. 

Subtype-specific alterations of neuroimaging patterns 

We identified significantly differential alterations in brain neuroimaging patterns among the three 
biotypes. While the regional homogeneity (ReHo) was significantly elevated in various frontal lobe regions 
of the three biotypes compared to HCs, the three biotypes had distinct brain regions displaying decreased 
ReHo. Biotype 1 had considerably increased ReHo in the frontal lobe (inferior frontal gyrus, middle frontal 
gyrus, and orbital part of the inferior frontal gyrus) but significantly decreased ReHo in the occipital lobe, 
cuneus, and lingual gyrus compared to HCs (Figure 4A). Biotype 2 had considerably increased ReHo in the 
frontal lobe regions of the superior frontal gyrus, middle frontal gyrus, and medial frontal gyrus but 
significantly decreased ReHo in the occipital lobe and lingual gyrus compared to HCs (Figure 4B). Biotype 3 
had significantly increased ReHo in the frontal lobe (superior frontal gyrus, medial of superior frontal gyrus, 
and orbital part of the inferior frontal gyrus) but significantly reduced ReHo in the parietal lobe, postcentral 
gyrus, precentral gyrus, and temporal lobe (Figure 4C). These distinct intermediate neuroimaging 
phenotypes in ReHo among the three biotypes support these biotypes' distinctive polygenic risk factors and 
illustrate the power of netMoST as a diagnostic tool. 

Subtype-specific clinical characteristics 



To further assess and gain additional insight into the new biotypes defined by netMoST, we 
differentiated behavioral symptoms among the biotypes using the Brief Psychiatric Rating Scale (BPRS) and 
one-way ANOVA analysis (see Methods). The three biotypes differed significantly in three of the five BPRS 
factors scores, including Anxiety and Depression, Hostility-suspicion, and Thinking Disorder (Figures 4D-4F). 
Biotype 2 exhibited more severe behavioral symptoms in Hostility-suspicion and Thinking Disorder. 
Specifically, biotype 2 had a significantly higher level of Hostility-suspicion than Biotype 1 (p-value of 0.002 
after applying the Least Significant Difference (LSD) correction) (Figure 4D), and also had a higher level of 
Thinking Disorder than the other two biotypes (p-value of 0.007 after LSD correction) (Figure 4E). Biotype 3 
showed more severe Anxiety and Depression, as indicated by the lowest Anxiety and Depression score (p-
value of 0.04 after LSD correction) (Figure 4F).  

Similarly, one-way ANOVA analysis showed differences in cognitive ability among the three biotypes 
and HCs. The analysis utilized two cognitive measures, the MATRICS Consensus Cognitive Battery (MCCB) 
and Wisconsin Card Sorting Test (WCST). The three biotypes exhibited varying levels of cognitive 
impairments compared to HCs, as evidenced by smaller T-scores of MCCB and more significant scores of 
non-perseverative error (NPE) on WCST (Figures 4G and 4H). Specifically, biotype 1 had the worst cognitive 
performance, as indicated by the smallest T3 score of MCCB and the largest NPE score of WCST. The T3 
score of MCCB for biotype 1 was significantly smaller than that for the other two biotypes (p-values of 0.03 
and 0.04 after LSD correction) (Figure 4G), and the NPE score of WCST was substantially greater than 
biotype 3 (p-value of 0.02 after LSD correction) (Figure 4H). All these results supported SCZ subtyping and 
the new biotypes defined by netMoST. 

DISCUSSION 

The current SCZ diagnosis is symptom-based without considering objective indicators such as genetic 
risk factors. The disease's complex polygenicity and high genetic heterogeneity imply that SCZ may be 
further grouped into subtypes, as suggested in previous studies50,51. Proper subtypes of SCZ can be used to 
improve diagnosis and treatment. However, reliable subtypes of SCZ remain elusive due to the lack of 
genetic biomarkers for this polygenic brain disorder. Even though previous GWAS identified more than one 
hundred individual disease-associated SNPs6, identifying genetic biomarkers or risk factors for polygenic 
diseases like SCZ remains challenging, even with a large sample size52. Such individual SNPs provide little 
information on the orchestrated interactions and associations among multiple genetic elements and have 
minuscule effect sizes, so they cannot be used as genetic biomarkers. 

We developed netMoST, a novel approach for finding polygenic biomarkers and disease subtyping 
designed to address the polygenicity and genetic heterogeneity of complex diseases. We aimed to identify 
polygenic biomarkers and define adequate biotypes of SCZ. We formulated discovering polygenic 
biomarkers as a problem of identifying module structures in large SNP-allele networks and disease 
subtyping as a problem of network-based clustering. NetMoST hinged upon two critical ideas. First, we 
adopted SNP alleles instead of SNPs as the basic unit of analysis so that genetic heterogeneity could be 
adequately deconvoluted. Combined with CCC27, a correlation metric designed for SNP alleles, this SNP-
allele representation could detect subtle genetic heterogeneity and identify the individual patients who 
contributed to this property. Second, we adopted a network perspective on polygenic risk factors (Figure 1). 
This novel network perspective was materialized by taking advantage of the latest advancement in network 
sciences53-56, particularly network module structure analysis57. Indeed, netMoST could effectively extract 
SNP-allele modules, many of which were statistically significant and functionally relevant and can be used 
as disease-specific PHBs (Figures 3A-3F, Supplemental File 1). Remarkably, these PHBs were statistically 
more significant than individual SNPs detected by the conventional GWAS methods and had substantially 
larger effect sizes. They were excellent candidate disease biomarkers for subtyping (as done in the current 



study) and diagnosis (to be studied in future clinical trials). The SCZ subtyping results were well supported 
by data and information from additional sources, including the potential involvement of the identified SNPs 
in relevant biological processes, coherent neuropsychiatric brain imaging patterns, and cognitive measures 
(Figures 2E-2G, 4A-4H). 

The novel netMoST subtyping method produced three biotypes with distinctive characteristics that 
provide new insight into SCZ disease mechanisms. Biotype 1 was a typical subtype of SCZ with more severe 
cognitive impairment and showed a neurodevelopment-associated genetic pattern, whose genetic 
variations were involved in neuron development and differentiation as neurogenesis (Figure 2E). The 
subtype-specific PHB of biotype 1 emerged as the pattern of interactions between multi-genes across 
different chromosomes (Figure 3A, eFigure 1). The crucial genetic risk factors, including a combination of 
NOTCH4, GRM5, and IL1RAPL1, were identified through network analysis (Figure 3A, eFigure 2). These 
genes have been indicated to affect memory and learning abilities, and brain development, each of which 
was reported in previous studies36-38,58. Indeed, this subtype may be caused by the interactions of genetic 
variations, representing neurodevelopmental abnormalities. Additionally, the ReHo of biotype 1 was 
significantly decreased in the frontal lobe and increased in the occipital lobe, cuneus, and lingual gyrus 
compared to HCs. 

Significantly different from biotype 1, biotype 2 was primarily characterized by immune/inflammatory 
regulation involvement. The PHB with the highest OR showed a high correlation with immunity. Most of its 
genetic variations resided in the MHC region, which is known to harbor genetic variants conferring the risk 
of SCZ59. Network analysis also emphasized the importance of the MHC region in the subtype-specific PHB 
of biotype 2 (eFigure 4). Consistent with the previous study, the findings that two key genes hosting these 
alleles, HLA-DQA1 and HLA-DQB1, were identified and further demonstrated the association of this biotype 
with the immune system. More evidence exists for the involvement of immune proteins in the function of 
the central nervous systems, such as differentiation and migration and synaptic plasticity60,61. These core 
biological processes are related to SCZ pathogenesis62. Furthermore, biotype 2 had significantly increased 
ReHo in the frontal lobe and significantly decreased ReHo in the occipital lobe and lingual gyrus compared 
to HCs. Conceivably, immune-related genetic variations may involve inflammation response in biotype 2, 
affecting fundamental brain functions by compromising synaptic plasticity, neurogenesis, neuronal 
differentiation, and migration. 

The core pathology of biotype 3 may be the impaired neuromodulation of synaptic signaling 
transmission, leading to abnormal functional integration of neural systems. Interestingly, besides the risk 
genes related to the transport of calcium ions and neurotransmitters, such as PTPRD and CACNA2D1, we 
identified CDKAL1, a gene susceptible to type 2 diabetes. The gene hosts 38.8% SNP alleles in the top-
ranking subtype-specific PHB with the highest OR, indicating that CDKAL1 may be a shared genetic risk 
factor for both diseases. Additionally, biotype 3 had different neuroimaging features, ReHo was significantly 
increased in the frontal lobe and significantly decreased in the parietal lobe, postcentral gyrus, precentral 
gyrus, and temporal lobe compared to HCs. 

MATERIALS AND METHODS 

Subjects and data collection and preprocessing 

A cohort of 141 individuals with SCZ diagnosis was recruited from the Shenyang Mental Health Center 
and the First Affiliated Hospital of China Medical University in Shenyang, China. In addition, 284 healthy 
controls (HCs) were recruited from local communities. Behavioral symptoms were assessed using the Brief 
Psychiatric Rating Scale (BPRS). Cognitive function was assessed using the Wisconsin Card Sorting Test 
(WCST) and MATRICS Consensus Cognitive Battery (MCCB). Demographic and clinical characteristics are 
detailed in Supplementary eTable 1. Two professionally trained psychiatrists carried out all diagnoses 



following the structured clinical interview for DSM-IV Axis I Disorders for participants over 18 and the 
Schedule for Affective Disorders and Schizophrenia for School-Age Children-present and Lifetime Version (K-
SADS-PL) for participants under 18 years old. All patients met DSM-IV criteria for SCZ and had no other 
comorbid Axis I disorders. The HCs had no personal history of psychotic or recurrent mood disorder. 
Exclusion criteria for the study included (1) the presence of organic brain disease, (2) a history of substance 
abuse or dependence (except tobacco), (3) a history of head injury, epilepsy, or coma, and (4) 
contraindications for magnetic resonance examination. The Institutional Review Board of China Medical 
University approved the study, and informed consent was obtained from all participants.  

Genotyping and Quality Control 

Peripheral venous blood samples (5 mL) were collected from each subject using EDTA Vacutainer tubes and 
centrifuged at 2000 rpm for 10 min. Subsequently, plasma and blood cells were separated and stored at -80°C 
for genomic (100 μL each) analyses. All participants were genotyped using whole blood and the Illumina Global 
Screening Array-24 v1.0 BeadChip, covering 642,824 fixed genetic variants and 53,411 customized variants 
specific to the Han Chinese populations. The assays were performed following the manufacturer's 
recommendations, and PLINK v1.935 was employed for quality control of the genotyping data. Single nucleotide 
polymorphisms (SNPs) with minor allele frequency (MAF) less than 1%, call rate less than 95% or Hardy-
Weinberg equilibrium (HWE) p-value less than 10-5 were excluded. Individuals with an excessive rate of missing 
data, more significant than 5%, were removed. The final genotyping data included 404,078 genetic variants for 
424 participants. 

Functional MRI Acquisition and Preprocessing  

Magnetic Resonance Imaging (MRI) scans were obtained using a GE Signa HD 3.0T scanner with a standard 
8-channel head coil at the First Affiliated Hospital of China Medical University in Shenyang, China. The functional 
images were acquired using a spin echo planar imaging (EPI) sequence, with the following parameters: repetition 
time (RT) = 2,000 ms, echo time (TE) = 30 ms, flip angle = 90°, the field of view = 240×240 mm2, matrix = 64 x 64. 
A total of 35 axial slices were collected with 3 mm thicknesses without a gap. 

The Functional MRI (fMRI) preprocessing was performed using the Statistical Parametric Mapping 8 (SPM8; 
http://www.fil.ion.ucl.ac.uk/spm) and the Data Processing Assistant for R-functional MRI (DPARSF; 
http://www.restfmri.net/forum/DPARSF)6,63. The first 10 time points of functional images were discarded to 
ensure magnetization stabilization, followed by slice timing correction, motion correction, and spatial 
normalization. The images were then normalized to Montreal Neurological Institute (MNI) space using a 
standard EPI template with a re-sampling voxel volume of 3 mm x 3 mm x 3 mm. The images were then spatially 
smoothed with a 6 mm full-width-at-half-maximum (FWHM) Gaussian kernel. To minimize the effects of 
frequency drifts and high-frequency noise, all-time courses were filtered between 0.01–0.08 Hz. After 
preprocessing, we applied DPARSF to calculate Regional Homogeneity (ReHo), which was used to measure the 
similarity of the time series of a given voxel to those of its adjacent 26 voxels. The whole brain average 
normalized the ReHo values. 

Identifying disease subtypes based on polygenic modules 

The Custom Correlation Coefficient (CCC)27 was adopted to construct an SNP-allelic network for a given 
genotyping dataset. In the allelic network, an SNP is represented by two nodes, one for each SNP allele. An edge 
is introduced to link two alleles of different SNPs if their correlation is above a significance threshold. In our 
current implementation, we applied a stringent CCC threshold of 0.68 to construct the network using data of all 
patients for subtyping. The Louvain community detection algorithm31 was applied to the network to identify 
SNP-allele modules with tight connections within a module and relatively sparse connections across modules. 
Louvain is a multi-phase and iterative heuristic module detection algorithm for optimizing the Q-function of 



global modularity, which describes the tightness of the modules31,64. Compared with other community methods, 
Louvain can extract modules in large networks with less computation.  
 To identify candidate polygenic biomarkers for SCZ, we computed the frequencies, odds ratios (ORs), and 
risk ratios (RRs) for every module for SCZ subjects and HCs. The OR was calculated as OR = a(d-b)/b(c-a), where a 
and b denote the number of SCZ cases and HCs, respectively, who hold the module of interest, and c and d 
represent the total number of cases and HCs who possess complete data for the SNPs in the module, 
respectively. The RR was computed as RR = a/b. The 95% confidence interval (CI) was defined as 
e^[ln(OR)±1.96sqrt(1/a+1/b+1/(c-a)+1/(d-b))], where ln is the natural logarithm and sqrt is the square root. We 
selected those SNP-allele modules with OR ≥ 1.2 and RR ≥ 1.2 as risk SNP-allele modules.  

Identify subtype-specific polygenic haplotype biomarkers 

We used a more stringent CCC threshold of 0.72 to build an SNP-allele network for every biotype to 
identify SNP-allele modules. We then adopted a set of statistical tests to search for statistically significant 
SNP-allele modules as subtype-specific polygenic haplotype biomarkers (PHBs). 

Permutation trials for avoiding false-positive edges 

To avoid false-positive edges in an SNP-allele network, we randomly shuffled the genotypes of the 
individuals with the original alleles and genotype frequency of every SNP intact. After randomization, we 
recalculated the CCC value for every pair of SNP alleles and filtered out the false-positive edge if the CCC 
value for one pair of SNP alleles was smaller than the CCC threshold in the original network after multiple 
permutations. 

Permutation trials 

We randomly permuted the phenotype labels across the subtype of SCZ and HCs. We then computed 
the G-test score by G-test of independence65 for every module for these randomized groups of individuals 
and repeated these trials 1,000 times. We retained the modules with statistically significant p-values (<0.05) 
for the G-test scores and discarded the modules that failed the permutation test. 

Bootstrapping trials 

We randomly selected eighty percent of the cases and eighty percent of the HCs, and used these 
samples to compute the ORs for the modules of every subtype. We repeated these trials 1,000 times. We 
calculated the OR and p-value for every module in each trial and computed the mean OR and average 95% 
confidence intervals over the 1,000 trials for every module in each subtype. We remove the modules with 
ORs <1.5 or 95% confidence interval ≤ 1.05 over the 1,000 random samplings. 

We looked for subtype-specific PHBs following the same scheme as finding SNP-allele modules for SCZ. 
Instead of using all SCZ cases, only those belonging to a biotype were used to construct a new, subtype-
specific SNP-allele network. We also used more stringent criteria to select subtype-specific PHBs: OR ≥ 1.5, 
a lower limit of 95% CI ≥ 1.1, and Yates's correction p-value < 0.05. Additionally, all the subtype-specific 
PHBs must pass the permutation and bootstrapping tests.  

Subtype validation using multimodal biological data 

 To assess the diagnostic capability of PHB-based subtyping, we compared PHBs before and after 
subtyping using additional data and information from multiple sources. 

Gene function enrichment analysis 

A gene set enrichment analysis was performed using the web-based platform FUMAGWAS34 on the 
genes hosting the SNP alleles in a PHB or genes closest to the SNPs. We extended SNPs in noncoding 



transcripts' genomic coordinates upstream 15kb and downstream 10kb to include adjacent genes. The 
enrichment analysis utilized molecular pathways from the biological processes of gene ontology (GO)66, and 
biological Processes (BP) with FDR-corrected p-value < 0.05 were regarded as significantly enriched.  

Comparison of ReHo alterations between subtypes and HC 

To identify ReHo alteration in fMRI across subtypes and HCs, we used the brain imaging data 
processing and analysis tool DPABI67 to conduct a two-sample t-test to compare the ReHo values between 
each subtype and HCs. Gender and age were covariates in the two-sample t-test with statistical significance 
of p-values < 0.05 after the Gaussian random field (GRF) correction. 

Comparison of clinical and cognitive characteristics of subtypes 

One-way ANOVA analysis was adopted to determine if significant differences existed between 
subtypes and HCs in cognitive ability measured by the Wisconsin Card Sorting Test (WCST) and MATRICS 
Consensus Cognitive Battery (MCCB) and in behavioral symptoms assessed by Brief Psychiatric Rating Scale 
(BPRS). The statistical significance level was set at p-values < 0.05 after the Least Significant Difference (LSD) 
correction. The WCST and MCCB are routine neurocognitive tasks frequently used to assess cognitive 
flexibility in patients with mental disorders68-70, especially SCZ. Five WCST performance measures were used 
to access cognitive abilities: the numbers of categories completed (CC), correct responses (CR), total errors 
(TE), perseverative errors (PE, i.e., the subject persisted in making an incorrect sorting choice), and non-
perseverative errors (NPE, i.e., incorrect responses other than PE). Higher scores of CC and CR indicated 
good cognitive performance, while higher scores of TE, PE and NPE suggested poor cognitive function. 
MCCB includes seven psychological dimensions and ten subtests. All test scores were converted to T-scores 
(T1-T10, mean 50, standard deviation 10) based on original scores. A higher T-score for MCCB indicates 
good cognitive function.  

Brief Psychiatric Rating Scale (BPRS) factor scores were identified from the exploratory factor analysis 
(EFA) using the principal component analysis method32, which resulted in a parsimonious list of factors 
using BPRS items. Five interpretable and clinically relevant factors were identified: Anxiety and Depression, 
Negative symptoms, Hostility-suspicion, Activation, and Thinking Disorder71.  
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Figure 1 | Schematic of the NetMoST framework to define and validate objective subtypes of complex 
diseases. Stage one: Construction of specific SNP-allele network for complex diseases like SCZ and using Louvain 
community detection to extract risk SNP-allele modules. Stage two: For the risk SNP-allele modules of 
schizophrenia from stage one, the clustering method was applied to discover subtypes of SCZ. Stage three: The 
genetic variants of cases belonging to each subtype were used to construct a new, subtype-specific SNP-allele 
network. Then the more stringent criteria (OR ≥ 1.5, the lower limit of 95% CI ≥ 1.1, and Yates's correction p-
value < 0.05) to select subtype-specific PHBs that also underwent permutation and bootstrapping trials. Finally, 
the biological subtypes are validated utilizing multimodal data, including genetic profiles, brain neuroimaging, 
and clinical features. Firstly, the gene set enrichment analysis was applied to these PHBs for each subtype to 



discover the unique genetic pattern. Furthermore, the neuroimaging and clinical features were examined to 
determine other biological distinctions within the allele-module-based subtypes.  



Figure 2 | NetMoST method was applied to subtype schizophrenia (SCZ) and define three biological subtypes 
of SCZ based on risk SNP-alleles modules. A) standard quality control procedures were performed on the 
genetic variations dataset. Finally, 404,078 SNPs were retained, and 141 and 283 subjects were labeled as 
schizophrenic cases and healthy controls, respectively. Based on these SNP alleles that passed quality control, a 
specific SNP-allele network with 192,409 nodes (SNP-alleles) and 480,339 edges (associations of SNP-allele pairs) 
was established for SCZ, and 426 risk SNP-alleles modules (OR ≥1.2 and RR≥1.2) highly associated with SCZ were 
identified. B) These single SNPs within the risk modules had lower OR values than the OR of risk SNP-allele 
modules, which indicates the necessity of capturing combinatorial genetic risk for complex disease. C) The 
quantitative distribution of three biotypes for SCZ subjects. The netMoST framework identified three biological 
subtypes, with biotypes 1, 2, and 3 having 52, 40 and 49, respectively. D) The odds ratios of PHBs of each 
subtype after subtyping were significantly higher than before subtyping. This further explained that accurate 
classification would improve the power to recognize polygenic signatures. E-G) Significant biological 
characteristics across three biotypes of SCZ. Examining biological characteristics from genomics between each 
biotype and HCs revealed that the three biotypes had unique genetic patterns. Gene set enrichment of PHBs for 
each biotype. The PHBs in biotype 1 are involved in nervous system development, including neuron 
development, differentiation, and neurogenesis. The PHBs in biotype 2 are significantly enriched in the process 
of related-immune function, and the PHBs in biotype 3 appear in the transports of calcium ions and 
neurotransmitters.  



 

Figure 3 | The subtype-specific polygenic haplotype biomarker capable of exhibiting unique genetic 
characteristics for each biotype of SCZ. The novel netMoST method was introduced to discover genetic subtypes 
based on SNP-alleles modules and identified three biotypes of SCZ. The subtype-specific representative PHB with 
higher OR capable of exhibiting unique genetic characteristics for each biotype was extracted by constructing 
specific SNP-alleles networks and community detection. A, C, E) Topological network structure for SNP alleles 
(Each node label was named by its overlapping gene) of subtype-specific PHB with higher OR for each biotype. 
Each SNP allele is represented by a node, where its size is proportional to the node degree in this network, and 
its color represents its chromosome. B, D, F) The odds ratio of each SNP of the subtype-specific PHBs with higher 
OR of each biotype. The horizontal axis represents the SNP for SPHB of each subtype, and the vertical axis 
represents the odds ratio of SNP. Each SNP is represented by a node whose color represents its chromosome. 
The three representative PHBs reveal that netMoST could identify combinatorial genetic risk factors easily 



neglected by conventional single-marker-based methods due to the smaller OR. These genetic risk factors may 
significantly form significant haplotypes with long-range linkage associations by spanning multiple chromosomes.   



 
Figure 4 | Significant differences in brain neuroimaging and clinical characteristics among three biotypes of 
SCZ. A-C) The neuroimaging regional homogeneity (ReHo) alterations between each biotype and HCs. D-F) The 
differences in behavioral symptoms assessed by the Brief Psychiatric Rating Scale (BPRS) among three biotypes 
and HCs. G-H) The cognitive ability between three biotypes of SCZ. Biotype 1 performed worse on cognitive 
measures than the other two biotypes due to the lower score of T3 and the greater score of NPE belonging to 
the MATRICS Consensus Cognitive Battery (MCCB) and the Wisconsin Card Sorting Test (WCST), respectively. The 
vertical black lines show the standard errors of the means, and the significance level was set to p < 0.05 with the 
Least Significant Difference correction. ***p < 0.001; **p < 0.01; *p < 0.05. 


